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Using QCD sum rules, supplemented with projected correlation function approach, we have calculated 
coupling constants of an eta-meson with the two lowest mass nucleon resonances. This includes both 
the diagonal as well as non-diagonal coupling constants involving a nucleon resonance and a nucleon. 
For this, we first calculate vacuum-to-eta correlation function of the interpolating fields of two nucleons 
and then take its matrix elements with respect to a nucleon spinor and/or a nucleon resonance spinor(s). 
Desired coupling constants are obtained by solving different equations obtained from different matrix 
elements. Stability of the results with respect to variation of different QCD and phenomenological input 
parameters has been checked. We have also analyzed the effect of the changes in the coupling constants 
under the hypothetical situation when the contribution of the hidden strangeness is removed and when 
that of the anomalous glue is removed from the correlation function.

© 2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

The study of the structure and interactions of nucleon resonances has been getting increasing attention in last few decades. In a 
recent study the role of nucleon resonances in spin-dependent observables of nucleons has been emphasized [1]. The meson-nucleon 
interaction has played a crucial role in the investigation of the nucleon and its resonances. The interaction of the isoscalar η-η′ mesons 
with the nucleon and its resonances are of particular interest, since these pseudoscalar mesons carry the footprints of chiral symmetry 
beaking and gluon dynamics, contain hidden strangeness and their phenomenology is characterized by substantial OZI-violation [2]. A 
reliable determination of the coupling constants gN∗ηN and gN∗ηN∗ , where N* stands for a nucleon resonance, will be useful for con-
struction of realistic NN potential, and will have an essential role in analysing photoproduction, electroproduction and hadroproduction 
of η-mesons and πη- mesons on nucleon targets. It has been observed that the N(1535) resonance strongly dominates the photopro-
duction of η-mesons on a single nucleon [3–5]. On the other hand, for the Roper resonance N(1440), which is about 50 MeV below η
N threshold, an excitation in η photoproduction can be considered due to its large width of 350 MeV [6]. In general, for describing NN 
observables, it has been found that the N(1535) resonance has a tendency to counterbalance the contributions of the N(1440) resonance 
[7].

In early studies, it has been found that the N(1440) coupling with the η-meson is rather small indicating that this resonance may not 
be significant player in (γ , η) process [8]. On the other hand, some authors maintain that ηNN(1440) coupling strongly contributes to 
the near threshold production of the η-meson [9]. Among the possible coupling constants of the η-meson with the nucleon resonances, 
in the literature we have found the estimates of only ηNN(1535) and ηNN(1650) coupling constants. These coupling constants have been 
determined mostly by fitting the data on η-meson production on a proton via electromagnetic probes [10–13,4,14,6,15–20,5,21,22,8], 
and some via hadronic probes [23,24,3,25–27,7]. Theoretical analyses of determination of these coupling constants are based on effective 
Lagrangian approach [3,25,19,8,7,28], chiral quark model [17,20,18,22], coupled-channels approach [14,16,26,27,29–31], isobar model [12,6,
5], dispersion relation [12], Regge model [20], K-matrix approach [3], non-local interaction model [4], etc. Some authors have emphasized, 
using phenomenological Lagrangian, the role of axial U (1)A anomaly on the decay N(1535)→Nη [28]. In recent past, QCD-based methods 
have been used to determine coupling constants of a pion with the low-lying nucleon resonances [32]. These methods have advantage of 
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giving a microscopic view of hadronic interactions and providing a test of QCD at low energies. Furthermore, these methods can be applied 
to determine even those coupling constants of η-meson with nucleon resonances which have not been estimated by any experimental 
analysis so far.

2. The sum rules

In order to calculate the coupling constants of eta-meson with the nucleon resonances, we are going to follow the method developed 
in Ref. [33]. We first consider a correlation function.

�(q, p) = i

∫
d4x eiqx〈0|T { J p(x) J̄ p(0)}|η(p)〉 (1)

where J p(x) is the most general form of the interpolating field of a proton and its resonances and is made up of three quark fields without 
any derivative:

J p = 2εabc[(uaT Cdb)γ5u
c + t(uaT Cγ5d

b)uc] (2)

In the above equation a, b, c are color indices and t is an arbitrary real parameter. Depending upon the problem, different values of t have 
been used in the literature, though t = −1 is used generally where only proton is involved [34]. A general requirement for the choice of a 
specific value of t should be the stability of the result for the physical quantity under consideration upon changes in t around its chosen 
value. We parameterize the couplings of J p with the nucleon and its resonance states as

〈0| J p(0)|N(k, s)〉 = λuN(k, s) (3)

〈0| J p(0)|N+(k, s)〉 = λ1 uN+(k, s) (4)

〈0| J p(0)|N−(k, s)〉 = λ2 iγ5 uN−(k, s) (5)

where N, N+ and N− stand for the nucleon, N(1440) and N(1535) states and + and − denote the parity of the state. The correlation 
function �(q, p) can be evaluated phenomenologically as well as using operator product expansion (OPE). For the former, we will saturate 
the �(q, p) with the nucleon and its resonance states and use the following Lagrangian:

L = g1 N̄iγ5ηN + g2 N̄+iγ5ηN+ + g3 N̄−iγ5ηN− + g4(N̄iγ5ηN+

+N̄+iγ5ηN) + g5(N̄ηN− + N̄−ηN) + g6(N̄+ηN− + N̄−ηN+)
(6)

The phenomenological expression for the correlation function �(q, p) is as given in the Appendix of Ref. [32]. The Wilson coefficients of 
the OPE are calculated in two steps: the light-cone expansion of the correlation function is performed first. The short-distance expansion of 
the vacuum-to-eta matrix elements of the light-cone operators is performed next. The parameterization of vacuum-to-eta matrix elements 
of the light-cone operators has been taken from Ref. [35].

We define the projected correlation function [33,36] as

�
i j
+(q, p) = ūi(q, r)γ0�(q, p)γ0u j(q − p, s) (7)

where each of (i, j) stand for N, N+ or N− . �i j
+(q, p) can be regarded as a function of q0 in the reference frame in which q=0. The 

odd and even parts of �i j
+(q0) satisfy dispersion relation which can be Borel transformed with respect to q20; this gives the following 

equations:

B[�i j
+o(q

2
0)] = 1

π

∫
dq′

0 e−q′2
0 /M2

Im�
i j
+(q′

0) (8)

B[�i j
+e(q

2
0)] = 1

π

∫
dq′

0q
′
0 e−q′2

0 /M2
Im�

i j
+(q′

0) (9)

For calculating the correlation function using OPE, we have used quark-gluon basis [37,35]. Following is the result of our OPE evaluation 
of the correlation function �(q, p):
2



J.P. Singh Physics Letters B 840 (2023) 137874
�(q, p) = ihqCγ5
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(10)

In the above equation, C=cosφ where φ is the mixing angle in quark-flavor scheme. fq and f s are decay constants of isoscalar vector 
quark currents in quark-flavor basis. The constant hq/mq appears in parameterization of the matrix elements of isoscalar pseudoscalar as 
well as tensor quark currents between vacuum and one-meson state in quark-flavor basis and is parameterized as: hq/mq=−4 fq〈q̄q〉/ f 2π . 
Details of the notation can be found in Ref. [35] and references therein. As explained in [35], the light-cone expansion of the 
quark propagator gives rise to topological charge density ∼ αsGG̃ whose vacuum-to-η-meson matrix element gives rise to aη-term, 
where

aη = −
m2

η′ −m2
η√

2
sinφcosφ(− fqsinφ + √

2 f scosφ). (11)

f3π appears in two-particle wave function of twist-3 as well as in three-particle pion wave function [38] and is also generally used for η-
meson wave function [39,35]. t-dependence of �(q, p) appears in form of t1 = 5 + 2t + 5t2, t2 = 2 + 20t + 2t2, t3 = t4 = 7 − 2t − 5t2, 
t5 = 7 + 22t + 7t2, t6 = (1 − t)2, t7 = (1 − t)(15 + 21t), t8 = (1 − t)(19 + 17t), t9 = 3 − 2t − t2 and t10 = 1 + 4t + t2. Expression 
(10) has some differences from our previous result for �(q, p) in [35] in the limit t = −1 and the above result should supersede 
that.

The coefficients of ūN iγ5uN in the phenomenological as well as in the OPE expressions of the projected correlation function have 
been Borel transformed. The expression for the phenomenological form is as given in Ref. [32]. The OPE expression has the following 
form:
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B[�NN+o ]O P E = M2
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In the above equation m, m1 and m2 are masses of N, N+ and N− states. The continuum contribution of B[�NN+o ]ph is modelled by 
�(q, p)O P E with q20 > sη , a threshold parameter and only terms with positive powers of q0 are taken into account [34,33]. This con-
tinuum contribution has been transferred and combined with B[�NN+o ]O P E in form of E0, where E0(x) = 1 − e−x as is generally done 
[34]. L = αs(μ

2)/αs(M2) and it appears in the OPE expression of the correlation function for renormalization group improvement; the 
anomalous dimensions of various operators have been taken from Refs. [34,40]. Ek1 and ωp1 are the final state energies of the nucleon 
and η-meson when the initial state nucleon is at rest. We have done a similar exercise with �N+N++o , �N−N−+o , �N+N

+o and �N−N
+o also 

getting five equations in all. The emitted η-meson has significant energies for N+ → N and N− → N processes. We are giving below the 
expression for B[�N−N

+o ]O P E to demonstrate its characteristic difference.
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Fig. 1. Plots of a combination of projected correlation functions, obtained from OPE, as a function of t for a typical case with sη=2.7 GeV2, 〈q̄q〉 = −0.0117 GeV3 and other 
QCD parameters as given in the text for M2= (2.7, 3.0, 3.2) GeV2 have been shown in Fig. (a). Plots of the same functions as functions of cosθ (t = tanθ ) have been shown in 
Fig. (b).

where Ek5 and ωp5 are the final state energies of the nucleon and η-meson when the initial state is N−-resonance at rest.

3. Numerical estimates

We have nine coupling constants gi ’s including six non-diagonal ones involving nucleon and its resonances. The phenomenological 
form of the correlation function also contains derivatives of these coupling constants g′

i ’s. The coupling constant of η-meson with the 
nucleon only, g1, can be determined only with �NN+o as done in Ref. [35] with a smaller continuum threshold sη=2.57 GeV2. Here, we 
have proceeded somewhat differently from Ref. [32] to determine the four coupling constants involving nucleon and its resonances. In the 
present work, we have approximated g6(m2) = g6(m1) + (m2 −m1)g′

6(m1) and assumed g′
6(m2) = g′

6(m1). The three coupling constants 
g4(m), g5(m) and g6(m1) and their derivatives can be eliminated using four equations. Each one of the coupling constants g4(m) and 
g5(m), and its respective derivative appears in a specific combination; each pair can be eliminated using one equation whereas g6(m1)

and g′
6(m1) require one equation each for elimination. Thus, we are left with the four coupling constants, g2(m1), g3(m2), g4(m1) and 

g5(m2) (hereafter denoted simply as g2, g3, g4 and g5), and their derivatives only to be determined. We have tried to fit the combination 
of the projected correlation functions containing these coupling constants and their derivatives with its OPE counterpart over a suitable 
range of Borel mass squared M2. Among the many sets of possible values of gi ’s and g′

i ’s, we have tried to retain a set which has the 
lowest possible values of gi ’s and g′

i ’s, more so for gi ’s. To the best of our knowledge, in the literature there exist estimates of only g5 out 
of the four coupling constants. We have tried to keep values of g5 close to these values. It may be noted that a set of gi ’s (i = 2, 3, 4, 5) 
with small values can be made to fit over the desired range of M2, but that will require, in general, large values of g′

i (i = 2, 3, 4, 5). 
Hence, we choose only those sets where both gi and g′

i are small.
Following values of parameters have been used in this work (all quantities, unspecified, are in GeV unit): �Q CD=0.355, 〈q̄q〉=

(−0.0117, −0.0145), 〈αs
π G2〉=0.012, 〈q̄gσ .Gq〉=m2

0〈q̄q〉 with m2
0=0.8, δ

2=0.2, fπ =0.093, f3π =0.0045, fq = 1.07 fπ , f s = 1.34 fπ , sη=(2.7, 3.0), 
s′η=2.57, m1=1.44, m2=1.54, φ=40◦ .

First, we check the stability of our results with respect to variation of the parameter t. For this we first plot the combination of the 
OPE expressions of the projected correlation functions, which will be matched with the corresponding phenomenological expression, with 
respect to t. In Fig. 1a we have shown such a plot for a typical case of 〈q̄q〉=−0.0117 GeV 3, sη=2.7 GeV 2 and M2=(2.7, 3.0, 3.2) GeV2

to show its behavior close to the origin. In Fig. 1b, the same functions have been plotted with respect to cosθ (t=tanθ ) for displaying 
their large t behavior. For M2=3.0 GeV 2, the minimum occurs for t=−0.436. The coupling constants λi ’s of the interpolating field J p
with the nucleon and its resonances have been determined from the mass sum rule [41,32]. A plot of the chirality conserving part of the 
polarization operator, constructed from J p and including radiative corrections, as a function of t was found to have a minimum at t � −0.2
[32]. Here, we have also found that the ratio of the combination of the projected correlation functions to the chirality conserving part of 
the polarization operator has a plateau for t � −20 and for t � 20. Based on these observations, we have shown in Table 1 our exploratory 
results of fit of gi and g′

i over a chosen range of Borel mass parameter 2.6 GeV 2 � M2 � 3.2 GeV 2. At the upper limit, the continuum plus 
resonance contribution is up to 40% of the perturbative contribution whereas at the lower limit the last term in the expansion, namely 
1/M2-term is up to 25% of the total contribution. We emphasize that we determine λ(t), λ1(t) and λ2(t) for each value of t separately to 
use them in �ph .

It is clear from Table 1 that the results for gi ’s and their derivatives are relatively stable around t = −0.436 but start deviating beyond 
a range of �t= ±1. In addition to the parameter t, we have also varied the continuum threshold sη and the quark condensate 〈q̄q〉. 
We have varied sη between (2.7 − 3.0) GeV 2 which covers the mass of the next nucleon resonance N(1650) along with its width. In 
view of different values of 〈q̄q〉 used in the literature, we have also found results for 〈q̄q〉 = −0.0145 GeV 3. It is to be noted that the 
minimum of the combination of the projected correlation functions for this case occurs at t = −0.55. A sample of the results for all these 
parameter variations has been shown in Table 2. Variations in gi ’s and g′

i ’s due to changes in 〈αs
π G2〉, δ2, m2

0 and f3π , φ, fq and f s are 
insignificant.

A similar analysis with the even projected correlation function �i j
+e gives larger continuum contribution and larger contribution of 

1/M2 terms, and hence we have not considered it.
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Table 1
Our results on coupling constants of an η-meson with low-lying nucleon resonances for various parameter values, 〈q̄q〉
=−0.0117 GeV 3, sη=2.7 GeV 2 and other QCD parameters as given earlier in the text.
t g2 g3 g4 g5 g′

2 g′
3 g′

4 g′
5 matching range 

of M2

0 0.4 29.54 -8.85 6.73 26.0 -22.74 -32.68 -0.03 2.3 - 3.5
-0.2 2.75 4.42 -28.77 -2.24 -30.58 27.83 -64.87 34.38 2.5 - 3.25
-0.32 1.35 -9.38 -13.43 -0.59 112.32 101.0 2.57 -47.19 2.6 - 3.25
-0.436 1.87 -16.63 -7.35 -1.15 26.84 68.99 -15.36 40.58 2.55 - 3.2
-0.54 1.15 -19.85 -17.85 -0.5 -17.65 56.77 5.25 59.16 2.6 - 3.2
-0.7 1.0 -29.75 -7.52 -6.12 -123.5 137.29 -207.99 58.09 2.65 - 3.2
-1.0 4.8 -33.89 -14.09 -11.28 -23.81 -21.72 137.03 116.9 2.6 - 3.2

-20.0 -2.96 31.46 0.44 31.17 -60.82 -114.41 -47.75 -120.7 2.4 - 3.4
20.0 44.77 41.12 56.27 5.34 -73.31 96.65 -76.73 -120.3 2.5 - 3.4

Table 2
Our results on coupling constants of a η-meson with low-lying nucleon resonances for various parameter values, and other QCD parameters 
as given earlier in the text.
t 〈q̄q〉

(GeV 3)
sη
(GeV 2)

g2 g3 g4 g5 g′
2 g′

3 g′
4 g′

5 matching range 
of M2

-0.32 -0.0117 2.7 1.35 -9.38 -13.43 -0.59 112.32 101.0 2.57 -47.19 2.6 - 3.25
-0.32 -0.0117 3.0 1.21 -5.14 -17.56 -1.41 106.96 91.35 86.84 -25.63 2.55 - 3.2
-0.436 -0.0117 2.7 1.87 -16.63 -7.35 -1.15 26.84 68.99 -15.36 40.58 2.55 - 3.2
-0.436 -0.0117 3.0 2.43 -14.96 -4.76 -1.59 63.96 93.21 -118.25 45.28 2.55 - 3.2
-0.54 -0.0117 2.7 1.15 -19.85 -17.85 -0.5 -17.65 56.77 5.25 59.16 2.6 - 3.2
-0.54 -0.0117 3.0 2.69 -15.04 -13.28 -5.69 -0.3 36.7 -63.05 108.37 2.6 - 3.15
-0.436 -0.0145 2.7 2.71 -29.83 -23.95 -5.65 43.05 10.44 55.56 184.34 2.68 - 3.3
-0.436 -0.0145 3.0 5.63 -28.58 -27.96 -6..45 62.15 93.21 -87.84 163.91 2.6 - 3.2
-0.55 -0.0145 2.7 4.99 -30.67 -10.46 -7.65 63.79 34.71 116.53 147.44 2.6 - 3.2

f s=0

-0.436 -0.0117 2.7 2.09 -14.77 -13.22 -1.2 49.82 65.42 29.77 47.5 2.55 - 3.2

aη = 0

-0.436 -0.0117 2.7 1.73 -17.18 -5.97 -0.25 40.95 89.72 22.81 18.36 2.55 - 3.2

Fig. 2. A combination of projected correlation functions plotted as a function of Borel mass squared, M2. The values of parameters used for Fig. (a) are: t = −0.436, sη=2.7 
GeV 2, 〈q̄q〉=−0.0117 GeV3, and g2=1.87, g3 = −16.63, g4 = −7.35, g5 = −1.15, g′

2=26.84, g′
3=68.99, g′

4 = −15.36, g′
5=40.58; for Fig. (b) the values of the parameters are: 

t = −0.436, sη=3.0 GeV 2, 〈q̄q〉=−0.0117 GeV3, and g2=2.43, g3 = −14.96, g4 = −4.76, g5 = −1.59, g′
2=63.96, g′

3=93.21, g′
4 = −118.25, g′

5=45.28.

In general, numerical values of the coupling constants gi ’s increase with the increase in numerical value of 〈q̄q〉. This was also observed 
for the coupling constants of a pion with the nucleon resonances [32]. It is also noticed that there are relatively larger changes in the 
derivatives of the coupling constants g′

i ’s on variation of the input parameters. We believe this is an artifact of the method. In Figs. 2–4
we have shown some of the fits of a combination of [�i j

+o]ph ’s with the same combination of [�i j
+o]O P E ’s over a range of M2. On setting 

f s = 0, g4 gets almost doubled whereas other coupling constants have undergone marginal changes. On the other hand, for aη = 0, it is 
g5 which undergoes a dramatic reduction while other coupling constants get marginally changed. This is in accordance with the claim of 
Ref. [28] that the axial U (1)A anomaly is responsible for enhanced coupling g5. Based on the analysis of our results, we find the following 
values of the coupling constants of the η-meson with the nucleon and its resonances:

g2 ≡ gN+ηN+ = 3.39± 2.24, g3 ≡ gN−ηN− = −17.91± 12.77

g ≡ g = −16.36± 11.60, g ≡ g = −4.08± 3.58
(14)
4 N+ηN 5 N−ηN
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Fig. 3. A combination of projected correlation functions plotted as a function of Borel mass squared, M2. The values of parameters used for Fig. (a) are: t = −0.32, sη=2.7 
GeV 2, 〈q̄q〉=−0.0117 GeV3, and g2=1.35, g3 = −9.38, g4 = −13.43, g5 = −0.59, g′

2=112.32, g′
3=101.0, g′

4=82.57, g′
5=-47.19; for Fig. (b) the values of the parameters are: 

t = −0.436, sη=2.7 GeV 2, 〈q̄q〉=−0.0145 GeV3, and g2=2.71, g3 = −29.83, g4 = −23.95, g5 = −5.65, g′
2=43.05, g′

3=10.44, g′
4=55.56, g′

5=184.34.

Fig. 4. A combination of projected correlation functions plotted as a function of Borel mass squared, M2. The values of parameters used for Fig. (a) are: t = −0.54, sη=3.0 
GeV 2, 〈q̄q〉=−0.0117 GeV3, and g2=2.69, g3 = −15.04, g4 = −13.28, g5 = −5.69, g′

2 = −0.3, g′
3=36.7, g′

4 = −63.05, g′
5=108.37; for Fig. (b) the values of the parameters are: 

t = −0.436, sη=2.7 GeV 2, 〈q̄q〉=−0.0117 GeV3, aη = 0 and g2=1.73, g3 = −17.18, g4 = −5.97, g5 = −0.25, g′
2=40.95, g′

3=89.72, g′
4 = 22.81, g′

5=18.36.

Table 3
List of some results on coupling constants of a η-meson with nucleons (g1), and with nucleon and N(1535) 
resonance (g5) from recent literature.
Ref. g1 g5 Comment

[10] 1.58 - 2.14 Effective Lagrangian + Regge approach
[23] -1.86 (p, p′) reaction on spin-isospin saturated nucleus
[24] 0.68 1.88 Effective Lagrangian approach
[42] -2.57 ±0.17, -2.07±0.15 Effective Lagrangian approach
[43] ±1.84 Coupled-channel unitary approach
[44] ±(0.97± 0.45) Photoproduction
[11] 0.07, 0.088 -2.61, 1.92, 2.7 Photoproduction
[12] 0.92, 0.39 -3.97, -3.19 Dispersion relation + isobar model
[3] -2.10 − (-2.16) K-matrix approach
[25] - 2.2 Effective Lagrangian approach
[13] -2.08, -2.1 Relat. calculation incoherent photoproduction
[4] -2.24 - 2.1 Relativistic non-local model
[35] 0.96 ± 0.3 QCD sum rule + projected correl. function
[31] ± 2.1 Coupled-channel unitary approach

where we have introduced conventional notation for the sake of clarity. Since N+ has the same parity as N, though the masses are 
different, we expect g2 should not be very different from g1 which has been estimated by different authors (see Table 3). Also, according 
to some authors η-meson strongly couples to the Roper resonance [9] which will make g4 rather large.
7
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4. Summary and conclusion

η production offers an appropriate frame to study the properties of the nucleon resonances [20] and this, in turn, requires the knowl-
edge of the coupling constants of η-meson with the nucleon resonances. In this work we have been able to determine even those coupling 
constants of η-meson with the nucleon resonances which are hard to extract from the available experimental data. Our approach, based 
on projected correlation function, has given us a handle to quantify the contributions of the axial anomaly and those of the hidden 
strangeness to these coupling constants.
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