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Abstract We investigate the basic properties of Hawking
radiation for spherical solutions in D = 4 double field the-
ory. We give the expression of the Hawking temperature for
the solution and then discuss the results of various limits. We
find that for all these limits only Schwarzschild solution and
F-JNW solution can generate Hawking radiation. Moreover,
we obtain the lower bound on greybody factors σl(ω) for the
spherical solutions in D = 4 double field theory. In partic-
ular, we calculate the bound on greybody factors σl(ω) for
F-JNW solution. For F-JNW solution, σl(ω) monotonically
increases as a and b increase.

1 Introduction

In original work in 1974 [1], Hawking showed that black
holes can emit particles spontaneously at a temperature which
is inversely proportional to their mass. Since then, black holes
have been becoming increasingly popular in classical and
quantum gravity theories [2]. Meanwhile, a series of works
devoted to calculating the Hawking radiation spectrum and
temperature to explore a possible theory of quantum gravity
[3–5]. Here we only list some main developments in this area.
For example, Page tried to calculate the particle emit rates
from a nonrotating and rotating black hole in Refs. [3] and
[4], respectively. In 1999, in their famous paper Wilczek and
Parikh [5] showed such a possibility, i.e., Hawking radiation
can be considered a tunnelling process, in which particles
pass through the contracting horizon of the black hole [5].
In the following years, these above results have been gener-
alized by other researchers to other cases, such as Einstein–
Gauss–Bonnet de Sitter black holes [6], charged black holes
[2,7] etc.
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In this article, we intend to consider the properties of
Hawking radiation in D = 4 double field theory. Double
field theory (DFT) is an exciting research area in string the-
ory in recent years. The primary goal of DFT [8–11] was to
reformulate supergravity with doubled coordinates, namely,
xA = (x̃μ, xν), in a way that realizes T-duality as a man-
ifest symmetry of the action and unifies diffeomorphisms
and B-field gauge symmetry into ‘doubled diffeomorphisms’
[12–14]. In Ref. [8], the authors have derived the most gen-
eral, spherically symmetric, asymptotically flat, static vac-
uum solution to D = 4 double field theory. Furthermore, in
Ref. [15], Stephen Angus, Kyoungho Cho and Jeong-Hyuck
Park studied more general properties of Einstein double field
equations. In this artilce, we intend to study some basic prop-
erties of the Hawking radiation for the solution in Ref. [8].
In Sect. 2, we review the double field theory and sperical
solutions in D = 4 double field theory briefly. In Sect. 3, we
obtain the general expression of Hawking temperature for
the spherical solutions in D = 4 double field theory. More-
over, we discuss the results of several various limits listed
in Ref. [8]. In Sect. 4, we obtain the bounding of greybody
factors for spherical solutions in D = 4 double field theory,
especially the case of F-JNW solution. In Sect. 5, the results
of the article have been discussed.

2 The basics

2.1 Review of double field theory

Double field theory (DFT) proposes a generalized spacetime
action possessing manifest T-duality on the level of compo-
nent fields [16]. Earlier efforts can be traced back to [17,18].
Due to the equivalence of winding numbers and spacetime
momenta in the string spectra [16], it is natural to intro-
duce a set of conjugated coordinates x̃ i , which is conjugated
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to winding numbers [16]. These conjugated coordinates are
treated on the same footing as the usual coordinates xi [16].
The dimensionality of spacetime is doubled from D to D+D
[16].

The action of DFT unifies the metric gi j , the two-form bi j
and the dilaton φ by rewriting these fields in an O(D, D)

covariant way, and it reduces to the supergravity action if
there is no dependence on the conjugated coordinates [19].
The action is given by [19]

S =
∫

dxdx̃e−2dR, (2.1)

where d contains both the determinant of the metric and the
usual dilaton φ [19], i.e.,

e−2d = √−ge−2φ, (2.2)

and [19,20]

R = 1

8
HMN ∂MHK L∂NHK L − 1

2
HMN ∂NHK L∂LHMK

−∂Md∂NHMN + 4HMN ∂Md∂Nd, (2.3)

where the generalized metric HMN can be defined as [19]

HMN =
[

gi j −gikbk j
bikgk j gi j − bikgklbl j

]
. (2.4)

The level matching condition in closed string theory imposes
the “weak constraint” ∂∂̃φ(x, x̃) = 0 for any field φ(x, x̃).
Furthermore, in order to ensure the action locally equivalent
to the low energy effective string action, the “strong con-
straint” is required: ∂∂̃ = 0 as an operator equation, acting
on any products of the fields [16].

2.2 Spherical solutions in D = 4 double field theory

In this section, we will briefly review the most general form
of the static, asymptotically flat and spherically symmetric
vacuum solutions to D = 4 double field theory [8,15]. With-
out loss of generality, we can assume that the metric for the
string frame is

ds2 = e2φ(r)[−A(r)dt2 + A(r)−1dr2 + A(r)−1C(r)d�2],
(2.5)

where

d�2 = dθ2 + sin2 θdφ2. (2.6)

It is worth while to note that our string frame metric ansatz
takes the product form of the dilaton factor, e2φ , times the
Einstein frame metric [8].

If the spacetime is asymptotically ‘flat’, then the metric
(2.5) should satisfy the following boundary conditions [8]:

lim
r→∞ A(r) = 1, (2.7)

lim
r→∞ r−2C(r) = 1, (2.8)

lim
r→∞ φ(r) = 0. (2.9)

From the asymptotic “smoothness”, the metric (2.5) should
satisfy [8]:

lim
r→∞ A′(r) = lim

r→∞ A′′(r) = 0, (2.10)

lim
r→∞ r−1C ′(r) = lim

r→∞C ′′(r) = 2, (2.11)

lim
r→∞ φ′(r) = lim

r→∞ φ′′(r) = 0. (2.12)

Using the form notation, the B-field can be written as [8]

B(2) = 1

2
Bμνdx

μ ∧ dxν = B(r) cos θdr ∧ dφ

+ h cos θdt ∧ dφ. (2.13)

The H -flux takes the most general spherically symmetric
form [8]

H(3) = 1

3! Hλμνdx
λ ∧ dxμ ∧ dxν = B(r) sin θdr ∧ dθ ∧ dφ

+ h sin θdt ∧ dθ ∧ dφ, (2.14)

which is closed for constant h [8]. As a result, with four
constants a, b, c, h and [8]

c+ = c + 1

2

√
a2 + b2, (2.15)

c− = c − 1

2

√
a2 + b2, (2.16)

γ± = 1

2

(
1 ±

√
1 − h2/b2

)
. (2.17)

Then the metric (2.5) can be written as [8,15]:

e2φ = γ+
(
r − α

r + β

) b√
a2+b2 + γ−

(
r + β

r − α

) b√
a2+b2

, (2.18)

B(2) = h cos θdt ∧ dφ, (2.19)

H(3) = h sin θdt ∧ dθ ∧ dφ, (2.20)

and

ds2 = e2φ

[
−

(
r − α

r + β

) a√
a2+b2

dt2 +
(
r + β

r − α

) a√
a2+b2

×{dr2 + (r − α)(r + β)d�2} ]. (2.21)

If the metric must be real, then we must require b2 ≥ h2

[8]. Equations (2.18)–(2.21)are the most general form of the
static, asymptotically flat and spherically symmetric vacuum
solutions to D = 4 double field theory [8,15]. We should
point out that though the backbone of the present work is the
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fundamental symmetry principle of DFT, in practice, with
the ansatz (2.5) and (2.13), we are solving the full Euler–
Langrangian equations of the familiar NS-NS sector gravity,
i.e. [8],

∫
d4x

√−ge−2φ

(
Rg + 4∂μφ∂μφ − 1

12
HμνρH

μνρ

)
,

(2.22)

as they are equivalent to the vanishing of the both two
indexed and zero-indexed DFT-curvatures (i.e. DFT vac-
uum). The asymptotic flatness turns out to be inconsistent
with the magnetic H -flux, and hence we put B(r) = 0 and
H(3) = h sin θdt ∧ dθ ∧ dφ [8]. We can define “proper”
radius [8]:

R ≡ √
gθθ (r) = √

C(r)/A(r)eφ(r), (2.23)

then the angular part of the metric can be properly normalized
[8]:

ds2 = gttdt
2 + gRRdR

2 + R2d�2 = −e2φ Adt2

+e2φ A−1
(
dR

dr

)−2

dR2 + R2d�2. (2.24)

We list the various limits of the general solutions discussed
in Ref. [8], which we will use them in the later sections.
• If b = h = 0 and a = 2M∞G > 0, the Schwarzschild
metric will be recovered: with proper radius,

ds2 = −
(

1 − 2M∞G

R

)
dt2 +

(
1 − 2M∞G

R

)−1

dR2

+ R2d�2, φ = 0, Bμν = 0. (2.25)

If b = h = 0 and a = 2M∞G < 0, then

ds2 = −
(

1 + 2M∞G

r

)−1

dt2 +
(

1 + 2M∞G

r

)
dr2

+ (r + 2M∞G)2d�2, φ = 0, Bμν = 0.

(2.26)

After the radial coordinate redefinition, r → R − 2M∞G,
the metric (2.25) will reduce to (2.24) with negative mass
[8].
• If b = h = 0, regardless of the sign of b, then the metric is

ds2 = − R

R + b
dt2 + R

R + b
dR2 + R2d�2,

e2φ = R

R + b
, Bμν = 0. (2.27)

• If h = 0, the most general static spherical solution of the
Einstein gravity coupled to the scalar dilaton, i.e., the F-JNW

solution can be recovered [8]:

ds2 = −
(

1 −
√
a2 + b2

r

) a+b√
a2+b2

dt2

+
(

1 −
√
a2 + b2

r

) −a+b√
a2+b2

[dr2 + r(r −
√
a2 + b2)d�2], (2.28)

e2φ =
(

1 −
√
a2 + b2

r

) b√
a2+b2

, Bμν = 0. (2.29)

• If h = 0 and a = b, with the proper radius, R = √
r2 − α2,

and a positive number, α ≡ 1√
2
|a| > 0, the above solution

reduces to [8]:

ds2 = −
(√

R2 + α2 − α√
R2 + α2 + α

)√
2

dt2

+ R2

R2 + α2 dR
2 + R2d�2,

e2φ =
(√

R2 + α2 − α√
R2 + α2 + α

) 1√
2

, Bμν = 0. (2.30)

• If h = 0 and b2 ≥ h2, up to some alternative radial coor-
dinate shift, the metric is [8]

ds2 = e2φ(−dt2 + dr2) +
(
r2 + 1

4
h2

)
d�2, (2.31)

e2φ = 4r2 + h2

4r2 ± 4r
√
b2 − h2 − h2

,

H(3) = h sin θdt ∧ dθ ∧ dφ. (2.32)

where the sign ±, coincides with that of b.

3 Hawking temperature for spherical solutions in
D = 4 double field theory

In line with the analysis of Refs. [5,21], we study the semi-
classical tunnelling of particles through the horizon of black
holes in this section. Further discussion can be seen in Refs.
[22–25]. On the one hand, the rate of emission � will have
exponential part given by [21]

� ∼ exp(−2ImS), (3.1)

where S is the tunnelling action of particles and ImS is the
imaginary part of the tunnelling action S. On the other hand,
according to the Planck radiation law, the emitted rate � of
particles with frequency ω can be written as [21]

� ∼ exp(−ω/TBH ). (3.2)
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Therefore, combining Eqs. (3.1) and (3.2), the temperature
at which the black hole radiates can be read off [21]:

TBH = ω

2ImS
. (3.3)

In Sect. 3, we study Hawking radiation process in Painlevé–
Gullstrand coordinates. Firstly, we will rewrite the metric
(2.21) in Painlevé–Gullstrand coordinates. We define

tr = t − a(r), (3.4)

where a(r) is a function of radial coordinate r . Then

dt2 = dt2
r + a′2(r)dr2 + 2a′dtr dr, (3.5)

where a′ = da(r)/dr . The time coordinate tr , in fact, cor-
responds to the time measured by a stationary observer at
infinity [21]. Inserting (3.5) into the general static and spher-
ical metric

ds2 = − f (r)dt2 + g(r)dr2 + r2d�2, (3.6)

where d�2 = dθ2 + sin2 θdφ2, then metric (3.6) can be
rewritten as

ds2 = − f (r)dt2
r − 2 f (r)a′dtr dr

+
(
g(r) − f (r)a

′2
)
dr2 + r2d�2. (3.7)

We require

g(r) − f (r)a′2 = 1, (3.8)

and choose a′ = −
√

g(r)−1
f (r) . Then

− 2 f (r)a′ = 2
√

f (r) (g(r) − 1). (3.9)

Considering metric (2.5) in Einstein frame, then f (r) =
A(r) and g(r) = A−1(r), then we have

− 2 f (r)a′ = 2
√

1 − A(r), (3.10)

where

A(r) =
(
r − c+
r − c−

) a
c+−c− =

(
r − c − 1

2

√
a2 + b2

r − c + 1
2

√
a2 + b2

) a√
a2+b2

.

(3.11)

Then the metric can be rewritten in Painlevé–Gullstrand coor-
dinates as follows:

ds2 = −A(r)dt2
r + 2

√
1 − A(r)dtr dr + dr2 + r2d�2.

(3.12)

In the following part of Sect. 3, we will take dt2 = dt2
r for

convenience, i.e.,

ds2 = −A(r)dt2 + 2
√

1 − A(r)dtdr + dr2 + r2d�2.

(3.13)

The action for a particle moving freely in a curved back-
ground can be written as:

S =
∫

pμdx
μ, (3.14)

with

pμ = mgμν

dxν

dσ
, (3.15)

where σ is an affine parameter along the worldline of the
particle, chosen so that pμ coincides with the physical
4-momentum of the particle. For a massive particle, this
requires that dσ = dτ/m, with τ the proper time [21]. For
simplicity, in this paper we only consider the case of massless
scalar field � and ignore the angular directions. Following
the spirit of Ref. [21], we will obtain the formula of Hawking
temperature for for spherical solutions in D = 4 double field
theory.

The radial dynamics of massless particles in 4d spacetime
are determined by the equations:

A(r)ṫ2 − 2
√

1 − A(r)ṫ ṙ − ṙ2 = 0, (3.16)

A(r)ṫ − √
1 − A(r)ṙ = ω. (3.17)

The second equation is the geodesic equation correspond-
ing to the time-independence of the metric; in terms of the
momentum defined in Eq. (3.15), it can be written pt = −ω,
and so ω has the interpretation of the energy of the particle
as measured at infinity [21].

Now we consider the the trajectory of an outgoing parti-
cle. For classical Schwarzschild solution, outgoing trajectory
which crosses the horizon is forbidden [21]. The analytic con-
tinuation of an outgoing trajectory with r > 2M backwards
across the horizon [21], however, will give rise to an imagi-
nary term in our action, and this term actually represents the
tunnelling amplitude [5]. For an outgoing particle, Eq. (3.16)
can be factorised to yield, the equation

dr

dt
= 1 − √

1 − A(r). (3.18)

In fact, for outgoing particles, the null dr
dt = 0 implies

A(r) = 0 which is consistent with the metric (2.5), i.e.,
at A(r) = 0 there exists a horizon rh . But we still need to
check if the definition rh is reasonable. If the result of tun-
neling approach is the same as the result of other methods,
then we can conclude that the definition rh is reasonable and
tunneling approach can be applied to the case which we are
studying.

From Eq. (3.17), we have

dr

dt
= ṙ

ṫ
= A(r) − ω

ṫ√
1 − A(r)

. (3.19)

Combining Eqs. (3.18) and (3.19), we obtain

ṫ = ω

1 − √
1 − A(r)

, (3.20)
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and

ṙ = ω. (3.21)

For the case we are considering,

pr = grt ṫ + grr ṙ = √
1 − A(r)ṫ + ṙ . (3.22)

Inserting Eqs. (3.20) and (3.21) into (3.22), we have

pr = ω

1 − √
1 − A(r)

, (3.23)

then

ImS = Im
∫

prdr. (3.24)

Then Hawking temperature is given by Eq. (3.3),

TBH = ω

2ImS
= 1

2Im
∫ 1

1−√
1−A(r)

dr
= 1

4π
A′(rh). (3.25)

Furthermore, according Eq. (3.11), we have

A′(rh) = a

[rh − c + 1
2

√
a2 + b2]2

×
(
rh − c − 1

2

√
a2 + b2

rh − c + 1
2

√
a2 + b2

) a√
a2+b2

−1

, (3.26)

TBH = a

4π [rh − c + 1
2

√
a2 + b2]2

×
(
rh − c − 1

2

√
a2 + b2

rh − c + 1
2

√
a2 + b2

) a√
a2+b2

−1

. (3.27)

Now we will consider the various limits we have listed in
Sect. 2.2.
• If b = h = 0, a = 2M∞G > 0 and φ(r) = 0, then we
have

pr = ω

1 −
√

2M∞G
r

, (3.28)

then

TBH = ω

2ImS
= ω

2Im
∫

ω

1−
√

2M∞G
r dr

= 1

8πGM∞
, (3.29)

which is consistent with the result of Schwarzschild black
hole [21].

If b = h = 0, a = 2M∞G < 0, after the radial coordinate
redefinition, r → R − 2M∞G, then the metric reduces to
Schwarzschild metric with negative mass. Therefore, there
does not exist event horizon, namely, in the usual sense the
Hawking radiation does not exist for this limit.
• If a = h = 0, regardless of the sign of b, from metric (2.26)
we have A(r) = 1. Therefore, for this limit, the Hawking
radiation does not exist.
• If h = 0, then F-JNW solution can be recovered [8].
The location of event horizon can be obtained by setting

A(r) = 0. From metric (2.27), we have that the event hori-
zon is located at rh = √

a2 + b2. Combining Eq. (3.27), we
can obtain the Hawking temperature for F-JNW solution:

TBH = a

4π [ 3
2

√
a2 + b2 − c]2

(
1
2

√
a2 + b2 − c

3
2

√
a2 + b2 − c

) a√
a2+b2

−1

.

(3.30)

• If h = 0 and a = b, with the proper radius, R = √
r2 − α2,

and a positive number, α ≡ 1√
2
|a| > 0. According to metric

(2.25), we can obtain the location of event horizon at R = 0,
namely, r = α ≡ 1√

2
|a|. Then metric (2.29) becomes ds2 =

dr2. Therefore, for this limit, the Hawking radiation does not
exist.

• If a = 0 with b2 ≥ h2, then from metric (2.30), we
obtain A(r) = 0. In other words, no Hawking radiation
exists.

In particular, if a = 0 with b2 = h2, it is no longer
necessary to impose the constraint R ≥ 1

2 |h|. However, the
gravity becomes repulsive and the orbital velocity becomes
imaginary which has no physical sense [8].

4 The bound on greybody factors for spherical solutions
in D = 4 double field theory

In Sect. 3, we have obtained the formula of Hawking temper-
ature for spherical solutions in D = 4 double field theory. It
is natural to discuss Hawking radiation spectrum in Sect. 4.
The Hawking radiation power P(ω) is given by [7]:

P(ω) =
∑
l

∫ ∞

0
Pl(ω)dω, (4.1)

where

Pl(ω) = A

8π2 σl(ω)
ω3

exp(ω/TBH ) − 1
, (4.2)

is the power emitted per unit frequency in the l-th mode, A
is a a multiple of the horizon area, l is the angular momen-
tum quantum number and σl(ω) is the frequency dependent
greybody factor [7].

Various methods have been applied to calculate greybody
factors σl(ω), however, only very few cases can obtain exact
analytical expressions [7]. Moreover, considering the com-
plexity of (3.25), it is difficult to obtain the general formula
for Hawking radiation power P(ω). Therefore, in this sec-
tion, we only briefly consider the bound on greybody factors
for spherical solutions in D = 4 double field theory follow-
ing Ref. [8]. Petarpa Boonserm and Matt Visser proposed
that the general bounds on the greybody factor is given by
[2,7,26]:
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σl(ω) ≥ sech2
(∫ ∞

−∞
�dr∗

)
, (4.3)

where

� =
√

[h′(r)2] + [ω2 − Vef f − h(r)2]2

2h(r)
. (4.4)

The arbitrary function h(r) has to be positive definite
everywhere and satisfy the boundary condition, h(∞) =
h(−∞) = ω for the bound Eq. (4.3) to hold [7] and Vef f is
the effective potential [2,7,26] which will be given later.

The equation of motion for a massless scalar field � is
given by

�� = 0. (4.5)

Since metric (2.5) has spherical symmetry, according to Ref.
[27], the angular variables can be separated from the other
coordinates, i.e.,

�(t, r, θ, φ) = �(t, r)S(θ, φ), (4.6)

where S(θ, φ) can be decomposed in the usual spherical har-
monics satisfying [27]
(

∂2
θ + cos θ

sin θ
∂θ + 1

sin2 θ
∂2
φ

)
Y (θ, φ) = −l(l + 1)Y (θ, φ).

(4.7)

In addition, we can separate time t from from the radial coor-
dinate, namely,

�(t, r) = �(t)�(r), (4.8)

where �(t) ∼ eiωt and satisfies �̈(t) = −ω2�(t) [27].
For the general static and spherical metric (3.6), we can

rewrite it as [27]

ds2 = − f (r)(dt2 + dr2∗ ) + r2d�2, (4.9)

by introducing the tortoise coordinate [27]:

r∗ =
∫ r

√
g(r ′)
f (r ′)

dr ′. (4.10)

For the metric (2.5), we have

dr∗ = 1

A(r)
dr. (4.11)

Then the radial equation can be written as [2,7,26,27]:
(

d2

dr2∗
+ ω2 − Vef f

)
u(r) = 0, (4.12)

where

Vef f = f (r)
l(l + 1)

r2 = A(r)
l(l + 1)

r2 . (4.13)

Considering (4.3), we obtain the bound on the greybody fac-
tor:

σl(ω) ≥ sech2
(∫ ∞

rh

Vef f
2ωA(r)

dr

)
= sech2

(
l(l + 1)

2ωrh

)
,

(4.14)

where rh is the location of event horizon.
For the various limits we considered in Sect. 3, we

found that except for Schwarzschild solution, the only solu-
tion which exists Hawking radiation is the F-JNW solu-
tion. The bound on greybody factor for Schwarzschild solu-
tion has been obtained in Ref. [26]. For F-JNW solution,
rh = √

a2 + b2. Then the bound on greybody factor for F-

JNW solution is σl(ω) ≥ sech2
(

l(l+1)

2ω
√
a2+b2

)
. We can find

that σl(ω) increases as a and b increase.
In principle, if we combine Eqs. (2.23), (2.24), (3.25) and

(4.2), we can obtain the lower bound on Hawking radiation
spectrum Pl(ω), but we will not do it in this article.

5 Discussions and conclusions

On the one hand, since Hawking’s original work in 1974 [1],
black hole, as a fascinating and elegant object, have been
increasingly popular in classical and quantum gravity the-
ories [2]. In the following years, a series of works devoted
to studying Hawking radiation, such as [3–5]. On the other
hand, in recent years, double field theory (DFT) is an excit-
ing research area in string theory. Sung Moon Ko, Jeong-
Hyuck Park and Minwoo Suh [8] obtained the the most gen-
eral, spherically symmetric, asymptotically flat, static vac-
uum solution to D = 4 double field theory.

In this article, we studied the basic properties of Hawking
radiation in D = 4 double field theory. Firstly, we give the
formula of Hawking temperature for the spherical solution in
D = 4 double field theory given in Ref. [8]. For all limits we
considered only Schwarzschild solution and F-JNW solution
can generate Hawking radiation. Furthermore, we discussed
the lower bound of greybody factors σl(ω) for the spherical
solution in D = 4 double field theory. Since the bound of
Schwarzschild solution has been obtained in Ref. [26], we
mainly focus on the F-NJW solution. For F-JNW solution, we
found that σl(ω) monotonically increases as a and b increase.

Future work can be directed along at least three lines of fur-
ther research. Firstly, the solutions of other metric in double
field theory should be obtained. Secondly, in Refs. [27,28]
the authors have obtained quantum corrected black hole met-
ric using effective field theory. It is natural to investigate the
relationship between the two metrics in double field theory
and effective field theory. Thirdly, Hawking radiation rates
and information paradox in double field theory should be con-
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sidered. There is therefore great potential for development of
this work in the future.
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