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In a recent paper [Phys. Rev. D 98, 074023 (2018)], the most up-to-date experimental data for all
measured production and decay channels of the bottomoniumlike states Zbð10610Þ and Zbð10650Þ were
analyzed in a field-theoretical coupled-channel approach which respects analyticity and unitarity and
incorporates both the pion exchange and a short-ranged potential nonperturbatively. All parameters of the
interaction were fixed directly from data, and pole positions for both Zb states were determined. In this
work we employ the same approach to predict in a parameter-free way the pole positions and the line
shapes in the elastic and inelastic channels of the (still to be discovered) spin partners of the Zb states. They
are conventionally referred to as WbJ’s with the quantum numbers JPC ¼ Jþþ (J ¼ 0, 1, 2). It is
demonstrated that the results of our most advanced pionful fit, which gives the best χ2=d:o:f: for the data in
the Zb channels, are consistent with all WbJ states being above-threshold resonances which manifest
themselves as well-pronounced hump structures in the line shapes. On the contrary, in the pionless
approach, all WbJ’s are virtual states which can be seen as enhanced threshold cusps in the inelastic
line shapes. Since the two above scenarios provide different imprints on the observables, the role of
the one-pion exchange in the Bð�ÞB̄ð�Þ systems can be inferred from the once available experimental data
directly.
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I. INTRODUCTION

Heavy-quark spin symmetry (HQSS) is an approximate
symmetryofQCD. It states that in the limit of an infinitemass
of the heavy quark its spin is conserved by the strong
interactions. As one departs from this limit, corrections scale
asΛQCD=MQ, whereΛQCD ≃ 200 MeV denotes the intrinsic
mass scale of QCD andMQ is the mass of the heavy quark.
Stated differently, in the heavy-quark limit hadronic inter-
actions do not depend on the heavy-quark spin orientation,
and hadronic states can be classified by the quantumnumbers

of the light degrees of freedom (d.o.f.). This implies that an
experimentally observed state with a given heavy quark spin
should have spin partner states with different heavy quark
spins but the same light quark cloud. This pattern of spin
partners is well established amongst the states with the
assumed Q̄Q structure below the open-flavor threshold. For
example, in the b-sector, for each radial excitation number n,
one identifies ηbðnSÞ (with the heavy quark-antiquark spin
SQQ̄ ¼ 0) as a spin partner of the ΥðnSÞ (SQQ̄ ¼ 1), and
hbðnPÞ (SQQ̄ ¼ 0), as a spin partner of the χbJðnPÞ
(J ¼ 0; 1; 2) (SQQ̄ ¼ 1). Meanwhile, the present experimen-
tal situation does not allow one to reliably identify such spin
partners for the confirmed exotic states in the b-sector above
the open-flavor threshold, namely, for the Zbð10610Þ and
Zbð10650Þ states. However, the high luminosity and high
statisticsBelle-II experimentwhich has just started to operate
[1] should be able to provide us with new information on
these exciting states.
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This work contains a set of model-independent predic-
tions based on HQSS for both pole parameters and line
shapes of the charged JPC ¼ Jþþ (J ¼ 0, 1, 2) molecular
states in the spectrum of bottomonium. The parameters of
the formalism were fixed in an earlier analysis of the most
recent experimental information available for the 1þ−

bottomoniumlike states Z�
b ð10610Þ and Z�

b ð10650Þ (for
simplicity often referred to as Zb and Z0

b, respectively).
They were observed by the Belle Collaboration as peaks in
the invariant mass distributions of the ϒðnSÞπ� (n ¼ 1,
2, 3) and hbðmPÞπ� (m ¼ 1, 2) subsystems in the dipion
transitions from the vector bottomonium ϒð10860Þ [2] and
later confirmed in the elastic Bð�ÞB̄� channels [3–5]. Being
isovectors, the Z�

b ð10610Þ and Z�
b ð10650Þ cannot be

conventional b̄b mesons as their minimal possible quark
content is four-quark while their proximity to the BB̄�

and B�B̄� thresholds, respectively, provides a strong
support for their molecular interpretation—see, e.g., recent
review articles [6,7]. In particular, the interference pattern
in their inelastic decay channels ϒðnSÞπ and hbðmPÞπ
can be explained naturally in the framework of the
molecular picture [8]. For a competing tetraquark inter-
pretation claimed to be also compatible with the data see
Refs. [9–11].
Since the mass of the b quark is very large compared

with the typical QCD scale, Mb ≫ ΛQCD, the constraints
from the heavy-quark spin symmetry should be very
accurate for bottomoniumlike systems, including the
Z�
b ð10610Þ and Z�

b ð10650Þ. The wave functions of the
Zb states in the molecular picture can be written as [8]

jZbi ¼ −
1ffiffiffi
2

p ½ð1−
bb̄

⊗ 0−qq̄ÞS¼1 þ ð0−
bb̄

⊗ 1−qq̄ÞS¼1�; ð1Þ

jZ0
bi ¼

1ffiffiffi
2

p ½ð1−
bb̄

⊗ 0−qq̄ÞS¼1 − ð0−
bb̄

⊗ 1−qq̄ÞS¼1�; ð2Þ

where SPqq̄ denotes the wave function of the light qq̄ pair
with the total spin S and parity P, and SP

bb̄
means the same

for the bb̄ pair. Based on this structure four additional
isovector sibling states WbJ are predicted to exist [7,8,
12–14] with the quantum numbers JPC ¼ Jþþ (J ¼ 0, 1, 2)
and with the wave functions

jWb0i ¼
1

2
½

ffiffiffi
3

p
ð1bb̄ ⊗ 1qq̄ÞS¼0 − ð0bb̄ ⊗ 0qq̄ÞS¼0�; ð3Þ

jW0
b0i ¼

1

2
½ð1bb̄ ⊗ 1qq̄ÞS¼0 þ

ffiffiffi
3

p
ð0bb̄ ⊗ 0qq̄ÞS¼0�; ð4Þ

jWb1i ¼ ð1bb̄ ⊗ 1qq̄ÞS¼1; ð5Þ

jWb2i ¼ ð1bb̄ ⊗ 1qq̄ÞS¼2: ð6Þ

Thus, using that the low-energy interaction and the tran-
sition potentials between the elastic and inelastic channels
in the Zb’s fixed from the existing experimental data can be
uniquely translated into the WbJ sector using HQSS
constraints, the theoretical description of the spin partner
states WbJ appears to be rather straightforward.
In Ref. [15] an effective field theory (EFT) approach

to the Zbð10610Þ and Zbð10650Þ was developed and
employed in the analysis of the experimental data on the
line shapes of these states in the elastic and inelastic
channels. The approach is formulated based on an effective
Lagrangian consistent with both chiral and heavy-quark
spin symmetry of QCD. The key features of the approach
and the central findings of Ref. [15] can be summarized as
follows (see Ref. [16] for a review of a similar chiral EFT
approach in few-nucleon systems):

(i) The EFT is constructed employing the so-called
Weinberg counting [17,18], proposed originally to
treat few-nucleon systems. The potential is con-
structed to a given order in Q=Λh (here Q denotes
the soft scales of the given problem and Λh ≈ 1 GeV
represents the hard scale of the chiral EFT) and then
resummed nonperturbatively employing the Lipp-
mann-Schwinger equation. Accordingly, at leading
order (LO) the potential contains two momentum-
independent, OðQ0Þ, contact interactions and the
pion exchange.

(ii) Simultaneously with the chiral EFT expansion, the
potential is expanded around the spin symmetry
limit. At leading order in chiral EFT this calls for the
inclusion of the B�-B mass difference together with
all interaction vertices constructed in line with
HQSS. Since ΛQCD=Mb ≈ 0.04 ≪ 1, subleading
HQSS violating contributions, which would lead
to additional terms in the potential, are expected to
play a minor role. This expectation was confirmed in
Ref. [15], where it was shown that the data in the
1þ− channel were essentially consistent with HQSS
constraints imposed on the potential.

(iii) The binding momenta, the pion mass and the mo-
mentum scale generated by the splitting between the
BB̄� and B�B̄� thresholds [δ ¼ m� −m ≈ 45 MeV
with m (m�) denoting the B (B�) meson mass],

ptyp ¼
ffiffiffiffiffiffi
mδ

p
≃ 500 MeV; ð7Þ

are treated as soft scales of the system, generically
called Q above.

(iv) In order to remove the strong regulator dependence
caused by the high-momentum contributions from
the S-wave-to-D-wave Bð�ÞB̄ð�Þ → Bð�ÞB̄ð�Þ transi-
tions (in what follows, simply S-D transitions)
generated by the one-pion exchange (OPE) a pro-
motion of the OðQ2Þ S-wave-to-D-wave counter-
term to leading order is required. Then, the fit to the
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data enforces that a large portion of the S-D
contribution from the OPE gets balanced by the
S-D contact interaction. However, the residual effect
from the OPE on the line shapes is visible and results
in a quantitative improvement of the fits. To check
the convergence of the scheme the effect from the
other contact interactions at the order OðQ2Þ,
namely, from two S-wave-to-S-wave terms, was
also studied. However, their effect on the line shapes
was shown to be numerically small in line with the
assumed power counting.

(v) The effect of the inelastic channels ϒðnSÞπ (n ¼ 1,
2, 3) and hbðmPÞπ (m ¼ 1, 2) is included by
allowing them to couple to the S-wave Bð�Þ-meson
pairs. Following Refs. [19,20], transitions between
inelastic channels are omitted in the potential. As a
result, the effective elastic potentials acquire imagi-
nary parts driven by unitarity while the contributions
to the real parts of the elastic potentials can be
absorbed into the redefinition of the momentum-
independent OðQ0Þ contact interactions. The treat-
ment of the inelastic channels used in this work is
analogous to the construction of the annihilation
potential in nucleon-antinucleon scattering—see,
e.g., Ref. [21].

(vi) Extension of the approach to the SU(3) sector
requires that all the other members of the lightest
pseudoscalar Goldstone-boson octet be treated also
as explicit d.o.f. already at leading order. That is why
the one-η exchange (OEE) is also included as a part
of the Bð�ÞB̄ð�Þ → Bð�ÞB̄ð�Þ effective potential. In the
SU(2) sector, however, the effect from the explicit
treatment of the η-meson appears to be negligible.

(vii) All low-energy constants (the two elastic couplings,
the effective couplings to the inelastic channels, as
well as the S-S and S-D contact interactions) are
fixed from a combined fit to the experimental line
shapes in the decays ϒð10860Þ → BB̄�π, B�B̄�π,
hbð1PÞππ, and hbð2PÞππ which proceed via the
excitation of the Zbð10610Þ and Zbð10650Þ exotic
states as well as from the total rates for the
decays ϒð10860Þ→ϒðnSÞππðn¼1;2;3Þ. The line
shapes in the ϒð10860Þ → ϒðnSÞππ channels could
not be included in the analysis so far since they
require a proper treatment of the two-pion final-state
interaction.

It is instructive to comment on the difference between
the EFT used in this work and the heavy-quark effective
theory (HQET) (see, e.g., the textbook [22]). In the HQET
framework, single heavy-quark (heavy-light) systems are
considered and the d.o.f. related to the heavy quark can be
integrated out explicitly which makes the velocity power
counting of operators manifest. Meanwhile, the power
counting in the systems containing two heavy hadrons,
like in the Bð�ÞB̄ð�Þ systems considered in this work, is

quite nontrivial and substantially different from that in the
processes involving a single heavy particle. The reason for
that is the presence of pinch singularities which show up
in loop contributions containing a Bð�ÞB̄ð�Þ cut, as soon as
the heavy particles are treated as static sources [23]. The
problem of the pinch singularity is identical to the one
discussed extensively in the context of chiral EFTs for the
two-nucleon system [18]. To cure this problem, the term
∇2=ð2MÞ has to be included in leading-order calculations
of the observables (together with ∂0), as shown by
Weinberg in Ref. [18]. A consequence of this different
behavior of heavy-heavy molecular systems is that one
cannot relate different heavy-quark sectors within the
same (heavy-flavor) EFT [24]. As a result, the findings
reported in this work for the spin partners in the b-quark
sector cannot be translated to the c-quark sector in a
controllable way.
It is also important to emphasize that, in our EFT

framework aiming at a model-independent understanding
of the near-threshold states in a limited energy domain (of
the order of δ around the BB̄� threshold), we cannot probe
the details of various short-range interactions. Therefore,
we do not include compact quark components of the wave
functions explicitly but take them into account (as well as
other possible short-range contributions) effectively via a
series of contact interactions with different numbers of
derivatives. Thus, in the EFT approach, a bare pole
∝ 1=ðE − E0Þ is represented by a series in powers of
ðE=E0Þn ðn ¼ 0; 1;…Þ, which is then absorbed by the
tower of contact interactions. Therefore, if a bare pole were
necessary within the regime of applicability of the EFT, the
effective potential would strongly depend on the energy,
which would imply that the EFT and in particular the
derivative expansion for the contact terms would not
converge. However, this is not the case for the bottomo-
niumlike states Zbð10610Þ and Zbð10650Þ. Indeed, it
follows from the data analysis performed in Ref. [15]
(and from the discussion below) that the existing exper-
imental data are well described without the necessity of
including compact quark components explicitly. This could
be anticipated since the inclusion of the S-wave-to-S-wave
contact terms with two-derivatives (which enter our EFT at
next-to-leading (NLO) order) indeed results in a perturba-
tive effect, in line with our power counting, and, therefore,
indicates convergence of the EFT series.
In this work, we provide parameter-free predictions

for the HQSS partner states of the Zb and Z0
b molecules

using the framework summarized above. In particular, we
exploit the fact that all the parameters of the elastic and
inelastic potentials extracted from the experimental line
shapes in the JPC ¼ 1þ− channel are the same in the partner
channels up to spin symmetry violating corrections in the
contact interactions that are expected to be small. Thus we
are able to predict, for the first time, the line shapes and to
extract the pole positions for the spin partner states WbJ
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with the quantum numbers Jþþ (J ¼ 0, 1, 2). In particular,
we discuss the impact of the one-pion exchange on the
observables.
It needs to be mentioned that the same formalism for the

spin partner states of the Zð0Þ
b ’s was employed in Ref. [14].

However, compared with that paper, this work marks
progress in four important aspects:

(i) All parameters of the interaction are now fixed
directly from a fit to the measured line shapes
contrary to the earlier study where the masses of
the Zb states obtained in different analyses were
used as input.

(ii) Relevant inelastic channels are included which
makes it possible to predict the line shapes in the
inelastic channels, in addition to the elastic ones.

(iii) We investigate how the renormalization program
works in the coupled-channel case. In particular, we
are now in a position to study the effect of the S-D
counterterm on the line shapes and the pole locations
of the spin partner states. The need for this counter-
term is one of the conclusions of Ref. [15].

(iv) The uncertainty of the EFT predictions for the pole
positions, which comes from various sources, is
estimated and discussed.

The paper is organized as follows. Section I contains a
brief introduction to the formalism employed. In Sec. II, the
effective potentials in the Zb’s and WbJ’s channels are
discussed in detail. In Sec. III, the coupled-channel
equations are provided and the expressions for the differ-
ential production rates in all elastic and inelastic channels
are constructed. The resulting formulas are then employed
in Sec. IV to analyze the existing experimental data in the
Zb’s channel (in line with the results of Ref. [15]) and to
predict the line shapes in the WbJ’s channels with the
quantum numbers Jþþ (J ¼ 0, 1, 2). In addition, in Sec. V,
the pole parameters (locations and residues) for the WbJ

states are provided and an analysis of uncertainties is
presented. We summarize in Sec. VI. Appendix A contains
the details of the NLO Lagrangian OðQ2Þ used to build the
suitable EFT, while Appendix B provides the details of the
partial wave projection operators applied to the effective
potential.

II. EFFECTIVE POTENTIALS

A. Some generalities and definitions

The partial-wave-projected effective potential in the
elastic channels derived in the EFT framework and used
in our calculations reads

ðVeffÞαβ ¼ ðVCT
eff Þαβ þ ðVπÞαβ þ ðVηÞαβ; ð8Þ

where VCT
eff , Vπ and Vη stand for the effective contact

interaction potential (composed of the elastic, VCT
NLO, and

inelastic, δV, contributions, as discussed below), OPE, and
OEE, respectively, and the indices α and β, which depend
on the particle channel and quantum numbers (JPC), are
defined as

1þ−∶ α; β ¼ fBB̄�ð3S1;−Þ; BB̄�ð3D1;−Þ;
B�B̄�ð3S1Þ; B�B̄�ð3D1Þg

0þþ∶ α; β ¼ fBB̄ð1S0Þ; B�B̄�ð1S0Þ; B�B̄�ð5D0Þg
1þþ∶ α; β ¼ fBB̄�ð3S1;þÞ; BB̄�ð3D1;þÞ; B�B̄�ð5D1Þg
2þþ∶ α; β ¼ fBB̄ð1D2Þ; BB̄�ð3D2Þ; B�B̄�ð5S2Þ;

B�B̄�ð1D2Þ; B�B̄�ð5D2Þ; B�B̄�ð5G2Þg: ð9Þ

Here the individual partial waves are labeled as 2Sþ1LJ with
S, L, and J denoting the total spin, the angular momentum,
and the total momentum of the two-meson system, respec-
tively. Finally, the sign in the parentheses corresponds to
the BB̄� states with a given C-parity

jBB̄�;�i ¼ 1ffiffiffi
2

p ðjBB̄�i � jB̄B�iÞ; ð10Þ

with a universal definition of the C-parity transformation
employed,

ĈM ¼ M̄; ð11Þ

for any meson M.

B. Contact interactions

The OðQ0Þ short-ranged elastic (open-bottom) interac-
tion between the states with given quantum numbers
composed of the Bð�ÞB̄ð�Þ pairs is parametrized in terms
of two contact terms C10 and C11; see Refs. [25,26] and
Lagrangian (A1) quoted in Appendix A. This appendix also
contains the momentum-dependent order OðQ2Þ contact
interactions shown by Eq. (A2) and originally derived in
Ref. [15]. Formally, the order OðQ2Þ chiral Lagrangian
contains also the contact terms which scale with the pion
mass squared (m2

π). However, as long as we work at a fixed
light-quark mass those can be absorbed into the leading-
order counterterms. Thus, to order OðQ2Þ the contact
potentials in the elastic channels for various quantum
numbers relevant for this study read
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VCT
NLO½1þ−�ðp; p0Þ ¼

0
BBBBB@

Cd þDdðp2 þ p02Þ DSDp02 Cf þDfðp2 þ p02Þ DSDp02

DSDp2 0 DSDp2 0

Cf þDfðp2 þ p02Þ DSDp02 Cd þDdðp2 þ p02Þ DSDp02

DSDp2 0 DSDp2 0

1
CCCCCA
; ð12Þ

VCT
NLO½0þþ�ðp;p0Þ ¼

0
BB@

Cd þ 1
2
Cf þ ðDd þ 1

2
DfÞðp2 þp02Þ 1

2

ffiffiffi
3

p ðCf þDfðp2 þp02ÞÞ −
ffiffiffi
3

p
DSDp02

1
2

ffiffiffi
3

p ðCf þDfðp2 þp02ÞÞ Cd þ ððDd − 1
2
DfÞðp2 þp02Þ− 1

2
CfÞ −DSDp02

−
ffiffiffi
3

p
DSDp2 −DSDp2 0

1
CCA; ð13Þ

VCT
NLO½1þþ�ðp; p0Þ ¼

0
B@

Cd þ Cf þ ðDd þDfÞðp2 þ p02Þ −DSDp02 −
ffiffiffi
3

p
DSDp02

−DSDp2 0 0

−
ffiffiffi
3

p
DSDp2 0 0

1
CA; ð14Þ

VCT
NLO½2þþ�ðp; p0Þ ¼

0
BBBBBBBBBBBBB@

0 0 −
ffiffi
3
5

q
DSDp2 0 0 0

0 0 − 3ffiffi
5

p DSDp2 0 0 0

−
ffiffi
3
5

q
DSDp02 − 3ffiffi

5
p DSDp02 Cd þ Cf þ ðDd þDfÞðp2 þ p02Þ − 1ffiffi

5
p DSDp02

ffiffi
7
5

q
DSDp02 0

0 0 − 1ffiffi
5

p DSDp2 0 0 0

0 0
ffiffi
7
5

q
DSDp2 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCCCA

;

ð15Þ

where each potential is given for the basis states defined by
Eq. (9) and p (p0) stands for the relative momentum of the
initial (final) heavy-meson pair. The potential given in
Eq. (12) was derived and used already in Ref. [15].

C. Inelastic channels

Since the interactionbetween thepionandheavyquarkonia
is suppressed (see the discussion in Refs. [19,20]), the direct
transitions between the inelastic (hidden-bottom) channels
can be safely neglected in the potential. Based on this
assumption, in the approach employed in Refs. [15,19,20],
the effect of the inelastic channels on observables is included
through the transitions between the inelastic and elastic
potentials only, while unitarity is preserved. Furthermore, it
is argued in Ref. [15] that all inelastic channels only couple to
the S-wave elastic ones as their couplings to the D-wave
elastic channels are suppressed by the factor p2

typ=m2 ≪ 1.
Transitions between the S-wave elastic and inelastic channels
are described by the Lagrangian [13]

Linel
HH ¼

X
n¼1;2;3

1

4
gϒðnSÞTr½ϒ†

nHaH̄b�u0ab

þ
X
m¼1;2

1

4
gχbðmPÞTr½χim†Haσ

jH̄b�ϵijkukab: ð16Þ

Here the spin multiplets of the heavy-light mesons read

Ha ¼ Pa þ Vi
aσ

i; H̄a ¼ P̄a − V̄i
aσ

i; ð17Þ

where σi are the Pauli matrices, PaðP̄aÞ and Vi
aðV̄i

aÞ are the
pseudoscalar B (B̄) and vector B� (B̄�) mesons, respectively,
with a and b for the isospin indices. The multiplets of the
heavy ðb̄bÞ mesons are built as

ϒn ¼ σiϒiðnSÞ þ ηbðnSÞ; ð18Þ

χim ¼ σl

�
χilb2ðmPÞ þ 1ffiffiffi

2
p ϵilnχnb1ðmPÞ

þ 1ffiffiffi
3

p δilχb0ðmPÞ
�
þ hibðmPÞ; ð19Þ

and

uμ ¼ −
1

fπ
∂μΦþOðΦ3Þ; ð20Þ

Φ ¼

0
B@ π0 þ

ffiffi
1
3

q
η

ffiffiffi
2

p
πþ

ffiffiffi
2

p
π− −π0 þ

ffiffi
1
3

q
η

1
CA; ð21Þ
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with fπ ¼ 92.4 MeV being the pion decay constant [27].
Since the quarkonium states (ϒ,ηb) and (hb, χb) form spin
multiplets [see Eqs. (18) and (19)], the coupling constants
fixed in the analysis of the line shapes in the1þ− channels [15]
can be used to account for the inelastic transitions in the spin
partner channels. As long as the direct inelastic transitions are
neglected, the effect of the inelastic channels on the elastic
ones can be included via an additional contribution, δV, to the
effective contact elastic-to-elastic transition potential [19],

VCT
eff ¼ VCT

NLO þ δV; ð22Þ

where

δVαβ ¼ Pαβ −
i

8πM

X
i

2mhiviαviβpi: ð23Þ

HerePαβ stands for the real part ofδVαβ,mhi denotes themass
of the heavy b̄bmeson in the ith inelastic channel andM is the
total energy of the system. Further, viαðpi; pÞ is the vertex
function for the transitions between various heavy-meson
states (9) (labeled by greek lettersα, β and so on) and inelastic
channels (labeled by latin letters i, j and so on). The
arguments pi and p denote the on-shell momenta of the
inelastic and elastic channels involved, respectively, mea-
sured in the rest frameof the system.One finds for i ¼ ϒðnSÞ,
ηbðnSÞ, with n ¼ 1, 2, 3, that

vϒiα ¼ ξϒiα
gϒðnSÞ
2

ffiffiffi
2

p
fπ

EπðpiÞ; ð24Þ

where EπðpiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2
i

p
denotes the pion energy for a

given inelastic momentum,

pi ¼
1

2M
λ1=2ðM2; m2

hi
; m2

πÞ; ð25Þ

with λðx; y; zÞ being the standard triangle function.
In contrast to Ref. [15], we now keep the energy

dependence in the vertices vϒiα explicitly, as it comes out
from the Lagrangian (16). However, since the variation of

the inelastic momenta with the energy is very minor near
the elastic thresholds, this correction does not affect the
quality of the fits and merely results in rescaling of the
inelastic coupling constants compared with those used in
Ref. [15]. For i ¼ hbðmPÞ, χbJðmPÞ, with m ¼ 1, 2 and
J ¼ 0, 1, 2, the expression for the vertex reads

vχiα ¼ ξχiα
gχbðmPÞ
2

ffiffiffi
3

p
fπ

pi: ð26Þ

The coefficients ξϒiα and ξχiα, provided explicitly in Table I,
are fixed by the HQSS and are straightforwardly calculated
from the traces appearing in Eq. (16). They do not depend
on n and m although the individual coupling constants,
in principle, do. We also note that the relative signs
between various couplings are only relevant in the particle
coupled channels (the channels with JPC ¼ 1þ− and 0þþ in
Table I while for the channels JPC ¼ 1þþ and 2þþ only the
absolute values of ξ’s enter).
The real parts induced by the inelastic channels, Pαβ, are

divergent and need to be regularized. The scheme
employed in Ref. [15] assumes that the whole real part
of the inelastic contribution in the JPC ¼ 1þ− channel is
absorbed into a redefinition of the low-energy constants
(LECs) Cd and Cf; see Eq. (12). This is justified as the
momentum dependence of Pαβ coming from remote
inelastic channels is very weak and, therefore, can be
neglected. To proceed we need to ensure that, in the heavy-
quark limit, the same approach works for the complete spin
multiplet. Then we have

Pαβ ¼
X
n

Pαβ½ϒn� þ
X
m

Pαβ½χm�; ð27Þ

with

Pαβ½ϒn� ¼
g2ϒðnSÞ
16f2π

IϒðnSÞ

�X
i

ξϒ�
αi ξ

ϒ
iβ

�
;

Pαβ½χm� ¼
g2χbðmPÞ
24f2π

IχbðmPÞ

�X
i

ξχ�αi ξ
χ
iβ

�
; ð28Þ

TABLE I. HQSS-constrained coefficients ξϒiα and ξχiα in front of the coupling constants in the multiplets ϒ and χ
calculated explicitly from the traces in Eq. (16)—see the vertices given in Eqs. (24) and (26). The symbol � � �
indicates that the corresponding channels do not couple with each other.

Multiplet Channel BB̄�ð3S1;−Þ B�B̄�ð3S1;−Þ BB̄ð1S0Þ B�B̄�ð1S0Þ BB̄�ð3S1;þÞ B�B̄�ð5S2Þ
ϒ πϒb 1 −1 � � � � � � � � � � � �
ϒ πηb0 � � � � � � −1=

ffiffiffi
2

p ffiffiffiffiffiffiffiffi
3=2

p � � � � � �
χ πhb 1 1 � � � � � � � � � � � �
χ πχb0 � � � � � � � � � � � � ffiffiffiffiffiffiffiffi

2=3
p � � �

χ πχb1 � � � � � � ffiffiffiffiffiffiffiffi
3=2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
χ πχb2 � � � � � � � � � � � � ffiffiffiffiffiffiffiffi

5=6
p ffiffiffiffiffiffiffiffi

3=2
p
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where

IϒðnSÞ ¼ �
Z

d3q
ð2πÞ3

E2
πðqÞ

EπðqÞðM − EπðqÞ − Eϒn
Þ ;

IχbðmPÞ ¼ �
Z

d3q
ð2πÞ3

q2

EπðqÞðM − EπðqÞ − EχmÞ
: ð29Þ

These principal value integrals are factored out of the
brackets in Eq. (28) since the masses of the members of the
spin multiplets coincide in the heavy-quark limit. One finds
by a direct evaluation using the coefficients from Table I
(no summation in α or β is implied here)

�X
i

ξϒiαξ
ϒ�
iα

�
1þ−

¼
�X

i

ξϒiβξ
ϒ�
iβ

�
1þ−

¼ 1;

�X
i

ξϒiαξ
ϒ�
iβ

�
1þ−

¼ −
�X

i

ξχiβξ
χ�
iα

�
1þ−

¼ −1;

�X
i

ξχiαξ
χ�
iα

�
1þ−

¼
�X

i

ξχiβξ
χ�
iβ

�
1þ−

¼ 1; ð30Þ

for α ¼ BB̄�ð3S1;−Þ and β ¼ B�B̄�ð3S1;−Þ; then
�X

i

ξϒiαξ
ϒ�
iα

�
0þþ

¼
�X

i

ξχiβξ
χ�
iβ

�
0þþ

¼ 1

2
;

�X
i

ξϒiαξ
ϒ�
iβ

�
0þþ

¼ −
�X

i

ξχiβξ
χ�
iα

�
0þþ

¼ −
ffiffiffi
3

p

2
;

�X
i

ξϒiβξ
ϒ�
iβ

�
0þþ

¼
�X

i

ξχiαξ
χ�
iα

�
0þþ

¼ 3

2
; ð31Þ

for α ¼ BB̄ð1S0Þ and β ¼ B�B̄�ð1S0Þ; and finally

�X
i

ξχiαξ
χ�
iα

�
1þþ

¼ 2

3
þ 1

2
þ 5

6
¼ 2; ð32Þ

where α ¼ BB̄�ð3S1;þÞ and
�X

i

ξχiαξ
χ�
iα

�
2þþ

¼ 0þ 1

2
þ 3

2
¼ 2; ð33Þ

where α ¼ B�B̄�ð5S2Þ. For the 1þþ and 2þþ channels, the
individual contributions from the intermediate states πχbJ
with J ¼ 0, 1, 2, in order, are quoted explicitly on the right-
hand side (rhs) of Eqs. (32) and (33). According to
Eqs. (22), (23), (28) and (30) the real parts of the loops
in the 1þ− channel can be absorbed into the bare LECs Cd
and Cf entering the short-range interaction for the Zb’s [see
Eq. (12)] via

Cd → Cd þ
1

16f2π

�
2

3

X
m

g2χbðmPÞIχbðmPÞ þ
X
n

g2ϒðnSÞIϒðnSÞ

�
;

Cf → Cf þ
1

16f2π

�
2

3

X
m

g2χbðmPÞIχbðmPÞ −
X
n

g2ϒðnSÞIϒðnSÞ

�
:

It is also straightforward to see using Eqs. (28) and (31)–
(33) that these redefinitions also hold for the interactions in
the spin partner channels Jþþ (J ¼ 0, 1, 2). This procedure
is correct up to the neglected terms that violate spin
symmetry and contain the energy dependence of the
integrals in Eq. (29). Thus, in line with Ref. [15], in what
follows only the imaginary parts of the inelastic loops are
retained in the effective contact interaction potential (22)
for all spin partner states.

D. Pion exchange

The pion exchange in the Bð�ÞB� system is described by
the Lagrangian [28,29]

LΦ ¼ −
gQ
2
Trðσ · uabH

†
aHbÞ þ h:c:; ð34Þ

where uμab is defined in Eq. (20) above. The Bð�ÞB�π
vertices extracted from the Lagrangian (34) take the form

vaðB� → BπÞ ¼ gb
2fπ

τaðϵ · qÞ; ð35Þ

vaðB� → B�πÞ ¼ −
gbffiffiffi
2

p
fπ

τaðA · qÞ; ð36Þ

where A ¼ iffiffi
2

p ðϵ × ϵ0�Þ, with ϵ and ϵ0� the polarization

vectors of the initial and final B� mesons, and q is the pion
momentum. These vertices agree with those used in
Ref. [30].
In order to determine the dimensionless coupling con-

stant gb we rely on the heavy-quark flavor symmetry and
set

gb ¼ gc ≈ 0.57; ð37Þ

where the numerical value of the gc is extracted from the
most recent measurement of theD�þ → D0πþ decay width,

ΓðD�þ → D0πþÞ ¼ g2cmD0q3

12πf2πmD�c
: ð38Þ

Here mD�c and mD0 denote the masses of the D�þ and D0

mesons, respectively, and the final-state momentum q ¼
39 MeV [27]. The value of gb quoted in Eq. (37) agrees
within 10% with the result of a recent lattice QCD
determination of the B�Bπ coupling constant [31].
The isospin factor for the OPE potential is τ1 · τc2 ¼

−τ1 · τ2 ¼ 3 − 2IðI þ 1Þ that gives (−1) for the isotriplet
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states considered in this work. Here τc ¼ τ2τTτ2 ¼ −τ is
the charge-conjugated Pauli matrix used for the antifunda-
mental representation of the isospin group. Finally, the
overall sign of the OPE potential depends on theC-parity of
the channel—see, e.g., Ref. [32] for a detailed discussion.
Using the definition of the C-parity given in Eq. (10) one
finds

Vπ
� ¼ hBB̄�;�jV̂πjBB̄�;�i ¼ �Vπ; ð39Þ

where

Vπ ≡ hBB̄�jVπjB̄B�i ¼ hB̄B�jVπjBB̄�i: ð40Þ

We consider a coupled-channel system for the BB̄,
BB̄�=B̄B� and B�B̄� channels. Using the labels

1≡ BB̄; 2≡ BB̄�=B̄B�; 3≡ B�B̄�; ð41Þ

one can write for the OPE potentials

Vπ
11ðp; p0Þ ¼ Vπ

12ðp; p0Þ ¼ Vπ
21ðp; p0Þ ¼ 0; ð42Þ

Vπ
13ðp; p0Þ ¼

2g2b
ð4πfπÞ2

ðϵ01� · qÞðϵ02� · qÞ
2

DBB�πðp; p0Þ
; ð43Þ

Vπ
22ðp; p0Þ ¼

2g2b
ð4πfπÞ2

ðϵ1 · qÞðϵ02� · qÞ

×

�
1

DBBπðp; p0Þ
þ 1

DB�B�πðp; p0Þ
�
; ð44Þ

Vπ
23ðp; p0Þ ¼ −

ffiffiffi
2

p 2g2b
ð4πfπÞ2

ðA1 · qÞðϵ02� · qÞ

×

�
1

DBB�πðp; p0Þ
þ 1

DB�B�πðp; p0Þ
�
; ð45Þ

Vπ
33ðp; p0Þ ¼

4g2b
ð4πfπÞ2

ðA1 · qÞðA2 · qÞ
2

DB�B�πðp; p0Þ
; ð46Þ

where the contributions from both time orderings as
obtained in time-ordered perturbation theory (TOPT)
are taken into account (see Figs. 1 and 2). Further,
q ¼ p − p0, ϵ1 and ϵ2 (ϵ01� and ϵ02�) stand for the polarization
vectors of the initial (final) B� mesons, A1 ¼ iffiffi

2
p ½ϵ1 × ϵ01��,

A2 ¼ iffiffi
2

p ½ϵ2 × ϵ02��. The denominators DBð�ÞBð�Þπðp; p0Þ cor-

respond to the Bð�ÞBð�Þπ propagators written in TOPT for
the nonrelativistic B and B� mesons,

DBB�πðp; p0Þ ¼ DB�Bπðp0; pÞ

¼ 2EπðqÞ
�
mþm� þ

p2

2m
þ p02

2m�

þ EπðqÞ −M − i0

�
; ð47Þ

DBBπðp; p0Þ ¼ 2EπðqÞ
�
mþmþ p2

2m
þ p02

2m

þ EπðqÞ −M − i0

�
; ð48Þ

DB�B�πðp; p0Þ ¼ 2EπðqÞ
�
m� þm� þ

p2

2m�

þ p02

2m�
þ EπðqÞ −M − i0

�
: ð49Þ

The time-reversed transition potentials Vπ
31ðp; p0Þ and

Vπ
32ðp; p0Þ are trivially obtained from Eqs. (43) and (45) by

interchanging the particle labels as 1 ↔ 10, 2 ↔ 20 (see
also Fig. 2).
Since our analysis covers the energy region between

the BB̄ and B�B̄� thresholds split by approximately
2δ ≈ 90 MeV, which numerically appears to be of the
order of the pion mass, a relativistic expression for the pion
energy is used. It should be noted that, in the region of
interest around the Bð�ÞB̄ð�Þ thresholds, M < 2mþmπ , so

(a) (b)

FIG. 1. Diagrams in the time-ordered perturbation theory
responsible for the two contributions to the OPE potential.
The solid line is for the Bð�Þ meson and the dashed line is for
the pion.

FIG. 2. Kinematics of the scattering due to the OPE as given by
the first diagram in Fig. 1.
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that, unlike charmonium systems, one never hits the three-
body cut in the OPE potentials defined above.
Since the pion is emitted by Bð�Þ mesons in theP-wave—

see the Lagrangian (34) and the vertices (35) and (36)—the
OPE potential mixes S and D waves. The partial wave
projection of theOPEpotentials (43)–(46) can be done using
the formalism of Refs. [14,33,34] that gives

Vπ
LL0 ðp; p0Þ ¼ 1

2J þ 1

Z
dΩp

4π

dΩp0

4π
Tr½P†ðJLS; nÞ

× Vπðp; p0ÞPðJL0S0; n0Þ�; ð50Þ

where L ¼ S, D and G, n ¼ p=p (n0 ¼ p0=p0), and a
complete set of relevant properly normalized projection
operators PðJLS; nÞ is given in Appendix B.
Note also that, as was stressed in Ref. [35], the OPE (as

well as OEE) potential in the system of two heavy-light
pseudoscalar and vector mesons is well defined in the sense
of an effective field theory only in connection with the
contact operator provided by the short-range potential VCT

eff
[Eqs. (12)–(15)].

III. PRODUCTION RATES OF THE Zb’S AND
THEIR SPIN PARTNERS WbJ’S

A. Production vertex

The twin states Zbð10610Þ and Zbð10650Þ are produced
in the one-pion decays of the ϒð10860Þ resonance,

ϒð10860Þ → πZð0Þ
b → final state:

Because of a different C-parity, the spin partner states WbJ
should be produced in radiative decays of the ϒð10860Þ,

ϒð10860Þ → γWbJ → final state:

Production and decay channels for the Zb’s and WbJ’s
taken into account in our approach are summarized in
Fig. 3. In line with the discussion in Sec. II C, since the
couplings of the ϒð10860Þγ source term with the D-wave
elastic channels are suppressed, we retain only the cou-
plings of the ϒð10860Þγ source term with the elastic
channels in the S wave.
A set of diagrams which contribute to the process

ϒð10860Þ → γBð�ÞBð�Þ and provide a gauge invariant
amplitude is shown in Fig. 4, where diagrams (a), (b1)
and (b2) contribute to the production operators at tree level
while diagrams (c)–(e) represent contributions from the
loops assuming that the intermediate particles are B and
B� mesons only. In this work, we do not aim at predi-
cting the absolute rate of the decays ϒð10860Þ → γWbJ,
which might involve some more sophisticated mechanisms
(e.g., as advocated in Ref. [36]), but rather focus on the
energy dependence of the line shapes with an arbi-
trary overall normalization. To this end, we assume that
for this process (similarly to the Zb’s production) the
energy dependence from the production operator is rather
smooth in the vicinity of thresholds and can be merely
neglected as compared to rapidly varying B-meson ampli-
tudes in the final state. To advocate this approximation,
below we discuss the diagrams shown in Fig. 4 in more
detail.
To estimate the strength and the structure of the source

term we start from the effective Lagrangian connecting the
ϒð10860Þ bottomonium with the heavy-meson fields at
leading order in the HQSS expansion [13],

FIG. 3. Summary of the production and decay channels for the Zb’s and their spin partners WbJ’s considered in this work. The states
and thresholds are arranged from bottom to top in accordance with the increasing energy.
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LϒHH ¼ 1

2
gϒ;5Tr½ϒ†

nHaσ
ji∂j

↔
H̄a� þ h:c: ð51Þ

Gauging this Lagrangian leads to a set of contact
ϒð10860Þ → γBð�ÞB̄ð�Þ vertices which contribute to dia-
grams (a) and (d),

v½ϒð10860Þ → γðBð�ÞB̄ð�ÞÞðJþþÞ� ¼
X
α

vðJ
þþÞ

α ŜðJ
þþÞ

α ; ð52Þ

where, for a given J, index α runs over the relevant S-wave
states, that is, BB̄ð1S0Þ, B�B̄�ð1S0Þ, BB̄�ð3S1Þ, B�B̄�ð5S2Þ.
The spin operators, normalized according to

P
λ jŜðJ

þþÞ
α j2 ¼

2Jϒ þ 1 ¼ 3 with λ running over the polarizations of the
spin-1 particles (γ, ϒ and B�), read

Ŝð0
þþÞ

BB̄ð1S0Þ ¼
ffiffiffi
3

2

r
ðϵγ� · ϵϒÞP†ðBB̄ð1S0ÞÞ; ð53Þ

Ŝð0
þþÞ

B�B̄�ð1S0Þ ¼
ffiffiffi
3

2

r
ðϵγ� · ϵϒÞP†ðB�B̄�ð1S0ÞÞ; ð54Þ

Ŝð1
þþÞ

BB̄�ð3S1Þ ¼ −i
ffiffiffi
3

p

2
ϵijkϵ

ϒ
i ϵ

γ�
j P

†ðBB̄�ð3S1ÞÞk; ð55Þ

Ŝð2
þþÞ

B�B̄�ð5S2Þ ¼ −
3ffiffiffiffiffi
10

p ϵϒi ϵ
γ�
j P

†ðB�B̄�ð5S2ÞÞij: ð56Þ

Here ϵγ�, ϵϒ and ϵ1ð2Þ denote the polarization vectors of the
photon, ϒ and B� mesons, respectively, and the explicit
forms of the projectors P on relevant heavy-meson states
are given in Appendix B. Further, the partial-wave-pro-

jected vertices vðJ
þþÞ

α are defined as

vðJ
þþÞ

α ¼ −
ffiffiffi
2

3

r
egϒ;5λ

ðJþþÞ
α ; ð57Þ

where e is the magnitude of the electron charge and the

ratios of the coupling constants, λðJ
þþÞ

α , related by HQSS are
quoted in Table II. It is shown in Ref. [37] that experimental
data might call for a significant amount of spin symmetry
violation in the transition ϒð10860Þ → Bð�ÞB̄ð�Þ (there is a
tension of 2σ between the spin symmetric ratio of decay
widths and the experimental data). Since the same cou-
plings also contribute to the transitions ϒð10860Þ →
γBð�ÞB̄ð�Þ, HQSS violation is a potential additional source
of uncertainty for our results—we come back to this issue
in the discussion below.
In addition to the contact diagram with the photon

emission from the ϒð10860Þ → γBð�ÞB̄ð�Þ vertex, diagrams
with the photon emission from the Bð�Þ-meson lines should
be considered with the Bð�Þ → Bð�Þγ vertices being of an
electric or magnetic type. While the amplitudes with the
magnetic photon emission vertices are gauge invariant by
themselves, the additional amplitudes with the electric
photon emission vertices are important to compensate for
the gauge dependence of the contact WbJ → γBð�ÞB̄ð�Þ
diagram and thus to provide an overall gauge invariance
of the full amplitude. To estimate the electric contributions,
we notice that in the nonrelativistic heavy-meson formalism
used here all momenta involved are 3-momenta and the
photon momentum k fulfills the relation ϵγ · k ¼ 0. Then,
one readily arrives at the following estimates for the tree-
level diagrams (b1) and (b2) with the electric (thence
superscript e) photon emission from the externalBð�Þ-meson
lines relative to the contact WbJ → γBð�ÞB̄ð�Þ diagram,

Me

Mcont
≃ pα ·

1

mω
· pα ≃

Eα

ω
≪ 1; ð58Þ

where one power of the relative Bð�Þ-meson momentum pα

comes from theϒð10860Þ → Bð�ÞB̄ð�Þ vertex extracted from
Eq. (51); the term 1=ðmωÞ is theBð�Þ-meson propagatorwith
ω for the photon energy (herewe do not distinguish between
theB andB� mass); and the second factorpα comes from the

FIG. 4. Diagrams contributing to the ϒð10860Þ → γBð�ÞB̄ð�Þ
decay amplitude: diagrams (a), (b1) and (b2) (in the first line) form
a gauge invariant subset of tree level contributions, while diagrams
(c1), (c2), (d) and (e) correspond to a gauge invariant subset of
contributions at the one-loop level. The vertex in diagrams (a) and
(d) comes from gauging the ϒð10860Þ → Bð�ÞB̄ð�Þ vertex; the
photon vertices in (b1), (b2), (c1) and (c2) are from gauging the
kinetic terms of the heavy mesons. The diagram (d) is needed to
account for gauging the regulator used in the loops and for a
nonpointlike character of the amplitude in the final state.

TABLE II. Ratios of the coupling constants, λðJ
þþÞ

α , responsible
for the production of the WbJ states in the radiative decays
ϒð10860Þ → γWbJ .

BB̄ð1S0Þ B�B̄�ð1S0Þ BB̄�ð3S1;þÞ B�B̄�ð5S2Þ
1 1=

ffiffiffi
3

p
2

ffiffiffiffiffiffiffiffiffiffi
20=3

p
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electric photon emission vertex from the Bð�Þ meson, which
is derived by gauging the kinetic term in the Lagrangian
(A1). Further, to arrive at the very last relation in Eq. (58) we
used that the energy of the B-meson pair relative to the
threshold in the channel α, Eα ≈ p2

α=m, does not exceed
several dozenMeVwhile the photon energyω is an order of
magnitude larger, ω ≈Mϒð10860Þ − 2m ≈ 200–300 MeV.
One is, therefore, led to conclude that the diagrams (b1)

and (b2) (with the electric photon emission from the Bð�Þ-
meson lines) while being important to guarantee gauge
invariance of the amplitude, in practical calculations
provide only small corrections. Thus, the tree-level ampli-
tude behaves basically as a constant in the energy region of
relevance.
The loop contributions from the diagrams (c)–(e) were

already studied in the literature in the context of scalarmesons
made of light quarks—see, e.g., Refs. [38,39]. In particular, it
is shown that for pseudoscalar mesons such loops form a
gauge invariant subset of diagrams which yields a finite
contribution to the amplitude. The arguments of Refs. [38,39]
can be generalized to find that, in the HQSS limit, these
conclusions hold also for all members of the heavy-meson
spin multiplet and for all quantum numbers Jþþ. Further,
using the explicit results of Refs. [38,39] for the loops with a
pointlike interaction between themesons in the final state one
concludes that, to a good approximation, also for diagrams
(c)–(e) the production operator can be treated as a constant.
To illustrate the argument, consider the resulting con-

tribution from the diagrams shown in Fig. 4 for the
uncoupled case,

MαðpαÞ ¼ vðJ
þþÞ

α ŜðJ
þþÞ

α ð1þ ðAαðpαÞ þ ipαÞfαonðpαÞÞ;
ð59Þ

where the vertex and the spin structure in front of the
parenthesis are from Eqs. (55)–(57), AαðpαÞ and ipα

denote the real and imaginary parts of the pertinent loop,
and fαonðpαÞ is the on-shell B-meson amplitude in the final
state. Unitarity forces fαon to have the form

fαonðpαÞ ¼
1

BαðpαÞ − ipα
; ð60Þ

where BαðpαÞ denotes the real part of the inverse scattering
amplitude which is unconstrained by unitarity and is a real
meromorphic function of p2

α near the origin pα ¼ 0. To
leading order in a momentum expansion, BαðpαÞ is given
by the inverse scattering length. Then one finds

MαðpαÞ ¼ vðJ
þþÞ

α ŜðJ
þþÞ

α ðAαðpαÞ þ BαðpαÞÞfαonðpαÞ: ð61Þ
Thus, unitarity forces the production amplitude to be
proportional to the scattering amplitude in the final state
(a coupled-channel version of this relation is provided in
Ref. [40]). In the heavy-quark limit the functions A and B
do not depend on the channel. Moreover, since the

momentum dependence of the functions AðpαÞ and
BαðpαÞ is controlled by the left-hand cuts of the production
operator and the scattering amplitude, respectively, we
expect that near thresholds both are well approximated
by constants, which are also independent of the channel in
the heavy-quark limit. Based on this one can predict the
ratios of the partial widths for different decay channels of
the WbJ’s, up to spin symmetry violating corrections.
It is proposed in Ref. [36] that the most prominent

production mechanism for the Zb states in the ϒð10860Þ
and ϒð11020Þ decays involves B0

1B̄ or B0B̄ intermediate
states, with B0 and B0

1 being the broad members of the
quadruplet of the positive P-parity B mesons. If this
proposal is correct, the decay mechanism through the
Bð�ÞB̄ð�Þ pairs considered above will give only a small
contribution. However, it should be stressed that the
mechanism proposed in Ref. [36] should not change the
line shapes but only the total rate of the production cross
sections, which is not a subject of the current study.

B. Coupled-channel system

The set of the allowed quantum numbers for the Bð�ÞB̄ð�Þ
system is encoded in the basis vectors quoted in Eq. (9).
Inclusion of the OPE interaction enables transitions to the
D and even G waves [33].
For a given set JPC the system of the partial-wave-

decomposed coupled-channel Lippmann-Schwinger-type
equations reads

TαβðM;p; p0Þ ¼ Veff
αβ ðp; p0Þ −

X
γ

Z
d3q
ð2πÞ3 V

eff
αγ ðp; qÞ

× GγðM; qÞTγβðM; q; p0Þ; ð62Þ
where α, β, and γ label the basis vectors defined in Eq. (9);
the effective potential is defined by Eq. (8); and the
scattering amplitude Tαβ is related with the invariant
amplitude Mαβ as

Tαβ ¼ −
Mαβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2m1;αÞð2m2;αÞð2m1;βÞð2m2;βÞ

p ; ð63Þ

with m1;α and m2;α (m1;β and m2;β) being the masses of the
Bð�Þ mesons in the channel α (β). The two-body propagator
for the given set JPC takes the form

Gγ ¼ ðq2=ð2μγÞ þm1;γ þm2;γ −M − iϵÞ−1; ð64Þ
where the reduced mass is

μγ ¼
m1;γm2;γ

m1;γ þm2;γ
: ð65Þ

It is convenient to define the energy Ei relative to a
particular threshold, namely,
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M ¼ 2mþ E1 ≡mþm� þ E2 ≡ 2m� þ E3: ð66Þ

Finally, to render the loop integrals well defined we
introduce a sharp ultraviolet cutoff Λ which needs to be
larger than all typical three-momenta related to the coupled-
channel dynamics. For the results presented below we
choose Λ ¼ 1 GeV but we also address the problem of the
renormalizability of the resulting EFT and estimate and
discuss the theoretical uncertainty from the cutoff variation.

C. Production rates

Since we are not interested in the absolute scale but only
in the energy dependence of the line shapes, the production
amplitude of the βth elastic channel from a pointlike source
for some given quantum numbers JPC can be defined as

MβðM;pÞ¼NβUβ;

Uβ¼
�
vβ−

X
α

vα

Z
d3q
ð2πÞ3GαðM;qÞTαβðM;q;pÞ

�
;

ð67Þ

where the relativistic normalization factor is

Nβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m1;βÞð2m2;βÞð2mϒÞ

q
; ð68Þ

and the nonvanishing partial-wave-projected production
vertices vα are from Eq. (57).
Since the direct interactions between the inelastic chan-

nels are neglected in the formalism applied here, the ith
inelastic channel in the final state can only be reached via a
transition through the intermediate elastic channels. In
particular, for a given set JPC, the inelastic amplitude
Mi is obtained by convolving the relevant elastic ampli-
tude MβðM;pÞ from Eq. (67) with the corresponding
elastic-to-inelastic transition vertex from Eqs. (24) and
(26), that is,

MiðM;piÞ ¼ NiUi;

UχbJ ¼ −
X
β

Z
d3q
ð2πÞ3UβðM; qÞGβðqÞvχβ;χbJ ;

Uηb ¼ −
X
β

Z
d3q
ð2πÞ3UβðM; qÞGβðqÞvϒβ;ηb ; ð69Þ

where Ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mϒð10860ÞÞð2mhiÞ

q
.

Finally, the differential widths in the elastic and inelastic
channels read

dΓβ

dM
¼ jMβj2kpβ

32π3m2
ϒð10860Þ

;
dΓi

dM
¼ jMij2kpi

32π3m2
ϒð10860Þ

; ð70Þ

respectively, where k is the three-momentum of the photon
in the rest frame of the ϒð10860Þ and pβ is the three-
momentum in the βth elastic channel in the rest frame of the
B�B̄ð�Þ system, namely,

pβ ¼
1

2M
λ1=2ðM2; m2

1;β; m
2
2;βÞ; ð71Þ

k ¼ 1

2mϒð10860Þ
λ1=2ðm2

ϒð10860Þ;M
2; 0Þ; ð72Þ

and the momentum in the inelastic channel pi is defined in
Eq. (25) above.

IV. DATA ANALYSIS FOR THE Zb’S AND
PREDICTION OF THE LINE SHAPES

FOR THE WbJ STATES

A. Line shapes in the 1+ − channels

In Ref. [15] an analysis of the experimental line shapes
corresponding to the decays of ϒð10860Þ → Bð�ÞB̄�π and
hbðmPÞππ (m ¼ 1, 2) channels was carried out.
In what follows, we consider three fitting strategies

introduced in Ref. [15]:
(1) Contact fit: Purely S-wave momentum-independent

contact interactions (analogous to fit A in Ref. [15]).
(2) Pionful fit 1: Complete leading-order potential that

involves S-wave contact terms plus the OPE, plus
the OðQ2Þ S-wave-to-D-wave counterterm pro-
moted to LO (analogous to fit E in Ref. [15]).

(3) Pionful fit 2: Pionful fit 1 supplemented by the
OðQ2Þ S-wave-to-S-wave contact terms at NLO
and the η-meson exchange (analogous to fit G in
Ref. [15]).

The line shapes in the 1þ− channel, where the Zb’s states
reside, corresponding to the best fits for the three schemes
quoted above, are compared with the experimental data in
Fig. 5. The parameters extracted from these fits are
collected in Table III. One can see that the quality of the
line shape description by the pionful fits is better than that
by the contact fit that is reflected in the change of the
χ2=d:o:f: from 1.29 for the contact fit to 0.95 for the pionful
fit 1 and 0.83 for the pionful fit 2.

B. Renormalizability of the heavy-hadron
EFT with pions

The use of the standard nonrelativistic approach to heavy
mesons, as employed in Ref. [15] and also used here, leads
to coupled-channel integral equations for the scattering
amplitudes which, at leading order in the EFT expansion,
are linearly divergent. Therefore, when the potential trun-
cated at a given order is iterated within the integral
equations an infinite number of ultraviolet (UV) divergent
higher-order contributions is generated. The problem is
well known in the context of nuclear chiral EFT—see, e.g.,
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Refs. [41,42] and references therein. The standard way to
cure this problem in practical calculations is to employ a
finite UV cutoff of the order of a natural hard scale in the
problem, so that the unwanted higher-order contributions
turn out to be suppressed [43]; see also a recent discussion
in Ref. [44]. For an alternative approach with relativized
integral equations of the Kadyshevsky type in the context
of a nucleon-nucleon (NN) and heavy-meson EFTs see
Refs. [45] and [46], respectively.
The logic explained above is the basis for the renormal-

ization program used in Ref. [15] and, hence, is also
employed here. It should be stressed that the formulation
of an EFT for the Zb’s and their spin partners is much more

challenging than that for the NN problem because of the
larger soft scales involved here. Indeed, since the Bmesons
are, roughly, by a factor of 5 heavier than nucleons, an EFT
for the Zbð10610Þ and Zbð10650Þ states, separated by
δ ¼ 45 MeV, unavoidably involves the momenta of the
order of

ffiffiffiffiffiffi
mδ

p
≈ 500 MeV treated as soft. Moreover, in the

course of practical fits of the experimental line shapes
the momenta as large as 800 MeV are included from the
high-energy tail of the experimental distributions. Clearly,
the influence of such highmomenta on the dynamics close to
the relevant thresholds is minor whereas the renormalization
of the theory (and the possible residual cutoff dependence) is
severely affected by this high-momentum range.

FIG. 5. The fitted line shapes in the 1þ− channel. Upper row: Elastic channels BB̄� and B�B̄�. Lower row: Inelastic channels hbð1PÞπ
and hbð2PÞπ. The line shapes which correspond to the contact and pionful fits 1 and 2 are shown by the blue dashed, red thick solid and
black solid curves, respectively. The vertical dashed lines indicate the position of the BB̄� and B�B̄� thresholds. The experimental data
given by black points with error bars are from Refs. [2,5].
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In Ref. [15] it was found that the cutoff dependence
generated via the iterations of the OPE in the S waves can
be almost completely absorbed into the momentum-
independent contact terms Cd and Cf at LO. On the other
hand, the cutoff dependence of the line shapes in the 1þ−

channel from iterations of the S-wave-to-D-wave OPE
turns out to be sizable which calls for the promotion
to leading order of the contact term DSD providing the
S-wave-to-D-wave transitions between heavy mesons,
which naïvely would appear only at NLO. In Fig. 6, we
illustrate the cutoff dependence for the elastic line shapes
corresponding to the quantum numbers 1þ−, 1þþ and 0þþ
for the cutoff variation from 0.8 to 1.3 GeV. We start the
discussion with the results for the quantum numbers 1þ−,
where the fits to the experimental data were performed (see
the left plots in Fig. 6). As a general trend, the results
demonstrate a mild cutoff dependence and a saturation for
larger cutoffs. Meanwhile, as expected, the result for the
smallest cutoff Λ ¼ 0.8 GeV for the pionful fit 1 deviates
from the other curves (cf. the blue dashed curve for Λ ¼
0.8 GeVwith the red solid and dotted curves corresponding
toΛ ¼ 1.0 GeVandΛ ¼ 1.2 GeV, respectively). Indeed, in
order to maintain approximate Λ-independence in the
pionful calculations for smaller cutoffs, we found empiri-
cally that the magnitude of the contact term DSD must be
increased such that it generates an increasing S-wave-to-S-
wave higher-order contribution through iterations. The latter
induces a strong Λ-dependence unless an additionalOðQ2Þ
S-S contact term is included in the potential. As a conse-
quence, the results for the pionful fit 1 still show some cutoff
dependence for the observables in the 1þ− channel while the
cutoff dependence for the pionful fit 2, where the order
OðQ2Þ S-S contact term Dd is included, is diminished
significantly. Exactly the same pattern, though somewhat
enhanced, can also be seen in Fig. 6 for the spin partners. It is
obvious that, for the smallest cutoff, the results for the
pionful fit 1 (blue dashed curve) possess an unwanted
sizable S-wave-to-S-wave higher-order contribution which,
for the pionful fit 2, is largely absorbed by the S-S contact
term Dd. Still, the results for the pionful fit 1 for the cutoffs
from 1GeVonward quickly saturatewith the cutoff increase
and may be regarded as reasonable predictions at leading
order. In what follows, we will discuss the line shapes and

extract the poles of the amplitude for both pionful fits 1 and
2. Still, we regard the predictions obtained for the pionful fit
2 as our main results since in this case the cutoff-related
artifacts induced by the iteration of the truncated potential
are significantly reduced. It should be clear that the results
for the pionful fit 2 correspond to an incomplete NLO
calculation and that, in addition, there are long-range
contributions from the two-pion exchange (TPE) not
included in the present study. It remains to be seen whether
or not their inclusion affects the predictions for the spin
partner states. However, given that, numerically, the long-
range part of the OPE plays the role of a correction as
compared with the short-range mechanisms, the effect from
the long-range TPE is expected to be small.

C. Line shapes in the spin partner channels

In Figs. 7–9 the line shapes in the spin partner channels
with J ¼ 0, 1, 2 are shown for the two pionful fit schemes
introduced above. For each scheme the line shapes are
calculated employing the best-fit parameters extracted from
the analysis of the data in the 1þ− channel for the cutoff
1 GeV. Specifically, in each plot we present the relevant
elastic Bð�ÞB̄ð�Þ and inelastic differential widths (in arbitrary
units) defined by Eq. (70). The relative normalization of the
curves for the pionful fits 1 and 2 is chosen such that the
two curves have the same magnitude at the resonance peak.
In the case of the 0þþ channel, where two states are present,
the curves are normalized to have the same strength in one
of the peaks. While the overall scale of the line shapes is not
a subject of the current investigation, as discussed in
Sec. III A, the branching fractions defined relative to the
total width for each J are predicted here—see Table IV and
discussions below. For the inelastic channels, as examples,
we show the distributions in the χb1ð1PÞπ and ηb0ð1SÞπ
final states. The energy behavior of the line shapes in the
other channels not shown here [χbJðmPÞπ with m ¼ 1, 2
and ηb0ð2SÞπ] is completely analogous to that for the
χb1ð1PÞπ and ηb0ð1SÞπ channels, respectively, while their
relative scales can be read off from Table IV. The differ-
ential rates for the pionful fits exhibit either a well-
pronounced hump above the relevant threshold, as seen
in Figs. 8 and 9 for the 1þþ and 2þþ channels, or a sizable
near-threshold distortion, as in the 0þþ case—see Fig. 7.

TABLE III. The fitted values of the low-energy constants and couplings to the JPC ¼ 1þ− data for the contact and pionful fits as
defined at the beginning of Sec. IV. The OðQ0Þ contact terms Cd and Cf are given in units of GeV−2, and the OðQ2Þ contact terms DD

and DSD are in units of GeV−4. The couplings gϒðnSÞ (n ¼ 1, 2, 3) and ghbðmPÞ (m ¼ 1, 2) are given in units of GeV−3=2. Only the
absolute values of the coupling constants are presented since physical quantities are not sensitive to their signs. Uncertainties correspond
to a 1σ deviation in the parameters. The quality of each fit is assessed through the reduced χ2=d:o:f: quoted in the last column.

Fit Cd Cf DD DSD jgϒð1SÞj jgϒð2SÞj jgϒð3SÞj jghbð1PÞj jghbð2PÞj χ2

d:o:f:

Contact −3.30ð11Þ −0.06ð13Þ 0 0 0.04(1) 0.23(4) 0.61(15) 0.55(4) 1.91(15) 1.29
Pionful fit 1 −0.10ð36Þ −4.19ð60Þ 0 −5.80ð57Þ 0.04(1) 0.25(5) 0.71(18) 0.46(5) 1.67(18) 0.95
Pionful fit 2 1.33(40) −3.95ð27Þ −3.36ð54Þ −3.16ð61Þ 0.03(1) 0.21(4) 0.56(14) 0.32(4) 1.19(14) 0.83
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This picture is typical for a resonance which is supported by
the position of the poles of the amplitude in the energy
complex plane—see the discussion in Sec. V below.
In Fig. 10, for illustrative purposes, we compare the line

shapes in the 2þþ channel for the contact and pionful fit 2
schemes. For allJ’s, the inelastic line shapes corresponding to
the contact fit reveal only a cusplike structure at the relevant
elastic threshold enhanced by the presence of a near-threshold
pole—the behavior typical for a virtual state scenario. On the
contrary, when the pions supplemented by theOðp2Þ contact
terms are included, the poles move to the complex plane, as
will be discussed in the next section, resulting in above-
threshold resonance-type structures in the line shapes.
The partial widths Γ in all considered elastic and inelastic

channels can be obtained as integrals over the entire
relevant energy interval. The ratios of the individual partial
widths to the sum of all contributions for a given J are
shown in Table IV. Such ratios do not depend on the overall
scale and, therefore, can be regarded as a parameter-free
prediction of our approach. In particular, for the elastic
widths one finds the relations

Γ1þþ
BB̄�ð3S1Þ∶Γ

2þþ
B�B̄�ð5S2Þ∶Γ

0þþ
BB̄ð1S0Þ∶Γ

0þþ
B�B̄�ð1S0Þ

≈ 15∶12∶5∶1; ð73Þ

Γ2þþ
BB̄ð1D2Þ∶Γ

2þþ
BB̄�ð3D2Þ∶Γ

0þþ
B�B̄�ð1S0Þ ≈ 3∶3∶2: ð74Þ

Although the potential spin symmetry violation in the
elastic source terms discussed in Ref. [37] can somewhat
distort these results, the general pattern should persist.
Let us summarize the findings we arrived at.
(i) As expected in the molecular scenario, for eachWbJ

state, the decay rate to the corresponding elastic
channel with the nearest threshold is the largest
while the inelastic channels are strongly suppressed
compared with it. The decay rates to remote elastic
channels are also suppressed. For example, the
contribution of the W0

b0 state to the BB̄ rate is quite
marginal, as can be seen in Fig. 7. This is a direct
consequence of the properties demonstrated by the
data in the 1þ− channel (see Fig. 5): although the

FIG. 6. Propagation of the cutoff dependence of the theoretical fits from the 1þ− channel used as input to the spin partner channels Jþþ
(J ¼ 0, 1, 2) which are parameter-free predictions. The upper panel shows the elastic line shapes for the pionful fit 1 (fit E in Ref. [15])
and the lower panel corresponds to the pionful fit 2 (fit G in Ref. [15]). In the upper panel, blue dashed curves denote Λ ¼ 0.8 GeV;
red solid, Λ ¼ 1 GeV; red dotted, Λ ¼ 1.2 GeV; red dashed, Λ ¼ 1.3 GeV. In the lower panel, thick black dotted curves denote
Λ ¼ 0.8 GeV; black solid, Λ ¼ 1 GeV; black dotted, Λ ¼ 1.2 GeV; black dashed, Λ ¼ 1.3 GeV.
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coupled-channel dynamics allows for such transi-
tions, the data do not favor them.

(ii) The largest rates correspond to theϒð10860Þ decays
to the γBB̄� and γB�B̄� channels via the Wb1 and
Wb2 partners, respectively—see Eq. (73).

(iii) The ratios predicted in Eq. (73) from the measured
line shapes of the Zb states are consistent with the
estimates presented in a recent study [47].

As to the absolute scale of the rates ϒð10860Þ→
γWbJ→γBð�ÞB̄ð�Þ, a two-order-of-magnitude suppression is
trivially expected as compared with the rates ϒð10860Þ →
πZð0Þ

b → πBð�ÞB̄� because of the standard fine structure
penalty for electromagnetic processes, which also agrees

with the estimates made in Ref. [47]. Meanwhile, this
suppression is expected to be overcome by the Belle-II
experiment due to its large luminosity and, as a result, an
almost two-order-of-magnitude increase of the statistics as
compared with the previous-generation experiment Belle.

V. THE POLE POSITIONS OF THE
Zb, Z0

b AND WbJ STATES

A. Extracting the poles in a multichannel
scattering problem

In this section we employ the approach developed above
to predict in a parameter-free way the pole positions for the
spin partners WbJ (J ¼ 0, 1, 2) with the quantum numbers

FIG. 7. Predicted line shapes in the 0þþ channel. Upper panel: The line shapes in the BB̄ and B�B̄� channels. Lower panel: The line
shapes in the χb1ð1PÞπ and ηb0ð1SÞπ channels. The red and black lines show the results for the pionful fits 1 and 2, respectively, and the
vertical dashed lines indicate the position of the BB̄, BB̄� and B�B̄� thresholds.
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Jþþ. For the pole search in the complex energy plane we
follow the approach of Refs. [15,20] and stick to the four-
sheet Riemann surface corresponding to two elastic
channels—either the BB̄ and B�B̄� channels in the case
of JPC ¼ 0þþ or the BB̄� and B�B̄� ones for all other
quantum numbers. All inelastic thresholds are remote and
their impact on the poles of interest, which are located near
the elastic thresholds, is minor—see the discussion in
Ref. [15]. Then, for two coupled channels with the thresh-
olds split by the mass difference Δ, the four-sheeted
Riemann surface can be mapped onto a single-sheeted
plane of a new variable, which is traditionally denoted as ω
[48,49], via the relations1

k1 ¼
ffiffiffiffiffiffiffiffi
μ1Δ
2

r �
ωþ 1

ω

�
; k2 ¼

ffiffiffiffiffiffiffiffi
μ2Δ
2

r �
ω −

1

ω

�
: ð75Þ

Then, the energy defined relative to the lowest threshold of

the two, E ¼ M −mð1Þ
1 −mð1Þ

2 ¼ M −mð2Þ
1 −mð2Þ

2 þ Δ,
reads

E ¼ k21
2μ1

¼ k22
2μ2

þ Δ ¼ Δ
4

�
ω2 þ 1

ω2
þ 2

�
;

where μ1 and μ2 are the reduced masses in the first and
second elastic channels labeled as (1) and (2), respectively.
Specifically, in the 0þþ channel,

Δ¼2δ; mð1Þ
1 ¼mð1Þ

2 ¼m; mð2Þ
1 ¼mð2Þ

2 ¼m�; ð76Þ

while in the channels 1þþ and 2þþ one has

Δ¼δ; mð1Þ
1 ¼m; mð1Þ

2 ¼mð2Þ
1 ¼mð2Þ

2 ¼m�: ð77Þ

Then the one-to-one correspondence between the four
Riemann sheets in the E-plane (denoted as RS-N, where
N ¼ I, II, III, IV) and various regions in the ω-plane read

RS-IðþþÞ∶ Imk1 > 0; Im k2 > 0;

RS-IIð−þÞ∶ Imk1 < 0; Im k2 > 0;

RS-IIIð−−Þ∶ Imk1 < 0; Im k2 < 0;

RS-IVðþ−Þ∶ Imk1 > 0; Im k2 < 0;

where the signs in the parentheses correspond to the signs of
the imaginary parts of themomentak1 andk2. These regions in
the ω-plane are depicted in Fig. 11. The thick solid line
corresponds to the real values of the energy lying on (physical)
RS-I. It is easy to see that the physical region between the two
thresholds corresponds to jωj ¼ 1, with both ReðωÞ and
ImðωÞ positive, and the thresholds at E ¼ 0 and E ¼ Δ are
mapped to the points ω ¼ �i and ω ¼ �1, respectively.
The nomenclature of the Riemann sheets as described

above is relevant for a two-channel situation while in the
presence of additional channels it needs to be generalized.
As an illustration, consider a three-channel case with two
elastic and one inelastic channel. In this case, the three-
channel complex omega plane can be schematically viewed
as a two-sheeted ω-plane with the sheets connected by
analyticity through the inelastic cut (see Fig. 12) where, in
line with the two-channel case above, the sheets are labeled

FIG. 8. Predicted line shapes in the 1þþ channel. Left panel: The line shape in the BB̄� channel. Right panel: The line shape in the
χb1ð1PÞπ channel. The vertical dashed lines indicate the position of the BB̄� and B�B̄� thresholds. For notation see Fig. 7.

1The situation in the 2þþ channel is more complicated since all
three elastic channels are coupled. However, also in this case, it
appears to be convenient to employ the mapping onto the ω-plane
for the channels BB̄� and B�B̄� while the BB̄ channel is treated
explicitly.
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by the signs of the imaginary parts of the momenta in each
channel.
Clearly, not all poles found on all Riemann sheets are of

a physical significance. Specifically, only those poles

which have a short (compared with the thresholds splitting
Δ) path to the real energies on the physical sheet RS-I
(labeled as Iup ðþþþÞ in the left ω-plane—see Fig. 12) can
leave their imprint on observables. It is easy to see that the

FIG. 9. Predicted line shapes in the 2þþ channel. Upper panel: The line shape in the BB̄ and BB̄� channels generated from the S-wave-
to-D-wave transitions in the OPE. Lower panel: The line shape in the B�B̄� and χb1ð1PÞπ channel. The vertical dashed lines indicate the
position of the B�B̄� threshold. For notation see Fig. 7.

TABLE IV. The ratios of the individual widths for the elastic and inelastic channels in theϒð10860Þ radiative decays via theWbJ states
relative to the sum of all individual partial widths for a given J (all ratios in each line add up to unity) obtained for the pionful fit 2 (fit G
in Ref. [15]).

JPC BB̄ BB̄� B�B̄� χb0ð1PÞπ χb0ð2PÞπ χb1ð1PÞπ χb1ð2PÞπ χb2ð1PÞπ χb2ð2PÞπ ηb0ð1SÞπ ηb0ð2SÞπ
2þþ 0.06 0.07 0.54 � � � � � � 0.03 0.06 0.09 0.16 � � � � � �
1þþ � � � 0.76 � � � 0.03 0.06 0.02 0.04 0.04 0.05 � � � � � �
0þþ 0.73 � � � 0.14 � � � � � � 0.05 0.06 � � � � � � 0.002 0.01
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poles residing in the right ω-plane do not meet this criterion
and, therefore, can be safely disregarded. For example, in
order to reach Iup ðþþþÞ starting from the lower domain of
the RS-I [Ilow ðþþþÞ in the right ω-plane—see Fig. 12]
one would need to travel a long way around the inelastic
branch point. Among the poles residing in the left ω-plane
those on the sheets ð−−þÞ and ð−−−Þ are the most
important ones since they are the closest to the physical
region of the real energy (the fat black line in Fig. 12). A

pole on the sheet ð−−þÞ located in the vicinity of the lower
elastic threshold (the point ω ¼ i) will result in a significant
near-threshold distortion of the line shapes while if the pole
is located deeper in the complex plane (but still on the same
sheet) it will show up as a clear resonance peak. The poles
residing on the sheet ð−−−Þwill manifest themselves in the
observables in exactly the same manner but with respect to
the upper threshold. Next in importance are the poles
residing on the sheets ðþ−þÞ and ðþþ−Þ. They cannot
generate resonance humps in the line shapes above thresh-
old but can significantly enhance the cusplike structure at
threshold provided these poles reside not too deep in the
complex plane.
It is also important to notice that imposing constraints

from unitarity and analyticity on the scattering amplitude T
requires that

Tðk1; k2; k3Þ ¼ T�ð−k�1;−k�2;−k�3Þ: ð78Þ
This implies that if there is a pole at ω ¼ ω0 in the left
(main) omega plane there must be also a pole at −ω�

0 in the
right omega plane—see Fig. 12. This mirror pole, however,
has no physical significance, as already explained.
Generalization of the logic discussed above to a larger

number of channels is straightforward if one bears in mind
that, as before, only one ω-plane sheet containing the
domain of the physical energies on RS-I is relevant and that
the signs of the imaginary parts for all remote inelastic
channels coincide.
For the case at hand, we arrive effectively at a three-

channel (two elastic plus an effective inelastic) problem for
the quantum numbers 1þ−, 1þþ and 0þþ while for 2þþ,
where all three elastic channels are present, the effective
problem contains four channels.

FIG. 10. Comparison of the line shapes in the 2þþ B�B̄� (left) and χb1ð1PÞπ (right) channels for the Contact fit (blue dotted curve) and
pionful fit 2 (black solid curve). The line shapes for the contact fit for any J are alike and reveal a near-threshold behavior typical for a
virtual state.

FIG. 11. The unitary-cut-free complex ω-plane for the two
elastic channels obtained from the four-Riemann-sheeted com-
plex energy plane by the conformal transformation (75). The
eight regions separated by the unit circle and by the two axes
correspond to the upper and lower half-planes (see the subscripts
“up” and “low”) in the four Riemann sheets of the energy plane
denoted as RS-N with N ¼ I, II, III, IV [48,50]. The bold line
indicates the physical region of a real energy E [48].
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B. Poles of the Zb’s and their spin partners

In the vicinity of a pole located at M ¼ MRα
the elastic

scattering amplitude TααðM;p; p0Þ given in Eq. (62) takes
the form

Tαα ¼
g2α

M2 −M2
Rα

≈
g2α

2MRα

1

M −MRα

; ð79Þ

where the energy M is defined in Eq. (66) and g2α and MRα

stand for the residue and the pole position in the channel α,
respectively.
The most relevant poles for the case of the quantum

numbers JPC ¼ 1þ− are collected in Tables V–VII,
together with the residues at these poles. As was explained
in detail above, we regard a pole as relevant if it has a short
(compared with the splitting between the nearest elastic
thresholds δ) path to the physical RS-I and as such affects
the form of the line shapes. In the pionful fits, the poles
representing the Zbð10610Þ and Zbð10650Þ states inhabit
the sheets ð−−þÞ and ð−−−Þ, respectively, and, according
to the logic discussed above, reveal themselves in the line
shapes as peaks above thresholds.
Also, in Tables V–VII, we present the relevant poles

(counted relative to the nearby elastic thresholds) and the

corresponding residues predicted for the spin partners in the
0þþ, 1þþ and 2þþ channels. For the pionful fit 2 regarded
here as the most reliable calculation, the poles in all
channels reside on the sheets closest to the upper domain
of the physical RS-I. The poles for the Zb and W0

b0 are
located just in the vicinity of the BB̄� and B�B̄� threshold,
respectively, and show up as near-threshold distortions in
the line shapes (see the black solid lines in Figs. 5 and 7).
Meanwhile, the poles representing the other states are
shifted from the respective thresholds to the complex plane
by about 10–15 MeV and manifest themselves as humps
(Z0

b and Wb0) or pronounced above-threshold peaks (Wb1

and Wb2) (see the black solid lines in Figs. 7–9). The shift
of the pole positions in the pionful fit 2 as compared with
the contact fit, where all poles correspond to virtual states,
appears mainly due to the pion dynamics—this effect is
fully in line with the findings of Ref. [14].

C. Uncertainty estimate

Uncertainties of the poles and residues given in
Tables V–VII correspond to a 1σ deviation in the param-
eters of the fit from the central values shown in Table III.
The source of this uncertainty is the experimental errors in
the data.

FIG. 12. Generalization of the two-channel complex ω-plane to the three-channel case with two elastic and one inelastic channel. Left
panel: The ω-plane sheet closest to the physical region of a real energy indicated by the black bold line. In this ω-plane, the inelastic
momentum for the particles with the masses min1 and min2 is related to the energy as pin ¼ 1

2M λ1=2ðM2; m2
in1; m

2
in2Þ. Right panel: The ω-

plane sheet distant from the physical region. Here the inelastic momentum is related to the energy as pin ¼ − 1
2M λ1=2ðM2; m2

in1; m
2
in2Þ.

Transitions from one omega plane to the other are possible through the right-hand cut from the inelastic channels denoted by the fat pink
line in both panels.
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As for the theoretical uncertainty, it can be estimated as
the maximum of the two errors from the truncation of the
EFT expansion at a given order (for the discussion of the
truncation errors in the NN sector see, e.g., Ref. [51]) and
from the cutoff variation. To explain the truncation error
method, let us introduce an observable quantity XðνÞðQÞ
calculated to a given order ν in the EFT expansion in the
momentum Q,

XðνÞðQÞ ¼
Xν
n¼0

αnχ
n; χ ¼ Q

Λh
; ð80Þ

where Q ∼ ptyp ¼ 0.5 GeV and Λh ∼ 4πfπ ≃ 1 GeV with
fπ denoting the pion decay constant; fαng are the expan-
sion coefficients with α1 ¼ 0 since there are no operators at
the order Q.
Then, assuming that the expansion (80) converges, the

error at the given order ν is expected to come from the first
neglected chiral order; that is, it should scale as χνþ1 unless
the coefficient ανþ1 vanishes. In the latter case, the
uncertainty is estimated based on the nonvanishing result
at the order χνþ2, and so on. For example, the observable at
LO (ν ¼ 0) and its truncation error read

Xð0ÞðQÞ ¼ α0;

ΔXð0ÞðQÞ ¼ Xð2ÞðQÞ − Xð0ÞðQÞ ¼ α2χ
2; ð81Þ

where we used that α1 ¼ 0.

Although the poles are not observed directly, they
manifest themselves in observable quantities such as line
shapes, and thus the truncation error method is expected to
work for them too. To estimate the truncation error at LO
(ν ¼ 0), we compare the results calculated explicitly at the
orders ν ¼ 0 (pionful fit 1) and ν ¼ 2 (pionful fit 2) to find
that the truncation error for theWb2 does not exceed 5 MeV
while it is only about 1 MeV for the near-threshold state
W0

b0 as well as for the Zb and Z0
b states. On the other hand,

the truncation error at LO for the states Wb1 and Wb0 is of
the order of 15 MeV which does not look unnatural either
given the large expansion parameter of the pionful EFT. It
also needs to be emphasized that the chiral expansion for
the Wb0 state might converge slower than expected from
our power counting, because this state lies by δ ¼ 45 MeV
lower than the energy region used in the fits for the Zb ’s. It
remains to be seen how the pole position for this state is
affected by the inclusion of higher-order interactions.
The truncation error method becomes particularly useful

when the results at least at several chiral orders are
calculated explicitly, which is not yet feasible. Still, from
the results presented above one can conclude that the
partner states Wb2 and W0

b0, both residing near the B�B̄�

threshold, indicate a very good stability with respect to the
inclusion of higher-order interactions. Since the truncation
error estimate for the NLO results (pionful fit 2) is not
possible at present (it would require a complete N2LO
calculation) we rely on naturalness to provide a rough

TABLE V. The pole positions and the residues g2 [see the definition in Eq. (79)] in various S-wave Bð�ÞB̄ð�Þ channels for the contact fit.
The energy Epole is given relative to the nearest open-bottom threshold quoted in the third column, so that it is one of the energies En

(n ¼ 1, 2, 3) defined in Eq. (66). The Riemann sheet (RS) is defined by the signs of the imaginary parts of the corresponding momenta
(quoted in the columns 4–7); a missing sign indicates that this channel is uncoupled. Uncertainties correspond to a 1σ deviation in the

parameters allowed by the fit to the data in the channels with JPC ¼ 1þ− where the Zð0Þ
b states reside [15]. For the estimate of the

theoretical uncertainties see Sec. V C. The poles are calculated for the cutoff Λ ¼ 1 GeV.

JPC State Threshold Im pin Im pBB̄ Im pBB̄� Im pB�B̄� Epole w.r.t. threshold (MeV) Residue at Epole

1þ− Zb BB̄� þ − þ ð−0.9� 0.4Þ þ ið1.0� 0.3Þ ð−1.4� 0.2Þ þ ið0.5� 0.1Þ
1þ− Z0

b B�B̄� þ þ − ð−0.8� 0.5Þ þ ið1.3� 0.4Þ ð−1.4� 0.3Þ þ ið0.7� 0.1Þ
0þþ Wb0 BB̄ þ − þ ð−1.0� 0.6Þ þ ið1.0� 0.3Þ ð−1.4� 0.3Þ þ ið0.5� 0.1Þ
0þþ W0

b0 B�B̄� þ þ − ð−1.2� 0.6Þ þ ið0.9� 0.3Þ ð−1.4� 0.3Þ þ ið0.4� 0.1Þ
1þþ Wb1 BB̄� þ − ð−0.3� 0.6Þ þ ið1.6� 0.8Þ ð−1.3� 0.4Þ þ ið0.9� 0.1Þ
2þþ Wb2 B�B̄� þ − ð0.4� 0.6Þ þ ið1.9� 0.9Þ ð−1.2� 0.4Þ þ ið1.3� 0.2Þ

TABLE VI. The same as in Table V but for the pionful fit 1.

JPC State Threshold Im pin Im pBB̄ Im pBB̄� Im pB�B̄� Epole w.r.t. threshold (MeV) Residue at Epole

1þ− Zb BB̄� − − þ ð−1.3� 0.2Þ − ið0.6� 0.1Þ ð−0.6� 0.1Þ − ið0.1� 0.1Þ
1þ− Z0

b B�B̄� − − − ð2.1� 2.2Þ − ið12.9� 2.4Þ ð0.8� 0.1Þ − ið0.4� 0.2Þ
0þþ Wb0 BB̄ þ − þ ð−8.5� 2.8Þ þ ið1.5� 0.2Þ ð−2.0� 0.7Þ − ið0.1� 0.3Þ
0þþ W0

b0 B�B̄� − − − ð−1.2� 0.1Þ − ið0.7� 0.3Þ ð−0.4� 0.1Þ − ið0.2� 0.1Þ
1þþ Wb1 BB̄� − − þ ð25.0� 2.6Þ − ið20.5� 3.3Þ ð0.9� 0.1Þ − ið0.4� 0.2Þ
2þþ Wb2 B�B̄� − − − − ð4.0� 2.1Þ − ið10.4� 1.5Þ ð0.4� 0.1Þ − ið0.2� 0.1Þ
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estimate of this uncertainty which might be especially
useful for the Wb1 and Wb0 states. Specifically, to be more
conservative we pick the maximal value from the poles
given in Tables V–VII at NLO and multiply it by the
expansion parameter to get

15 MeV · χ ≃ 7.5 MeV: ð82Þ
This estimate gives roughly a twice larger uncertainty for
the pionful fit 2 than the cutoff variation.

VI. SUMMARY AND CONCLUSION

In this paper we address the properties of the spin
partners WbJ with the quantum numbers Jþþ (J¼ 0, 1, 2)
of the bottomoniumlike states Zbð10610Þ and Zbð10650Þ.
We employ the EFT approach developed previously in
Ref. [15] and fix all unknown low-energy constants and
couplings from the data on the line shapes in the elastic and
inelastic channels for the negative C-parity states Zb and
Z0
b. After that, the same EFT approach consistent with

requirements from unitarity, analyticity and HQSS is
employed to predict in a parameter-free way the line shapes
of the positive C-parity spin partner states WbJ in the
corresponding elastic [Bð�ÞB̄ð�Þ] and inelastic [ηbðnSÞπ and
χbJðmPÞπ] channels.
Because of the positive C-parity the WbJ’s should be

produced in the radiative decays of the vector bottomonium
ϒð10860Þ. It is argued that the production operator which
involves the tree-level and one-loop contributions behaves
as a smooth function of the energy in the near-threshold
region of interest here. Therefore, in agreement with the
Watson’s theorem, the energy dependence of the line
shapes can be predicted based on the strong interaction
amplitudes between the heavy mesons in the final state.
These amplitudes contain the poles in the vicinity of the
thresholds which are associated with the excitation of the
WbJ states. In addition, the ratios of the partial branchings
to all aforementioned elastic and inelastic decay channels
of the WbJ partners come as predictions of our approach,
since the overall normalization constant from the produc-
tion operator drops out in these ratios in the HQSS limit.
With a multichannel amplitude at hand which possesses

the correct analytic structure we extract the poles of the
amplitude in the complex energy plane and its residues at

these poles for all four partner states and find that our most
advanced pionful analysis of the data on the Zb’s (the
pionful fit 2) is consistent with all WbJ’s being above-
threshold resonances. In contrast to this, in the pionless
approach, all WbJ’s appear as virtual below-threshold
states. Since these two scenarios reveal themselves differ-
ently in the line shapes (cf. the threshold cusp versus the
above-threshold hump in the inelastic channels in Fig. 10),
the experimental data in various channels relevant for the
WbJ’s should provide key information about the role of the
pion dynamics for the system at hand.
The uncertainties in the pole positions are estimated and

discussed in detail. The errors accounted for in this work
come from (i) a statistical 1σ deviation in the parameters
allowed by the fit to the data, (ii) truncation of the EFT
expansion at a given order and (iii) the cutoff variation.
Although the evaluated uncertainties appear to be of a
natural size a better estimate of the truncation error would
be very desirable. That would call for the inclusion of the
two-pion exchange contributions to the elastic potentials at
next-to-leading order which does not involve any new
parameters.
It is important to notice that the developed chiral EFT

approach relies on the most general effective Lagrangian
and, within the domain of its validity (the energy region of
the order of δ ¼ 45 MeV around the BB̄� threshold), can be
used to make model-independent predictions for near-
threshold exotic states (line shapes, poles and residues)
regardless of particular origins of the short-range inter-
actions involved. The importance of bare poles (for
example, associated with the compact tetraquarks) in the
regime of applicability of the EFT would bring additional
scales into the problem and result in a strong energy
dependence of the short-range interactions in the EFT.
This would spoil the convergence of the EFT derived
above, which is, however, not supported by the results of
our studies. Indeed, the analysis performed in Ref. [15] and
also here shows that the derivative expansion for the contact
terms is consistent with the existing experimental data for
the Zb states, which are, therefore, well described without
the necessity of including compact tetraquarks explicitly.
Once the parameters of a resonance are extracted, its

nature can be inferred from the analysis of the pole
positions and the residues which provide the coupling of
a state to the continuum channels. In particular, we observe

TABLE VII. The same as in Table V but for the pionful fit 2.

JPC State Threshold Im pin Im pBB̄ Im pBB̄� Im pB�B̄� Epole w.r.t. threshold (MeV) Residue at Epole

1þ− Zb BB̄� − − þ ð−2.3� 0.5Þ − ið1.1� 0.1Þ ð−1.2� 0.2Þ þ ið0.3� 0.2Þ
1þ− Z0

b B�B̄� − − − ð1.8� 2.0Þ − ið13.6� 3.1Þ ð1.5� 0.2Þ − ið0.6� 0.3Þ
0þþ Wb0 BB̄ − − þ ð2.3� 4.2Þ − ið16.0� 2.6Þ ð1.7� 0.6Þ − ið1.7� 0.5Þ
0þþ W0

b0 B�B̄� − − − ð−1.3� 0.4Þ − ið1.7� 0.5Þ ð−0.9� 0.3Þ − ið0.3� 0.2Þ
1þþ Wb1 BB̄� − − þ ð10.2� 2.5Þ − ið15.3� 3.2Þ ð1.3� 0.2Þ − ið0.4� 0.2Þ
2þþ Wb2 B�B̄� − − − − ð7.4� 2.8Þ − ið9.9� 2.2Þ ð0.7� 0.1Þ − ið0.3� 0.1Þ
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that, as expected, for each Zb or WbJ state only one near-
threshold pole in the complex momentum plane defines its
properties (see Table VII for the corresponding pole in the
energy plane). According to the pole counting rules
suggested in Ref. [52], this indicates dynamical origins
of the studied resonances—there would have been two
nearly symmetric poles for a compact quark state. This
conclusion is further supported by the large dimensionless
(of the order of unity) coupling constants extracted from the
residues at the poles for both Zb’s and their spin partners
which result in the large partial branchings of their decays
to the open-flavor channels—see Table IV. We believe that
all these manifestations together provide a strong argument
in favor of the dominating molecular component in the
wave functions of these states.
We conclude by stating that, although the electromag-

netic fine structure penalty suppresses the probability of the
WbJ’s production in radiative decays of the ϒð10860Þ by
two orders of magnitude compared with the Zð0Þ

b production

in the one-pion decays of the ϒð10860Þ, this suppression is
to be overcome by the large statistics anticipated for the
Belle-II B-factory. We, therefore, expect the spin partners
of the Zb states to be copiously produced in this
experiment.

ACKNOWLEDGMENTS

This work was supported in part by the DFG (Grant
No. TRR110) and the NSFC (Grant No. 11621131001)
through the funds provided to the Sino-German CRC 110
“Symmetries and the Emergence of Structure in QCD.” The
work of V. B. and A. N. was supported by the Russian
Science Foundation (Grant No. 18-12-00226).

APPENDIX A: EFFECTIVE LAGRANGIANS

The low-energy Bð�ÞB̄ð�Þ scattering at leading order
OðQ0Þ is described by the Lagrangian [13]2

Lð0Þ
HH ¼ Tr

�
H†

a

�
i∂0 þ

∇2

2M̄

�
ba
Hb

�
þ Tr

�
H̄†

a

�
i∂0 þ

∇2

2M̄

�
ab
H̄b

�
þ δ

4
Tr½H†

aσiHaσ
i� þ δ

4
Tr½H̄†

aσiH̄aσ
i�

−
C10

8
Tr½H̄†

aτAaa0H
†
a0Hbτ

A
bb0H̄b0 � −

C11

8
Tr½H̄†

aτAaa0σ
iH†

a0Hbτ
A
bb0σ

iH̄b0 �; ðA1Þ

where a and b are the isospin indices, σ’s and τ’s are
the spin and isospin Pauli matrices, respectively, and
the trace is taken in the spin space. The isospin matrices
are normalized as τAabτ

B
ba ¼ 2δAB. The mass M̄ in the

kinetic terms is the spin-averaged B meson mass, M̄ ¼
ð3m� þmÞ=4, and δ ¼ m� −m ≈ 45 MeV.
The terms in the first line in Eq. (A1) stand for the

leading heavy- and antiheavy-meson chiral perturbation

theory Lagrangian of Refs. [53–55], written in the two-
component notation of Ref. [29]. The terms proportional to
the potentials C10 and C11 correspond to theOðQ0Þ S-wave
contact interactions [13,25]. The superfieldsHa and H̄a are
defined in Eq. (17).
The effective Lagrangian at NLO derived in Ref. [15]

reads

Lð2Þ
HH ¼ −

D10

8

�
Tr½∇iH̄†

aτAaa0∇iH†
a0Hbτ

A
bb0H̄b0 � þ Tr½H̄†

aτAaa0H
†
a0∇iHbτ

A
bb0∇iH̄b0 �

�

−
D11

8
fTr½∇iH̄†

aτAaa0σ
j∇iH†

a0Hbτ
A
bb0σ

jH̄b0 � þ Tr½H̄†
aτAaa0σ

jH†
a0∇iHbτ

A
bb0σ

j∇iH̄b0 �g

−
D12

8

�
Tr

��
∇iH̄†

aτAaa0σ
i∇jH†

a0 þ∇jH̄†
aτAaa0σ

i∇iH†
a0 −

2

3
δij∇kH̄†

aτAaa0σ
i∇kH†

a0

�
Hbτ

A
bb0σ

jH̄b0

�

þ Tr

�
H̄†

aτAaa0σ
iH†

a0

�
∇iHbτ

A
bb0σ

j∇jH̄b0 þ∇jHbτ
A
bb0σ

j∇iH̄b0 −
2

3
δij∇kHbτ

A
bb0σ

j∇kH̄b0

���
; ðA2Þ

2Because of a different convention for the C-parity transformation adopted in Ref. [26], the signs of the off-diagonal terms in the
leading-order contact terms of the potential VCT

LO½0þþ� given below differ from those in the cited work.
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where the contact terms proportional to the LECs D10 and
D11 contribute to S-wave interactions while the term D12

gives rise to the S-D transitions. As explained in Ref. [15],
we are only interested in the S-S and S-D transitions for
the Bð�ÞB̄ð�Þ scattering, so that all terms of the kind ∝
∇iH†∇jH contributing to P waves are dropped.
Further, we define the combinations

Cd ¼
1

8
ðC11 þ C10Þ; Cf ¼

1

8
ðC11 − C10Þ;

Dd ¼
1

8
ðD11 þD10Þ; Df ¼

1

8
ðD11 −D10Þ;

DSD ¼ 2
ffiffiffi
2

p

3
D12; ðA3Þ

where the subindex d (f) labels the diagonal (off-diagonal)
terms. These are the parameters used in the main text.

APPENDIX B: PARTIAL WAVE PROJECTORS

A complete set of the relevant projectors fPðα; nÞg, with
α indicating an elastic channel as given in Eq. (9), used to
arrive at the partial-wave-projected potentials (50) reads
(for simplicity, the unit vector n is omitted in the argument)

PðBB̄ð1S0ÞÞ ¼ 1; ðB1Þ

PðB�B̄�ð1S0ÞÞ ¼
ffiffiffi
1

3

r
ϵ1iϵ2i; ðB2Þ

PðB�B̄�ð5D0ÞÞ ¼ −
ffiffiffi
3

8

r
Sijvij; ðB3Þ

PðBB̄ð1D2ÞÞij ¼ −
ffiffiffiffiffi
15

2

r
vij; ðB4Þ

PðBB̄�ð3S1ÞÞi ¼ ϵi; ðB5Þ

PðBB̄�ð3D1ÞÞi ¼ −
3ffiffiffi
2

p ϵjvij; ðB6Þ

PðBB̄�ð3D2ÞÞij ¼ −
ffiffiffi
5

p

2
ϵkðiϵiklvlj þ iϵjklvliÞ; ðB7Þ

PðB�B̄�ð3S1ÞÞi ¼ Ai; ðB8Þ

PðB�B̄�ð3D1ÞÞi ¼ −
3ffiffiffi
2

p Ajvij; ðB9Þ

PðB�B̄�ð5S2ÞÞij ¼
1

2
Sij; ðB10Þ

PðB�B̄�ð1D2ÞÞij ¼ −
ffiffiffi
5

2

r
ðϵ1 · ϵ2Þvij; ðB11Þ

PðB�B̄�ð5D1ÞÞi ¼ −
ffiffiffi
3

p

2
iϵijkSjmvkm; ðB12Þ

PðB�B̄�ð5D2ÞÞij ¼ −
ffiffiffiffiffi
45

56

r
ðSikvkj þ Sjkvki

−
2

3
δijSklvklÞ; ðB13Þ

PðB�B̄�ð5G2ÞÞij ¼
ffiffiffiffiffiffiffiffi
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r
Sklvijkl; ðB14Þ

where

vij ¼ ninj −
1

3
δij; ðB15Þ

vijkl ¼ ninjnknl −
1

7
ðninjδkl þ ninkδjl þ ninlδjk

þ njnkδil þ njnlδik þ nknlδijÞ

þ 1

35
ðδijδkl þ δikδjl þ δilδjkÞ; ðB16Þ

Ai ¼
iffiffiffi
2

p ϵijkϵ1jϵ2k; ðB17Þ

Sij ¼ ϵ1iϵ2j þ ϵ1jϵ2i −
2

3
δijðϵ1 · ϵ2Þ: ðB18Þ

All projectors above are normalized as

1

2J þ 1

Z
dΩn

4π
Pðα; nÞP†ðα; nÞ ¼ 1: ðB19Þ
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