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We analyze in detail the effect of varying entropy degrees of freedom on low-scale leptogenesis models.
As an archetypal model, we consider the triresonant leptogensis (TRL) scenario introduced recently by the
authors, where the neutrino-Yukawa coupling matrix is dictated by an approximate Zn discrete symmetry
(with n ¼ 3, 6). TRL models exhibit no preferred direction in the leptonic flavor space and have the
remarkable feature that leptogenesis can successfully take place even if all light neutrinos are strictly
massless up to one-loop order. Most interestingly, for TRL scenarios with heavy Majorana neutrinos lighter
than 100 GeV, temperature varying degrees of freedom associated with the entropy of the plasma have a
dramatic impact on the predictions of the baryon asymmetry in the Universe (BAU), and may depend on the
freeze-out sphaleron temperature Tsph. We find that this is a generic feature of most freeze-out low-scale
leptogenesis models discussed in the literature. In the same context, we consider heavy-neutrino scenarios
realizing dynamics related to critical unstable qudits in the thermal plasma and assess their significance in
generating the BAU. The phenomenological implications of TRL scenarios at the intensity and high-energy
frontiers are analyzed.
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I. INTRODUCTION

The existence of matter-antimatter asymmetry within the
Universe, as well as the observations of the flavor mixing of
neutrino species [1–3], provide convincing evidence of
physics beyond the Standard Model (SM). In recent years,
the Wilkinson Microwave Anisotropy Probe [4] and Planck
observatory [5] have measured the baryon asymmetry of
the Universe (BAU) to an unprecedented precision,

ηCMB
B ¼ ð6.104� 0.058Þ × 10−10: ð1:1Þ

This value of ηB is compatible with the one derived from
big-bang nucleosynthesis (BBN) bounds on the abundance
of light elements [6].
A minimal and appealing solution to the origin of the

observed matter-antimatter asymmetry in the Universe
offers the well-studied scenario of leptogenesis [7]. This

is a simple framework which comfortably satisfies all three
Sakharov conditions [8], and only requires a minimal
extension of the SM to contain right-handed neutrino
species, which are singlets under the SUð3Þc × SUð2ÞL ×
Uð1ÞY gauge group of the SM. This minimal extension
provides an additional Yukawa coupling with the left-
handed neutrino species as well as a Majorana mass term,
which violates the lepton number, L, by two units. This
minimal extension not only provides a mechanism by
which SM neutrinos may be massive but also ensures that
this mass is small enough to fit with experimental obser-
vations through the famous seesaw mechanism [9–13].
Moreover, the expansion of the FRW Universe leads to
cooling, allowing particle species that are part of the
thermal plasma to fall out of equilibrium, thus providing
a mechanism for satisfying Sakharov’s third condition.
Finally, this framework introduces new sources of CP
violation from the neutrino–Yukawa sector, as well as
phenomena of heavy-neutrino mixing [14,15] which
include coherent oscillations between neutrino flavors
[16,17]. These effects together permit the generation of a
significant lepton asymmetry, which may be rapidly con-
verted into a baryon asymmetry through (Bþ L)-violating
sphaleron transitions [18].
One issue which is commonly drawn from models

of leptogenesis is that for a generic model, one would
typically require singlet neutrino masses of grand unified
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theory (GUT) scales due to the lightness of the SM
neutrinos. As a result, any hopes of detection at current
and future experiments are lost since the interactions
between light and heavy neutrino species are suppressed
by the heavy neutrino masses. However, an elegant
framework by which this may be evaded is the framework
of resonant leptogenesis (RL) [15,19,20]. In RL models,
the CP asymmetry is enhanced through the mixing of near-
degenerate heavy neutrinos, which have masses satisfying
the condition

jmNα
−mNβ

j ≃ 1

2
Γα;β: ð1:2Þ

Here, mNα
and Γα are the mass and decay width of the

heavy neutrino species Nα, respectively. This framework
can achieve successful leptogenesis at sub-TeV scales
while maintaining agreement with current oscillation
parameters. Consequently, RL models offer not only the
possibility of generating the observed BAU but also of
observing effects in near-future experiments.
In this article, we adopt a particular framework of RL

with three singlet neutrino species with a mass spectrum in
consecutive resonance, a structure which we refer to as tri-
resonant [21], leading to tri-resonant leptogenesis (TRL).
In a TRL model, the CP asymmetry is maximized through
the constructive interference of all three heavy neutrino
species, allowing for greater amounts of baryon asymmetry
to be generated with larger-scale Yukawa couplings. In
particular, this is to be contrasted with the expectation from
typical biresonant models where the CP asymmetry is
generated through the mixing of two heavy neutrinos, with
a third decoupled neutrino included to fit neutrino oscil-
lation data.
A notable addition to previous research on this topic is

the incorporation of the nonconstant nature of relativistic
degrees of freedom (dofs) which we study in detail. These
enter through the energy and entropy densities of the
thermal plasma in the transport equations (TEs). It has
become a common practice in the literature that at temper-
atures, T, above the electroweak (EW) scale, the dofs of the
plasma are taken to be constant. As shown in a previous
study [21], however, even small deviations which are
present at this scale can have a significant effect on the
generated BAU, in particular for models where the heavy
neutrino mass scale is below 100 GeV. In this work,
we utilize a set of TEs which take into account the
CP-violating effects from both mixing and heavy-neutrino
flavor oscillations and show that the impact on the
generated BAU from the inclusion of the EW-scale temper-
ature variations of the dofs is the same as shown in
Ref. [21]. In addition, we show that the inclusion of the
dofs can induce large dependencies of BAU on the critical
temperature of the sphaleron transitions, Tsph, for low-scale

models, in contrast with near TeV scale models where
variations in Tsph have minimal effect.
Finally, we consider whether the critical phenomena

discussed in [22] may also be present in a thermal plasma.
Our analysis shows that similar phenomena may be present
in the approach to equilibrium. However, in a cosmological
setting where the Universe cools down, these phenomena
may be destroyed, with the out-of-equilibrium effects
pushing the bath toward a fully mixed state. Conversely,
in thermostatic scenarios (i.e., of a thermal bath with
constant temperature), it may be possible to observe
oscillations in the neutrino number density as the plasma
approaches its equilibrium distribution.
The layout of this article is as follows. In Sec. II, we

introduce the TRL model which is based on the symmetry-
motivatedZ6 Yukawa structure. We discuss some of theCP
properties which arise from this structure. In Sec. III, we
introduce a set of coupled TEs which describe the evolution
of an appreciable BAU, crucially preserving the temper-
ature dependence of the relativistic dofs and including both
the mixing of heavy neutrino species as well as coherent
flavor oscillations. Section IV investigates how the inclu-
sion of the temperature dependence of the dofs impacts the
generated BAU and the dependence on the critical temper-
ature of the (Bþ L)-violating sphaleron transitions is
analyzed. Moreover, we examine the stability of the
generated asymmetry under changes to the initial condi-
tions. In Sec. V, we consider the prevalence of critical
scenarios within cosmological settings and discuss the TRL
model as one which can produce critical phenomena. In this
regard, we present in the Appendix the mathematical
structure of an N-level unstable quantum system of the
nondiagonalizable Jordan form, which may also be called a
critical unstable qudit. In Sec. VI, we summarize our results
and show numerical solutions to the TEs.1 The accessible
parameter space generated by the TRL model is delineated,
and comparisons to current and future experiments are
given. Finally, in Sec. VII, we concisely present our
conclusions and discuss possible extensions and future
directions.

II. THE TRIRESONANT LEPTOGENESIS MODEL

We utilize a minimal extension of the SM through the
inclusion of right-handed neutrino fields, νR, which are
singlets of the SM gauge group and have lepton number
LνR ¼ 1. The inclusion of these additional degrees of
freedom leads to the extended Lagrangian

−LνR ¼ hνijL̄iΦ̃νR;j þ
1

2
ν̄CR;iðmMÞijνR;j þ H:c:; ð2:1Þ

1The numerical integration of the TEs and the production of
the necessary interpolations is accomplished by using the
modules provided by scipy [23]. All the figures are produced
using the library matplotlib [24].
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where Li ¼ ðνiL; eiLÞT with i ¼ e, μ, τ are the left-handed
SUð2ÞL leptondoublets, and Φ̃ ¼ iσ2Φ� is theweak-isospin-
conjugate Higgs doublet ofΦ. The two flavor spacematrices
hν and mM are the neutrino Yukawa couplings and the
Majorana mass matrix, respectively. We have reserved the
boldface notation to indicate matrices with flavor structure.
Without loss in generality, we may employ covariant flavor-
space transformations to bring theMajoranamassmatrix into
the diagonal form: mM ¼ diagðmN1

;…; mNn
Þ.

In the broken phase of the theory, this Lagrangian gives
rise to a light neutrino mass spectrum described by the
famous seesaw relation [9–13],

mν ≈ −mDm−1
M mT

D; ð2:2Þ

where mD ¼ vhν=
ffiffiffi
2

p
is the Dirac-neutrino mass matrix,

with v being the vacuum-expectation-value (VEV) of the
Higgs field, and mM is the Majorana mass matrix describ-
ing the spectrum of heavy neutrino species, Nα, with
α ¼ 1; 2;…; n. In a generic model, the seesaw relation
suggests the existence of GUT-scale heavy neutrinos
since the mass scale of the Majorana mass matrix is
determined by

jjmMjj ≃
v2

2jjmνjj jjh
νjj2: ð2:3Þ

Here we made use of the Frobenius norm, e.g.,

jjmMjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðm†

MmMÞ
q

: ð2:4Þ

The Lagrangian of the phenomenologically relevant WlN
charged current interaction may be written as

LW
int ¼ −

gwffiffiffi
2

p W−
μ ēiLBiαγ

μPLNα þ H:c:; ð2:5Þ

where PL ¼ 1
2
ð1 − γ5Þ is the left-handed chirality projec-

tion operator. Consequently, the phenomena arising from
such heavy neutrinos would be out of reach in current and
foreseeable experiments, since, in the broken phase, these
interactions are severely suppressed by the light-to-heavy-
neutrino-mixing matrix, B ≃mDm−1

M , where the conven-
tions of [25] were adopted. Therefore, there is great
phenomenological interest in finding models where observ-
able physics lies closer to current experimental bounds,
such as at sub-TeV mass scales.
As was detailed in [21], by selecting a symmetry-

motivated flavor structure for the Yukawa, the light
neutrino spectrum can be made to vanish, with the observed
masses and mixing observables generated through small
perturbations about the symmetric Yukawa couplings. We
may parametrize the Majorana mass matrix with small
mass splittings as

mM ¼ mN1N þ ΔmM: ð2:6Þ

In this expression, we use the average mass for N heavy
neutrino species mN . At the leading order, the expression
for the light neutrino mass matrix may be given by

mν ¼ −
v2

2mN

�
hνðhνÞT þO

�
ΔmM

mN

��
: ð2:7Þ

Hence, for singlet neutrinos with a near-degenerate mass
spectrum, the light neutrino mass matrix may be made to
approximately vanish by demanding that

hνðhνÞT ¼ 03: ð2:8Þ

This motivates the symmetric Yukawa structure

hν0 ¼

0
B@

a aω aω2

b bω bω2

c cω cω2

1
CA; ð2:9Þ

where a; b; c∈C, and ω are the generators of the discrete
group Z6. We note that due to the isomorphism
Z3 ≃ Z6=Z2, the generators of Z3 also satisfy the zero
mass condition, and so they may be used to produce
identical results up to a change in the sign in the CP phase.
For definiteness, however, we explicitly take the generators
of Z6.
It is worth highlighting the following observation. Since

the above symmetry-motivated Z6 form appears in the
flavor structure of the Dirac mass matrix, flavor covariance
entails the vanishing of the tree-level mass matrix which in
turn leads to the vanishing of the sum of the tree plus the
one-loop contribution as well [25–27]:

hν
�
m−1

M −
αw

16πM2
W
m†

MfðmMm
†
MÞ

�
hνT ¼ 03; ð2:10Þ

where

fðmMm
†
MÞ ¼

M2
H

mMm
†
M −M2

H13
ln

�
mMm

†
M

M2
H

�

þ 3M2
Z

mMm
†
M −M2

Z13
ln

�
mMm

†
M

M2
Z

�
: ð2:11Þ

Here, αw ≡ g2w=ð4πÞ2 is the electroweak-coupling param-
eter, andMW ,MZ, andMH are the respective masses of the
W, Z, and Higgs bosons. As a consequence, the symmetric
structure we present gives full control over the light
neutrino mass spectrum. As was described in [21], by
judiciously rescaling the Yukawa couplings through the
Majorana mass terms, it is possible to reinforce that the Z6

symmetry gives exactly vanishing neutrino masses to all
loop orders in perturbation theory.
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The Z6 structure not only offers naturally light neutrino
masses but also has large CP-phases available for generat-
ing significant lepton asymmetry. When one calculates the
CP-odd invariant quantity [15,19,28,29]

ΔCP ¼ ImTrðhν†hνm†
MmMm

†
Mh

ν†hνmMÞ; ð2:12Þ

it can be shown that the resulting expression for the Z6

model depends only on the imaginary part of the generator,
ω, viz.

ΔCP ¼ ðjaj2 þ jbj2 þ jcj2Þ2
X
α<β

mNα
mNβ

ðm2
Nα

−m2
Nβ
Þ

× Im½ω2ðα−βÞ�; ð2:13Þ

where mNα
is the mass of the heavy neutrino Nα.

In order to maximize the available CP asymmetry, we
make use of this symmetric structure within the RL

framework [19]. This framework generates enhanced
CP-violating effects through the mixing of heavy neutrino
species by taking a near-degenerate heavy neutrino mass
spectrum, in particular, through the contributions from the
absorptive part of the wave function [30–33]. Making use
of the wave function and vertex coefficients

Aαβ ¼
X3
l¼1

hνlαh
ν�
lβ

16π
¼ ðhν†hνÞ�αβ

16π
; ð2:14Þ

Vlα ¼
X3
k¼1

X
γ≠α

hν�kαh
ν
kγh

ν
lγ

16π
f

�m2
Nγ

m2
Nα

�
; ð2:15Þ

a fully consistent resummation of these two wave function
and vertex contributions is obtained through the effective
Yukawa couplings [19–21,34]

ðh̄νþÞlα ¼ hνlα þ iVlα − i
X3
β;γ¼1

jεαβγjhνlβ
mNα

ðMααβ þMββαÞ − iRαγ½MαγβðMααγ þMγγαÞ þMββγðMαγα þMγαγÞ�
m2

Nα
−m2

Nβ
þ 2im2

Nα
Aββ þ 2iIm½Rαγ�ðm2

Nα
jAβγj2 þmNβ

mNγ
Re½A2

βγ�Þ
: ð2:16Þ

In the above expression, Mαβγ ¼ mNα
Aβγ , ϵαβγ is the Levi-

Civita anti-symmetric tensor, fðxÞ¼ ffiffiffi
x

p ½1−ð1þxÞlnð1þx
x Þ�

is the Fukugita-Yanagida one-loop function [7], and

Rαβ ≡ m2
Nα

m2
Nα

−m2
Nβ

þ 2im2
Nα
Aββ

: ð2:17Þ

The CP-conjugate effective Yukawa couplings, associated
with the NLcΦ� interaction, and represented by h̄ν−, may be
found by using the CP-conjugate tree-level Yukawa cou-
plings, ðhνÞ�, in (2.16) in place of hν. The (rest frame)
decay matrices of heavy neutrino species into LΦ and as
the CP-conjugate decay to LcΦ� are then given by

Γþ ≡ ΓðN → LΦÞ ¼ mN

8π
ðhνþÞ†hνþ;

Γ− ≡ ΓðN → LcΦ�Þ ¼ mN

8π
ðhν−Þ†hν−: ð2:18Þ

It has been well established in numerous works
[15,19,35] that the CP asymmetry generated through the
mixing of two heavy neutrino species is maximized when
the mass difference between two heavy neutrino species is
of the same scale as the width

jmNα
−mNβ

j ≃ 1

2
Γα;β; ð2:19Þ

with such mass splitting being described as resonant. It has
additionally been shown in [21] that the CP-asymmetry

generated in models with three singlet neutrinos may be
maximized when the heavy neutrino mass spectrum is in
consecutive resonance with resonant mass splitting
between not only N1 and N2, but also between N2 and
N3. Consequently, we adopt this triresonant structure along
with the Z6 symmetric Yukawa couplings in an effort to
bound from above the size of the allowed light-to-heavy-
neutrino mixings while maintaining agreement with the
observed BAU.

III. TRANSPORT EQUATIONS
FOR LEPTOGENESIS

To determine the amount of BAU generated through
TRL, we require a set of TEs to track the evolution of the
number densities of the heavy neutrino species and the SM
leptons.2 In this section, we lay out these TEs.
In [36], a general framework for the construction of

quantum TEs was presented, where a matrix of densities
was proposed as a way to track the evolution of number
densities. Such a matrix of densities was defined as

fij ¼
1

V
ha†i aji ¼

1

V
Tr½ρa†i ðpÞajðpÞ�: ð3:1Þ

In the above, V ¼ ð2πÞ3δð0Þ is the infinite 3-volume of the
coordinate space, ρ is the density matrix of the thermal

2We assume that the Higgs boson maintained thermal equi-
librium with the plasma at least until the sphaleron decoupling
temperature, i.e. Tsph > mh.
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ensemble, and aiðpÞ are annihilation operators for the
relevant particle species. In contrast with flavor diagonal
TEs, this approach offers the ability to account for both the
number densities and quantum correlations between them.
From this matrix-of-densities approach, a set of coupled
TEs may be derived, which capture CP-violating effects
from both the oscillation between singlet neutrino flavors
and mixing.

A. Heavy neutrino transport equations

We follow a similar prescription to that laid out in [37],3

with the TEs for the distribution functions of the singlet
neutrinos in the mass basis given by

dfN

dt
¼ −i½EN; fN � þ CN þ ðC̄NÞT ð3:2aÞ

df̄N

dt
¼ i½EN; f̄N � þ C̄N þ ðCNÞT ð3:2bÞ

Where CN and C̄N are collision terms of the TEs. We
consider the thermal bath in the relativistic limit, with the
bath in kinetic equilibrium due to the rapid decay of heavy
neutrinos Γ ≫ HðzÞ. We also neglect quantum effects such
as Bose enhancement and Fermi blocking. In addition, we
do not consider the contribution of backreaction terms to
the heavy neutrino TEs. With these assumptions, the
pertinent collision terms are written as

CN ¼ −
1

2
ffN;ΓþðpN; pLÞg þ fϕeqfLeqΓ−ðpN; pLÞ; ð3:3aÞ

C̄N ¼ −
1

2
ff̄N;Γ−ðpN; pLÞg þ fϕeqfLeqΓþðpN; pLÞ: ð3:3bÞ

With these definitions, we may derive a set of TEs for the
CP-even and CP-odd linear combinations of distribution
functions. However, as was extensively discussed in the
literature [19,37,40], we note that the subtraction of the so-
called real intermediate states (RISs) in the 2 → 2 scatter-
ing processes contributes a term at the same scale as the
decay processes, i.e.

dδfN

dt
⊃ 4ifϕeqfLeqIm½δΓðpN; pLÞ�: ð3:4Þ

This term changes the sign of the CP-odd inverse decay
terms, allowing the TEs to reach thermal equilibrium.
In detail, these TEs read4:

dfN

dt
¼ −

i
2
½EN; δfN � − 1

2
ffN − fϕeqfLeq1;Re½ΓTðpN; pLÞ�g

−
i
4
fδfN; Im½δΓðpN; pLÞ�g; ð3:5aÞ

dδfN

dt
¼ −

i
2
½EN; fN � − iffN − fϕeqfLeq1; Im½δΓðpN; pLÞ�g

−
1

2
fδfN;Re½ΓTðpN; pLÞ�g: ð3:5bÞ

In the above expressions we have defined the CP-even and
CP-odd components of the distribution functions

fN ¼ 1

2
ðfN þ f̄NÞ; δfN ¼ fN − f̄N; ð3:6Þ

as well as the CP-even and CP-odd decay terms:

ΓTðpN; pLÞ ¼ ΓþðpN; pLÞ þ Γ−ðpN; pLÞ; ð3:7aÞ

δΓðpN; pLÞ ¼ ΓþðpN; pLÞ − Γ−ðpN; pLÞ: ð3:7bÞ

We identify the equilibrium distribution function as the
distribution which makes the right-hand side (rhs) of
both of these TEs vanish, and we then see that the
equilibrium distribution of the heavy neutrino species is
given by

fN
eq
¼ fϕeqfLeq1 ¼ exp

�
−
Eϕ þ EL

T

�
1; δfNeq ¼ 0: ð3:8Þ

To integrate these TEs, we may utilize the kinetic equi-
librium assumption,

fN ≈
nN

nNeq
fNeq δfN ≈

δnN

nNeq
fNeq; ð3:9Þ

which has been discussed in the literature [40,42–44],
where it was shown that only small deviations are to be
expected. Making use of the equilibrium distribution given
in Eq. (3.8), we find the corresponding equations for the
number density of the neutrino species,

dnN

dt
¼ −

i
2
½EN; δnN � − 1

2

�
nN

nNeq
− 1;Re½γNLΦ�

�

−
i

4nNeq
fδnN; Im½δγ�g; ð3:10aÞ

dδnN

dt
¼ −2i½EN; nN � − i

�
nN

nNeq
− 1; Im½δγ�

�

−
1

2nNeq
fδnN;Re½γNLΦ�g: ð3:10bÞ

3For other out-of-equilibrium field theoretic treatments, see
[38,39].

4There exists a lack of consensus regarding the inclusion of the
second term in Eq. (3.5b). This term arises from the transport
equations given in (3.2) with the inclusion of thermally corrected
RIS subtractions in the 2 → 2 scatterings, which encode the
coherence-decoherence effects from the back-reaction of the
thermal bath [37]. Such terms are absent in other works, cf. [41].
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In these TEs, we have defined the following thermally
averaged quantities:

EN ¼ 1

nN

Z
p
ENðpÞfNeqðpÞ ¼

K1ðzÞ
K2ðzÞ

mM; ð3:11Þ

γ ¼ Γ
Z
NLΦ

16πðpN · pLÞ
mN

fϕeqfLeq ¼
m3

N

2π2
K1ðzÞ
z

Γ; ð3:12Þ

where the integral labels indicate over which Lorentz-
invariant-phase-space the integral takes place, the rest-
frame decay matrices, Γ�, are calculated in Eq. (2.18), and
KnðzÞ are modified Bessel functions of the second kind.
The terms which enter the TEs (3.10) are then written as

γNLΦ ¼ γðN → LΦÞ þ γðN → LcΦ†Þ

¼ m3
N

2π2
K1ðzÞ
z

ðΓþ þ Γ−Þ; ð3:13Þ

δγ ¼ γðN → LΦÞ − γðN → LcΦ†Þ

¼ m3
N

2π2
K1ðzÞ
z

ðΓþ − Γ−Þ: ð3:14Þ

We would like to write the TEs given in Eq. (3.10) in a
way which explicitly accounts for the expansion of the
Universe and consequential phenomena. Following the
conventions given in [20], we introduce the dimensionless
run parameter z ¼ mN=T and normalize the particle num-
ber density to the photon number density

ηiðzÞ ¼ niðzÞ
nγðzÞ ð3:15Þ

nγðzÞ ¼ 2ζð3Þ
π2

T3 ¼ 2ζð3Þ
π2

�
mN

z

�
3

; ð3:16Þ

where ζð3Þ ¼ 1.202 is Apéry’s constant.
From the TEs given in Eq. (3.10), it can be seen that it

may be convenient to express the TEs in terms of CP-even
and CP-odd departure-from-equilibrium matrices, which
we define as

ΔðzÞ ¼ ηNðzÞ
ηNeqðzÞ

− 1; δðzÞ ¼ δηNðzÞ
ηNeqðzÞ

; ð3:17Þ

respectively. Here, we use the approximate expression for
the equilibrium value

ηNeqðzÞ ¼
z2

2ζð3ÞK2ðzÞ: ð3:18Þ

With all these definitions in place, we may find a set of
TEs for the departure-from-equilibrium matrices, which
crucially preserve the effects from changing dofs, which

appear through the energy and entropy density of the
thermal plasma

ρðTÞ ¼ π2

30
geffðTÞT4; sðTÞ ¼ 2π2

45
heffðTÞT3; ð3:19Þ

In the TEs, the variations in the dofs are accounted for
through the quantity

δh ¼ 1 −
1

3

d ln heffðzÞ
d ln z

: ð3:20Þ

The TEs are then written as

dΔ
d ln z

¼ δh
HðzÞ

�
−
i
2
½EN; δ� − 1

2nγηNeq
fΔ;Re½γNLΦ�g

−
i

4nγηNeq
fδ; Im½δγ�g

�

þ
�
3ð1 − δhÞ −

d ln ηNeqðzÞ
d ln z

�
ðΔþ 1Þ; ð3:21aÞ

dδ
d ln z

¼ δh
HðzÞ

�
−2i½EN;Δ� − i

nγηNeq
fΔ; Im½δγ�g

−
1

2nγηNeq
fδ;Re½γNLΦ�g

�

þ
�
3ð1 − δhÞ −

d ln ηNeqðzÞ
d ln z

�
δ: ð3:21bÞ

In contrast with the majority of the TEs that appeared in the
literature, the respective equations displayed here explicitly
show the distinct phenomena that may impact the evolution
of the heavy neutrino number densities, particularly the
relativistic dofs and the changes in the equilibrium, ηBeq.
Finally, in our evaluations of the two differential equations
in (3.21), we make use of the well-known expression for the
Hubble parameter

HðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3geffðzÞ

45

r
m2

N

MPl

1

z2
; ð3:22Þ

where MPl ≃ 1.221 × 1019 GeV is the Planck mass.

B. Lepton asymmetry transport equation

As in the case of the heavy neutrino TEs, we identify the
flavor-covariant TE for the lepton asymmetry in the
manner described in [37]. However, we additionally
include the extra contributions appearing from the varia-
tions in the dofs. The TEs we use contain not only decay
and inverse decay terms but also relevant 2 → 2 scatterings.
Moreover, in order to avoid double counting of the decay
processes, a proper subtraction of the RIS contributions is
performed. The TE for the lepton asymmetry has been
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written in a manner such that collision decay terms do not
appear, as outlined in [34,37]. Consequently, the TE does
not contain any negative contributions to the collision terms
arising from the RIS subtraction of the ΔL ¼ 2 inter-
actions [45].
Since we are primarily interested in the evolution at

temperatures higher than that of the critical temperature of
the EW phase transition, the SM leptons are massless apart
from thermally generated masses, and as a result, we
neglect the oscillation of SM lepton species. We assume
that the sum of lepton number density is close to thermal
equilibrium, and so ηL þ η̄L ≃ 2ηLeq1. The flavor-covariant
TE for the lepton asymmetry is then written as

d½δηL�lm
d ln z

¼ δh
HðzÞnγ

�
½δγ�lmαβΔβα þ

1

2
½γNLΦ�lmαβδβα

−
1

3
fδηL; γLΦLΦ þ γLΦLcΦ†glm −

2

3
½δηL�knð½γLΦLcΦ† �nklm

− ½γLΦLΦ�nklmÞ−
2

3
fδηL; γdecglm þ ½δγbackdec �lm

�

þ 3ð1− δhÞδηL: ð3:23Þ

On the rhs of (3.23), the first two terms contain the
decay contribution to the TE, with the rank-4 decay terms
defined as

½γNLΦ�lmαβ ¼
m3

N

2π2
K1ðzÞ
z

mN

8π
ððhνþÞαlðhνþÞ†βm þ ðhν−Þαlðhν−Þ†βmÞ;

ð3:24aÞ

½δγ�lmαβ ¼
m3

N

2π2
K1ðzÞ
z

mN

8π
ððhνþÞαlðhνþÞ†βm − ðhν−Þαlðhν−Þ†βmÞ:

ð3:24bÞ

The remaining terms contribute to the 2 → 2 scattering.
The rank-4 scattering terms corresponding to LΦ → LΦ
and LΦ → LcΦ† are defined as

½γLΦLΦ�nklm ¼
X
αβ

2½ðγNLΦÞαα þ ðγNLΦÞββ�
ð1 − 2i

mNα−mNβ

ΓαþΓβ
Þ

ðhν−Þ�lαðhνþÞkαðhν−ÞmβðhνþÞ�nβ þ ðhνþÞ�lβðhν−ÞkβðhνþÞmαðhν−Þ�nα
½ðhν;†þ hνþÞαα þ ðhν;†− hν−Þαα þ ðhν;†þ hνþÞββ þ ðhν;†− hν−Þββ�2

; ð3:25Þ

½γLΦLcΦ† �nklm ¼
X
αβ

2½ðγNLΦÞαα þ ðγNLΦÞββ�
ð1 − 2i

mNα−mNβ

ΓαþΓβ
Þ

ðhνþÞ�lβðhνþÞ�kβðhνþÞmαðhνþÞnα þ ðhν−Þ�lαðhν−Þ�kαðhν−Þmβðhν−Þnβ
½ðhν;†þ hνþÞαα þ ðhν;†− hν−Þαα þ ðhν;†þ hνþÞββ þ ðhν;†− hν−Þββ�2

; ð3:26Þ

with the scattering matrices defined through a contraction
over the final two indices

½γLΦLΦ�lm ¼
X
k

½γLΦLΦ�lmkk;

½γLΦLcΦ† �lm ¼
X
k

½γLΦLcΦ† �lmkk: ð3:27Þ

Finally, the interactions with SM particles are accounted for
in the decoherence matrices γdec and δγbackdec . The former of
these is a CP-even contribution, with γdec ¼ ΓLnLeq, and
ΓL ¼ diagðΓL

lÞ, where

ΓL
lðTÞ ≃ ð3.8 × 10−3Þ½hLl �2½ð−1.1þ 3.0xÞ þ 1.0

þ ½hQt �2ð0.6 − 0.1Þx�T; ð3:28Þ

as calculated in [46]. In this expression, hLl are the Yukawa
couplings for the SM leptons, hQt is the Yukawa coupling
for the top quark, x ¼ zMΦðzÞ=mN , and MΦðzÞ is the
thermal Higgs mass. The CP-odd contribution may be
calculated from the CP-even term as

½γbackdec �ll ¼ ½γdec�ll
δηLll
ηLeq

; ð3:29Þ

where the repeated index l is not summed over.
The total lepton asymmetry is easily extracted from δηL

through its trace. Part of this lepton asymmetry is then
re-processed into a baryon asymmetry through (Bþ L)-
violating sphaleron transitions, which become exponen-
tially suppressed at the sphaleron critical temperature
Tsph ≃ 132 GeV [47]. In [48], the conversion factor for
leptons-to-baryons is calculated to be

ηB ≃ −
28

51
TrδηL: ð3:30Þ

Finally, in order to compare the generated BAU with the
observed value, we should take into account the dilution of
ηB due to the expansion of the Universe. At temperatures
below Tsph, we assume that the total number of baryons is
fixed, but the number density may be washed out due to the
expansion of the Universe. Assuming that there are no
considerable entropy-releasing processes between the
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sphaleron temperature and the recombination temperature,
Trec, we may use entropy conservation to estimate

ηCMB
B ¼ heffðTrecÞ

heffðTsphÞ
ηBðTsphÞ; ð3:31Þ

with the overall conversion factor found to be around 1=27
[19,49]. Therefore, the BAU, as measured at the recombi-
nation epoch, may be extracted from the TEs by

ηCMB
B ¼ −

1

27

28

51
TrδηL: ð3:32Þ

IV. IMPACT OF THE RELATIVISTIC
DEGREES OF FREEDOM

In order to estimate the reliability of our results in
different regions, in this section we investigate how the
results for the generated BAU change once the temperature
dependence of the relativistic dofs is included. As shown in
the literature [50,51], the contributions to the effective dofs
are calculated through the energy and entropy densities of
the Universe

geffðTÞ ¼
30

π2
ρðTÞ
T4

; heffðTÞ ¼
45

2π2
sðTÞ
T3

: ð4:1Þ

The inclusion of lattice [52] and perturbative [53] QCD
effects gives additional contributions to the equation of
state for the plasma. This results in an equation of state that
deviates from the ideal gas assumption in a relevant manner
[50] and, consequently, small variations in the dofs are
present at temperatures above 100 GeV.
In the TEs, the variations in the dofs are accounted for in

three places: (i) the Hubble rate, H, (ii) as a global factor of
δh on the commutator and collision terms, and (iii) as an
additional term proportional to ðδh − 1Þ. It is worth noting
that these three factors do not affect our TEs in the same
way. When the variations to the dofs enter into the Hubble
rate, the T2 scaling of H dominates over the small
variations in geffðTÞ. Similarly, the global factor δh is
overshadowed by the temperature dependence of the
thermally averaged energy and decay matrices. However,
the final term proportional to ðδh − 1Þmodifies the TEs in a
significant way by introducing additional dynamics. In
particular, this term provides an extra way in which the
number density may be drawn away from equilibrium.
With this in mind, we study the dynamics of the system in
two initial-condition scenarios: (i) the case where the bath
of heavy neutrinos begins in equilibrium, (ii) the case with a
vanishing number density of heavy-neutrinos as the initial
condition of the bath.

A. Equilibrium initial conditions

In the early evolution, we assume that thermal out-of-
equilibrium effects generate the initial heavy neutrino
asymmetry. Therefore, we take the initial condition
Δðz0Þ ¼ δðz0Þ ¼ 0 when z0 ≪ 1. Neglecting neutrino fla-
vor oscillations and the collision terms, we may study
the out-of-equilibrium dynamics alone. We consider the
equation

dΔðzÞ
d ln z

¼ −
d ln ηNeqðzÞ
d ln z

ðΔþ 1Þ þ 3ð1 − δhÞðΔþ 1Þ: ð4:2Þ

The first term in (4.2) gives the dynamics from the change
in the equilibrium number density as the Universe is
cooling down, while the second term describes the inclu-
sion of changes in the entropy dofs. Taking the equilibrium
initial condition, it may be shown that this equation has the
solution

ΔðzÞ ¼
�
heffðzÞ
heffðz0Þ

ηNeqðz0Þ
ηNeqðzÞ

− 1

�
1 ¼ ηNeqðz0Þ

ηNeqðzÞ
R1: ð4:3Þ

In the above, we have defined the dimensionless parameter

R ¼ heffðzÞ
heffðz0Þ

−
ηNeqðzÞ
ηNeqðz0Þ

; ð4:4Þ

which will allow us to showcase better the relevant
information as z > 1. In fact, the value of R provides
important information on the dominant source of out-of-
equilibrium dynamics. From (4.3), it can be seen that
the sign of Δ is equal to that of R. Moreover, from the
definition of R, we can determine that when R < 0, the
change in the entropy dofs becomes more significant than
the reduction in the equilibrium number density, whereas
the converse is true for R > 0. Finally, since both heff and
ηNeq decrease monotonically with z, the value of R must lie
in the range ½−1; 1�. The extreme values represent scenarios
with either constant dofs and a significant reduction in the
equilibrium distribution ðR → 1Þ, or a scenario with
minimal losses in the equilibrium number density but with
a large reduction in the relativistic dofs ðR → −1Þ. In order
to acquire a better understanding of the early behavior of
the number density, thanks to the linearity of the TEs, we
may utilizeR as a measure of the interplay between the two
sources of out-of-equilibrium dynamics.
In Fig. 1, we display the effect of the dofs on the TEs.

Specifically, this figure shows the value of δh − 1 for
temperatures T > 100 GeV. If the dofs were constant,
we would expect this term to vanish. As can be seen in
these figures, the value of δh − 1, albeit small, is non-
vanishing, even as the temperature increases by multiple
orders of magnitude. We consider two independent para-
metrizations of the dofs using data from Hindmarsh and
Philipsen [50] (HP, 2005) and from Laine and Meyer [54]
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(LM, 2015). Both of these datasets are generated using
lattice techniques, with the former data matched to two-
loop perturbative computations and the latter using a
dimensionally reduced effective field theory approach to
compute corrections to thermodynamic potentials. In this
context, one may notice that Figs. 1(a) and 1(b) show
drastically different predictions for δh − 1 between the two
parametrizations when 102 GeV≲ T ≲ 104 GeV. To
explore this difference, however, a dedicated study, which
goes beyond the scope of this work, may be necessary.
In Fig. 1(a), the temperature dependence of the dofs is
extracted from a discrete set (EOS C from [50]).
Consequently, the value of δh at each point was necessarily
numerically estimated. The functional form is then gen-
erated from a cubic spline of these points, and we employ
the derivative of this spline to find δh. As such, some
accuracy may be lost, particularly in regions where the
data changes rapidly. In contrast, Fig. 1(b) is extracted
from the data points provided in [54] using the analytic
relationship

δh − 1 ¼ c
3s

; ð4:5Þ

where c is the heat capacity of the thermal bath, and s is the
entropy density. A cubic spline is then taken of these data
points to produce the continuous behavior shown in
Fig. 1(b).
In Fig. 2, we show the evaluation ofR over the range of z

pertinent to leptogenesis. We show four Majorana mass
scales to represent scenarios at a very low scale and others
above the electroweak scale. In the same figure, solid lines

represent positive values of R, and dashed lines represent
negative values. Also included are vertical lines in repre-
sentative colors to show when the sphalerons become
suppressed. As can be seen in Fig. 2, for scenarios with
Majorana masses well above the electroweak scale, we
expect the variation in the dofs to have minimal influence
on the dynamics. The simple reason is that at the sphaleron
critical temperature, the value of R lies close to positive
unity, i.e., R ≃þ1. This should be contrasted with low-
scale scenarios, where R takes values closer to zero and
may also be negative, i.e. R≲ 0. The latter implies a
greater interplay between the two sources of out-of-equi-
librium dynamics. For 10 GeV Majorana neutrinos, we see
that the freeze-out of entropy dofs is the primary out-of-
equilibrium effect, which is expected to be reflected in the
evolution of the number densities. If the Majorana mass
scale is around 50 GeV, the variations in the entropy dofs
have become the subdominant phenomena, but they still
remain non-negligible. Therefore, we expect that the
evolution of the neutrino number density has complex
dynamics at this scale. Importantly, the R parameter we
consider provides predictions for regions where the inclu-
sion of dofswill be significant, in a way which does not rely
upon computationally evaluated values of δh.
The importance of variations within the relativistic

degrees of freedom is not entirely unexpected. In the
absence of interactions, the number density dilutes
inversely proportional to the comoving volume, i.e.,
nN ∝ a−3. However, it is also known that the temperature
dependence of the number density scales as nN ∝ T3. In the
absence of entropy-releasing transitions, conservation of
the total entropy may be used to find the condition

(a) (b)

FIG. 1. The deviation away from unity of the δh parameter. Observe that at temperatures well above the electroweak mass scale, the
relativistic dofs are almost constant, δh → 1. As the temperature approaches this scale, SM particles (e.g., the top quark) start to
decouple, and δh decreases. In this figure, we consider two datasets. The left panel uses data extracted from EOS C by Hindmarsh and
Philipsen [50] (HP, 2005), and the right panel shows the latest data from Laine and Meyer [54] (LM, 2015). Solid lines express positive
values of δh − 1, whereas dashed lines indicate negative values.
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heffðTÞa3T3 ¼ const: ð4:6Þ

In the standard paradigm, with constant degrees of free-
dom, this condition implies an inverse proportionality
between the scale factor a and the temperature of the bath,
T, reconciling the two scenarios outlined above. However,
when variations in the relativistic degrees of freedom are
included, the scale factor is related to the temperature
through

a ∝
1

Th1=3eff ðTÞ
: ð4:7Þ

As a consequence, extra contributions are present, which
provide another mechanism by which the number density
may be moved out of chemical equilibrium.

B. Vanishing initial heavy-neutrino number density

We now perform a similar analysis with the initial
condition that ηNðz0Þ ≃ η̄Nðz0Þ ≃ 0 for z ¼ z0 ≪ 1.
Hence Δ ≃ −1 and δ ≃ 0. In such scenarios, it can be seen
that the dominant contribution to the TEs comes from the
inverse decay of leptons into heavy neutrinos, which drive
the system into thermal equilibrium. Since the effects of the
variations in the dofs are of significance when the bath has
an appreciable abundance, the deviation in the BAU
derived from variations in the dofs is directly related to
how quickly the system can generate a considerable
number density for the heavy neutrino species.
To make this last effect explicit, we first consider the

initial evolution of the heavy neutrino number density. In
addition, we may make some pertinent simplifications.

First, since the bath begins with ηN ≃ 0, we may neglect the
contributions to the TEs from variations in ηNeqðzÞ, and
heffðzÞ. Similarly, the fact that the heavy neutrino number
density is so far away from equilibrium means that we only
need to consider inverse decays in the TEs since these will
occur significantly more rapidly than the decay process.
Finally, since the commutator term of the TEs does not
increase or decrease the particle number, we may also
neglect these terms. With these simplifications in mind, the
TEs may then be written in the compact form

dηN

d ln z
¼ 1

Hnγ
Re½γNLΦ�;

dδηN

d ln z
¼ 2i

Hnγ
Im½δγ�: ð4:8Þ

Integrating the former of these expressions, we see that for
z ≪ 1,

ηNðzÞ ¼
Z

z

0

1

Hðz0Þnγðz0ÞRe½γ
N
LΦðz0Þ�

dz0

z0

≃
1

2ζð3Þ
Re½ΓT �

Hðz ¼ 1Þ
Z

z

0

z0K1ðz0Þdz0

≃
1

ζð3Þ
Re½ΓT �

Hðz ¼ 1Þ
z3

6
: ð4:9Þ

For low values of z, the value of ηNeq ≃ 1=ζð3Þ is close to
constant. We define the system as close to equilibrium by
the condition

Tr½ηNðzeqÞ� ≃ Tr½ηNeqðzeqÞ�: ð4:10Þ

(a) (b)

FIG. 2. This figure indicates the dominant out-of-equilibrium effect in the TEs. Dashed lines show where the washout of the number
density due to changes in the relativistic dofs is the dominant contribution ðR < 0Þ. Solid lines indicate where the reduction in the
equilibrium number density is the dominant effect ðR > 0Þ. Vertical lines show the critical temperature of the sphaleron transitions. The
left panel is produced using data from Hindmarsh and Philipsen [50] (HP, 2005), and the right panel utilizes the data given by Laine and
Meyer [54] (LM, 2015).
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Using this last expression and assuming a democratic
flavor structure a ¼ b ¼ c ¼ jhνj and constant dofs, i.e.
geffðz ¼ 1Þ ≃ 105, we may estimate the equilibrium value,
zeq, to be

zeq≈
�
6
Hðz¼1Þ
TrRe½ΓT �

�
1=3

≃13.7×
�
mN

MPl

�
1=3

jhνj−2=3: ð4:11Þ

From (4.11), we observe that the system will reach thermal
equilibrium early in the evolution when the Yukawa
couplings are large and the heavy neutrino mass scale is
low. This result is to be expected since these two conditions
give the most preferable conditions for the inverse decay of
SM leptons and Higgs bosons into heavy neutrinos. In the
TRL model, the neutrino-Yukawa couplings have been
estimated to be of order 10−4 [21], and therefore it is
expected that 1 TeV heavy neutrinos will be close to
equilibrium for zeq ∼ 10−1. Since the approach to equilib-
rium occurs faster for lower-scale heavy neutrinos, we may
take this value of zeq as an upper bound. Consequently, we
may conclude that in strong washout regimes such as the
one we present, the variations in the dofs can still be
relevant, even when the neutrino number density begins far
from equilibrium. However, their effect may only be
significant once an appreciable number density of heavy
neutrinos has been generated through inverse decays.

C. Attractor trajectories of the transport equations

From the discussion in Sec. IV B, the rapid approach to
equilibrium of the heavy neutrino number density poses the
question as to whether the TEs we utilize exhibit strong
attractor properties. To address this question, we first
consider the unusual initial condition, ηNðz0Þ ¼ 2ηNeq1.
As opposed to the scenario given in Sec. IV B, the decay
of heavy neutrinos to SM leptons and Higgs bosons
becomes now the dominant channel. Moreover, this
over-abundance of heavy neutrinos also enhances the
dynamics from the dofs. Taking these two sources into
account for z ≪ 1, the heavy-neutrino transport equation
may be approximated as follows:

dηN

d ln z
≃ −

1

Hnγ
Re½γNLΦ� þ 6ηNeqð1 − δhÞ1: ð4:12Þ

In order to assess whether or not the variations in the dofs
are significant, we must compare the relative size of the two
contributing terms that occur on the rhs of (4.12). In this
way, we deduce the condition

jhνj2mNz2

8πHðz ¼ 1Þ
K1ðzÞ
K2ðzÞ

≫ 3ð1 − δhÞ: ð4:13Þ

Taking a trace and making some appropriate approxima-
tions [49], we see that the decay of heavy neutrinos will
dominate the evolution when

z4jhνj2
�
MPl

mN

�
× 10−3 ≫ 3ð1 − δhÞ: ð4:14Þ

Asmay be inferred from Fig. 1(a), the value of the rhs of this
last inequality typically lies in the range 10−4–10−3 for low
values of z. Again assuming a Yukawa coupling scale of
jhνj ∼ 10−4 and a heavy neutrino mass scale mN ≃ 1 TeV,
we see that the lhs is dominant for z > 10−2. Consequently,
we may conclude that the effect of the dofs is drastically
enhanced when the neutrino number density is close to
equilibrium. Otherwise, the asymmetry between the rate of
decays and inverse decays is the dominant effect, pushing
the bath toward the equilibrium.
By a similar argument to that given in Sec. IV B, we may

estimate again that zeq ∼ 10−1, but approaching from above
rather than below. This indicates that the TEs we use may
be highly attractive. Since we are now convinced that the
variations in the dofs are only relevant close to chemical
equilibrium, it is enough to verify that the system with no
variations in the dofs exhibits such an attractor behavior.
In all of our benchmark scenarios, we assume the Yukawa

couplings to have a democratic flavor structure such that no
SM lepton flavor is preferred, and flavor effects are mini-
mized [i.e., a ¼ b ¼ c in (2.9)]. In practice, this means that
the model we adopt is similar to that of a single lepton
generation. With this in mind, we study the attractor
trajectories of a model with three singlet neutrino species
and a single lepton flavor. In Fig. 3, we show the evolution
of such a model, assuming a triresonant mass spectrumwith
mN1

¼ 1 TeV and a ¼ b ¼ c ¼ 8.85 × 10−4. In addition,
we do not stop the generation of baryon asymmetries at the
sphaleron temperature and simply allow the freeze-out
present in the figure to be achieved thermally. The coloring
of the figure is determined through the quotient

−
dηB=d ln z

ηB
; ð4:15Þ

FIG. 3. The attractor properties of the numerical solution to the
TEs. Red shades indicate regions where the baryon asymmetry is
increasing, and blue shades indicate regions where the baryon
asymmetry is decreasing. Yellow shades indicate regions where
the changes to ηB are small.
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normalized to lie in ½−1; 1�. The values indicate not only the
strength of the attraction but also its direction, with bluer
hues identifying a suppression of ηB and redder hues
indicating an enhancement. From Fig. 3, we see that the
baryon asymmetry is driven upward toward the attractor
solution early in the evolution, z≲ 10−2. Once the baryon
asymmetry reaches the attractor solution, 10−2 ≲ z≲ 10, we
see the most noticeable feature of this figure in the sharp
transition from enhancement to suppression as we move
across the attractor, highlighting the level to which this
system of equations pushes the solution toward the attractive
solution. Hence, we find that this set of TEs is highly
attractive and exhibits independence of the initial condi-
tions. Notice that Fig. 3 also identifies when thermal freeze-
out occurs at z ∼ 10. Displayed through yellow shades, this
region implies that jη0Bj ≪ jηBj, and hence there is little
change in the value of ηB past this point in the evolution.
Finally, we identify that due to the inverse proportion-

ality between zeq and the Yukawa coupling scale, the rapid
approach to equilibrium of the heavy-neutrino number
density only applies to strong washout models of lepto-
genesis. In the case of weak washout models, such as the
freeze-in models studied in [55,56], the time taken to reach
equilibrium is far longer. In such models, the out-of-
equilibrium Sakharov condition relies on some unac-
counted for pre-existing dynamics that set the initial
heavy-neutrino number density to vanish in an ad hoc
manner at a convenient moment of the cosmic time during
the evolution of the early Universe. Therefore, due to the
slow approach to equilibrium, the contributions from the
relativistic dofs may be overshadowed, with the generated
BAU showing little deviations away from a model with
constant dofs.

D. Impact on the baryon asymmetry

In previous sections, we have shown how the variations
in the dofs may be significant in many leptogenesis
scenarios. In this subsection, we will now discuss how
these effects can impact the predictions for the BAU,
including the interplay of sphaleron interactions that enter
through the sphaleron freeze-out temperature Tsph. As
previously noted, the largest contribution to the TEs from
the variations in the dofs comes from an addition out-of-
equilibrium term. This term washes out the number density
through the freeze-out of the dofs. As a consequence, in
regions where the variations in the dofs are dominant, we
expect the neutrino number density to be under-abundant
when compared to the equilibrium. Furthermore, since the
transport equation for the lepton asymmetry is directly
dependent on Δ, the lepton asymmetry follows a similar
evolution. This leads to the less appealing feature that the
generated baryon asymmetry turns suddenly negative, i.e.,
ηB < 0, thus prompting us to resort to a contrived retuning
of the CP phases of the model, often depending on the
exact values of Tsph and mN considered.
As was shown in Sec. IVA, models with a Majorana

mass scale below 100 GeV may be highly sensitive to
variations in the relativistic dofs. Figure 4 displays how the
generated BAU is altered by including the variations in the
relativistic dofs. For this figure, the Yukawa couplings at
each mass scale are taken such that the baryon asymmetry
is reproduced by a system with no variations in the
relativistic dofs, with democratic flavor structure assumed
ða ¼ b ¼ c ¼ jhνijjÞ. These Yuakwa couplings are then
utilized in a system with the variations in the dofs included
to find the generated BAU. Figure 4 then shows the ratio
between the two values of ηB. For clarity, gray dotted lines

(a) (b)

FIG. 4. The ratio between the baryon asymmetry generated in a model with variations in the dofs, ηδhB and the baryon asymmetry
generated in a model where the dofs are constant ðheff ¼ 105Þ, ηδh¼1

B . Different colors represent models where the sphaleron temperature
takes different values. Two horizontal dotted lines are included to show unity and zero. The left panel is produced using data from
Hindmarsh and Philipsen [50] (HP, 2005), whereas the right panel utilizes the latest data from Laine and Meyer [54] (LM, 2015).
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are shown on the figure at zero and unity. Finally, in order
to better gauge the significance of the sphaleron effects, we
also vary the sphaleron temperature widely around the
typical value Tsph ¼ 132 GeV.
As can be seen in Fig. 4, when the Majorana mass scale

is above 100 GeV, the generated BAU does not vary
significantly from the constant dofs assumption. This
occurs for two reasons. First, as was discussed in
Sec. IVA, the lack of deviation occurs at these mass scales
because the changes to ηNeq become the dominant out-of-
equilibrium effect, and we expect independence from the
variations in the relativistic dofs. Second, once the heavy
neutrinos are out of equilibrium, the inverse decay of SM
leptons and Higgs bosons will begin to drive the neutrino
number density back toward equilibrium. This latter
process weakens the influence of the initial dynamics from
the dofs. Therefore, the inclusion of the variations in the
relativistic dofs in models with mN > 100 GeV effectively
generates new initial conditions for the TEs. For compari-
son, we observe that for mN < 100 GeV, large deviations
are apparent. In a model with such low Majorana mass
scales, the washout effect from the relativistic dofs is more
significant than the change in the equilibrium number
density, producing a number density below the equilibrium
value. Moreover, early in the evolution, the interactions
with the SM leptons and Higgs bosons do not have the
necessary time to restore the number density to its
equilibrium value. Consequently, we may find that the
baryon asymmetry at this scale drops below zero.
Figure 4 also indicates that regardless of the sphaleron

critical temperature, the observedBAUdrops below zero and
takes on greater negative values as we approach lower mass
scales. However, we point out that due to the complex

interplay of the two sources of out-of-equilibrium dynamics,
the deviations observed depend nontrivially on the sphaleron
temperature. Due to the sign change in the generated BAU in
low-scale mass regions, it is necessary to invert theCP phase
in the Yukawa sector. In theZ6 model, this is easily achieved
by the replacement ω → ω� in the tree-level Yukawa
couplings, which exchanges hνþ ↔ hν−.
As already alluded to, depending on the parameterization

for the dofs, there may be a complex interplay between the
competing effects from the changes in the relativistic dofs,
heff , and changes in the equilibrium ηNeq. Consequently,
there may be a complicated dependence of the generated
BAU on the sphaleron temperature. Figure 5 demonstrates
this relationship when we use the parametrization given in
[50]. To produce this figure, the Yukawa coupling neces-
sary to reproduce the observed BAU at Tsph ¼ 132 GeV
was found for each mass scale considered. This Yukawa
coupling was then used to estimate the BAU generated in
models with different values of Tsph ∈ ½125; 140� GeV, and
the ratio between the two values of ηB plotted.
Figure 5(a) shows the dependence of ηB on Tsph for high-

scale Majorana masses. As expected, models at this scale
show little dependence on the sphaleron critical temperature,
withmost scenarios showing less than∼10%deviation away
from the value of ηB with Tsph ¼ 132 GeV. However, at low
mass scales, shown in Fig. 5(b), the generated BAU is
significantly more sensitive to changes in the sphaleron
critical temperature. Again, at these scales, the relevant
contribution from the variations in the dofs produces a
nontrivial relationship between the observed BAU and the
sphaleron critical temperature. Here, we see that the
observed deviations are significantly larger, up to a factor

(a) (b)

FIG. 5. The dependence of the generated BAU on variations to the sphaleron temperature, Tsph when the dofs are generated from [50].
These figures show the ratio between the generated baryon asymmetry at a given sphaleron temperature, ηB, and the generated baryon
asymmetry when the sphaleron critical temperature is taken to be Tsph ¼ T� ¼ 132 GeV, ηT¼T�

B . The left panel shows this ratio for heavy
neutrino masses above the electroweak scale, and the right panel shows the ratio for low-scale models below the electroweak scale.
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of 2.3 for mN ¼ 50 GeV. In line with previous results, we
also see that for lower-scale heavy neutrino masses, larger
deviations are present, and in some cases, a negative value
for the baryon asymmetry may be generated (indicated
through the dashed line), which again may be rectified
through the inversion of the CP phases.
Another source of potential deviation arises from the

dilution factor, which comes from the conversion of the
baryon asymmetry value at the freeze-out value at Tsph to
the observed value at Trec. As is shown in Eq. (3.31), the
conversion comes from a ratio between the number of
degrees of freedom at Tsph and Trec, therefore a change in
Tsph can alter the predictions for the baryon asymmetry. In
Fig. 6, we show how this value of the conversion factor
changes from the value at Tsph ¼ 132 GeV. As can be seen
in the figure, when the parametrization given in [50] is
used, the variations in the predictions for the BAU vary by
less than 1%. Conversely, for the data extracted from [54],
these variations may increase to up to 6% at the more
extreme values of the sphaleron critical temperature.
As a final point, it is worth re-iterating that the para-

metrization of the variations in the relativistic dofs may be
of significance. As was shown in [21], using a different
dataset for the dofs may affect the predictions for the BAU.
In particular, when using [51], it was shown that the
deviations had a lesser effect on the generated BAU,
although notable features such as sudden parametric
changes in the sign of ηB are still present. In this work,
we have made additional comparisons of the predicted
baryon asymmetry when using [50], which offers an

improved dataset through better modeling of the QCD
quark-gluon plasma, or [54] which carefully considers
distinct thermal regions, as well as a phenomenologically
accurate Higgs mass. In general, these two datasets exhibit
similar behavior; however, the more recent data given in
[54] seems to produce more robust predictions for the BAU
with less dependence on the assumed value of the sphaleron
critical temperature, as is highlighted in Fig. 4, demon-
strating the importance of accuracy in the determination of
cosmological parameters.

V. CRITICAL SCENARIOS

In [22], the behavior of unstable two-level quantum
systems, famously called qubits, was discussed in detail.
The dynamics of an unstable multilevel quantum system,
also known as qudit in quantum information theory, is
typically described by employing the Weisskopf-Wigner
approximation (WW) [57]. In the WW approximation,
the states of a given quantum system evolve under a
Schrödinger-like equation, with effective Hamiltonian

Heff ¼ E −
i
2
Γ: ð5:1Þ

Here, E and Γ are Hermitian matrices corresponding to the
self-energy corrected energy matrix and the absorptive part
of the self-energy correction to a multilevel particle system,
respectively. Using this effective Hamiltonian, it may be
shown that the density matrix of the multilevel system
follows the evolution equation

dρ
dt

¼ −i½E; ρ� − 1

2
fΓ; ρg: ð5:2Þ

However, by taking the trace of this expression, it can be
seen that this evolution equation loses probability as the
states of the multilevel system decay to states not contained
within the Hilbert space under consideration. As a result,
the density matrix, which only contains the information
pertinent to the states which have not yet decayed, is
modified from the typical definition. This adjustment is
done through the trace of the density matrix which we
employ to define the codecaying density matrix

ρ̂≡ ρ

Trρ
: ð5:3Þ

The latter obeys the evolution equation

dρ̂
dt

¼ −i½E; ρ̂� − 1

2
fΓ; ρ̂g þ ρ̂Tr½ρ̂Γ�; ð5:4Þ

for which it may be seen that the trace of the evolution
equation vanishes provided Trρ̂ ¼ 1,

FIG. 6. The deviation in the washout factor, which converts the
value of the BAU at Tsph to the observed value at Trec, as a
function of Tsph. The value of this factor at Tsph is taken as the
reference value. The blue line is generated using the data from
EOS C by Hindmarsh and Philipsen [50] (HP, 2005), and the red
line is made using the latest data from Laine and Meyer [54]
(LM, 2015).
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dTrρ̂
dt

¼ 0; ð5:5Þ

implying conservation of the total probability of the
codecaying density matrix.
In the case of a two-level system, the matrices we

consider may be expanded on the Pauli basis through four
real-valued coefficients

ρ̂ ¼ 1

2
bμσ̄μ; E ¼ Eμσ

μ; Γ ¼ Γμσ
μ; ð5:6Þ

where bμ¼ð1;bÞ, σμ ¼ ð1; σÞ, σ̄μ ¼ ð1;−σÞ, Eμ ¼ ðE0;EÞ,
and Γμ ¼ ðΓ0;ΓÞ. Note that in this section, boldface
identifies vectorlike quantities rather than objects with
flavor structure. From these definitions, an equation which
describes the motion of the Bloch vector, b, may be derived

db
dτ

¼ −
1

r
e × bþ γ − ðγ · bÞb: ð5:7Þ

In this expression, two dimensionless parameters are
introduced

r ¼ jΓj
2jEj ; τ ¼ jΓjt; ð5:8Þ

as well as the unit vectors

e ¼ E
jEj ; γ ¼ Γ

jΓj : ð5:9Þ

In [22], it was shown explicitly that in the majority of cases,
the system will evolve into a pure state with a stationary
codecayingBloch vector, b⋆ ¼ bðτ → ∞Þ, corresponding to
the state with the longest lifetime. However, under special
circumstances for which e · γ ¼ 0 and r < 1, it may be seen
that there is no preferred state of the qubit system since the
lifetime for both states is identical. As a result, the codecay-
ing Bloch vector never reaches an asymptotic limit and
oscillates between states indefinitely. Classes of models
which satisfy the two conditions e · γ ¼ 0 and r < 1 are
referred to as critical scenarios and exhibit a number of
interesting properties. In particular, one finds oscillations
between coherent and decoherent states as well as the
anomalous oscillations of the Bloch vector sweeping out
unequal areas in equal time, in contrast with the typical Rabi
oscillations for stable particle systems. It may be the case that
the energy and decay vectors are close to orthogonal and
r < 1, and so it may still be possible to observe some critical
phenomena such as coherence-decoherence oscillations.
However, in such cases, the system is expected to eventually
relax into its longest-lived state.

A. Critical scenarios in the thermal plasma

We now investigate whether similar phenomena can be
present within cosmological settings. Comparing the TEs
given in Eq. (3.21) with the evolution equation given in
Eq. (5.2), we notice a significant overlap between the terms
present. However, in the TEs, the matrix we are interested
in would be that of the departure-from-equilibrium matri-
ces, ðΔ; δÞ [c.f. (3.17)], rather than the density matrix.
Therefore, any phenomena we observe occur about the
equilibrium number density.
In order for us to get a better insight of the relevant

dynamics, it would be preferable to work with a single TE
rather than two interdependent equations. Since we expect
that interesting dynamics will occur about the equilibrium,
we would like to retain the use of the matrices Δ and δ.
Consequently, we give a definition close to that of the
distribution functions, fN and f̄N , which are linear combi-
nations of the CP-even and CP-odd parts. To this end, we
define

D� ≡ Δ� 1

2
δ; ð5:10Þ

in terms of which the following TE can be derived:

dD�
d ln z

¼ 1

HðzÞ
�
∓i½EN;D��

−
1

2nγηNeq
fD�;Re½γNLΦ� � iIm½δγ�g

�

þ
�
3ð1 − δhÞ −

d ln ηNeq
d ln z

�
ðD� þ 1Þ: ð5:11Þ

For definiteness, we study the behavior of the Dþ matrix.
However, from the CP properties of Δ and δ, we know that
Dþ is related to D− through its transpose. In order to study
the approach to equilibrium, we normalize the Dþ matrix
by its trace

D̂þ ¼ Dþ
TrDþ

: ð5:12Þ

Computing the TE for D̂þ, we find the expression

dD̂þ
dlnz

¼ 1

HðzÞ
�
−i½EN;D̂þ�−

1

2nγηNeq
fD̂þ;Re½γNLΦ�þ iIm½δγ�g

þD̂þTr½D̂þðRe½γNLΦ�þ iIm½δγ�Þ�
�

þ
�
3ð1−δhÞ−

d lnηNeq
d lnz

�
1

TrDþ
ð1−D̂þNÞ; ð5:13Þ

whereN is the number of heavy neutrino generations. From
this TE, we can see that when the heavy neutrino number
density is close to its equilibrium value, only the final term
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contributes in a significant way since the trace in the
denominator enhances its contribution. As a result, the
normalized matrix D̂þ must be close to a full mixed state

D̂þ ≃
1

N
1: ð5:14Þ

Therefore, it would seem that the inclusion of terms which
pull the number density away from equilibrium also drive
the system toward a mixed state with no flavor preferences.
However, we notice that the remaining terms are similar

to the evolution equation for a codecaying Bloch vector.
Therefore, we expect that in thermostatic backgrounds, it
may be possible to observe some critical phenomena. Since
we are now considering scenarios of constant temperature,
the dimensionless parameter z is no longer fit for use.
Consequently, we parametrize the evolution through the
cosmic time. Starting from Eq. (3.10), we can find the
evolution equation for the departure from equilibrium
matrices as functions of time

dDþ
dt

¼ −i½EN;Dþ� −
1

2nγηNeq

	
Dþ;Re½γNLΦ� þ iIm½δγ�
:

ð5:15Þ

This expression can clearly be mapped onto Eq. (5.2), with
the substitutions

ρ→Δ; E→EN; Γ→
1

nγηNeq
ðRe½γNLΦ�þiIm½δγ�Þ: ð5:16Þ

After these replacements, we can expect the Bloch vector
for the normalized matrix D̂þ to act analogously to the
codecaying Bloch vector of an unstable qubit. By following
a similar procedure to that of the qubit system and taking
definitions in line with those given in (5.6),

EN
μ σ

μ ¼ EN; Eμσ
μ ¼ mM; ð5:17aÞ

γμσ
μ ¼ Re½γNLΦ� þ iIm½δΓ�;

Γμσ
μ ¼ Re½ΓT � þ iIm½δΓ�; ð5:17bÞ

we find that the r parameter for this system is given by

r ¼ jγj
2nγηNeqjEN j ¼

jΓj
2jEj : ð5:18Þ

In addition, the τ parameter satisfies the transformation

τ ¼ K1ðzÞ
K2ðzÞ

jΓjt: ð5:19Þ

The Z2N models under consideration, with the assumed
resonant mass splitting, naturally give energy and decay

vectors which are close to orthogonal. We consider a
Yukawa matrix with entries given by

hνiα ¼ liω
α−1; ð5:20Þ

where li ∈C are complex parameters and ω ¼ eiψ is
simply a phase factor, with ψ ∈R. In this case, the tree-
level decay matrix is given by

Γαβ ¼
mN

8π

�X
k

jlkj2
�
ωβ−α: ð5:21Þ

It is not difficult to see from (5.21) that the diagonal
elements Γαα of the tree-level decay matrix are all identical.
Therefore, with a structure like this, the only way to induce
differences in the diagonal elements is through higher-order
corrections, such as through the mixing of heavy-neutrino
species. Consequently, we expect the coefficients of all
SUðNÞ diagonal generators of the decay matrix to vanish,
and only the coefficients corresponding to off-diagonal
SUðNÞ generators will take nonzero values. For N ¼ 2, we
usually have that the component Γ3 of the four-vector Γμ is
zero, but the other components Γ1 and Γ2 are nonzero
[cf. (5.6)]. Instead, the converse will hold true for the mass-
matrix or energy components E1;2;3, where E1;2 are zero,
but E3 is not. The latter is a simple consequence of the fact
that the Majorana mass matrix is taken to be diagonal, and
so all contributions to the energy vector E appear as
coefficients of the diagonal generators of the SUðNÞ group.
Thus, for a model with N ¼ 2 heavy Majorana neutrinos,
this coefficient is proportional to the third Pauli matrix σ3.
It is important to note here that for models akin to the

TRL Z2N neutrino-Yukawa structure, the orthogonality of
the vectors E and Γ is automatically satisfied by con-
struction, i.e., E · Γ ¼ 0. Moreover, computations of r in
these models yield values that are very close to 1.
Therefore, the TRL model can serve as a prototypal
example of a nondiagonalizable Jordan-form model, details
of which are discussed in [14,22] and Appendix.
In Fig. 7, we display the dynamics of the Dþ matrix. We

write the D̂þ matrix in its Bloch decomposition

D̂þ ¼ 1

2
ð1þ d · σÞ; ð5:22Þ

and display the elements of the coequilibrium Bloch vector,
d. Figure 7(a) shows the evolution of the coequilibrium
Bloch vector in a standard cosmological setting where the
Universe cools through its expansion. We use a model with
two heavy neutrino species which have resonant mass
splitting and Yukawa scales, jhνj ¼ 4.5 × 10−4. Since the
use of Z4 generators would lead to no lepton asymmetry,
we use the Z6 generator as the phase in the Yukawa
coupling. In Fig. 7(a), we observe that at the early phases of
the evolution, the elements of the coequilibrium Bloch
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vector lie close to zero, implying the number density matrix
is fully mixed with no preference in the states. But later in
the evolution, one may notice some dynamics arising from
the oscillation and decay terms of the TEs. The latter results
from the out-of-equilibrium dynamics which becomes less
significant for the evolution since the decay of heavy
neutrinos will occur quickly when compared with the
expansion of the Universe. In this late stage, we see that
the coequilibrium Bloch vector no longer describes a fully
mixed state but instead asymptotically approaches a non-
zero state.
Figure 7(b) shows the dynamics in a thermostatic

background. For this figure, we take the energy and decay
vectors, E and Γ, to be orthogonal to one another with
r ¼ 0.5. The evolution is shown in terms of the dimension-
less run parameter, τ. Here, the dynamics of critical
scenarios are clearly present, in which oscillations between
states take place indefinitely and the coequilibrium Bloch
vector never relaxes into an asymptotic state. Moreover, we
see that the oscillations occur only along the directions d1
and d2, with the value in the final direction remaining
constant, highlighting a defining property of critical sce-
narios in that the oscillations occur on a plane.
In the next section, we will give numerical estimates of

the BAU predicted in the TRL model, including potential
constraints from high- and low-energy observables of
charged lepton-flavor and lepton-number violation.

VI. NUMERICAL ESTIMATES

We now present numerical solutions to the TEs for the
TRL model with democratic flavor structure a ¼ b ¼ c,
and we make use of the dofs parametrization given in [50].
Additionally, we assume the central value of the sphaleron
critical temperature, Tsph ¼ 132 GeV. Our analysis is
limited to heavy neutrino masses above 40 GeV since,
below this scale, the inclusion of thermal corrections to the

mass of SM particles leads to phase-space suppression of
the decay processes. As a result, the generation of lepton
asymmetries must be treated with additional care in regions
of the parameter space with very low-scale masses for the
heavy neutrinos. Nevertheless, the results presented here
will still be valid in order to describe the associated
theoretical uncertainties in these regions of the param-
eter space.
In Fig. 8, we give representative numerical evaluations of

the heavy neutrino TEs, with the departure of ηN from the
equilibrium value ηNeq displayed. To carry out these eval-
uations, we take the masses to be in consecutive resonance
with Z6 symmetric Yukawa structure. In addition, we
assume that the heavy neutrino number density is initially
in equilibrium, Δðz0Þ¼δðz0Þ¼0, and δηLðz0Þ ¼ 0, where
z0 ¼ 10−2. In these two figures, the vertical dotted line
indicates the point in the evolution where the sphaleron
transitions become exponentially suppressed. More explic-
itly, Fig. 8(a) shows the evolution of the singlet neutrinos
when the lightest singlet neutrino is of mass 1 TeV and the
Yukawa coupling scales are jhνijj ¼ 2.95 × 10−4. As was
discussed in Sec. IVA, at early phases in the evolution,
z < 10−1, we observe that variations in the dofs are the
dominant phenomena. As a result, the entries of the
neutrino matrix take negative values. However, once
z > 10−1, we see that the decay and inverse decay of the
heavy neutrinos push the solution toward the attractor
value, and hence the effect on the generated BAU from the
dofs is minimal.
In Fig. 8(b), we now illustrate how the above picture

changes for light singlet neutrino masses. For this figure,
the lightest singlet neutrino has mass mN1

¼ 50 GeV, and
the neutrino-Yukawa scale is jhνijj ¼ 3.1 × 10−4. In this
case, the variations in the dofs have a large impact on the
evolution of the different entries of the matrix Δ, producing
sudden changes that arise from competing effects between

(a) (b)

FIG. 7. The prevalence of critical phenomena in two different scenarios. The left panel shows the components of the coequilibrium
Bloch vector, D̂þ, in a cosmological setting where out-of-equilibrium phenomena are present. The evolution is given in terms of the
cosmological parameter z, since the cosmic time is not fixed through the expansion of the Universe. The right panel shows the
components of the coequilibrium Bloch vector in a thermostatic Universe where the temperature is kept constant.
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the changes in the relativistic dofs and the changes in the
heavy-neutrino number density. Consequently, this non-
trivial evolution of Δ can source significant uncertainties
when accurate determinations of the theoretical parameter
space of such low-scale heavy-neutrino models are
attempted based on successful leptogenesis.
In Fig. 9, we demonstrate how the above effects feed

through into the generated BAU. Again, for these figures,
we assume a TRL mass splitting and a Z6 symmetric
Yukawa matrix with a democratic flavor structure. The
initial conditions are again chosen assuming that the
heavy-neutrino number density is initially in equilibrium,
so Δðz0Þ ¼ δðz0Þ ¼ 0, and δηLðz0Þ ¼ 0 with z0 ¼ 10−2.
The vertical dotted line indicates the sphaleron critical
temperature and the horizontal line gives the CMB central
value of the baryon asymmetry ηB ¼ 6.104 × 10−10. For
Fig. 9(a), we assume the lightest singlet neutrino has mass
mN1

¼ 1 TeV and jhνijj ¼ 2.95 × 10−4 to align with the

inputs of Fig. 8(a). We see that in this high-mass regime, the
generated BAU is independent of the variations in the dofs
at the start of the evolution, and therefore, the attained
values are protected from such phenomena. Moreover, this
protection means that any variations within the sphaleron
temperature are minimal, as was discussed in Sec. IV D.
Let us now turn our attention to Fig. 9(b), where we

display the evolution of the BAU whenmN1
¼ 50 GeV and

jhνijj ¼ 3.1 × 10−4. As before, this figure should be con-
sidered in line with Fig. 8(b). In drastic contrast with
heavier neutrino models, the generated BAU at this scale is
heavily dependent upon the variations in the dofs. As can be
seen from Fig. 9(b), there are dramatic variations in the
BAU whose value changes sign on multiple occasions. In
addition to this less controllable situation, the fact that the
sphaleron transitions become suppressed at a significantly
lower value of z means that the decays and inverse decays
no longer have the time to dominate within the evolution.

(a) (b)

FIG. 9. The evolution of the BAU at two points in the parameter space. Dotted lines show where the values are negative, and solid lines
indicate positive values. In order to make pertinent comparisons, the left and right panels align with Figs. 8(a) and 8(b), respectively,
with identical initial conditions and model parameters.

(a) (b)

FIG. 8. Numerical solutions for the heavy neutrino departure from equilibrium matrices at two points in the parameter space. Dotted
lines indicate regions where the value taken is negative, and solid lines represent positive values. The left panel shows a model with
mN1

¼ 1 TeV and jhνijj ¼ 2.95 × 10−4. The right panel displays a model, with mN1
¼ 50 GeV and jhνijj ¼ 3.1 × 10−4.
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For such low-scale TRL scenarios, it would require a
drastic retuning of the mass parameters and CP phases to
obtain predictions that lie close to the observed BAU.
Hence, we consider that such TRL scenarios are not
predictive in standard cosmological settings.
We now delineate the parameter space for the TRL

model and make some pertinent comparisons between this
model and special cases of interest. Figure 10 shows the
regions of the parameter space which may lead to success-
ful leptogenesis. The solid green line displays the predicted
values of the light-to-heavy mixing, B ≃mDm−1

M [cf. (2.5)],
which should be used to match the observed value for the
baryon asymmetry ηCMB

B given in (1.1). The green-shaded
area under the solid line represents regions of the parameter
space where the generated BAU exceeds the observed
value. In this area of parameter space, the observed baryon
asymmetry may still be matched through some additional
breaking of the Z6 symmetry or by a softening of the
triresonant condition, leading to sub-maximal levels of CP-
asymmetry. Alongside the full TRL model, we show the
adjusted parameter space when we take the dofs to be
constant and another for a model with no oscillation effects.
The former of these is shown in Fig. 10 as brown dashed
lines and exhibits a clear departure from the TRL model
with fully implemented dofs when in the sub-100 GeV
regime. For mass scales in excess of 100 GeV, it is apparent
that the two lines overlap, in line with the discussion
given in Sec. IV D. Once the TEs are fully implemented,
the variations in the dofs prevent the generation of
baryon asymmetries in the low mass regime. In order to

compensate for this, we must reduce the washout of any
generated asymmetries, necessitating smaller neutrino-
Yukawa couplings. This is then seen in the parameter
space as a drop-off in the available mixing.
In Fig. 10 we have also presented the parameter space for

the TRLmodel for which the number density evolution was
taken to follow a set of diagonal Boltzmann equations. This
is indicated with brown dotted lines in Fig. 10. From this
figure, we see that this line follows that of the full model,
aside from a global factor, which may be numerically
estimated to be around two [37,63]. It would then appear
that the omission of oscillation effects from the evolution
seemingly permits additional CP asymmetries while main-
taining agreement with the observed baryon asymmetry. It
also implies that the CP asymmetry associated with
oscillation effects interferes destructively with the CP
asymmetry associated with singlet neutrino mixing in
the decay [64]. Such a result is not entirely unexpected.
As has already been discussed, the Z6 structure of the
Yukawa couplings, when combined with a triresonant mass
hierarchy, provides large CP phases and saturates the
available mixing CP-asymmetry. Therefore, we again must
reduce the scale of the Yukawa couplings to ease some of
the washout effects and generate the necessary baryon
asymmetry.
Figure 10(a) shows detection limits on the parameter

space from charged lepton flavor violating (cLFV) tran-
sitions involving muons. Evidently, the experimental
bounds for many experiments still lie far above the
parameter space in which we would expect to see cLFV

FIG. 10. The parameter space for the TRL model with limits from current experiments (solid lines) and projected sensitivity limits
(dashed lines) on future experiments. The left panel exhibits the bounds on the parameter space for coherent lepton flavor-violating
transitions. The red dashed line gives projected bounds on μ → eγ [58], the orange dashed line shows μ → eee [59], the blue solid line
indicates the current bound on cLFV transitions within gold [60], and the blue dashed line gives the projected bound on cLFV transitions
within titanium [61]. The right panel presents similar bounds for collider experiments. The blue dashed line identifies the projected
sensitivity for the LHC running at

ffiffiffi
s

p ¼ 14 TeV [62]. The orange line specifies the current bound on Z-boson decays to singlet
neutrinos at DELPHI. Finally, we include brown dashed lines to indicate the parameter space when δh ¼ 1, and a brown dotted line
which indicates the parameter space in a flavor diagonal TRL model.
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phenomena. However, a small partion of the parameter
space may be probed by the PRISM experiment in their
future studies of coherent transitions within titanium. In
Fig. 10(b), the bounds from collider experiments are
displayed. The blue dashed line gives the projected
sensitivity bound for the LHC running at

ffiffiffi
s

p ¼ 14 TeV
with integrated luminosity LI ¼ 300 fb−1, for the process
pp → Nl�jj [62,65]. The orange line gives the estimated
sensitivity of the process Z → Nν to a 95% confidence
level from the DELPHI collaboration [66]. Moreover,
through the decay of Z bosons to charged leptons, it
may still be possible to observe some LFV processes
[67], although the deviations are expected to be small in
TRL models with Z6 Yukawa structure [21]. As may be
seen in Fig. 10(b), many of these experiments do not appear
to have the required sensitivity to be able to probe the
region of the parameter space which can achieve success-
ful leptogenesis. However, there may be some future
experiments, such as the Future Circular Collider (FCC),
which can probe the parameter space for masses below
50 GeV [68].

VII. CONCLUSIONS

We have studied how the inclusion of relativistic dofs
influences the predictions for the BAU in the context of a
low-scale triresonant leptogenesis model whose neutrino-
Yukawa couplings are dictated by aZ6 symmetry. The TRL
model, which we presented in [21] and reiterated here, is
distinctive in that it can produce a vanishing SM neutrino
mass spectrum while still maintaining large CP phases for
the successful generation of the BAU. By considering
resummed neutrino-Yukawa couplings, the available CP
violation is maximized when the heavy neutrino mass
spectrum is taken to be in consecutive resonance, as was
detailed in a previous work by the authors in [21].
The effect of the relativistic dofs was analyzed by

introducing a set of modified transport equations, which
include additional contributions from variations within the
relativistic dofs. These additional contributions tend to
wash out the number density of the heavy neutrinos and
drop their number density below its equilibrium value.
When this enters the TE for the lepton asymmetry, the
generated lepton asymmetry will have the opposite sign to
that expected in standard thermal leptogenesis models. At
higher scales for which mN > 100 GeV, the variations in
the dofs become a subdominant effect, and so thanks to
their attractor properties, the TEs can return the generated
lepton asymmetry to the expected value in the standard
paradigm.
At low scales, however, where mN < 100 GeV, the

(Bþ L)-violating sphaleron transitions, which produce
the baryon asymmetry, become exponentially suppressed
at a point where the generated lepton asymmetry carries the
incorrect sign. This gives rise to the unpleasant feature that
a negative BAU gets predicted unless the CP phases in the

neutrino Yukawa sector are appropriately retuned, accord-
ing to the sphaleron temperature Tsph assumed, the para-
metrization of dofs adopted, and the specific value of mN
considered. For regions of parameter space where these
retunings become excessive, such low-scale TRL models,
as well as similar low-scale leptogenesis scenarios, lose
their inherent predictive power.
We highlighted that in strong washout regimes, there are

always strong attractor trajectories toward the equilibrium.
This means that the generated BAU exhibits independence
from the initial conditions of the pertinent number den-
sities. Hence, variations in the dofs play a prominent role
regardless of the initial conditions of the heavy-neutrino
number density. Since the dofs phenomena we have studied
here contribute an out-of-equilibrium effect, the observed
departures from the standard paradigm may be present in
many low-scale freeze-out mechanisms, including those to
low-scale baryogenesis scenarios and to the generation of a
light dark matter relic density. However, for weak washout
models that rely on the freeze-in framework [69], the
thermal bath of heavy neutrinos approaches equilibrium
slowly since the initial number density vanishes; presum-
ably through some mechanism to be specified that provides
low-reheat temperature of a rather convenient scale, not too
far above Tsph. Apart from these strong assumptions on the
initial cosmological setting, any deviations in the BAU
from the variations in the dofs are expected to be small.
Along the lines of our work in [22], we have extended

this previous study to critical-like scenarios within a
quasithermal bath. In particular, we have demonstrated
how, in systems in which the bath is drawn out of
equilibrium, the critical phenomena of interest to us may
be destroyed. However, in thermostatic scenarios, there still
exists the possibility that anomalous behaviors, such as
coherence-decoherence oscillations, can be present.
We have delineated in Fig. 10 the parameter space for

light-to-heavy neutrino mixings in the TRL model which
can successfully reproduce the observed BAU. We see that
the inclusion of variations in the relativistic dofs results in a
suppression of the light-to-heavy neutrino mixings for
heavy-neutrino masses below 100 GeV. Moreover, we find
that the heavy-neutrino oscillation effects contribute
destructively to the generation of the BAU. Specifically,
the diagonal TEs give rise to a bigger parameter space,
which is increased by a factor close to two. The parameter
space shown in Fig. 10 indicates that many current and
future experiments may still be far away from detectable
phenomena. However, there still exists some possibility of
finding coherent μ → e transitions within titanium at the
PRISM experiment. Simple extensions to the TRL model,
such as supersymmetry, may offer additional sources of CP
violation or additional contributions to the light-to-heavy
neutrino mixing. These can bring the predictions for most
new-physics observables close to their current experimental
limits while achieving successful leptogenesis.
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APPENDIX: JORDAN FORMS

In our study of critical scenarios, we are interested in
identifying effective Hamiltonians which may reproduce
critical phenomena. To this end, we wish to identify the
conditions under which the effective Hamiltonian may be
brought into a Jordan form [70] with fully degenerate
masses and decay widths (or decay rates) [14,22]. From the
uniqueness of the Jordan canonical form, we know that for
two complex-valued N × N matrices, A and B, if the
following criterion is satisfied:

Tr½ðA − BÞk� ¼ 0 ðA1Þ

for all k∈N such that 0 < k ≤ N, then A and B have the
same complex eigenvalues. However, A and B may not
necessarily be related through a similarity transformation.
In fact, one has either the trivial case where A ¼ B, or if
A ≠ B and B is diagonal, then A is a Jordan nondiagona-
lizable N × N matrix with the same eigenvalues as B.
For our purposes, let us consider that the first matrix A is

the effective Hamiltonian Heff for an N-level quantum
system. Then, Heff can be expanded over the identity, 1N
and a set of SUðNÞ generators, f1;Tg ¼ f1N; T1;…; TNg,
with complex coefficients, Ha ∈C. In detail, we have,

Heff ¼ H01N þH · T; ðA2Þ

where H ¼ ðH1; H2;…; HN2−1Þ will be called the
Hamiltonian vector in the following. Nonetheless, the
coefficient of equal interest to us is the zeroth component,

H0 ¼ M −
i
2
Γ; ðA3Þ

which is the N-degenerate complex eigenvalue of Heff .
Hence, in order to ensure that all N eigenvalues of Heff are
equal to H0, we take the second matrix B ¼ H01N and
demand the validity of the N-fold criterion (A1), i.e.

Tr½ðHeff −H01NÞk� ¼ 0; ðA4Þ

where k ¼ 1; 2;…; N. From the traceless nature of the
SUðNÞ generators, we see that the condition for k ¼ 1 is

automatically fulfilled. Hence, for 1 < k ≤ N, the sufficient
and necessary conditions reduce to

Tr½ðH · TÞk� ¼ 0: ðA5Þ

Given an effective Hamiltonian for an N-level system, this
expression may be used to derive N conditions on the
Hamiltonian vector H. For k ¼ 2, we see that this expres-
sion gives

H ·H ¼
XN
a¼1

ðHaÞ2 ¼ 0: ðA6Þ

Taking the real and imaginary parts of this last relation for
an effective Hamiltonian of an N ¼ 2 level system, the two
critical conditions given in [22] are recovered:

ðiÞ Im½H ·H� ¼ 0 ⇒ E · Γ ¼ 0;

ðiiÞ Re½H ·H� ¼ 0 ⇒ 2jEj ¼ jΓj: ðA7Þ

For an N ¼ 3 level system, one must require, in addition to
the two conditions in (A7), the vanishing of the complex-
valued sum

XN
a;b;c¼1

dabcHaHbHc ¼ 0; ðA8Þ

where dabc are the symmetric structure constants of the
SUðNÞ group.
It is now interesting to note a weaker version of the

criterion stated in (A1). While we permit nondegeneracy of
the mass spectrum (with non-negative masses), we still
demand that all decay rates be identical to Γ ¼ −2ImH0.5

From the structure of the effective Hamiltonian, we see that
this corresponds to all the imaginary parts of the eigen-
values being equal. Consequently, the weaker condition,

Tr½ImðA − BÞk� ¼ 0; ðA9Þ

may now be considered in order to determine when A and B
will have eigenvalues with identical imaginary parts.
Hence, following a similar approach to what was done
before but setting now B ¼ −iΓ=21N, we arrive at the two
nontrivial sets of conditions (with M > 0):

ðiÞ Tr½ImðH · TÞk� ¼ 0;

ðiiÞ ðNMÞk ≥ Tr½ðM1N þ ReH · TÞk� ≥ NMk; ðA10Þ

5The complementary noncritical scenario where all masses are
degenerate, but the decay widths different, is quite analogous, and
so we will not consider it here.
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where 1 < k ≤ N. Note that the set of all double inequal-
ities in (ii) of (A10) ensures the positivity of all masses. In
the case that N ¼ 2, we recover fully the criteria which
characterize critical scenarios

ðiÞ Im½H ·H� ¼ 0 ⇒ E · Γ ¼ 0;

ðiiÞ 2NðN − 1ÞM2 ≥ Re½H ·H� ≥ 0

⇒ 4M2 ≥
1

2
jEj2 − 1

8
jΓj2 ≥ 0; ðA11Þ

where we have set k ¼ N ¼ 2 to obtain the second
condition (ii). For an N ¼ 3 level system, we may derive
the additional conditions on the geometric structure of the
respective effective Hamiltonian,

ðiiiÞ
XN

a;b;c¼1

ImðdabcHaHbHcÞ ¼ 0;

ðivÞ NðN2 − 1ÞM3 ≥
3

2
MRe½H ·H�

þ
XN

a;b;c¼1

ReðdabcHaHbHcÞ ≥ 0; ðA12Þ

where k ¼ 3 was substituted in the last double inequality.
For higher N-level systems, extra ladder conditions must

be included that become more involved. Nevertheless, they
can be straightforwardly obtained in terms of products of
the antisymmetric and symmetric structure constants, fabc
and dabc, of the Lie algebra governing the SUðNÞ group.
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