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Abstract We investigate the peculiar nature of strange stars
through an analysis of different quark models, i.e. vBag
model and CFL model equation of states at different parame-
ter sets, and focus on understanding the equation of state gov-
erning the intriguing central compact object (CCO) within
the supernova remnant HESS J1731-347, with a mass and
radius of M = 0.77+0.20

−0.17M� and R = 10.4+0.86
−0.78 km, respec-

tively. Additionally, we compare the radial oscillations of
two models to determine the frequency of the HESS J1731-
347 compact object at its maximum mass. The frequencies
of radial oscillations are computed for each of the four EoSs
considered. In total, the 10 lowest radial frequencies for each
of those EoSs have been computed. By delving into these
aspects, we aim at deepening our understanding of strange
stars and their connection to the observed HESS J1731-347
mass-radius relationship.

1 Introduction

Ever since Witten proposed that quark matter may be the true
ground state of hadronic matter [1], followed by Bodmer’s
important precursor [2], a substantial amount of work has
been done. The study of less standard stars, known as Strange
Stars (SSs), has been inspired by the hypothesis that strange
matter, also known as quark matter, composed of u, d, and
s quarks, is characterized by energy per baryon lower than
that of nuclear matter and u, d quark matter, along with the
expectation of deconfined quark matter at high densities [3–
8]. Due to their nature, those objects can have arbitrarily
small radii and masses [9].

Those extremely dense, compact stars offer a unique
potential to investigate the properties of matter under extreme
conditions. Due to their unusual inner composition, structure,

a e-mail: ishfaq.rather@tecnico.ulisboa.pt (corresponding author)

and physical properties compared to other compact objects,
such as white dwarf (WD) or neutron stars (NSs) [10], such
stars (i.e. SSs) have emerged as a topic of considerable inter-
est over the last few decades.

The physics of very high-density matter, such as SSs, is
still not fully understood. An Equation of State (EoS), or
the relationship between pressure P and energy density E ,
must be specified in order to build a compact star’s model.
Properties for a compact object, such as the mass-radius rela-
tionship, tidal deformability, the rate of cooling, etc., can be
provided by a clear EoS. The most basic MIT Bag model
EoS framework is employed in the majority of SS studies. It
is considered that a constant pressure, known as the Bag con-
stant, on the surface of any region containing quarks essen-
tially causes quark confinement in the MIT Bag model EoS,
which is the simplest EoS and corresponds to a relativistic
gas of de-confined quarks with energy density [8,11].

The observed massive compact objects, however, cannot
be produced by the EoS of matter evaluated from this model
because it is too soft. By incorporating a perturbative cor-
rection with a non-zero strong coupling constant, αc, the
original bag model is modified. Implementing vector interac-
tion between quarks by coupling to a vector field is another
approach to incorporating quark interactions. If the vector
interaction is repulsive, the EoS will become stiff, increasing
its possible maximum mass. This model has been discussed
in numerous works and is commonly known as the vector
interaction enhanced bag (vBag) model [12–17].

The aforementioned matter could also be a color super-
conductor, a degenerate Fermi gas in which the quarks close
to the Fermi surface form Cooper pairs, breaking the color
gauge symmetry [18,19]. The color-flavor-locked (CFL)
phase, a superfluid that also violates chiral symmetry, is
the most favorable state for strange quark matter at asymp-
totically high densities. Since all quarks in this state have
the same Fermi momentum and cannot contain electrons,
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quarks form Cooper pairs of various colors and flavors in
this state [18,20]. Several properties of Quark matter, includ-
ing its transport properties, are significantly impacted by
color-flavor locking. For typical values of the color super-
conducting gap (Δ ∼ 0 to 150 MeV) and the baryon chemical
potential (μ ∼ 300 to 400 MeV), it introduces corrections of
order (Δ/μ)2, which is roughly a few percent, into the EoS.
However, in the low-pressure regime where quark matter’s
absolute stability is affected, the effect is proportionally very
large. Thus, for a wide range of parameters of the MIT bag
model EoS, self-bound stars made up of quark matter from
the stellar core up to the stellar surface (SSs) may exist [21].
Studies of the structure of these objects reveal that the mass-
radius relationship of strange stars is significantly impacted
by color superconductivity, allowing for very large maximum
masses [22,23].

Apart from the vBag and the CFL model, other phe-
nomenological quark models such as density dependent
quark mass [24–26], quasi particle [27,28],the Nambu Jona–
Lasinio (NJL) [29,30] model have been widely. While the
NJL model lacks confinement, it presents the chiral symme-
try. Its extension, Polyakov–Nambu–Jona–Lasinio (PNJL)
model [31,32] includes effects of confinement/deconfinement
phase transition. The quarkyonic matter has been used in
recent studies [33,34] which serves as an alternate approach
that explicitly implements early theories about quark mat-
ter through the fact that both quarks and nucleons exist as
quasiparticles in a crossover transition. However the recent
observations and estimates of the mass-radius region for the
supermassive compact stars set very strict constraints on the
EoS of strange quark matter (SQM) and may rule out most of
the conventional phenomenological models of quark matter.

An indirect approach to studying such highly compact
stars is asteroseismology [35]. One can identify a star’s sta-
bility condition, mass, radius, composition, etc. by observing
the radial and non-radial oscillations of the star. Even though
the radial mode is the simplest oscillation mode and involves
a regular change in the oscillating body’s size and shape, it
is a great tool for acquiring information about the star.

In a pioneering work, Chandrasekhar [36,37] investigated
the radial oscillations of stellar models. Significantly, the
characteristics of the radial oscillation can provide infor-
mation about the stability and EoS of compact stars. The
non-radial oscillations of relativistic stars were studied by
Thorne and Campolattaro [38]. They are known as quasinor-
mal modes (QNMs) because the GWs dampen the oscillation
modes. Typical nonrotating relativistic fluid stars are catego-
rized as QNMs along the polar and axial axes. Among the
polar modes are the fundamental ( f ), pressure (p), and grav-
ity (g) modes. The axial modes only contain the space-time
(w) modes. Radial oscillations are unable to generate GWs
on their own, making it challenging to detect them [39,40].
They are connected to non-radial oscillations that amplify

GWs and enhance the likelihood of detecting them [39,40].
Chirenti et al. [41] observed that a hyper-massive NS formed
in the post-merger event of a BNS along with the emission of
a short gamma-ray burst (SGRB), which may be influenced
by radial oscillations. It was feasible to see the hyper-massive
NS’s high-frequency oscillations, which ranged from (1–4)
kHz.

The fundamental and first two excited modes of the radial
oscillations of zero-temperature degenerate stars (WD and
NS) were calculated by Chanmugam [42]. Haensel et al.
[43] investigated the pulsation properties of NSs undergoing
a phase transition to quark matter using the polytropic model
EoS. Datta [44] calculated the eigenfrequencies of radial pul-
sations for SSs using the general relativistic pulsation equa-
tion. The oscillation time periods were also computed. Vaeth
and Chanmugam [45] reported on the calculation of the radial
oscillations of SSs and NSs for the two lowest-order oscilla-
tion modes.

The f -mode oscillations of NSs are very significant, as
they are most likely to be detectable with a third-generation
detector, such as the Einstein Telescope and the Cosmic
Explorer [46–48], or even in the best case by the current gen-
eration LIGO/Virgo/KAGRA detectors [49,50], as it depends
on the EoS of compact stars. It is also anticipated to be excited
in many astrophysical scenarios and hence result in efficient
emission of gravitational waves.

According to a recent analysis of the supernova remnant
HESS J1731-347, the central compact object (CCO) mass
and radius are M = 0.77+0.20

−0.17M� and R = 10.4+0.86
−0.78 km,

respectively [51]. This estimate of maximum mass, 0.77 M�,
is intriguing. It is possible that the compact object in HESS
J1731-347 is an exotic object rather than a neutron star, given
that [52] previous analysis revealed that the minimum pos-
sible mass of a neutron star is 1.17M�. Several studies have
already shown that the compact object in HESS J1731-347
could be a neutron star or a strange star [53–59].

In the present work, we employ two different quark mod-
els, the vBag and CFL, to study SSs. We vary the vector cou-
pling parameter Kv in the vBag model and the color super-
conducting gap parameter Δ in the CFL model to produce
four different EoSs in total. Our main goal is to present the
capability of vBag and CFL quark stars to model the HESS
J1731-347 compact object, as well as objects with masses
equal or greater than 2 M� limit. We also investigate various
radial oscillations of SSs with different EoSs at the mass cor-
responding to the maximum mass of HESS J1731-347, M =
0.77 M�, to obtain the frequencies that could be emitted by
this CCO, if it’s a SS. Several studies on the investigation of
various radial oscillations of NSs with different exotic phases
have already been carried out [60–66]. Moreover, as already
mentioned before, several studies have shown the nature of
the compact object in HESS J1731-347 to be either an NS
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or a SS, but none among them have calculated the radial
oscillations.

Our work is organized as follows: in Sect. 2.1.1 and 2.1.2,
the EoS for the vBag and the CFL model will be discussed.
The tidal Love numbers and deformability are discussed in
Sect. 2.2, while the Sturm–Liouville eigenvalue problem for
the inner structure and radial oscillations of SSs are intro-
duced in Sect. 2.3, respectively. In Sect. 3 the trace anomaly
and the mass-radius profile for different EoSs are discussed
in Sect. 3.1. Section (3.2) describes the numerical results for
radial profiles obtained for SSs. The summary and conclud-
ing remarks are finally given in Sect. 4.

2 Theoretical framework and formalism

2.1 Quark models and equations-of-state

2.1.1 vBag model

Quark matter in NSs has been extensively described using
the MIT bag model. Quarks are interpreted as being free
inside a bag in the original description, and thermodynamic
properties are simply derived from a free Fermi gas model
[11,67,68]. A more useful model for investigating astrophys-
ical processes is the vBag model [12], a modified version of
the bag model. It is preferred over the simple bag model
because it accounts for repulsive vector interactions as well
as dynamic chiral symmetry breaking (DχSB). The signifi-
cance of the repulsive vector interaction stems from the fact
that it enables the pure strange stars to reach and satisfy the
2 M� maximum mass limit [13,16,17,69].

The Lagrangian density for the vBag model along with a
free Fermi gas of leptons is written as

L =
∑

f

[ψ f (iγμ∂μ − m f − Bbag)ψ f ]�H

− GV

∑

f

(ψ̄ f γμψ f )
2 +

∑

l

ψlγμ(i∂μ − ml)ψl ,

where f = u, d, s denotes the quarks and l = e−, μ− rep-
resents leptons. Bbag denotes the bag constant and �H is
the Heaviside step function which allows for the confine-
ment/deconfinement of the bag [67]. The vector interaction
coupling constant GV is introduced via the coupling of the
vector-isoscalar meson to the quarks.

The total energy density and pressure are

EQ =
∑

l

El +
∑

f =u,d,s

EvBag,f − Bdec (1)

PQ =
∑

l

Pl +
∑

f =u,d,s

PvBag,f + Bdec (2)

where Bdec represents the de-confined bag constant. The
energy density and pressure of a single quark flavor are
defined as

EvBag,f = E f (μ
∗
f ) + 1

2
Kνn

2
f (μ

∗
f ) + Bχ, f (3)

PvBag,f = Pf (μ
∗
f ) + 1

2
Kνn

2
f (μ

∗
f ) − Bχ, f . (4)

The coupling constant parameter Kν = 2GV results from the
vector interactions and controls the stiffness of matter [70].
The bag constant for a single quark flavor is denoted by Bχ, f

and the effective bag constant Beff is defined as

Beff =
∑

f=u,d,s

Bχ, f − Bdec. (5)

The effective chemical potential μ∗
f of the system and the

quark density are defined as

μ∗
f = μ f − Kνn f (μ

∗
F ) (6)

n f (μ f ) = n f (μ
∗). (7)

In the present study, we will use two values of the cou-
pling constant parameter Kν = 6 and 9 GeV−2. The effec-
tive bag constant Bef f will be kept constant at Bef f = 55
MeV/fm3. The parameters Kν and Bef f are chosen so as to
satisfy the stability limit and to remain consistent with the 2
M� constraint on the maximum mass. Lower values of the
coupling parameter and higher values of the effective bag
constant don’t satisfy this 2 M� limit on the maximum mass
and hence the EoSs produced are ruled out. Increasing the
coupling constant parameter while keeping the bag constant
fixed ensures a very stiff EoS that satisfies all the mass and
radius constraints from various observations. For simplicity,
we will use B instead of Bef f throughout the paper. The EoS
at B = 55 MeV/fm3, Kν = 9 GeV−2 will be denoted by
vBag1, while the EoS at B = 55 MeV/fm3, Kν = 6 GeV−2

will be denoted by vBag2.
The charge neutrality and chemical-equilibrium condi-

tions for the quark matter are

2

3
ρu − 1

2
(ρd + ρs) − ρe − ρμ = 0 (8)

μs = μd = μu + μe (9)

μμ = μe. (10)

2.1.2 CFL model

The expression for energy density and pressure for the CFL
quark matter to order Δ2 and m2

s can be written as [21,71]

P = 3μ2

4π2 + 9αμ2

2π2 − B (11)

E = 9μ2

4π2 + 9αμ2

2π2 + B (12)
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where

α = −m2
s

6
+ 2Δ2

3
. (13)

An analytic expression for E = E(P) can be obtained
from the above expressions as

E = 3P + 4B − 9αμ2

π2 , (14)

with

μ2 = −3α +
[

4

3
π2(B + P) + 9α2

]1/2

. (15)

Similarly for P = P(E), we obtain

P = E
3

− 4B

3
+ 3αμ2

π2 , (16)

with

μ2 = −α +
[

4

9
π2(E − B) + α2

]1/2

. (17)

Since the values of Δ, B, andms are not accurately known,
they are considered free parameters. For absolutely stable
strange matter, the energy per baryon of CFL quark matter
must be less than the neutron mass mn at zero pressure and
temperature. As shown in Ref. [71] considering the stabil-
ity window, several EoS with different values of Δ, B, and
ms have been studied. For the current study, we choose two
different sets (B,Δ,ms) = (60, 150, 150) and (60, 100, 0).
These two produce a very stiff quark EoS with a maximum
mass in the range of 2.3–2.6 M� thus satisfying the 2M�
limit as well. The CFL EoS at B = 60 MeV/fm3, Δ = 150
MeV, ms = 150 MeV will be denoted by CFL1 whereas the
EoS at B = 60 MeV/fm3, Δ = 100 MeV, ms = 0 MeV will
be denoted by CFL2.

2.2 Tidal Love numbers and deformablity

The relativistic theory of tidal Love numbers for compact
objects can be found in [72–74]. Here we briefly summarize
the main formulas we shall be using throughout the present
article.

The dimensionful deformability, λtidal , and the dimen-
sionless one, , are computed in terms of the tidal Love
number, k, as follows

λtidal = 2kR5

3
, (18)

 = 2k

3C5
, (19)

whereC = M/R is the factor of compactness. Next, in terms
of C the tidal Love number is computed to be

k = 8C5

5

Ko

3Ko ln(1 − 2C) + P5(C)
, (20)

where Ko and P5(C) depend on C, yR and they are found to
be

Ko = (1 − 2C)2 [2C(yR − 1) − yR + 2], (21)

yR ≡ y(r = R), (22)

with P5(C) being a fifth-order polynomial given by

P5(C) = 2C [4C4(yR + 1) + 2C3(3yR − 2)

+ 2C2(13 − 11yR) + 3C(5yR − 8) − 3yR + 6],
(23)

while the function y(r) satisfies a Riccati differential equa-
tion

r y′(r) + y(r)2 + y(r)eλ(r)

× [1 + 4πr2(p(r) − ρ(r))] + r2Q(r) = 0, (24)

and where

Q(r) = 4πeλ(r)
[

5ρ(r) + 9p(r) + ρ(r) + p(r)

c2
s (r)

]

− 6
eλ(r)

r2 − [ν′(r)]2, (25)

is given in terms of known functions of the internal solution.
The metric functions λ and ν are defined as

e2ν(r) = e−2λ(r) = 1 − 2m/r (26)

The interested reader may consult, e.g., [72–74] for more
details about the tidal properties.

2.3 Radial oscillations

The radial oscillation properties can be determined using
the static equilibrium structure-based Einstein field equation
[75]. The metric is now time-dependent in a spherically sym-
metric system with only radial motion. The small perturba-
tion of the equations for radial displacement Δr with ΔP as
the perturbation of the pressure, governing the dimensionless
quantities ξ = Δr/r and η = ΔP/P are defined as [42,76]

ξ ′(r) = −1

r

(
3ξ + η

γ

)
− P ′(r)

P + E ξ(r) (27)

η′(r) = ξ

[
ω2r(1 + E/P)eλ−ν − 4P ′(r)

P
− 8π(P + E)reλ
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+ r(P ′(r))2

P(P + E)

]
+ η

[
− EP ′(r)
P(P + E)

− 4π(P + E)reλ

]
,

(28)

where ω is the frequency oscillation mode and γ is the adi-
abatic relativistic index defined as

γ =
(

1 + E
P

)
v2
s , (29)

where v2
s is the speed of sound squared

v2
s =

(
dP

dE
)
c2. (30)

Equations (27) and (27) are two coupled differential equa-
tions supplemented with two additional boundary conditions,
one at the center where r = 0, and another at the surface where
r = R. At the center, the boundary condition requires that

η = −3γ ξ, (31)

must be satisfied. Also, Eq. (27) must be finite at the surface,
and hence

η = ξ

[
−4 + (1 − 2M/R)−1

(
−M

R
− ω2R3

M

)]
, (32)

must be satisfied where M and R correspond to the mass and
radius of the star, respectively. The frequencies are computed
by

ν = ω̄

2π
(kHz), (33)

where ω̄ = ωt0 is the dimensionless quantity computed at t0
= 1 ms.

These equations represent the Sturm–Liouville eigenvalue
equations for ω. The solutions provide the discrete eigenval-
ues ω2

n and can be ordered as

ω2
0 < ω2

1 < · · · < ω2
n,

where n is the number of nodes for a given star. The star
will be stable for a real value of ω and unstable for an imag-
inary frequency. Additionally, because the eigenvalues are
arranged in the manner previously mentioned, it is crucial
to understand the fundamental f -mode frequency (n = 0) in
order to assess the star’s stability.

Fig. 1 Trace anomaly as a function of energy density (normalized to
the value of the saturation density E0 = 159.4 MeV/fm3) for B = 55
MeV/fm3, Kν = 9 GeV−2 (vBag1) and B= 55 MeV/fm3, Kν = 6
GeV−2 (vBag2). The results for the CFL EoS at B = 60 MeV/fm3, Δ

= 150 MeV, ms = 150 MeV (CFL1) and CFL EoS at B = 60 MeV/fm3,
Δ = 100 MeV, ms = 0 MeV (CFL2) are also shown

3 Numerical results and discussion

3.1 Trace anomaly and MR profile

The speed of sound in the case of neutron stars does not
violate the conformal bound when v2

s > 1/3, according to
recent work [77,78], which suggests the trace anomaly as
a measure of conformality, but it exhibits a steep approach
to the conformal limit. In particular, the trace anomaly is
used exclusively to express the speed of sound vs , and it is
suggested that this makes it a more complete quantity than
vs . The definition of the normalized trace anomaly is

D = 1

3
− P

E . (34)

The original representation letter Δ is replaced by D to avoid
any confusion with the superconducting gap parameter. Since
the thermodynamic causality requires that P > 0 and P ≤
E , the trace anomaly D must satisfy the constraints -2/3 ≤
D ≤ 1/3.

The speed of sound can be written as

v2
s = 1

3
− D − dD

dη
, (35)

where 1
3 − D represents the non-derivative term and − dD

dη

represent the derivative term. Here, Dlog = ln(E/E0) and E0

is the energy density at saturation density. Thus the Eq. (35)
can be written as

v2
s = v2

s,deriv + v2
s,nonderiv. (36)

Figure 1 displays the trace anomaly D as a function of
normalized energy density E/E0 for vBag and CFL model
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Fig. 2 The speed of sound (solid line) along with the respective deriva-
tive (dotted line) and non-derivative terms (dashed line), as functions of
the normalized logarithmic energy density Dlog = ln(E/E0) for vBag
EoSs (upper figure) and for CFL EoSs (lower figure). The orange dashed
line represents the conformal limit c2

s = 1/3

EoSs at different parameter sets. For the vBag model, the
trace anomaly keeps decreasing with the increasing normal-
ized energy density and drops below 0 at E/E0 ≈ 23 and 34
for vBag1 and vBag2 EoS, respectively. For the CFL model,
both CFL1 and CFL2 EoS decrease at lower values of the nor-
malized energy density and then remain almost constant at
higher values. The trace anomaly for both CFL EoSs doesn’t
become negative. At sufficiently high densities, as was ini-
tially demonstrated in Ref. [79], the possibility of the nega-
tive trace anomaly is statistically not excluded. Even if the
speed of sound develops a peak, the trace anomaly may still
be monotonic [77].

An essential parameter that provides information regard-
ing shear viscosity, tidal deformability, and gravitational
wave signatures is the speed of sound [80,81]. It can also
be interpreted as a measure of the stiffness of the EoS, with a
higher speed resulting in a higher pressure at a given energy
density and allowing a larger star mass for a given radius.
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03
0+

04
51

GW170817

GW190814

PSR J0952-0607

GW170817

M1

M2

HESS J1731-347

Fig. 3 Mass-radius profile for vBag EoS at B = 55 MeV/fm3, Kν =
9 GeV−2 (vBag1) and B= 55 MeV/fm3, Kν = 6 GeV−2 (vBag2). The
results for the CFL EoS at B = 60 MeV/fm3, Δ = 150 MeV, ms =
150 MeV (CFL1) and CFL EoS at B = 60 MeV/fm3, Δ = 100 MeV,
ms = 0 MeV (CFL2) are also displayed. The 68% (violet) and 95%
(turquoise) credible regions for mass and radius are inferred from the
analysis of PSR J0740+6620 [85,86]. For PSR J0030+0451, the indigo
dotted region is for 68% credibility while the green dotted region is for
95% credibility [87]. The grey upper (brown lower) shaded region corre-
sponds to the higher (smaller) component of the GW170817 event [88].
The circled contours represent the central compact objects within HESS
J1731-347 [51]. The orange and green bands represent the maximum
mass constraint from GW190814 data and PSR J0952-0607, respec-
tively [89,90]

It is ensured by thermodynamic stability that v2
s > 0 and by

causality that v2
s ≤ 1. According to perturbative QCD inves-

tigation, the upper limit for extremely high densities is v2
s

= 1/3 [82]. According to several studies [82–84], the 2 M�
requirements demand a speed of sound squared that is greater
than the conformal limit (v2

s = 1/3), indicating that the matter
inside of NS is a highly interacting system.

Figure 2 displays the speed of sound along with the respec-
tive derivative and non-derivative terms, as a function of the
normalized logarithmic energy density Dlog = ln(E/E0) for
vBag and CFL model EoSs. For the vBag model EoSs, the
speed of sound shows an increasing behavior and is higher
than the conformal limit even at low values of the Dlog .
v2
s,nonderiv increases with the increasing Dlog because the

trace anomaly D is a monotonic function [77]. The v2
s,deriv

shows the opposite behavior to v2
s,nonderiv . It keeps decreas-

ing up to Dlog ≈ 4.5 and remains almost constant thereafter.
For CFL model EoSs, the speed of sound increases with the
density but does not violate the conformal limit even at higher
densities.

Solving the Tolman–Oppenheimer–Volkoff (TOV) equa-
tions for the EoSs obtained, Fig. 3 displays the mass-radius
profile for vBag and CFL EoS at different parameter sets.
For vBag1 EoS with B = 55 MeV/fm3 and Kν = 9 GeV−2,
we obtain a maximum mass of 2.15 M� with a radius of
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Fig. 4 Dimensionless tidal deformability variation with the SS mass
for vBag and CFL EoS at different parameter sets. The error bar repre-
sents the  = 190+390

−120 constraints concluded by the LVC measurement
from GW170817 [91]

Table 1 Properties of SSs for four different EoSs, vBag1, vBag2,
CFL1, and CFL2. Mmax represents the maximum mass with the cor-
responding radius Rmax , R1.4M� and R0.77M� represent the radius at
1.4 and at 0.77 M�, respectively. 1.4M� represents the dimensionless
tidal deformability at 1.4 M�
EoS Mmax Rmax R1.4M� R0.77M� 1.4M�

(M�) (km) (km) (km)

vBag1 2.15 11.76 12.15 10.43 158

vBag2 2.06 11.23 11.55 9.90 119

CFL1 2.62 13.50 12.47 10.47 484

CFL2 2.36 12.39 11.86 10.05 212

11.76 km. Similarly for vBag2 EoS with B = 55 MeV/fm3

and Kν = 6 GeV−2, the maximum mass is 2.06 M� with
a corresponding radius of 11.23 km. Both EoSs satisfy the
PSR J0740+6620 upper mass limit. The radius at 1.4 M� is
12.15 and 11.55 km, respectively, satisfying the constraints
from GW170817 and PSR J0030+0451. For CFL1 EoS with
B = 60 MeV/fm3, Δ = 150 MeV, ms = 150 MeV, the max-
imum mass is 2.62 M� with radius of 13.50 km satisfying
the GW190814 maximum mass constraint [89]. CFL2 EoS
with B = 60 MeV/fm3, Δ = 100 MeV, ms = 0 MeV lies in
the region of PSR J0952-0607 with maximum mass of 2.36
M�. All these four EoSs satisfy the radius constraint of R =
10.4+0.86

−0.78 km at mass M = 0.77+0.20
−0.17 M� from observables

of HESS J1731-347 [51].
Figure 4 shows the dimensionless tidal deformability 

as a function of mass for different EoSs studied. For vBag1
and vBag2 EoS, the dimensionless tidal deformability at the
canonical mass is around 115 and 163, respectively. Sim-
ilarly for CFL1 and CFL2 EoS, the value of  is around
250 and 480, respectively. All the values lie well within the
constraint from GW170817,  = 190+390

−120 [91]. Table 1 dis-

plays the properties such as Maximum mass, corresponding
radius, the radius at 1.4 and 0.77 M�, and dimensionless tidal
deformability, for all four EoSs.

3.2 Radial profiles

The radial displacement perturbation profile ξ(r) and pres-
sure perturbation profile η(r) as a function of dimensionless
radius distance r/R for vBag and CFL model EoSs is plotted
in Fig. 5. The top panels represent the results ξ(r) (left panel)
and η(r) (right panel) for the vBag model while the lower
panels represent the results for the CFL model. Although we
have shown only the f -mode (n = 0) and lower p-modes (n
= 1, 2, 3), exactly n nodes are obtained for the nth mode
both for ξ and η profiles, in the region 0 < r < R, thereby
following the Sturm-Liouville system. The oscillation for η

is directly proportional to the Lagrangian pressure variation
ΔP , and therefore a decaying amplitude is observed when it
approaches the stellar surface. From Fig. 5 (top left panel),
one can see that for vBag1 EoS, the amplitude of ξn(r) for
each frequency mode νn is larger near the center and small at
the surface. The lower modes show a smooth drop in their pro-
files while the higher modes depict small oscillations which
would become large for higher modes. For vBag2 EoS, the
amplitude of ξ for n = 0 is higher as compared to vBag1 EoS.
The nodes for higher p-modes shift towards the center when
we use vBag2 EoS meaning when we decrease the coupling
constant parameter Kν from 9 to 6 GeV−2. The system tends
to oscillate consistently in a somewhat stable region close to
the equilibrium point. For the CFL model, the amplitude of
ξ(r) for n = 0 mode is lower as compared to the vBag model
EoS. Other modes shift toward the center when we change
the superconducting gap parameter from Δ = 150–100 MeV,
but the amplitude is higher than the vBag model EoSs. As
one moves toward the star’s surface, the amplitude decreases
and there is a rapid sign change near the star’s center.

From Fig. 5, the pressure perturbation profile for vBag (top
right panel) and CFL (bottom right panel) EoSs is shown. It
is observed that the amplitude of ηn(r) is higher both near the
star’s center and on its surface. For n = 0 mode, the amplitude
decreases for vBag2 and CFL2 EoS as compared to vBag1
and CFL1 EoS. The other higher modes for both models
shift towards the center at the surface but the amplitude of
CFL EoSs is higher than vBag EoSs. Despite the fact that
the η oscillations are directly correlated with the Lagrangian
pressure variation ΔP , the ηn(r) amplitudes for successive
n have large amplitudes near the surface, so the contribution
from ηn+1 - ηn cancels out because of the opposite signs,
satisfying the condition of P(r = R) = 0. This implies that
ηn+1 − ηn and also ξn+1 − ξn are more sensitive to the star’s
core. As a result, the measurement of Δνn = νn+1 − νn is an
observational imprint of this star’s innermost layers.
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Fig. 5 The radial displacement perturbation ξ(r) = Δr/r (right pan-
els) and the radial pressure perturbation η(r) = Δr/r (left panels) as
a function of dimensionless radius distance r/R for lower f -mode (n
= 0), lower order p-modes (n = 1, 2, 3). The upper panels represent
the result for vBag EoS at B = 55 MeV/fm3, Kν = 9 GeV−2 (solid

lines) and B= 55 MeV/fm3, Kν = 6 GeV−2 (dashed lines), while the
lower panels represent the result for the CFL EoS at B = 60 MeV/fm3,
Δ = 150 MeV, ms = 150 MeV (solid lines) and CFL EoS at B = 60
MeV/fm3, Δ = 100 MeV, ms = 0 MeV (dashed lines)

Table 2 10 lowest order radial oscillation frequencies, ν in (kHz) for
different EoSs considered. For each EoS, the frequencies are calculated
at M = 0.77M�
Nodes EoS

vBag1 vBag2 CFL1 CFL2

0 6.83 7.15 6.47 6.74

1 18.08 18.98 14.18 14.63

2 29.24 30.74 21.61 22.25

3 40.41 42.52 28.96 29.81

4 51.60 54.30 36.30 37.35

5 62.81 66.09 43.62 44.87

6 74.01 77.88 50.93 52.38

7 85.23 89.68 58.24 59.89

8 96.44 101.47 65.56 67.39

9 107.66 113.27 72.87 74.89

Table 2 displays the frequencies, ν in kHz, of the first
10 nodes for all the EoSs considered in this study. All these
frequencies are obtained at M = 0.77M� for each EoS to
determine the f - and p-mode frequency that the compact
object HESS J1731-347 would emit if it’s a strange star. The
node n = 0 corresponds to the f -mode frequency while the
others correspond to the lower and highly excited p-modes.
The frequency for the f -mode for vBag2 EoS is higher com-
pared to the rest because of the small maximum mass among
all the EoSs.

Figure 6 shows the frequencies of radially oscillating SS
for vBag (left) and CFL (right) models at different param-
eter sets, as a function of central energy density for lower
radial modes, n = 0, 1, 2, and 3. From the figure, it is evident
that stellar models with softer EoSs exhibit higher f -mode
frequencies than those with stiffer EoSs for the same core
density. Larger average densities and more centrally com-
pressed stars are typically associated with the stellar models

123



Eur. Phys. J. C (2023) 83 :1065 Page 9 of 12 1065

Fig. 6 Frequencies of radially oscillating SS as a function of central
energy density. The left panel represents the results for vBag EoS at B
= 55 MeV/fm3, Kν = 9 GeV−2 (solid lines) and B= 55 MeV/fm3, Kν

= 6 GeV−2 (dashed lines), while the right panel represents the result

for the CFL EoS at B = 60 MeV/fm3, Δ = 150 MeV, ms = 150 MeV
(solid lines) and CFL EoS at B = 60 MeV/fm3, Δ = 100 MeV, ms = 0
MeV (dashed lines). The frequencies for lower radial modes (n = 0, 1,
2, 3) are shown

of softer EoSs. As the center density increases and the f -
mode frequency (n = 0) simultaneously starts to shift toward
zero, the star is getting closer to its stability limit. The sta-
bility limit itself exhibits an eigenmode with zero frequency.
The f -mode frequency of vBag model EoSs is higher as
compared to the CFL model EoSs because of the lower max-
imum mass and the corresponding radius that makes the EoS
softer.

For all modes, the frequency appears to decrease or remain
constant as the center energy density approaches the mini-
mum value of the specific star model. Higher modes oscillate
more frequently than lower stable modes do, and conversely.
This is due to the fact that the stars at very high densities can
be approximated as being homogeneous and thus the angular
frequency ω2

0 follows the relation ω2
0 ∝ ρ(4γ − 3) [60,92].

Figure 7 shows the large frequency separation, Δνn =
νn+1 - νn vs νn , in kHz for vBag1, vBag2, CFL1 and CFL2
EoS. The frequency separation shown here displays all the
10 modes calculated for each EoS as shown in Table 2. Fig-
ures 5 and 6 show only the first 4 modes. For vBag model
EoSs, we can see that the frequency separation between con-
secutive modes shows a smooth trend with a difference of 11
and 12 kHz for vBag1 and vBag2 EoS, respectively. For CFL
model EoSs, the frequency difference follows the same trend,
although it is smaller for both EoSs than for the vBag EoS,
around (7–8) kHz. This is because the vBag model produces
softer EoSs, and therefore it oscillates at higher frequencies
compared to the CFL model. This shows that the decrease in
the central baryon density of the star and, hence, of its mass
leads to a large separation Δνn . We also observe that there
are no erratic fluctuations present in Δνn in any case. The
fluctuations arise from the significant variation of the speed

Fig. 7 Frequency difference Δνn = νn+1 - νn vs νn in kHz for vBag
and CFL model at different parameter sets

of sound squared v2
s or the relativistic adiabatic index γ on

the transition layer separating the inner and outer core of the
NS, which has an amplitude proportionate to the magnitude
of the discontinuity. Also, since we have not considered the
crust EoS, we observe no variations in the speed of sound or
relativistic adiabatic index, and so there are no fluctuations.

4 Summary and conclusion

This study on the peculiar nature of strange stars and their
application to the compact object within the supernova
remnant HESS J1731-347 holds significant importance in
advancing our understanding of this enigmatic astronomical
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phenomenon. By analyzing different quark models, specifi-
cally the vBag model and the CFL model equation-of-states,
we aim to comprehend the equation-of-state governing the
central compact object (CCO) within HESS J1731-347.

We employed two different quark models, namely the
vBag and CFL models, to study some properties of SSs such
as trace anomaly, mass-radius profile, and tidal deformabil-
ity. Regarding the vBag model, we varied the vector coupling
parameter Kν from (6–9) GeV−2, and the color supercon-
ducting gap parameter Δ from (100–150) MeV, in the CFL
model to produce four different EoSs in total. Our aim here
was to present the capability of vBag and CFL quark stars
to describe the HESS J1731-347 compact object, as well as
objects with masses equal to or greater than 2 M� limit.

We have studied the trace anomaly D as a function of nor-
malized energy density E/E0 for the vBag and CFL model
EoSs in different sets of parameters. As far as the vBag model
is concerned, the trace anomaly continues to decrease with
increasing normalized energy density and drops below 0 at
a certain value of normalized energy density for vBag1 and
vBag2 EoS. As far as the CFL model is concerned, both
CFL1 and CFL2 EoS decrease at lower values of the nor-
malized energy density and then remains almost constant at
higher values. We have also studied the speed of sound along
with the respective derivative and non-derivative terms, as a
function of the normalized logarithmic energy density Dlog

= ln(E/E0). For the vBag model EoSs, the speed of sound
shows an increasing behavior and is higher than the confor-
mal limit even at low values of Dlog . v2

s,nonderiv increases

with increasing Dlog . The v2
s,deriv shows the opposite behav-

ior to v2
s,nonderiv . It continues to decrease up to a certain

value of Dlog and remains almost constant thereafter. For
CFL model EoSs, the speed of sound increases with the den-
sity but does not violate the conformal limit even at higher
densities.

Using the TOV equations, we observed that all four EoSs
satisfy the mass-radius constraints coming from the HESS
J1731-347 object, while at the same time, the vBag model
EoSs satisfy the mass and radius constraints from coming
from other observational data, such as GW170817, PSR
J0740+6620, and PSR J0030+0451. The CFL model pre-
dicts very stiff EoSs that satisfy the maximum mass of PSR
J0952-0607, M = 2.35+0.17

−0.17 M�, at Δ = 100 MeV and the
maximum mass of the secondary component GW190814, M
= 2.50–2.67 M�, at Δ = 150 MeV. The dimensionless tidal
deformability for all four EoSs lies well within the constraint
from GW170817,  = 190+390

−120.
We have also investigated several modes of radial oscilla-

tions of SSs with different EoSs at the mass corresponding
to the maximum mass of HESS J1731-347, M = 0.77 M�, to
obtain the frequencies that could be emitted by this CCO, pro-
vided that it is an SS. We have studied the 10 lowest eigenfre-

quencies and corresponding oscillation functions of the vBag
model and the CFL model EoSs, solving the Sturm–Liouville
boundary value problem and also verifying its validity.

The frequency difference between consecutive modes
exhibits a smooth trend without fluctuations. This is due to
the fact that we have not included the crust, and so we observe
no variations neither in the speed of sound nor in the rela-
tivistic adiabatic index. Moreover, in the case of the vBag
model, as it produces a softer EoS, the pulsating stars oscil-
late at higher frequencies compared to the objects modeled
by the CFL stiffer EoS.

Regarding vBag1 EoS, the amplitude of radial displace-
ment perturbation ξn(r) for each frequency mode νn is larger
near the center and small at the surface. The lower modes
show a smooth drop in their profiles, while the higher modes
depict small oscillations that would become large for higher
modes. For vBag2 EoS, the amplitude of ξ for n = 0 is higher
compared to vBag1 EoS. The nodes for higher p-modes shift
towards the center when we use vBag2 EoS meaning when
we decrease the coupling constant parameter Kv from 9 to 6
GeV−2. The system tends to oscillate consistently in a some-
what stable region close to the equilibrium point.

Regarding the CFL model, the amplitude of ξ(r) for the
n = 0 mode is lower compared to the EoS vBag model.
Other modes shift toward the center when we change the
superconducting gap parameter Δ from 150 to 100 MeV, but
the amplitude is higher than the EoSs of the vBag model.
As one moves towards the surface of the star, the amplitude
decreases and there is a rapid change of sign near the center
of the star. The amplitude of the radial pressure perturbation
ηn(r) is higher near the star’s center and on its surface. For the
n = 0 mode, the amplitude decreases for vBag2 and CFL2
EoS compared to vBag1 and CFL1 EoS. The other higher
modes for both models shift towards the center at the surface
but the amplitude of CFL EoSs is higher than vBag EoSs.

Contrary to the measurements such as GW170817,
NICER, and the heaviest compact stars that examine the char-
acteristics of strongly interacting matter at high densities, the
HESS J1731-347 offers crucial information in the density
range of 1–2 times the nuclear saturation density, and hence
will impose some strict constraints on strongly interacting
matter. By comparing the radial oscillations of the two mod-
els and determining the frequencies of the HESS J1731-347
at its maximum mass, the study goes beyond merely outlining
the properties of the CCO. This offers a means to investigate
their relationship to the observed mass-radius relationship of
the HESS J1731-347 compact object and offers insightful
information on the dynamical behavior of strange stars. This
highlights the fundamental characteristics of strange stars
and explains their significance in the context of the current
understanding of the HESS J1731-347 compact object by
delving into these intricate aspects.
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