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N = f(N)m2, with f an unbounded function of the
integer N , sometimes contribute to the vacuum energy only an amount of order mD in D

dimensions. It has been argued that this fact is a consequence of swampland conjectures
and may require a departure from Effective Field Theory (EFT) reasoning. We test this
claim with calculations for Casimir energies in extra dimensions. We show why the domain
of validity for EFTs ensures that the tower spacing scale m is always an upper bound on
the UV scale for the lower-energy effective theory; use of an EFT with a cutoff part way up
a tower is not a controlled approximation. We highlight the role played by the sometimes-
suppressed contributions from towers in extra-dimensional approaches to the cosmological
constant problem, old and new, and point out difficulties encountered in exploiting it. We
compare recent swampland realizations of these arguments with earlier approaches using
standard EFT examples, discussing successes and limitations of both.
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1 Towers of states and vacuum energy

A pressing theoretical question of our day is the zero-body problem: what is the energy
density of the vacuum and why does this energy gravitate so little compared with theoretical
expectations [1–4]? Much has been thought and written about this problem, and a recent
approach [5] builds on the following observation (based on arguments from swampland1

conjectures):

In D spacetime dimensions an infinite tower of states that are spaced by an
energy scale of order m — for instance M2

N = f(N)m2 with f(N) = N or N2

or
√

N(N + 1) and so on, for integer N (say) — can naturally contribute a
vacuum energy that is of order ρD ∼ mD.

This is at first sight a remarkable assertion because normally each element of the tower
would be expected to contribute by an amount δρD ∼ M D

N and so the sum over N would
seem to lead to a divergent quantity

ρD = mD

∞∑
N=0

cN

[
f(N)

4π

]D/2
for cN ∼ O(1) . (1.1)

The above assertion means the divergent sum counter-intuitively turns out to be order
unity. At face value this appears to be a dramatic suppression relative to naive EFT
reasoning.

There is nevertheless good evidence that the above claim is true, partly because it is
not in itself a new observation. The novelty is its use to argue for the possible breakdown
of EFT methods, and whether such towers can help identify low-energy situations that

1The core assertion within the swampland program is that there exist otherwise sensible EFTs that do
not have UV completions. To the extent that this paper bears on swampland issues, its spirit is not to
use these conjectures as inputs, but to explore calculable implications of extra-dimensional physics (from
which the conjectures have partially been abstracted) to help identify those that agree/disagree with the
conjectures. This seems useful for assessing the evidence for/against the core assertion.
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depend unusually strongly on the nature of gravity’s UV completion, with the above as-
sertion argued to provide evidence for a breakdown in EFT reasoning. If true this would
strengthen the motivation for various (swampland) conjectures that grope towards an al-
ternative framework for understanding the low-energy world without EFTs.

Before discussing more broadly the role played by the above assertion in approaches
to the cosmological constant problem, we first briefly describe the evidence for its validity
and why it does not indicate a breakdown of EFT reasoning.

1.1 Vacuum energies from towers

One line of evidence comes from string theory — as emphasised in [5] — for which m ∼ Ms

is the string scale and the tower in question consists of excited states of a relativistic
string (or superstring). One-loop vacuum energies have been known since the 1980s to
be ultraviolet finite and in D dimensions to be of order ρD ∼ M D

s [6, 7] (see also [8, 9]
for concrete non-supersymmetric string theories). In particular, although the full string
result can be written in a way that looks like a naive mode-by-mode sum of vacuum
energies for each string level once these are written using the heat-kernel formalism (see for
instance [10, 11]), the total result actually differs from this naive result because invariance
under modular transformations of the string world sheet nontrivially restricts the heat-
kernel integration regime in a way that excludes the dangerous UV-sensitive contributions.

It is tempting to think from the string example that the UV finiteness of string theory
plays an important role in this argument, but this is not true for the second line of evidence
coming from dimensional reduction. In this class of examples the tower of interest consists
of Kaluza-Klein modes for extra-dimensional fields, such as those arising when gravity or
supergravity is dimensionally reduced from higher to lower dimensions. In this case the role
of the tower spacing m is played by the Kaluza-Klein scale MKK , which in simple examples
scales like the inverse of extra-dimensional ‘size’ L: MKK ∼ 1/L. Vacuum energies can
be explicitly computed for compactifications down to four dimensions using the higher
dimensional theory, giving ρ4 ∼ M4

KK (as opposed to being proportional to M4 where
M is the UV scale in the higher dimensions, like the string scale or the scale of heavy
higher-dimensional particle masses).

For example, for six-dimensional theories explicit calculations of the Casimir energy
for (untwisted) 6D massive scalar field compactified on a 2-torus [12, 13] give a 4D vacuum
energy2

ρ4 = − 1
V2

{4π3U3
2

945 + 3 ζ(5)
2π2U2

2
+ 2

∞∑
k=1

[
k2 Li3(qk) + 3 k

2πU2
Li4(qk) + 3

4π2U2
2

Li5(qk) + c.c.
]}

,

(1.2)
where the torus is defined as a parallelogram (with edges identified) with sides of length
L1 and L2 and angle θ. Here U := U1 + iU2 = (L2/L1) eiθ is its dimensionless complex
structure and V = L1L2 sin θ is its volume, while q := e2πiU , ζ(z) is the Riemann zeta

2Extensions to orbifolds were also computed in [12, 13] with similar properties.
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function and the poly-logarithm functions are defined by

Liσ(x) =
∞∑

n=1

xn

nσ
. (1.3)

It is the overall pre-factor V−2 of this result that sets the scale of its size to be order M4
KK

because the complex structure U involves only dimensionless quantities. This scaling with
extra-dimensional size is also true for massless extra-dimensional fields in a variety of other
geometries [14–24].

The extra-dimensional theories in which such calculations are performed are not UV
finite and the Kaluza-Klein calculation of ρ4 generically diverges in the UV (though not at
one loop in odd dimensions, as it turns out). For instance (1.2) is obtained by taking the
m → 0 limit of the mode sum3

ρ4 = µ4−d
∑

k,l∈Z

∫ ddp

(2π)d
ln

[
p2 + M2

kl + m2

µ2

]
= − µ4

(2π)d

∑
k,l∈Z

∫ ∞

0

dt

t1+d/2 e−π t
[

(M2
kl+m2)/µ2

]
,

(1.4)
where Mkl denotes the Kaluza-Klein spectrum

M2
kl(σ1, σ2) = (2π)2

V U2

∣∣∣l + σ2 − U(k + σ1)
∣∣∣2 . (1.5)

with 0 ≤ σ1, σ2 ≤ 1 measuring the twisting4 of the boundary conditions around the cycles
of the torus (and it is the special case σ1 = σ2 = m = 0 that gives expression (1.2)).

Because this sum is so explicit one can explore its actual sensitivity to UV scales and
see why the final result is often small. Although the sums converge in the final expression
in (1.4) — and can be performed explicitly in terms of Jacobi theta functions — the UV
divergence shows up when integrating over the heat-kernel parameter t, which does not
converge at the t → 0 end. This is regularized above using dimensional regularization,
with the complex quantity d = 4− ϵ ultimately taken to 4. In (1.4) µ is the usual arbitrary
dim reg mass scale that ultimately drops out of all physical quantities.

The ultraviolet divergent part of (1.4) can be identified very explicitly by tracking the
pole as ϵ = 4 − d → 0, and is given (for all σ1 and σ2 and m) by

ρ4∞ = m6 V
192π3ϵ

. (1.6)

This expression has several noteworthy features.

• It depends on the moduli, L1,2 and θ, of the toroidal geometry only through the vol-
ume V. This ensures it contributes to ρ4 in the same way as would a 6D cosmological
constant.

3Since (1.2) also involves a double sum it might not seem to represent much progress over (1.4), but the
point is that the sums in (1.2) converge very quickly because they are organized as series in |q| = e−2πU2 .

4For instance σ = 1
2 if a field is taken to be antiperiodic rather than periodic around one of the toroidal

cycles.
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• It is proportional to m6, also consistent with what would be expected in dimensional
regularization for a divergent contribution to the 6D cosmological constant.

• It is σi-independent (and so independent of the boundary conditions in the extra
dimensions).

All of these features reflect the fact that this 1/ϵ pole represents a bona fide 6D divergence,
despite it emerging as d → 4 and within the context of an apparently 4D calculational
framework where the vacuum energy is computed mode-by-mode. Although the dimen-
sional continuation arose by deforming to nonzero ϵ = 4 − d in the p-integration, this
deformation also plays a role in other manipulations (such as the interchange of summa-
tion and integration) so ϵ ̸= 0 indirectly regularizes these as well. Indeed, the resulting
divergent part is identical to what is found starting from 6D and following the powers of
ϵ′ = (6 − d) using general 6D short-distance heat-kernel expansions [25–27].

It is because the divergence is short-distance in 6D that (1.6) is so simple. The di-
vergence comes from short-wavelength modes in all six dimensions, and so they only ‘see’
the local properties like local curvatures and cannot be sensitive to global properties like
boundary conditions.

It happens that the absence of other powers of m and V is an artefact of the spacetime
being flat, but if repeated for other curved geometries (such as compactification on spheres)
there are more divergences that can depend on powers of m and extra-dimensional size L

as m6L2, m4 log(mL), m2/L2 and 1/L4, precisely as would arise from a local contribution
to the action involving (in six dimensions) up to three powers of curvature invariants;
schematically:

SUV =
∫

d6x
√
−g

(
c0m6 + c1m4R + c2m2R2 + c3R3

)
, (1.7)

with the extra-dimensional volume contributing L2 and each curvature contributing R ∝
L−2. It is indeed because of this structure that the divergences can be renormalized into
counterterms in the extra-dimensional theory.5

Similar statements apply to the m-dependence of the UV-finite parts of the calculation.
Using the full result (1.4) for ρ4 on a torus only m6V arises, plus corrections that are
exponentially small in the limit mL ≫ 1. For the case with nonzero background curvature
general heat-kernel expansions [25–27] give a series in powers of mL, again consistent with
a local curvature expansion involving terms of the schematic form

∫
d2x m6(R/m2)n.

This exploration of UV sensitivity shows precisely when and why vacuum energies
obtained by KK sums can (but need not) be UV insensitive. Calculations for tori are
particularly simple because the absence of background curvature precludes any UV scales
from appearing in a way that is not proportional to V, leading to a result that is always
given by the tower spacing: ρ4 ∼ M4

KK ∼ L−4. For more general geometries the same is
5Additional UV-sensitive contributions — that in this case can depend on the boundary conditions —

occur for orbifolds [13], corresponding to new counterterms localized at the orbifold points, but otherwise
the argument is the same.
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true for massless fields in the extra dimensions, again for want of another scale to combine
with L.

But for massive extra-dimensional fields in curved backgrounds Casimir energies in gen-
eral are more complicated and can be dominated by extra-dimensional UV scales rather
than simply by the tower spacing, although non-negative powers of UV scales like m only
arise in a way that is consistent with the theory’s local counter-terms within the extra
dimensions. This UV dependence can be dangerous — but need not be, as experience (for
instance) with large extra dimensional models [28–31] shows. Viability of extra-dimensional
approaches to the cosmological constant problem includes providing a mechanism for why
such UV sensitivity drops out: what solves the higher-dimensional cosmological constant
problem? For SLED models the mechanism is the supersymmetry of the bulk (amplified by
the accidental scaling symmetries generic to supergravities in 6 or more dimensions [32]).
For these models bulk supersymmetry plays two related roles: it enforces cancellations of
UV effects amongst the contributions of massive bulk fields within a 6D supermultiplet [27],
and it also forbids some local counterterms (like the extra-dimensional cosmological con-
stant6 itself.)

Conjectures. Ref. [5] says that the swampland distance conjecture ensures that 4D
vacuum energies in the presence of towers of states (with spacing m) require the scaling

ρ4 ∼ mp for some positive power p. (1.8)

So far as the cosmological constant problem goes, the essence of (1.8) is that UV physics
will have to involve a tower whose spacing is set by the eV scales relevant to dark energy.
This kind of spacing is indeed present in extra-dimensional approaches to the cosmological
constant problem, for which much effort has been invested in computing vacuum energies.
This makes them useful benchmarks against which to compare the newer conjectures,
eventually allowing an assessment about whether more sweeping assumptions are necessary.

At its weakest (1.8) is just the statement that ρ4 should vanish in the limit m → 0,
as would be expected in a higher-dimensional realization if higher-dimensional flat space
must be a solution to the extra-dimensional theory. (This is often true, but has a robust
EFT understanding in terms of the accidental scaling symmetries of string vacua [32].)
Although (1.8) is satisfied by most of the terms in (1.7), it is not true for the first few.7
Its failure is consistent (for example) with an extra-dimensional cosmological constant
precluding maximally symmetric flat space being a solution to the field equations.

A stronger interpretation of (1.8) instead is that the numerical size of ρ4 is given
purely by a power of the KK scale (as opposed to higher UV scales like brane tensions or
the string scale). This also has extra-dimensional counter-examples within concrete extra-
dimensional models, such as when ρ4 is controlled by the tensions of space-filling 3-branes

6Minimal supersymmetry in six or more dimensions can forbid higher dimensional cosmological con-
stants [33], much as multiple supersymmetries can do in 4D.

7The scaling ρ4/M4
p ∝ mp is an even weaker requirement, because Mp is proportional to the extra-

dimensional volume and so diverges as m → 0. It is clear that such a weak scaling is consistent with ρ4

being large and fixed, and so would not rule out the kinds of vacuum energies that are traditionally regarded
as being a problem.
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in an extra-dimensional geometry. Indeed this is one of the reasons the non-supersymmetric
6D story [34] ultimately fails, since perturbing the 3-brane tensions by δT in the initially
4D-flat scenario ends up introducing a 4D cosmological constant of size δT [35, 36].

At face value one of two conclusions seems inevitable: either the conjectures be-
hind (1.8) are wrong, or the various KK counterexamples should be cast into the swamp.
In order to judge the utility of the conjectures it would be very useful to have a concrete
extra-dimensional model that is both anointed in advance as not being in the swampland,
and sufficiently concrete that its implications could be explicitly explored (as required in
order to test UV robustness in a meaningful way).

But even if (1.8) proves false, towers still contain some magic since Casimir energies
for massless extra-dimensional fields really are set by KK scales, and it remains true that
all but the lowest few members of these towers are much heavier than this. Indeed, the
observation that Casimir energies from KK towers of massless fields are set by the KK
scale plays an important role in extra-dimensional models, because it is usually hoped that
it is the Casimir energies of these fields that ultimately survive to provide a nonzero result
for ρ4 after whatever suppresses contributions at UV scales has done its work. This is
ultimately the reason why the extra-dimensional size in these models is chosen with MKK

in the eV range.8

1.2 Breakdown of EFT reasoning

How surprised should we be to find that towers can in some circumstances have reduced
vacuum energies (in the cases like massless extra-dimensional fields or massive fields on
tori)? Does the disagreement between the tower result and a naively truncated level-by-
level calculation represent a significant breakdown of EFT reasoning? We now show —
following arguments made in [37] — why it does not. The main point is that there is no
reliable EFT estimate of the vacuum energy that includes only a finite number of nonzero
levels in a tower, so EFTs are mute about what the result should be. They are mute
because for towers EFT reasoning breaks down in a very mundane way: the underlying
hierarchy of scales that EFTs assume does not exist. There is no inconsistency with EFT
reasoning provided one is clear about its domain of validity.

What makes EFTs useful is that they tell you in advance where they must fail: they
assume the existence of a hierarchy of scales — degrees of freedom with energy Ehigh
are integrated out in order to better understand other degrees of freedom with energy
Elow ≪ Ehigh. Commonly assumed properties rely on it being a good approximation to
work order-by-order in Elow/Ehigh, including the very locality of the EFT itself. Locality
depends on this in detail because it is only after heavy propagators are expanded to fixed
order in p2/M2,

1
p2 + M2 = 1

M2

[
1 − p2

M2 + · · ·
]

, (1.9)

8A precise statement for the exact size required of the KK scale is usually difficult because it requires
a reliable calculation of the 4D vacuum energy to an accuracy that includes the subdominant terms that
survive once the naively dangerous leading UV physics has successfully been removed.

– 6 –



J
H
E
P
0
9
(
2
0
2
3
)
1
5
9

that they become polynomials in momentum and so become capturable by local operators
built from fields and their derivatives.

Returning now to towers, suppose the mass of the lightest state of the tower to be
integrated out is M and the mass of the heaviest tower state in the low-energy sector is m.
EFT methods explicitly assume the validity of an expansion in powers of m/M , and such
an expansion can work well if the only level of the tower kept in the low-energy theory is
the massless one. In this case the lightest massive state to be integrated out has a mass set
by the spacing M within the tower, while states in the low-energy EFT have masses δm

set by the size of any ‘fine-structure’ splitting that generates splittings among the would-
be massless level of the tower.9 Corrections to leading order reasoning in this case are
controlled by the ratio δm/M , which can be small. This is indeed how extra-dimensional
field theories emerge as the low-energy description for string vacua and also how 4D EFTs
emerge as the low-energy limit of higher-dimensional theories.

For a tower of states what is never a good approximation is to include a level of the
tower with nonzero mass into the low-energy theory and integrate out the higher tower
levels. To see why, suppose the zeroth order level spacing is given by M2

N = Nµ2 (as
happens for string levels), and suppose we keep the N = Nc > 0 state in the low-energy
theory but integrate out all states with N ≥ Nc + 1. In this case

m

M
=

√
Nc

Nc + 1 (1.10)

which for Nc = 1, 2, · · · is at its smallest when Nc = 1, at which point m/M = 2−1/2 ≃
0.707. Any attempt to include a fixed number of nonzero-mass tower states within the
low-energy EFT comes with an explicit warning: corrections are never under calculational
control. This is in particular true for predictions about the vacuum energy for such a
theory.

Indeed, this observation is part of the reason why infinite towers of states are so
interesting: they provide an explicit regime where a naive low-energy EFT description
that keeps only a finite part of the tower is explicitly unavailable. Since our standard
reasoning does not apply, surprises might conceivably lurk in the UV limit of such theories
(such as did the UV finiteness of string theory itself).

That does not mean that EFT methods themselves are breaking down in a new or
surprising way; EFTs never claimed to apply in situations without a hierarchy of scales.
In the case of a Kaluza-Klein tower the correct result for ρD is obtained from within an
EFT, but the EFT in question is the higher-dimensional field theory that describes the
entire tower. So far as we know calculations involving towers of string states must be done
within the full string theory.

Broader implications for ‘species’ scales. The previous section argues that if we
find a tower of states when working our way up in energy then as soon as we hit the first

9For example, if the tower consists of KK states the would-be massless states could include any moduli
and the ‘fine structure’ would come from any modulus-stabilization effects.
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nontrivial rung we have necessarily hit the UV cutoff of any EFT description that does not
include the effects of the entire tower.

At some level this is not a surprise: a 4D EFT necessarily breaks down at or below
the KK scale and a higher-dimensional EFT always fails at or below the string scale.
These are both special cases of a well-known fact in semiclassical gravity: in all of the
examples understood in detail (which in practice limits us to the semiclassical regime) the
UV cutoff in a gravity theory is much smaller than the Planck scale. In the 4D world
MKK is always smaller than the extra-dimensional Planck scale within the weakly curved
regime accessible to semiclassical methods. In a higher-dimensional world with a stringy
provenance the UV completion scale is (at most) the string scale, Ms, and this is much
smaller than the higher-dimensional Planck scale in the regime of weak string coupling.

Having towers be beyond the pale of EFT methods might have implications for some
aspects of the swampland program, which aims to go beyond the explicit KK and string
examples.10 One thread within this tapestry identifies a ‘species’ scale, Λs, that quantifies
how much lower the UV cutoff might be than Mp in a way less tied to the above concrete
examples. Λs seems to have different usages in different parts of the literature, but is
sometimes suggestively chosen to lie part way up a tower [38–40]. The above arguments
might make it worth revisiting conclusions that rely on this in an important way.11

2 Dark dimensions

Does the suppression (in some circumstances) of tower vacuum energies provide a mecha-
nism for solving the cosmological constant problem? No concrete proposals have yet been
able to do so, though this mechanism is known to play at least a supporting role in those
that rely on extra dimensions.

In essence, the cosmological constant problem asks why everyday particles (e.g. the
electron) seem to contribute much more to the vacuum energy than is seen to be gravitating
in cosmology. The hard part when trying to solve it is to suppress the vacuum energy
while not ruining other things we know about low-energy physics. The electron is a useful
benchmark when assessing any proposal: where is it in the theory? Do its properties agree
with the many things we know about electrons? Why is its vacuum energy suppressed by
more than 30 orders of magnitude relative to what its mass suggests?

At first sight the tower proposal seems to be a non-starter: to apply it to Standard
Model particles seems to require these should live amongst tower states (so they can benefit
from the suppression). But the tower shouldn’t be split by more than eV energies so that

10The motivation for swampland conjectures is very ambitious: use experience with string theory to
identify general properties of quantum gravity that could apply to any other candidate UV completions of
gravity. Our aims are more limited: for want of alternatives we work with the known EFT framework of
string and extra-dimensional models. We conjecture that this is not a restriction (which agrees with the
emergence conjecture when applied to theories satisfying the distance conjecture).

11Or not. One interpretation for the species scale is that it is the lowest scale for which no possible
low-energy EFT exists. Within string theory this is typically the string scale, which is usually much larger
than the splittings amongst any lower-energy KK towers. This is consistent to the extent that the EFT
below this scale is extra-dimensional and so contains the complete tower.
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4D EFT

(4+n)D EFT

String Theory

MKK

MS

MP

0

Figure 1. An illustrative cartoon regarding the different cut-offs (or species scales) for Kaluza-
Klein and string towers. Notice that the species scale has to be the lowest value of the corresponding
tower which is the Kaluza-Klein and string scales respectively. Proposing a species scale only part
way up the tower (as for instance any line representing a scale between MKK and MS) would give
rise to an EFT which is not under control.

the tower spacing can be of order the observed Dark Energy density. It is hard to see how
experimenters could have missed a tower of electrons spaced by eV scales. But if Standard
Model fields are not in the tower, then why is it central to their not contributing to the
vacuum energy?

To avoid problematic proliferation of KK Standard Model states all models with
eV sized KK scales (including [5]) postulate that the Standard Model is localized on a
space-filling 3-brane situated within the extra dimensions. This is ultimately why extra-
dimensional approaches are attractive: it allows non-gravitational electron physics to re-
main in 4D (and hopefully remain unchanged), while specifically changing only how it —
and its vacuum energy — gravitates. But it makes calculating the vacuum energy much
more subtle because the dangerous Standard Model vacuum energy is then a contribution
to its local brane tension, so computing its implications for the 4D cosmological constant
involves computing the back-reaction of brane physics on the bulk. Until this is done one
really doesn’t know what the predicted vacuum energy is.

Back reaction. A fair bit of work studies back-reaction for space-filling 3-branes within
6D theories, and it starts out with good news: codimension-two branes often curve the
transverse dimensions rather than the on-brane dimensions their internal cosmologists
would measure (and this observation drove the study of the simplest solutions [29–31, 34]).
This turns out to remain true for a broad class of classical solutions [41], but not all
(including known de Sitter solutions [35, 36, 42]).

Part of what makes this hard is that it also requires a detailed picture of the mod-
ulus stabilization that fixes the size (and shape) of the extra dimensions. The physics of
back reaction shapes both the size of the extra dimensions and the curvature of the 4D
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world (and so, effectively, the 4D vacuum energy). Explicit examples exist (for instance
non-supersymmetric rugby balls [35, 36]) for which the 4D curvature is controlled by brane
tensions rather than KK scales, and the underlying scale-invariance of extra-dimensional
supergravity makes this direct connection between brane properties and the 4D cosmolog-
ical constant very robust [43, 44].

So the hard part for a successful model is to understand why the 4D vacuum energy
should be more insensitive to brane properties. It turns out that quantization of extra-
dimensional fluxes plays a crucial role in making the stabilized extra dimensions fairly
rigid, and this is largely responsible for passing on changes in brane tensions to the 4D
geometry. A big step forward was seeing how higher-dimensional flux quantization gets
captured in the low-energy 4D EFT, and it turns out this is done through the presence of
4-form flux fields [45, 46] (suggesting these are likely also important ingredients12 in the
ultimate cosmological constant story).

In SLED models a combination of extra-dimensional supersymmetry and scale-invarian-
ce helps decouple brane scales from ρ4 [51, 52], but in the end no explicit examples seem
to reduce the result by nearly enough (for the most explicit calculations see [53–56]). Our
current thinking as to why 6D models have not yet completely succeeded [57] is that the
flux-based modulus-stabilization mechanism they use [58] turns out to break the underlying
string-based accidental scale invariances described in [32] that favour flat solutions. This
has led us to develop alternative stabilization mechanisms that do not break these symme-
tries [59], and to explore the 4D implications to which such stabilizations could lead [60].
While these approaches do make progress reducing the vacuum energy, the biggest question
mark in this line of research seems to be the ubiquitous appearance of very light dilatons in
the low energy theory (organically associated with the accidental scale invariance), whose
couplings to matter seem too large to have been missed. Work is ongoing [57, 61] to see
how fatal a problem this really is.

5D vs. 6D. It is early days for making detailed comparisons contrasting how 5D and
6D models handle the back-reaction issue, but we round out this section by highlighting
some positives and negatives of the two approaches. Contrasting the newer 5D approach
with the older 6D model in this way is useful since the 6D model provides a benchmark for
what is known to be possible using standard EFT methods (and their limitations), and so
provides a yardstick against which alternatives can be compared.13

A big difference between 5D and 6D large-dimension models is the relation they pre-
dict between the KK scale, MKK , the 4D Planck scale, Mp, and the higher-dimensional
gravity scale M5 or M6. Ignoring order unity factors these are related by the well-known
relations [62]

M5 ∼
(
M2

p MKK

)1/3
and M6 ∼

(
MpMKK

)1/2
, (2.1)

12It is perhaps not surprising from this perspective that 4-forms also turn out to play a role in other
approaches to the cosmological constant problem [47–50].

13We explore here only unwarped models with large dimensions.
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which for MKK ∼ 1 eV and Mp ∼ 1018 GeV imply M5 ∼ 109 GeV and M6 ∼ 3 × 104 GeV.
Neither of these is currently ruled out as an extra-dimensional model [63], though in the
6D case order-unity factors matter because the most robust model-independent bounds14

(energy loss from hot astrophysical bodies) constrain M6 ≳ 30 GeV.
We finally briefly comment on what kinds of ingredients both approaches might require

from the point of view of a UV completion into string theory. Both assume a KK scale
determined by the value of the cosmological constant, and so both require a quasi de Sitter
compactification with a large volume of the extra dimensions as in [59, 68, 69]. Because
all dimensions cannot be this large both require this compactification to be stabilized in a
anisotropic way (as is done in [70] for the 6D case).

In both cases the Standard Model must be localised on nonsupersymmetric branes,
such as a non-supersymmetric D3 brane or D7’s wrapping a small cycle as in F-theory.
Both are consistent with swampland conjectures. The absence of an explicit string theory
realisation for either case is an interesting challenge (see however [71]). The fundamental
(string ) scale is the TeV scale for 6D and 109 − 1010 GeV for the 5D case.15

As mentioned above, both scenarios seem to be broadly viable from a phenomenological
point of view. In both cases the size of the large dimensions is by construction put above
the current experimental bound [74, 75]. The other model-independent constraints restrict
the fundamental scale and for the 6D case model building is required to exclude the photon
as the dominant decay channel for the extra-dimensional KK modes. No such evasion seems
required for the 5D scenario, though the phenomenological study of this scenario is less
well developed.

The main difference is the detailed studies of back reaction effects from non-supersym-
metric high scale branes to the bulk that are available in 6D. To our knowledge these issues
have not yet been addressed in 5D. The proof of the pudding is in the explicit calculation
of the cosmological constant, which can be done in the 6D (with, so far, insufficient sup-
pression) and which has not been done at all in 5D. This remains the main obstacle to
both approaches so far, and much work remains to see which performs the best once the
two approaches are eventually put on the same footing.

3 Conclusions

Exploring the large extra dimensions scenario in order to address the dark energy problem
is a promising avenue, either motivated by general properties of EFTs or by swampland
conjectures. 6D and 5D proposals share interesting properties, and furnish well-defined
alternatives to the anthropic proposal of Weinberg-Bousso-Polchinski [76, 77] (see [78] for
a recent review) with the potential bonus of leading to concrete low-energy predictions
that could be tested experimentally, both at colliders and different tests of gravity. Even

14One sometimes sees much more aggressive bounds quoted for the 6D case — e.g. [64–66] — but these
all rely on KK modes decaying into photons and so are more model-dependent. They can be evaded, for
instance, by coupling KK modes more efficiently to a non-Standard Model sector (sometimes colourfully
called the ‘toilet’ brane) to depress their branching ratio into photons [67].

15See [72, 73] for another proposed set of scales based also on swampland arguments.
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Yardstick 5D 6D
Kaluza-Klein Scale ∼ 1 eV ∼ 1 eV

Implied Fundamental Scale 109 − 1010 GeV 104 GeV
Consistent with Swampland Conjectures Yes Yes

Localised Standard Model Yes Yes
Bulk SUSY Breaking Scale ? ∼ 1 eV
Brane SUSY Breaking Scale 103 − 109 GeV 104 GeV

Modulus Stabilisation Mechanism? Not yet Yes
Explicit String Realisation Not yet Not yet

Viable Phenomenology Yes Yes*
Higher-Dimensional EFT Possibly Yes
Four-Dimensional EFT Possibly Yes

Allowed Bulk Cosmological Constant? Possibly No
Computable Vacuum Energy Not yet Yes

Ability to Reproduce Observed Energy Density Not yet Not yet

Table 1. Comparison of the level of development between the 5D and 6D dark dimension scenaria.
The asterisk indicates the existence of model-dependent bounds contingent on KK modes decaying
significantly into photons, whose evasion is possible but requires model building.

though, at present, neither reaches the ambitious target to explain the small size of the
measured dark energy — including all potential quantum effects — from a UV complete
theory, it is in principle possible and testable.

Table 1 summarizes at a glance similarities and differences of the 5D and 6D proposals.
In this note we convey several ideas:

• We show why for towers of states a scaling relationship between 4D vacuum energy
and the tower spacing m of the form ρ4 = mp considered in [5] can (but need not) arise
naturally within controlled EFTs describing KK towers. In generic compactifications
with nonvanishing curvature the coefficients in these scaling relations can (but need
not) depend on higher-dimensional UV scales as well as on m. The EFT analysis is
instructive because it also tells you why and when these kinds of relations hold.

• If a tower of states is hit as one climbs in energy then the first nontrivial level is as high
as the low-energy EFT can possibly be applied. For instance, a lower-dimensional
analysis of 4D states in the middle of a KK tower is never under EFT control.

• Proposals using large dimensions to explain dark energy never allow the Standard
Model to live in the extra dimensions and so don’t live in a KK tower in the large
dimensions (being instead localized on a brane, say). The special properties of tower
vacuum energies are not then directly relevant to their contribution to the vacuum

– 12 –



J
H
E
P
0
9
(
2
0
2
3
)
1
5
9

energy (the cosmological constant problem). Instead, these models make the dark
energy problem into an exercise for which back reaction becomes the important ques-
tion. One must re-ask the cosmological constant problem question in the higher
dimensions: why do UV scales like brane tensions (which cannot be BPS because of
the lack of supersymmetry) not source the vacuum energy. (This is the hard part of
the problem, of course, and seems not yet addressed in detail in 5D.)

• The new 5D and older 6D proposals seem equally consistent from the swampland
point of view, inasmuch as they both seem to satisfy the relevant conjectures (though
we do not claim to be up-to-date with the modern canon). But are broadly phe-
nomenologically viable against model-independent experimental tests. 5D models
are less tightly pressed because it involves a higher extra-dimensional gravity scale.
6D models require model building to ensure that the leading decay mode for KK
modes is not into photons (which can be done by providing them with more efficient
decays into invisible final states).

• 6D models mostly benefit from having been studied in more detail so the back-reaction
problem is better understood there, at least for some stabilization mechanisms. This
experience might be useful for exploration of the 5D models.

Most importantly, no 5D or 6D model has a completely satisfactory calculation of
the vacuum energy or resolution of the cosmological constant problem, and so all are best
regarded as works in progress.
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