
Eur. Phys. J. C (2023) 83:507
https://doi.org/10.1140/epjc/s10052-023-11685-7

Regular Article - Theoretical Physics

Imprints of Casimir wormhole in Einstein Gauss–Bonnet gravity
with non-vanishing complexity factor

M. Zubaira , Mushayydha Farooqb

Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan

Received: 25 February 2023 / Accepted: 4 June 2023 / Published online: 14 June 2023
© The Author(s) 2023

Abstract This article investigates Casimir wormhole solu-
tions in Einstein Gauss–Bonnet (EGB) gravity. We are famil-
iar that Null energy conditions (NEC) need not be satisfied
for a stable wormhole due to the existence of exotic matter. As
the Casimir effect acts as a negative energy source, it can be
treated as a classical applicant for the exotic matter to discuss
the stable dynamics of the wormhole. This work explores the
Casimir effects with the Generalized Uncertainty Principle
(GUP) on wormhole geometry in EGB gravity by confin-
ing our results for D = 5. We have examined two GUP
procedures, e.g., Kempf, Mangano, Mann (KMM) and Den-
tournay, Gabriel, and Spindel (DGS). We have developed
shape functions for Casimir wormholes, and GUP corrected
Casimir wormholes and studied their existence. In addition,
we investigate the behavior of the Gauss–Bonnet (GB) Cou-
pled parameter and minimal uncertainty (MU) parameter on
the Equation of state (EOS) parameter. The active gravita-
tional mass and embedding diagrams for all developed shape
functions are analysed. Moreover, the violation of the NEC
by an exotic matter, the equilibrium forces, and the complex-
ity factor of Casimir wormholes and GUP-corrected Casimir
wormholes have also been explored.

1 Introduction

In 1935, Einstein and Rosen discussed the concept of the
hypothetical link called the wormholes or Einstein–Rosen
bridge via space-time by considering the framework of Gen-
eral Relativity (GR) [1]. These bridges or tunnels connect
two different paths of the same cosmos or create a shortcut.
Still, the existence of wormholes should be explored exper-
imentally. In 1988 Morris and Thorne established the idea
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of traversable wormholes [2]. They presented a new class
of solutions of Einstein field equations that narrate worm-
holes and predict the existence of wormhole throat, which
does not have a horizon problem. The stability in traversable
wormholes depends on the presence of exotic matter. It is
known that exotic matter in wormholes violates the NEC.
The dynamics of wormholes have been studied with differ-
ent modified theories in literature intensively [3–10]. The
cosmic evolution of wormhole geometries in f (R) modified
gravity has been discussed [11,12]. The exact solution of
the wormhole in the presence of phantom energy has been
evaluated, and it found out phantom energy is limited in the
vicinity of the wormhole throat [13]. The wormhole geome-
teries are discussed in other modified gravities e.g. f (R)

[11,14], f (T ) [15,16], BD theory [17–20], f (R, T ) [21],
scalar–tensor teleparallel gravity [22]. Recently, Kimet Jusufi
and his fellow researchers [23] studied the existence of worm-
holes in 4D EGB gravity. In this article, they have developed
shape functions with various techniques and analyzed worm-
hole conditions. Many efforts have been made in the literature
to cut down the exotic matter content. Visser proposed one
such model in which he suggested a traversable path should
not be fallen in an area of exotic matter [24]. Interestingly,
no such traversable wormhole has been found because it is
nearly impossible to have enough negative energy density.
Scientists have proved that negative energy can be created in
laboratories known as Casimir energy [25].

Dutch physicist Hendrik Casimir suggested the phe-
nomenon of the Casimir effect in 1948. A force may exist
between the uncharged, parallel, conducting plates [25].
Garattini [26] considered Casimir energy a potential source
to study the existence of traversable wormholes. The Casimir
effect strongly depends on geometry’s shape and is an artifi-
cial source of energy. This form of energy is a suitable source
for traversable wormhole as the quantum field of the vacuum
between two parallel uncharged plates give rise to negative
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energy density. The most recent work in quantum mechan-
ics deals with the idea of the minimal length of the order
of Planck length. The purpose of using a minimal length
scale is to restrict the resolution of small space-time dis-
tances. Therefore, it comes up with MU in the position.
We can redefine the Casimir energy density with the gen-
eralized uncertainty principle (GUP). Therefore, scientists
find it quite exciting to work with GUP-corrected wormholes
with traversable wormholes. Jusufi et al. [28] studied three
types GUP models with the source term Casimir energy den-
sity. The GUP-corrected Casimir wormholes are discussed in
f (R, T ) modified theory by Tripathy [29]. The effects of the
MU parameter and theory-coupled parameters on wormhole
conditions, EOS, and energy conditions have been studied. In
weak limit approximation, Javed et al. [30] investigated the
weak deflection angle of the photon by Casimir wormhole.
They use Gauss–Bonnet theorem on Gaussian optical space-
time to find Gaussian optical curvature. In another article, the
authors explore the relationship between an absurdly benign
traversable wormhole and Casimir energy [31]. They gener-
alized the idea of Absurdly Benign Traversable Wormhole
and explored that wormhole throat is Planckian, but huge.
Muniz et al. studied the Casimir effect between the parallel
plates in the space-time of a rotating wormhole [32].

The EGB Gravity is a particularly basic example of the
larger class of gravitational theories known as Lovelock
Gravities, which were proposed by Lovelock [33]. Higher
power curvature terms are present in the actions of these
gravities, but second-order derivatives in the metric are main-
tained in the subsequent equations of motion. As a result,
Lovelock gravities act as GR most natural extension to
higher-dimensional spacetimes. This theory, the most exten-
sive of higher curvature gravities, demonstrates second-order
equations of motion and has a number of attractive character-
istics in common with Einstein gravity that are missing from
other higher curvature gravities theories. Since, we know that
the polynomial type of the Lagrangian in Lovelock theories,
the first terms is the Einstein–Hilbert action, while the second
order term correspond the GB invariant, which is defined as

G = R2 − 4Rαβ R
αβ + RαβδηR

αβδη.

The Ricci scalar, Ricci tensor, and Riemann curvatures are
represented by a particular combination known as the Gauss–
Bonnet invariant, abbreviated as G. The f (R) formalism
has previously been used to study Casimir wormholes in
the setting of modified gravity, taking into account two dis-
tinct models: f (R) = R + αR2 and f (R) = f0Rn [34].
We have concentrated on EGB gravity in our research. A
noteworthy property of EGB gravity, the potential presence
of two separate maximally symmetric solutions, even with
distinct curvature scale signs, is what drives the study of
wormhole solutions. The flaring-out condition is a crucial
need for traversable wormholes. In the background of GR,

this condition entails the violation of the NEC. Extensive
study has been done to lessen the dependency on exotic
matter in light of the energy condition violations [35,36].
It has been interestingly found that higher-dimensional cos-
mological wormholes [37] and wormholes in modified grav-
ity theories with higher-order curvature invariants can sat-
isfy the energy requirements at the throat [38–40]. Since the
higher-order curvature terms, which can be thought of as a
gravitational fluid, support these non-conventional wormhole
geometries, it has been shown that it is possible to impose
matter threading the wormhole throat to stick to all of the
energy conditions in modified gravity. In order to allevi-
ate the energy condition violations, particularly at the throat
area, wormhole geometries in higher-dimensional theories
are therefore strongly encouraged. The GB term is defined
in this theory along with the Lanczos tensor, which results
in the Weyl tensor. The curvature of spacetime is quantified
by the Weyl tensor. The Riemann curvature tensor is used
to assess curvature in all other theories using the GB term,
such as f (G), f (G, T ), f (G, R), etc. The Riemann curva-
ture tensor can offer information on changes in a body’s vol-
ume, whereas the Weyl tensor only indicates how tidal forces
cause a body’s shape to change. This is where the differences
between the two tensors reside. Information on changes in
volumes caused by tidal forces is precisely captured by the
Ricci curvature, also known as the trace component of the
Riemann tensor. As a result, the Weyl tensor can be thought
of as the Riemann tensor’s traceless component. The Rie-
mann tensor’s symmetries are shared by this structure, but it
also has to be trace-free. The EGB theory thus appears as a
plausible and suitable option to study the importance of the
GB invariant in respect to the Lanczos tensor.

This article investigates the wormhole space-time geom-
etry in EGB gravity powered by Casimir wormhole. The
Lorentzian wormhole solutions were studied in the N-
dimensional EGB gravity [41]. The solution of these worm-
holes greatly depends on the space-time dimension and the
GB parameter. These two parameters play an essential role
as wormhole throat radius is also constrained by them. More-
over, they studied the dynamics of these parameters for weak
energy conditions (WEC) in the neighbourhood of worm-
hole throats only [41]. Also, authors explored the Lorentzian
wormhole solutions of third-order Lovelock gravity [42].
They explored that wormhole throat has a lower bound
depending upon the lovelock coefficient, space-time dimen-
sion, and function shape. The reference [43] discussed the
dynamical wormholes in lovelock gravity. They constructed
the shape function by constraining the Ricci scalar and three
scale factors. Maeda at el. [44] evaluated static and symmet-
ric wormholes in EGB gravity for D ≥ 5. In a Similar work,
authors discussed the WEC of traversable wormholes in 5D
EGB gravity [45]. They have constructed shape functions by
considering specific EOS and traceless energy moment ten-
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sors (EMT). In the background of N-dimensional EGB grav-
ity, authors studied the Gaussian and Lorentzian distributed
noncommutative geometry of wormhole [46]. They studied
the dynamics of GB coupled parameters for the fifth and sixth
dimensions.

Recently, Herrera [47] introduced the self-gravitating sys-
tem in an anisotropic system to calculate the vanishing com-
plexity factor. He has explored general mass function and
used the orthogonal splitting of the tensor(curvature) for Tol-
man mass and structure scalars. In 2009, Herrera et al. [48]
studied the primary outcomes of gravitational collapse con-
cerning the Israel-Stewart notion for viscid dissipative anal-
ysis with bulk shear viscosity. Herrera et al. [49] discussed
the solutions for the self-relativistic gravitating collapse in
dissipative situations in the background of Post-quasi static
estimation. Moreover, by extending the work to the dissipa-
tive case in the form of free radiation streaming and heat flow,
the scientist Herrera and Santos [50] studied the gravitational
collapse in the framework of the Misner and Sharp approach.
In addition to this, Herrera et al. [51] concluded their findings
in self-gravitating collapsing source with anisotropic matter
distribution on the system of the equation, which brings about
the actual state for vanishing spatial gradients of energy den-
sity. In 2019, the complexity factor for the self-gravitating
system in modified GB gravity has also been calculated [52].
Complexity factor for a class of compact stars in f (R, T )

modified gravity has been explored by [53]. Moreover, Abbas
and Nazar [54] studied the complexity factor in f (R) modi-
fied gravity for anisotropic system in non-minimal coupling
metric.

The order of the present paper is as follows: in Sect. 2, we
presented the basic formalism of higher dimensional EGB
gravity and developed the field equations using static worm-
holes. In the same section, we have discussed the worm-
hole solution by NEC. The Casimir effect and solution of
Casimir wormholes have been discussed in Sect. 3. In the next
Sect. 4 we have discussed GUP corrected Casimir wormholes
in EGB gravity. The active gravitational mass and worm-
hole geometry is discussed in Sects. 5 and 6 respectively. In
Sects. 7 and 8, we have calculated the equilibrium forces and
complexity factor of Casimir wormhole and GUP-corrected
Casimir wormholes, respectively. We have summarized our
results in the last Sect. 9.

2 Basic formalism of field equations of EGB gravity

The action in the background of EGB is expressed as follows
[45],

IG =
∫

dDx
√−g

(
R + μ2G

)
, (1)

where R is Ricci scalar, D defines the dimension of spacetime
and μ2 is GB coefficient. The GB invariant is expressed by
G. The expression for GB invariant is

G = R2 − 4Rαβ R
αβ + RαβδηR

αβδη. (2)

By varying the action w.r.t metric tensor, the field equations
can be written as

Gαβ + μ2Hαβ = Tαβ, (3)

Here Gαβ represents Einstein tensor,Hαβ GB tensor and Tαβ

is EMT. The expression for Hαβ is as follows

Hαβ = −1

2
Ggαβ + 2

[
RRαβ − 2Rασ R

σ
β

−2RαρβνR
ρν − 2Rαabc R

abc
β

]
. (4)

We have considered that 8πGD = 1, where GD is D dimen-
sional gravitational constant. The wormhole geometry for
D − 2 sphere is expressed as [45],

ds2 = −e2
(r)dt2 +
(

1 − b(r)

r

)−1

dr2 + r2d�2
D−2, (5)

where �2
D−2 shows metric on the surface of the D−2 sphere.

The gravitational redshift function is denoted by 
(r) and
known as simply redshift function. The gravitational redshift
is defined as the required frequency a photon will have when
dragged out of gravitational potential. Dragging photons out
of gravitational potential requires energy, which is propor-
tional to its frequency. The increase in energy increases fre-
quency called the redshift function. It must be noted that a
photon cannot have enough energy to escape if a wormhole
has an event horizon. To avoid the horizon, the redshift func-
tion should be finite everywhere in the domain. The shape
function is denoted by b(r), and it predicts the shape of the
wormhole. The shape of the wormhole can be seen through
the embedding diagram [2]. The radial coordinate r is non-
monotonic, which ranges from r0 < +∞ where r0 is the
throat of the wormhole. It is defined as a throat that con-
nects two faces since the wormhole has two faces. The b(r)
at wormhole throat satisfies b(r0) = r0. The flaring out con-
dition says that b′(r0) < 1 or it can be understand in this way
b(r) − rb′(r)

b(r)2 > 0 where ′ shows derivative with respect to r .

The asymptotically flatness condition is defined as
b(r)

r
→ 0

as r → ∞.
The acquired EMT is expressed as

T β
α = diag

(
− ρ(r), pr (r), pt (r), pt (r), .....

)
, (6)

here ρ(r) is the energy density. pr (r) signifies radial pressure
and pt (r) symbolizes transverse pressures. By using Eq. (3)
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the field equation in EGB gravity are expressed as follows

ρ(r) = (D − 2)

2r2

[(
b′ − b

r

)(
1 + 2μb

r3

)

+b

r

(
(D − 3) + (D − 5)

μb

r3

)]
, (7)

pr (r) = (D − 2)

2r

[
2
′

(
1 − b

r

)(
1 + 2μb

r3

)

− b

r2

(
(D − 3) + (D − 5)

μb

r3

)]
, (8)

pt (r) =
(

1 + 2μb

r3

)(
1 − b

r

)[

′′ + 
′2 + (b − rb′)
′

2r(r − b)

]

+
(

b − b′r
2r2(r − b)

+ 
′

r

)(
1 − b

r

)

×
[
(D − 3) + (D − 5)

2μb

r3

]

− b

2r3

[
(D − 3)(D − 4) + (D − 5)(D − 6)

μb

r3

]

−2
′μ
r4 (D − 5)(b − b′r)

(
1 − b

r

)
, (9)

here, the prime signifies a derivative w.r.t r . Also, we define
μ = (D−3)(D−4)μ2 for convenience. We have three field
equations that are Eqs. (7)–(9) and five unknown ρ(r), p(r),
p(t), 
(r) and b(r). Therefore, the number of unknowns
exceeds the number of equations. To discuss the wormhole
solutions, one may adopt various techniques. We provide
below various plan of action for finding the solution of field
equations.

2.1 Wormhole solutions

In GR, it is well-known that energy conditions have been
violated in static spherically symmetric in four dimensional
space-time [55]. The violation of these conditions depends
upon the flaring out condition. Moreover, there is a possibility
that violation of energy conditions can be avoided or satisfy
only in the neighbourhood of wormhole throats, in higher
dimensional theories [42]. The NEC can be defined as

TλδKλKδ ≥ 0, (10)

here, K is null vector. For anisotropic fluid content, we can
express NEC as follows

ρ + pr ≥ 0, ρ + pt ≥ 0, (11)

From Eqs. (7)–(9), we have the following relationships of
NEC.

ρ + pr = D − 2

2r6

[
μb(r)2 (

D − 4r
′(r) − 7
)

+r4 (
b′(r) + 2r
′(r)

) − b(r)

(
(D − 5)μb(r)

+
(
r
(

2
(
r2 − 2μ

)

′(r) + r

)
− 2μb′(r)

))]
,

(12)

ρ + pt = 1

2r6

[
r3

(
b′(r)

(
r −

(
r2 − 4(D − 5)μ

)

′(r)

)

+2r2
(
(D − 3)
′(r) + r
′′(r) + r
′(r)2

))

+2μb(r)2
(

2D − 2r2
′′(r) − 2r2
′(r)2

+r
′(r) − 13
) + rb(r)

(
2μb′(r)

×((9 − 2D)r
′(r) + 3)

+r2
(
(7−2D)r
′(r)+2D−2

(
r2−2μ

)

′′(r)

−2
(
r2 − 2μ

)

′(r)2 − 7

) )]
. (13)

It can be verified from the above equations for μ = 0 and

′(r) = 0, the resulting equations do not satisfy NEC, due to
flaring out condition. At wormhole throat r = r0 and D = 5
Eq. (13) can be written as

ρ(r0) + pr (r0) = 3 (2μb(r0) + 3r0)
(
r0b′(r0) − b(r0)

)
2r6

0

(14)

From the flaring out condition, we know that b′(r0) < 1,
therefore in the violation of NEC μ plays a vital role. A
particular kind of exotic matter that satisfies the flaring-
out criterion and defies the weak energy condition is nec-
essary to maintain the integrity of the wormhole structure
[2]. The weak energy conditions are broken by this type
of stuff, also known as exotic matter [24], at least close to
the wormhole throat. While violations of these requirements
may appear unnatural in terms of classical relativity, quan-
tum field theory argues that they occur naturally as a result of
the dynamic fluctuations in the topology of spacetime over
time. The quantum field between them is perturbed by the
existence of uncharged parallel plates, leading to a nega-
tive energy density. It is possible to consider this negative
energy density as a source of workable traversable worm-
holes. The introduction of the idea of a minimal length scale,
which is on the order of the Planck length, is another impor-
tant advancement in present-day quantum mechanics. The
precision with which short distances in spacetime may be
determined is constrained by this minimal length scale. In
models of quantum gravity, where the degree of positional
uncertainty is constrained, the presence of a minimal length
naturally arises. Because of this idea of a minimal length, the
position-momentum uncertainty relation must be changed.
The negative Casimir energy density is redefined by using the
GUP. It is significant to note that the precise design of maxi-
mally localised quantum states is a precondition for this rede-
fined Casimir energy density. Therefore, while modelling
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traversable wormholes, it becomes interesting to take the
consequences of GUP into account. As a result, traversable
wormholes can be stabilised via the Casimir effect, which
produces a negative energy density. Therefore, we can study
the possibility of utilising the Casimir effect to accomplish
such goals by taking into account quantum phenomena inside
a classical framework.

In subsequent sections, we will study the dynamics
of GB-coupled parameters, on wormhole conditions and
energy conditions by considering cases of Casimir and GUP-
corrected Casimir energy densities.

3 Casimir wormholes in EGB gravity

The effects of quantum mechanics within the context of GR
have been extensively studied. A universally acknowledged
theory of quantum gravity, however, is still elusive despite
these attempts. As a result, we are now focusing on investigat-
ing how the EGB theory affects this situation. The results of
the EGB theory are being investigated in order to learn more
about how gravity behaves in quantum mechanical contexts.

Dutch physicist Hendrik Casimir suggested the phe-
nomenon of the Casimir effect in 1948. A force may exist
between the uncharged, parallel, conducting plates [25]. This
is because the vacuum of the electromagnetic field causes
disturbance. It is linked with zero point energy of a quantum
electrodynamics vacuum contorted by the plates suggested
by Niel Bohar. Later on, it was confirmed from experimen-
tal research [56]. The theory of Casimir energy is based on
the quantum effect, which says that the initial state of quan-
tum electrodynamics is the main fact that causes the paral-
lel, without charged plates to attract. Moreover, the Casimir
energy shows the only unnatural source of exotic matter gen-
erated in laboratories. The dependence of Casimir’s energy
is on the shape of boundaries [26]. Generally, it has been
noticed that exotic matter does not satisfy the energy condi-
tion, especially NEC. In particular, it seems logical to assume
the Casimir effect in traversable wormholes does not satisfy
NEC as it contains exotic matter. Garattini has suggested the
idea of traversable wormholes by using an equation of state
coming out of Casimir energy. These wormholes are called
Casimir Wormholes [26]. The attractive force between two
plates arise due to the renormalization of a negative source
of energy, according to Casimir effect.

E(a) = − π2A

720a3 , (15)

where A shows surface area of the the plates and a repre-
sents the distance of separation between the plates. It has
been noticed that if we move two plates closer together, then
Casimir’s energy is lowered. The energy density is expressed

as

ρ(a) = − π2

720a4 . (16)

We can obtain pressure from the renormalization of the neg-
ative energy source expressed in Eq. (15).

p(a) = −dE
da

×
(

1

A

)
= − π2

240
×

(
1

a4

)
. (17)

The expressions of ρ(a) and p(a) defined in Eqs. (16) and
(17) leads to EOS p = wρ with w = 3. The Casimir force
F is expressed as the surface area multiplies the pressure.

F = −A ×
(

π2

240a4

)
. (18)

The above equation shows that the force is attractive as it
contains a negative sign.

It is reported that, for existance of traversable worm-
holes,the NEC is violated as it containts exotic matter. It has
been observed by [27] that we can have stable wormhole by
allowing wormhole to collapse slowly, moreover, it is also
feasible to analyze the stability of a traversable wormhole, if
it consists of large throat as contrary to Planck scale. In order
to find out the b(r) using Casimir energy density in EGB
gravity. We will compare Eqs. (7) and (16), plus the distance
between plates which is represented by a is replaced by r .
We will get the following form of ODE.

(D−2)
(
b(r)

(
2μrb′(r)+(D−4)r3

) +r4b′(r)+(D−7)μb(r)2
)

2r6

+ π2

720r4 = 0. (19)

Now, confining our analysis to the case of 5D EGB, we find
the following b(r).

b(r) = − r3

2μ
±

√
2160g1μr + 540r5

μ
− 2π2r log(r)

12
√

15

√
μ

r

, (20)

where g1 is constant of integration and calculated by b(r0) =
r0.

g1 = 1080μ + 1080r2
0 + π2 log(r0)

1080μ
. (21)

The final form of the shape function is given below

b(r) = − r3

2μ
±

√
540r5

μ
+2160r(r2

0 +μ)−2π2r log

(
r

r0

)

12
√

15

√
μ

r

,

(22)

here, the above equation contains two shape functions cor-
responding to the sign of ± i.e. b(r)+ and b(r)−. We have
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(a) (b)

b '

Fig. 1 The trajectory a shows dynamics of b(r) versus r whereas b′(r) < 1 condition is depicted in trajectory (b). Herein, we set r0 = 2

Fig. 2 Trajectory a shows dynamics of 1 − b(r)

r
and trajectory b displays dynamics of b(r) − r

Fig. 3 Left trajectory shows dynamics of shape function versus radial coordinate in a certain domain of μ whereas the evolution of b′(r) versus
radial coordinate is shown in the right trajectory

checked the asymptotically flatness condition for both shape
functions, and shape function b(r)+ satisfies the criteria,

which is
b(r)

r
→ 0 as r → ∞. Therefore we have used

the shape function with the positive sign for further analysis.
The dynamics of the shape function is plotted in Figs. 1

and 2. It can be observed that from Fig. 1a, when r0 = 2 than

b(2) = 2. From Fig. 1b flaring out condition is satisfied.
The asymptotically flatness condition is also satisfied and
graphically plotted in Fig. 2a. Figure 2b says that wormhole
throat is located at r0 = 2 where b(r) − r cuts the r -axis.

To understand the dynamics of GB coupled parameter μ,
we have plotted the wormhole conditions in terms of con-
tour plots in Fig. 3. It can be seen from Fig. 3a that with
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the increase in μ, the dynamics of b(r) increases near the
wormhole throat. This implies μ has a direct relationship
with the shape function near the wormhole throat. Moreover,
Fig. 3b shows that b′(r) < 1 while μ increases. Henceforth,
we restrict to the b(r)+, in this case the 5D EGB wormhole
metric reads as

ds2 =−dt2 +
(

1 − 1

r

[
− r3

2μ

+

√
540r5

μ
+2160rμ+2160rr2

0 −2π2r log

(
r

r0

)

12
√

15

√
μ

r

])−1

dr2

+r2d�2
D−2. (23)

By keeping the redshift function constant, the expressions of
pr and pt are as follows

pr (r) = 1

60rμ

[
90r − √

30μ

√
1

μr3

√√√√√b∗ − rπ2μ log

(
r

r0

)

μ

]
,

(24)

pt (r) = 1

360

√√√√ b∗−rπ2μ log

(
r

r0

)

μ

[√
30

μr3

(
μ

(
π2

−2160
(
μ + r2

0

)) − 1620r4) + 2π2μ

√
30

μr3 log

(
r

r0

)

+540

√√√√√b∗ − rπ2μ log

(
r

r0

)

μ

]
, (25)

where b∗ = 270r(r4 + 4μ(μ + r2
0 )). By using the asymp-

totically flat shape function, the radial and tangential EOS

are defined as wr (r) = pr
ρ

and wt (r) = pt
ρ

respectively.

The radial and tangential EOS expressions in EGB gravity
for D = 5 are expressed as follows.

wr = −12r3

π2μ

[
90r − √

30μ

√
1

μr3

√√√√√b∗ − rπ2μ log

(
r

r0

)

μ

]
,

(26)

wt = − 2r4

π2μ

√√√√ b∗−rπ2μ log

(
r

r0

)

μ

[√
30

μr3

(
μ

(
π2

−2160
(
μ + r2

0

)) − 1620r4) + 2π2μ

√
30

μr3 log

(
r

r0

)

+540

√√√√√b∗ − rπ2μ log

(
r

r0

)

μ

]
. (27)

The plot of wr and wt against r are displayed in Fig. 4. It can
be seen from Fig. 4a that μ is in direct relationship with wr at
wormhole throat r0 = 2. The dynamics of wt is shown in Fig.
4b. Before the wormhole throat, the wt increases while away
from the wormhole throat, it decreases in a certain domain
of μ. We found the valid regions for NEC to be satisfied. It
is found that ρ + pr ≥ 0 for {μ < −3 }. For ρ + pt ≥ 0 we
have {μ < −90} and {0 < μ < 2}.

In Fig. 5, contour plots of NEC are presented, following
the above validity ranges. Evolution of ρ + pr and ρ + pt is
depicted for both positive and negative values of μ.

4 GUP-corrected Casimir wormholes in EGB gravity

The concept of existance of minimum length scale leads the
way to modify the uncertainty principle. The problems of
GUP relating to momentum and position are explored by
[57,58]. We are intended to find the Casimir effect due to
GUP. In classical sence, momentum and position are not
conjugate variables. Therefore we can consider actual physi-
cal position as position eigenspace since we change position
momentum relation. There is another method to discuss the
position as conditions projected onto the maximally local-
ized state, also called as Quasi position representation [57].
Although there are two ways to have maximally localized
states, one is known as KMM [57] and other one is DGS
[58]. In this article, we have used both methods to determine
the impact on the Casimir wormhole. In N-dimensional min-
imal length corrected commutation relation is defined as in
below equation [59]

[xi , p j ] = i[ f (p2)δi j + g(p2)pi p j ], i, j = 1, 2, 3 . . . N

(28)

where f (p) and g(p) show generic functions, one can find
out by using rotational and translational invariance of the
commutation relation. We can introduce various generic
functions which express different models and confirms max-
imally localized states

Now we will discuss two different methods of GUP intro-
duced by Kempf, Mangano, and Mann (KMM) [57] and
Detournay, Gabriel and Spindel (DGS) [58]. The two inter-
esting ways are KMM which employs squeezed state, and
DGS, which works on variational principle. These models
depend upon the number of specific models and dimensions.
The model KMM depends on the choice of generic function
f (p2) and g(p2) [60].

f (p2) = αp2√
1 + 2αp2 − 1

g(p2) = α, (29)
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Fig. 4 The trajectory a shows dynamics of wr when μ is varying while the trajectory b displays dynamics of wt for certain domain of μ

Fig. 5 The dynamics of NEC are displayed for certain domain of μ

The maximally localized states for KMM construction
requires

ki =
[√

1 + 2αp2 − 1

αp2

]
pi , (30)

w(p) =
[√

1 + 2αp2 − 1

αp2

]
, (31)

ω(p) =
[√

1 + 2αp2 − 1

αp2

]γ /2

, (32)

where α is MU parameter and γ is defined as γ = 1 +√
1 + N/2 and N is known as number of spatial dimen-

sions. The maximally localized states for DGS construction
requires

ki =
[√

1 + 2αp2 − 1

αp2

]
pi , (33)

w(p) =
[√

1 + 2αp2 − 1

αp2

]
, (34)

ω(p) =
√

2

π

[√
1 + 2αp2 − 1

αp2

]β/2

sin

[√
2π

√
1 + 2αp2 − 1

2
√

αp2

]
. (35)

The idea of GUP and minimal length to get the finite
energy between the uncharged plates was introduced by
Frassino and Panella. Both find out the corrections to Hamil-
tonian and the Casimir energy because of minimal length.
The Casimir energy of two different models of fabrication of
maximally localized states are expressed as follows [59].

E(a) = − π2A

720a3

(
1 + ζi

α

a2

)
, (36)

where

ζ1 = π2
[

28 + 3
√

10

14

]
, (37)

ζ2 = 4π2
[

3 + π2

21

]
, (38)

where i = 1, 2 which depicts two models (a) KMM and
(b) DGS. According to the model introduced, the energy
densities and pressure becomes as follows,

ρ(a) = − π2

720a4

(
1 + ζi

α

a2

)
, (39)
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Fig. 6 The trajectories a, b show dynamics of b(r) against r for ζ1 and ζ2 respectively. Herein we set r0 = 2

Fig. 7 The trajectories a, b show dynamics of b′(r) against r for ζ1 and ζ2 respectively

p(a) = − π2

720a4

(
1 + 5ζi

3

α

a2

)
, (40)

In order to get GUP corrected Casimir wormholes in EGB
gravity, we can replace plate separation distance a by radial
coordinate r . By using Eqs. (7) and (39), we will get following
equation.

360(D − 2)
(
b(r)

(
2μrb′(r) + (D − 4)r3

)
+ r4b′(r)

+(D − 7)μb(r)2
)

+ π2
(
αζi + r2

)
= 0 (41)

The GUP corrected shape function is expressed as follows.

b(r) = − r3

2μ
±

√
2160g2μr−2π2r

(
log(r)− αζi

2r2

)
+ 540r5

μ

12
√

15

√
μ

r

,

(42)

here we present our results only for D = 5, and g2 is the con-
stant of integration. The constant of integration is evaluated
by b(r0) = r0.

g2 = −π2αζi + 2160r4
0 + 2160μr2

0 + 2π2r2
0 log(r0)

2160μr2
0

.

(43)

Therefore, the final form of shape function is expressed as
follows.

b(r) = − r3

2μ

±

√
540r5

μ
+2160r(r2

0 +μ)−2rπ2 log

(
r

r0

)
+π2rζiα

(
1

r2 − 1

r2
0

)

2
√

15

√
μ

r

.

(44)

The GUP corrected shape function has two branches
according to the sign of ±. The shape function b(r)+ is
asymptotically falt whileb(r)− does not satisfy the asymptot-
ically flatness condition. We have considered shape function
b(r)+ for further analysis. We have studied wormhole con-
ditions from Figs. 6, 7, 8 and 9. The solid lines in Fig. 6 show
dynamics of b(r) when α = 2 while dotted lines show the
evolution of b(r) when μ = 2. It has been observed from Fig.
6a, b that dynamics of b(r) grow positively as μ increases.
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Fig. 8 The trajectories a, b show dynamics of 1 − b(r)

r
against r for ζ1 and ζ2 respectively

Fig. 9 The trajectories a, b show dynamics of b(r) − r against r for ζ1 and ζ2 respectively

However, the value of b(r) decreases with an increase in
the value of α parameter. Figure 7a, b follow the flaring-out
condition, which says b′(r) < 1 for r > r0. The Fig. 8a, b
confirm the asymptotic flatness condition is satisfied for both

models i.e.
b(r)

r
→ 0 as r → ∞ this implies 1 − b(r)

r
→ 1

as r → ∞. In Fig. 9a, b, we have studied the wormhole
throat radii for different values of μ and α. These plots show
all conditions of the shape function allow us to study the
GUP-corrected wormhole in EGB gravity.

By using an asymptotically flat shape function, expres-
sions of wr and wt are as follows.

wr = − 12r5

π2μ
(
αζi + r2

)
[

90r −
√

15

r

√
μ

r
× b∗

1

]
, (45)

wt = −
4r9

(
1

μr3

)3/2

π2r2
0

(
αζi + r2

) × b∗
1

×
[

− 1620
√

15r4r2
0 + √

15π2μr2
0

−2160
√

15μr4
0 + √

15π2αμζi − 2160
√

15μ2r2
0

+2
√

15π2μr2
0 log(r) − 2

√
15π2μr2

0 log(r0)

+270r2
0

× b∗
1

√
1

μr3

]
. (46)

where

b∗
1 =

√
540r5

μ
+ 2160r(r2

0 + μ) − 2rπ2 log

(
r

r0

)
+ π2rζiα

(
1

r2 − 1

r2
0

)

We have studied the dynamics of radial and tangential EOS
parameters from Figs. 10 and 11. The Fig. 10a is plotted in
certain domain of μ when α is held constant while Fig. 10b
is plotted in certain domain of α when μ is held constant for
ζ1. It can be seen from Fig. 10a that μ is directly proportional
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Fig. 10 The trajectory a shows dynamics of wr when α = 2 while the trajectory b shows dynamics of wr when μ = 1

Fig. 11 The trajectory a shows dynamics of wt when α = 2 while the trajectory b shows dynamics of wt when μ = 1

to wr keeping α constant. And α is inversely proportional to
wr keeping μ constant. Moreover, we have observed that μ

and wr are in an inverse relationship at wormhole throat. At

r = r0 �⇒ μ = − 2160r6
0

π2αζ1wr+π2r2
0 wr+2160r4

0
. Therefore at

wormhole throat, with the increase in the parameter μ, wr

decreases. The dynamics of the tangential EOS parameter
is plotted in Fig. 11. It can be seen from Fig. 11a that with
increase in μ tangential EOS parameter decreases for ζ1.
Figure 11b shows that with the increase in α tangential EOS
parameter increases in terms of negative values, while when
α decreases wt also decreases. Similar, behaviour of plots
have been observed for ζ2 DGS model therefore we haved
displayed plots only for KMM model.

Some energy conditions are not satisfied due to the pres-
ence of exotic matter in the wormholes. We have checked
NEC in GUP corrected wormholes in Figs. 12 and 13 for ζ1.
Firstly, we calculated valid regions through regional plots and
then studied the dynamics of NEC in contour plots. The valid
region for ρ+pr ≥ 0 is {μ ≤ −16 and −100 < α < 100}
for ζ1. For ρ + pt ≥ 0 we could not found any region in the
domain of 2 ≤ r ≤ 10 for ζ1. We could not find any region
closer to the wormhole throat, which is valid for NEC to be

satisfied. We have plotted Fig. 12 by keeping α = 2 in a cer-
tain domain −10 ≤ μ ≤ 10. For the fixed value of μ = 1,
we have plotted Fig. 13 in a certain domain of α which is
−10 ≤ α ≤ 10. Now, the valid region for ρ + pr ≥ 0 is
{μ ≤ −12 and − 100 ≤ α ≤ 100} for ζ2. For ρ + pt ≥ 0
we found {μ ≤ −13 and −100 ≤ α ≤ 100} for ζ2. Simi-
lar, behaviour of plots have been observed for ζ2 DGS model
therefore we haved displayed plots only for KMM model.

5 Active gravitational mass

In this section, we will explore the active gravitational mass
of Casimir and GUP-corrected Casimir wormholes. This
mass exists inside the wormhole’s region from the worm-
hole’s throat r0 to the boundary of the radius r . The active
gravitational mass is denoted by MA and calculated by the
expression below

MA = 4π

∫ r

r0

ρ(r)r2dr. (47)
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Fig. 12 The trajectories a, b show dynamics of NEC against r for ζ1 when α is fixed

Fig. 13 The trajectories a, b show dynamics of NEC against r for ζ1 when μ is fixed

The expression for MA of Casimir wormhole is expressed
below.

MA = π3

180

(
1

r
− 1

r0

)
. (48)

The expression for MA of GUP-corrected Casimir wormhole
for ζ1 is written below.

MA = π3

180

(
1

r
− 1

r0

)
+ (28 + 3

√
10)π2

7560
α

(
1

r3 − 1

r3
0

)
. (49)

The expression for MA of GUP-corrected Casimir wormhole
for ζ2 is calculated as

MA = π3

180

(
1

r
− 1

r0

)
+ 16π3(3 + π2)

2835
α

(
1

r3 − 1

r3
0

)
.

(50)

The MA for Casimir wormhole and GUP-corrected Casimir
wormhole is plotted in Figs. 14 and 15 respectively.

It can be observed from Figs. 14 and 15 that MA decays
with increase in r . The negative active gravitational mass is
a sign of the existence of exotic matter. It is well known

Fig. 14 The active gravitational mass of Casimir wormhole. Herein
we set r0 = 2

that such matter violates energy conditions, and it can be
experienced by Sects. 3 and 6. Presently, the Casimir effect
is the real representative of such exotic matter. Due to the
presence of the Casimir effect, the active gravitational mass
in the area of space is measured to be negative.
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Fig. 15 The active gravitational mass of Casimir wormhole for α = 1

Fig. 16 The left trajectory shows the dynamics of the embedding diagram, and the right trajectory displays full visualization of the surface generated
by the rotation of the embedded curve about the vertical z axis for the Casimir wormhole. Herein, we set r0 = 2.0000000001 and μ = 1

6 Wormhole geometry

This section focuses on understanding wormhole dynamics
geometrically. By taking into account the wormhole space-
time represented by Eq. (5), we can envisage or see them. By
fixing t = constant and θ = π/2, we can obtain an equato-
rial slice for such wormhole space-time. Consequently, met-
ric becomes

ds2 = r2dφ2 +
(

1 − b(r)

r

)−1

dr2. (51)

We will now create a 3D space and an embedded Euclidean
2D surface using this wormhole space-time. So, we’ll present
(z, r, φ) cylindrical coordinates. Following is an expression
for the embedding space-time.

ds2 = dr2 + r2dφ2 + dz2. (52)

In order to define z = z(r), we can take advantage of the
embedded surface’s axial symmetry. The surface’s line ele-
ment is expressed as

da2 =
(

1 +
(
dz

dr

)2)
dr2 + r2dφ2. (53)

By comparing Eqs. (51) and (53), we get

dz

dr
= ±

(
r

b(r)
− 1

)−1/2

, (54)

Here, we will use the shape function developed from the
Casimir wormhole and GUP-corrected Casimir wormhole
expressed in Eqs. (22) and (44) for ζ1 and ζ2.

The embedding diagram for upper (z > 0) and lower
(z < 0) universe for the Casimir wormhole is displayed in
Fig. 16. At the same time, the embedding diagram for both
models of GUP-corrected wormholes have been evaluated
and we have obtained similar results as presented in Fig.
16. Therefore, we have displayed only one figure. Figure
16 shows each wormhole has a radius of r = r0, implying
an embedded surface is vertical. It can be observed that far
away from the throat space showed asymptotically flatness

behavior, i.e.
dz

dr
→ 0 as r → ∞.

7 Equilibrium condition

In this section, we will find the equilibrium configuration of
wormhole solutions based on the shape function developed
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from the Casimir wormhole and GUP-corrected Casimir
wormhole in EGB gravity. For this purpose, we will use
the generalized Tolman Oppenheimer Volkoff equation and
expressed as [46]

− dpr
dr

− 
′(r)
2

(ρ + pr ) − 2

r
(pr − pt ) = 0 (55)

The above equation tells us about the equilibrium condition
for the wormhole geometries based on the following forces.

Fg = −
′(r)
2

(ρ + pr ), (56)

Fh = −dpr
dr

, (57)

Fa = −2

r
(pr − pt ), (58)

where Fg , Fh , Fh are known as a gravitational, hydrostatic,
and anisotropic force, respectively. For equilibrium condi-
tion,Fg+Fh+Fa = 0 must hold. In our case the equilibrium
condition reduces to Fh + Fa = 0. Using the shape func-
tion developed from the Casimir energy density, expressed
in Eq. (22), the forces Fh and Fa are calculated and written
as follows.

Fh = −
√

1
μr3

(
4320μ − 4π2 log(r)+4320r2

0 +4π2 log(r0)+π2
)

4
√

30r

√
r
(
270

(
r4+4μ

(
μ+r2

0

))−π2μ log(r)+π2μ log(r0)
)

μ

,

(59)

Fa =
√

1
μr3

(
4320μ−4π2 log(r)+4320r2

0 +4π2 log(r0)+π2
)

6
√

30r

√
r
(
270

(
r4+4μ

(
μ+r2

0

))−π2μ log(r)+π2μ log(r0)
)

μ

.

(60)

Figure 17 shows the dynamics of hydrostatic and anis
otropic forces for different values of μ. We can also observe

from the expressions of hydrostatic and anisotropic forces
they do not completely quit each other. Therefore, no equilib-
rium configuration has been examined near wormhole throat
but forces are in equilibrium for r > 6.

Using the shape function developed from the GUP cor-
rected Casimir energy wormholes, expressed in Eq. (44), the
forces Fh and Fa are calculated and expressed as follows.

Fh = −
μ

(
1

μr3

)3/2

30
√

21r2
0 × b3

[
− 30π4αr2

+30240
√

10r2r4
0 + 7π2

√
10r2r2

0 45π4αr2
0

Fig. 17 The dynamics of hydrostatic and anisotropic forces for differ-
ent values of μ for Casimir wormhole

−28
√

10π4αr2 + 42
√

10π4αr2
0

+30240
√

10μr2r2
0 − 28

√
10π2r2r2

0 log(r)

+28π2
√

10r2r2
0 log(r0)

]
, (61)

Fg =
μ

(
1

μr3

)3/2

20
√

21r2
0 × b3

[
− 30π4αr2 + 30240

√
10r2r4

0

+7π2
√

10r2r2
0 45π4αr2

0

−28
√

10π4αr2 + 42
√

10π4αr2
0

+30240
√

10μr2r2
0 − 28

√
10π2r2r2

0 log(r)

+28π2
√

10r2r2
0 log(r0)

]
. (62)

where

b3 =
√

7560r5

μ
+ 28π4α

r
+ 3π4

√
10α

r
+ 30240μr − 3

√
10π4αr

r2
0

− 28π4αr

r2
0

+ 30240rr2
0 + 28π2r log(

r0

r
).

Figures 18 and 19 displays the dynamics of hydrostatic
and anisotropic forces for different values of μ and α. The
plot (a) in Fig. 18 shows dynamics ofFh andFa when α = 2
is fixed and μ is varying for KMM. The plot (b) in Fig. 18
shows dynamics of Fh and Fa when μ = 1 is fixed and α is
varying for KMM. The plot (a) in Fig. 19 shows dynamics
of Fh and Fa when α = 2 is fixed and μ is varying for DGS.
The plot (b) in Fig. 19 shows dynamics of Fh and Fa when
μ = 1 is fixed and α is varying for DGS. It can be seen
from these figures that equilibrium configuration has been
experienced for D = 5 as they do not cancel out each other
completely.
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Fig. 18 The trajectories a, b show dynamics of Fh and Fa for ζ1

Fig. 19 The trajectories a, b show dynamics of Fh and Fa for ζ2

8 Complexity factor in Casimir sormholes andd GUP
corrected Casimir wormholes

In 2018, Herrera introduced the concept of complexity fac-
tor in the background of GR, for spherically symmetric and
static self-gravitating systems [47]. Mainly, the idea of the
complexity factor is based on simple or minimal compli-
cated systems presenting homogeneous energy density and
isotopic pressure. This type of fluid distribution shows zero
complexity factor. Moreover, with anisotropic pressure and
inhomogeneous energy density, zero complexity factor has
been calculated in self-gravitating systems, as long as the
effects of these two factors on the complexity factor cancel
each other. The traced free scalar complexity factor YT F is
expressed as follows.

YT F = � − 1

2r3

∫ r

r0

r3 dρ(r)

dr
dr, (63)

where � = pr − pt , which leads us to the following com-
plexity factor for D = 5 and constant redshift function,

YT F = rb′(r) − 3b(r)

r3

− 1

2r3

∫ r

r0

(
1

2r4 (3r5b′′(r) − 3r4b′(r) + 6μr2b′(r)2

−3rb(r)
(
r
(
3r − 2μb′′(r)

) + 14μb′(r)
)

+36μb(r)2)

)
dr. (64)

Now, using the shape function developed from Casimir
wormhole in the above expression, we have the following
results

YT F = −
π2

(
1
r0

− 1
r

)

360r3

−

√
1

μr3

(
4320μ+4320r2

0 +π2−4π2 log

(
r

r0

))

2
√

30

√√√√√r

(
270

(
r4 + 4μ

(
μ+r2

0

))−π2μ log

(
r

r0

))

μ

.

(65)

It can be seen from Eq. (65), at the wormhole throat, the
contribution of the first term, which comes from the integra-
tion of the derivative of energy density, becomes zero. The
dynamics of complexity factor of casimir wormhole versus
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Fig. 20 The dynamics of YT F for different values of μ

radial coordinate are shown in Fig. 20. We have observed that
r → ∞, or away from wormhole throat YT F → 0. Accord-
ing to [47], the minimal complexity factor shows homoge-
nous energy density and isotropic pressure. Moreover, the
zero complexity factor predicts inhomogeneous energy den-
sity and anisotropic pressure as long as these two effects
cancel each other on the complexity factor. Therefore, near
the wormhole throat, the complexity factor is monotonically
increasing, and for higher values of radial coordinate, YT F

approaches zero. It has also been observed that for μ = 10,
the energy density is homogenous at very high values of r ,
and pressure shows isotropic behaviour after r = 10. There-
fore, in the case of a wormhole, we experience complex-
ity factor approaches to zero for higher values of the radial
coordinate. Moreover, in the dynamics of complexity factor,
pressure isotropy plays a more vital role compared to the
homogeneity of energy density.

Using GUP corrected Casimir shape function in the defi-
nition of complexity factor, we have the following equation

YT F =
μr

(
1

μr3

)3/2
(

−2π2αMr2 + 3π2αMr2
0 + 4320r2r4

0 + 4320μr2r2
0 + π2r2r2

0 − 4π2r2r2
0 log

(
r

r0

))

12
√

15r2
0

√
π2αζi

r − π2αζi r
r2

0
+ 540r5

μ
+ 2160μr + 2160rr2

0 − 2π2r log

(
r

r0

)

−
π2

(
−αM

r3 + αM
r3

0
− 2

r + 2
r0

)

720r3 . (66)

It can be seen from Eq. (66), the last term disappears at
r = r0, which is due to the contribution of integration from
Eq. (64). We have plotted Fig. 21a for different values of
μ when α is fixed while Fig. 21b shows dynamics of YT F
for different values of α when μ is fixed. It can be seen that
with increase in μ and α, YT F decreases. We have observed
that for r → ∞, implies YT F → 0. Therefore, for GUP-
corrected Casimir wormholes, the complexity factor for both
models approaches to zero. The plots of the complexity factor

have similar behavior for both models, so we have plotted for
KMM model only.

9 Deviation of EGB gravity from general relativity

The expressions of shape function for Casimir wormhole
and GUP-corrected Casimir wormhole in EGB gravity are
expressed in Eqs. (22) and (44). The expression of shape
function for Casimir effect in GR [26] is written as

b(r) = r0 + r2
1

r
− r2

1

r0
(67)

where r1 = π3l2p
90

. The Eq.’s (22) and (44) possess two inde-

pendent maximally symmetric solutions. Both solutions can
have different asymptotic behaviour, but this is not the case
in GR. Mathematically, the shape function from GR is only
a function of r . While in the case of EGB gravity, we have
another parameter μ, or we can say that we have an extra
degree of freedom to understand the dynamics of shape func-
tion in EGB gravity. Similar to this, in the case of a Casimir
wormhole with GUP correction, the EGB gravity has degrees
of freedom twice of GR i.e., μ and α, whereas GR has only
one which is α. Here, we present comparison of our results
with that of GR.

To measure the contribution of EGB gravity theory in com-
parison with the theory of GR, we have plotted Figs. 22 and
23, by picking the asymptotically flat shape function. These
plots compare shape functions from GR background [26] and
EGB gravity framework (Results of a present manuscript).
Shape function in EGB background allows us to understand
the dynamics of wormhole geometry in a wider range com-
pared to GR. To understand the dynamics of GB coupled

parameters on wormhole geometry, we have also studied
wormhole conditions in terms of contour plots. We have
treated GB coupled parameter as an independent variable
in these plots in manuscript.

The equation of the state of dark energy can characterize
cosmic inflation and the accelerated expansion of the uni-
verse. The Fig. 24 shows the dynamics of radial and trans-
verse EOS parameters. We can observe that wr is an increas-
ing function of r while wt is decreasing function of r for
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Fig. 21 The trajectory a shows dynamics of YT F for different values of μ when α is fixed, and the trajectory b shows dynamics of YT F for
different values of α when μ is fixed whereas ζi = ζ1

Fig. 22 Dynamics of b(r) for different values of μ for Casimir worm-
hole. Herein, we set r0 = 2

the Casimir wormhole for certain values of μ in EGB grav-
ity and GR. The dynamics of wr is in the phantom phase
while wt lies in the non-phantom phase. We have also stud-
ied EOS in terms of contour plots to explore the dynamics of
GB-coupled parameter.

We have plotted the embedding diagram of Casimir worm-
hole in the case of shape function in GR and in EBG gravity as
shown in Fig. 25. We can see that the shape function expands
more in the case of EGB gravity for higher values of theory
coupled parameter (Fig. 26).

The dynamics of complexity factors are studied compared
to the wormhole solution from GR [26]. It can be seen that
the dynamics of both complexity factors are monotonically
increasing. The range of modulus value of YT F is larger in
the case of EGB gravity than for GR.

10 Summary

In this manuscript, we have studied asymptotically flat, static,
traversable wormhole geometries in the background of EGB
gravity. We have worked with EGB gravity as it has been
extensively studied in the scientific literature regarding cos-
mological phenomena like wormholes, black holes, and stel-
lar structures.

Fig. 23 These trajectories show dynamics of b(r) for different values of μ for GUP-corrected Casimir wormhole
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Fig. 24 The trajectory a dynamics of wr and the plot b shows dynamics of wt for Casimir wormhole for different values of μ

Fig. 25 Embedding diagram of Casimir wormhole

Fig. 26 Dynamics of complexity factor of Casimir wormhole

The Casimir effect exists due to distortion between two
parallel, without charged, closely spaced plates placed in a
vacuum. When two plates move closer to each other, the
waves of shorter wavelengths start to fit between the plates,
and the total energy between the plates will be less than else-
where in the vacuum. Due to this, energy plates will attract
each other. The concept of the Casimir effect was first pre-
dicted theoretically and later confirmed in the Philips labo-
ratories through experimental work. The wormhole connects
two points of the same cosmos, and its solution is based
on Einstein’s field equations. Since the wormhole contains
exotic matter and it violates the NEC. Therefore, the quan-

tum nature of the Casimir effect seems a suitable candidate
for the modeling of wormholes in EGB gravity. In this paper,
we have studied the traversable wormhole solutions in the
framework of EGB gravity by exploring the dynamics of the
quantum nature of the Casimir effect. By comparing Casimir
energy density with the field equation of EGB gravity, inte-
grating the resulting equation yields a shape function. The
obtained shape function has two branches with positive and
negative signs. We have selected a positive branch for further
analysis, as it satisfies the asymptotically flatness condition.
The flaring out and throat conditions are also satisfied and
displayed graphically. To understand the dynamics of GB
coupled parameter on shape function, we have plotted con-
tour plots in a specific domain of GB parameter. It has been
seen that with an increase in the GB parameter, the obtained
b(r) of the wormhole increases. The slope of the b(r) is less
than one for μ < 0 and μ > 0. We have also studied the
evolution of radial and tangential EOS parameters in spe-
cific domains of μ. With the increase in the GB parameter,
the value of wr grows positively away from the wormhole
throat, while near r0, we find decreasing behavior. In the case
of wt , we have experienced the opposite behavior. We have
studied the behavior of NEC for positive and negative values
of μ. It can be observed from valid regions and plots of NEC
that near the wormhole throat (r0 = 2), the NEC are not
satisfied.

The generalized principle of uncertainty has been studied
due to the idea of minimal length in background of quan-
tum gravity theories. In the remaining part of this paper, we
have analyzed the dynamics of the GB coupled parameter
and MU parameter on the dynamics of the wormhole. There
are adequate ways to generate possible generic functions to
develop the maximally localized quasi-quantum states. Here,
we have considered two models of KMM and DGS to develop
quasi-quantum states. In addition, we have modeled Casimir
wormhole geometries in the framework of EGB gravity. The
behavior of both models in the dynamics of the GB coupled
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parameter and MU parameter on wormhole geometries is rel-
atively the same. The b(r) of wormhole increases with the
increase in GB coupled parameter, while for the MU param-
eter, we have experienced the opposite results. All wormhole
conditions are satisfied for the increasing value of the GB
parameter and the decreasing value of the MU parameter.
The dynamics of wr and wt have also been studied for both
models by keeping one parameter fixed and varying another
parameter. The plots of NEC for GUP-corrected wormholes
are also displayed, and NEC is violated near the wormhole
throat. It has been evidenced that prominent dynamics of
GB couple parameter can be seen, despite of the fact which
has been discussed in Ref. [29]. We have explored the active
gravitational mass of Casimir and GUP-corrected Casimir
wormholes. This mass exists inside the wormhole’s region
from the wormhole’s throat r0 to the boundary of the radius r .
In the next section, we aim to discuss wormhole geometry by
providing mathematical modeling of obtained wormholes in
3D and 2D space-time. The source is Casimir energy density.
We have seen that the developed shape function satisfies all
wormhole conditions. We have plotted embedded diagrams

to display wormhole shape for t = constant and θ = π

2
for

Casimir wormholes and GUP-corrected Casimir wormholes.
Plus, two univereses in 3D and 2D space-time is presented,
illustrating asymptotically flat wormhole.

We have also probed the equilibrium forces for the Casimir
wormhole and GUP corrected Casimir wormhole. The hydro-
static and anisotropic forces are calculated in each case.
The plots show that they do not cancel out each other com-
pletely. The complexity factor of Casimir wormholes and
GUP-corrected Casimir wormholes have also been calcu-
lated and monotonically increasing behaviour of complexity
factor have also been experienced. In the present study, we
have explored wormhole geometries to study the physical
behavior of dynamics of theory-coupled parameters and MU
parameter in EGB gravity.

A number of theories of gravity have been tested using
useful wormhole solutions, which have been thoroughly
researched in a variety of settings [61,62]. Researchers
have also looked into whether modified theories of grav-
ity, such as f (R) gravity [11,14], ( f (τ ) gravity (where τ

denotes torsion) [15,16,63–65], ( f (R, T ) gravity (where
R represents the Ricci scalar and T is the trace of the
energy–momentum tensor) [21], Brans–Dicke (BD) theory
[18,22,66,67], scalar–tensor teleparallel gravity [22], and
Einstein–Gauss–Bonnet gravity [45]. These investigations
aim to explore the dynamics of wormhole properties in alter-
native theories of gravity. Agnese and Camera [66] inves-
tigated static spherically symmetric wormholes in the con-
text of Brans–Dicke (BD) theory, which depend on the post-
Newtonian parameter gamma > 1. In the context of the
BD theory, traversable wormhole solutions can be found for

both positive (omega > 0) and negative (omega0) values
of the parameter. The scalar field acts as exotic matter in
scalar tensor theories [18,67]. Ebrahim and Riazi [20] intro-
duced two Lorentzian wormhole solutions in BD theory by
using a traceless energy–momentum tensor. These solutions
were developed taking into account both closed and open uni-
verse theories. According to the literature now available, the
topic of Casimir wormhole dynamics has been thoroughly
investigated both within the framework of GR and in numer-
ous modified theories of gravity. Garattini [26] has put up
a model for a static traversable wormhole, looking at the
Casimir effect’s negative energy density and analysing the
outcomes within the context of GR. Building on a similar
strategy, it has been discussed how the GUP affects the geom-
etry of Casimir wormholes [28]. Garattini, [31], conducted
additional research into Yukawa Casimir wormholes while
assuming no tidal force. Additionally, Sokoliuk [34] has stud-
ied the possibility of Casimir wormholes in f (R) modified
gravity when there is no tidal force. Three different Casimir
wormhole systems have been studied within the framework
of f (Q) modified theory, according to Zinnat Hassan [68].
In this work, we analyse Casimir wormhole solutions, con-
centrating on a five-dimensional (D = 5) case, utilising the
higher-dimensional gravity theory Einstein Gauss–Bonnet
(EGB) gravity.

It serves a specific purpose to study the wormhole solu-
tion in EGB gravity, highlighting its extraordinary property
of having up to two different maximally symmetric solu-
tions, even with various signs of the curvature scale. These
solutions display several asymptotic behaviours, which are
discussed in the manuscript’s equations (22) and (44). The
curvature scale of the maximally symmetric solutions in
EGB gravity is still unknown, in contrast to general relativ-
ity (GR). Additionally, when investigating EGB black hole
solutions, one comes across two unique branches with vari-
ous asymptotic behaviours [69]. It is important to remember
that, according to Zwiebach [70], EGB gravity can be consid-
ered the low energy limit of some string theories. Notably, in
higher-dimensional gravity theory, Casimir wormholes and
GUP-corrected Casimir wormholes have not been discussed
before. Existing literature has not yet examined how the
“Casimir wormhole”’s active gravitational mass and com-
plexity factor are measured.
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