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Abstract We propose a renormalization scheme for non-
local Quantum Field Theories (QFTs) with infinite deriva-
tives inspired by string theory. Our Non-locality Renormal-
ization Scheme (NRS) is inspired by Dimensional Regular-
ization (DR) in local QFTs and is shown to significantly
improve the UV behavior of non-local QFTs. We illustrate the
scheme using simple examples from the φ3 and φ4 theories,
then we evaluate the viability of NRS-enhanced non-local
QFTs to solve the hierarchy problem using a simplified toy
model. We find that non-locality protects the mass of a light
scalar from receiving large corrections from any UV sector
to which it couples, as long as the non-locality scale � is suf-
ficiently smaller than the scale of the UV sector. We also find
that NRS eliminates any large threshold corrections from the
IR sector.

1 Introduction

It is commonly known that (local) QFTs are plagued with
UV divergences, which emanate from the point-like nature
of local interactions. Such locality renders QFTs sensitive
to very short distances/high frequencies, leading to uncon-
trolled growth in scattering amplitudes. The standard pre-
scription for dealing with such divergences is to utilize a
renormalization scheme, such as DR, whereby one subtracts
these divergences essentially by hand. On the other hand,
strings are naturally free of UV divergences owing to their
inherently non-local nature. The finite size of strings pro-
vides a natural cutoff for very short distances/high frequen-
cies which regularizes UV divergences without the need for
any renormalization scheme.

Inspired by the good UV behavior of scattering amplitudes
of strings [1–11], non-local QFTs with infinite derivatives
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[12] attempt at mimicking string theories by introducing non-
locality to the propagators of local QFTs via the exponent of
an entire function suppressed by the scale of non-locality.
For example, a non-local (real) scalar QFT takes the form

Lφ = −1

2
φe

�+m2

�2 (� + m2)φ − λ

4!φ
4, (1)

where � = ∂μ∂μ and � is the scale of non-locality. Notice
that that when � → ∞, we retrieve the local QFT. The non-
local form factor in Eq. (1) has several attractive features:
It does not introduce any new poles to the local propaga-
tor, which means that the particle spectrum in the non-local
QFTs is identical to the local case. It also makes the con-
nection with the Lee-Wick (LW) theory [13–15] transparent,
as the LW theory can simply be obtained by expanding the
form factor and keeping the leading derivative operator. More
importantly, the derivative in the exponent improves the UV
behavior of the theory, as when calculating loop diagrams,
the form factor in momentum space becomes ∼ e−k2/�2

,
which suppresses all large momenta above the non-locality
scale, thereby providing a physical cutoff for the theory.
Therefore, such non-local QFTs are expected to be super-
renormalizable. This feature was used to show that the β-
functions of Abelian [16] and non-Abelian [17] non-local
QFTs exhibit a conformal behavior and flow towards fixed
points, thereby providing a possible solution to the Higgs
potential instability problem [18–25]. In addition, it was
speculated that such a formulation has the potential of solving
the hierarchy problem if � ∼ O(TeV) [26–28].

On the other hand, Eq. (1) is not free of problems. First,
Eq. (1) is an ansatz that is not derived from any first princi-
ples. Thus, it should be treated as an Effective Field Theory
(EFT) of yet a more fundamental theory in the UV.1 In addi-

1 Such a form factor could arise from the star product in noncommuta-
tive geometries, see for instance [29–42].
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tion, there is no reason why the non-local form factor should
take the form given in Eq. (1), and other form factor could in
principle lead to an altered behavior (see [43] for a review).
Perhaps most embarrassingly, any non-local QFT will lead to
acausality (see for instance [44,45]), albeit at the microscopic
level.2 In spite of all these reservations, the formulation in
Eq. (1) remains attractive as an EFT that improves the UV
behavior of scattering amplitudes, in addition to circumvent-
ing the ill-defined notion of point interactions.

Expressing non-locality as the exponent of an entire func-
tion as in Eq. (1), was supposed to render the theory super-
renormalizable without the need to resort to any renormaliza-
tion scheme, however, we shall show in this letter that for cer-
tain types of integrals, amplitudes would receive large thresh-
old corrections from the non-locality scale, which become
even larger with increasing the non-locality scale and even-
tually divergent when � → ∞. Such a behavior is counter-
intuitive, as one would expect the effects of any UV physics
to yield subleading corrections to the IR sector in any well-
behaved EFT, and eventually decouple completely when
� → ∞.

Given that the – so far – null results in the LHC seem to
suggest that the scale of non-locality might be larger than
what was once expected (assuming it exists), it seems that
such large corrections are unavoidable. We are thus faced
with one of two options: Either we give up on non-locality,
or we enhance non-local QFTs with a proper renormaliza-
tion scheme that cures their ills. We show that augmenting
non-local QFTs with a proper renormalization scheme would
eliminate any large corrections to amplitudes that are sen-
sitive to the scale of non-locality, and we argue that such
renormalization should be part of the definition of a parti-
cle’s wavefunction. We formulate our proposed renormal-
ization scheme by drawing inspiration from DR and show
that it strengthens the non-local QFTs framework.

The necessity of renormalizing non-local QFTs was rec-
ognized in [47], where non-local QED was proposed as a
solution to the g−2 anomaly. In addition, renormalization of
non-local QFTs was touched on in [12], where they renormal-
ized the 1-loop φφ → φφ scattering amplitude by expand-
ing the form factor and subtracting the divergent modes in
the expansion. However, their approach is somewhat ad-hoc,
and was only applied to the aforementioned scattering. In
our approach, we formulate a more rigorous renormalization
scheme that can be applied to any theory. In addition, we
provide more motivation for this renormalization and show
how it connects to local QFTs. Our results are reminiscent
of the findings in [42], where a UV cutoff naturally arises
from the noncommutativity of spacetime, thereby regulariz-
ing certain types of diagrams, however, as explained therein,

2 It is possible for causality in such theories to be an emergent property
at the macroscopic level, see for instance [46].

that only occurs in nonplanar diagrams, whereas divergent
planar diagrams still need a regularization scheme.

This paper is organized as follows: in Sect. 2 we present
the motivation for formulating a renormalization scheme for
non-local QFTs. In Sect. 3 we define the renormalization
scheme and illustrate it using simple examples from the φ3

and φ4 theories, and as a check, we show that the β-function
of the φ4 theory remains unchanged. In Sect. 4 we apply the
non-local renormalization scheme to the hierarchy problem
and show that it enhances the viability of non-local QFTs as
a potential solution, and finally, we present our conclusions
and discuss the outlook in Sect. 5.

2 Motivation

2.1 Motivation from the φ4 2-point function

We begin motivating the renormalization scheme by consid-
ering the 1-loop correction to the 2-point function in the φ4 in
Eq. (1). First, we consider the local case by taking � → ∞
in the Lagrangian, which gives us the familiar local case. In
d = 4 − 2ε, the 1-loop correction is given by

�2 = λm2

32π2

[1

ε
− γE + 1 + log

(4πμ2

m2

)
+ O(ε)

]
, (2)

and we see that the result is divergent. However, the result is
rendered finite by subtracting the divergence with an appro-
priate counterterm. For instance, in the MS scheme, we have

�2 = λm2

32π2

[
1 − log

(m2

μ2

)]
, (3)

where μ is the renormalization scale, usually taken to be the
scale of relevant process. The non-local theory, on the other
hand, is expected to be super-renormalizable, removing the
divergence directly. However, the 2-point function in the non-
local theory is found to be

�NL
2 = − λ

32π2 e
−m2

�2
[
�2 + m2e

m2

�2 Ei
(−m2

�2

)]
, (4)

where the exponential integral function Ei(x) is defined as

Ei(x) = −
∫ ∞

−x
dt

e−t

t
, (5)

with the Cauchy principal value taken. For a small argument
z, Ei(z) behaves like a logarithmic function.

Inspecting Eq. (4), we can see that the non-local 2-point
function receives large corrections when the scale of non-
locality is large, and diverges when � → ∞ both quadrat-
ically through the �2 term, and logarithmically through
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Fig. 1 Higgs corrections to �WW and �Z Z at 1-loop

the Ei(−m2

�2 ) function. Therefore, unless � is not much
larger than m, the corrections will be unacceptably large.
For instance, if we treat φ as a Higgs-like particle with
m ∼ O(EW), then unless � ∼ a few TeV, the correction
to the mass of φ will be too large, in spite of the fact that
in the renormalized local case, these corrections are under
control. Thus, if � is large, then it will make things worse so
far as calculating mass corrections is concerned, instead of
ameliorating their divergences.

To better illustrate this issue, notice that although intro-
ducing non-locality to the Lagrangian does indeed remove
the divergences and make amplitudes finite, nevertheless, the
divergences in the unrenormalized local theory translate into
“pseudo-divergences” in the non-local theory. Specifically,
the ε−1 factor (which corresponds to a quadratic divergence
had we used a UV cutoff instead of DR), translates into �2,
whereas the logarithmic divergence translates into the expo-
nential integral function Ei(−m2

�2 ). This seems to suggest that
non-locality alone is insufficient to remove UV divergences
fully, especially if we allow scale of non-locality to be high.

2.2 Motivation from oblique parameters

Next, we consider the contributions of non-locality to the
STU parameters. To keep things simple, we consider the cor-
rections due to the Higgs in a non-local QFT.3 The Higgs con-
tributes to the oblique parameters through modifying �WW

and �Z Z as shown in Fig. 1 below.
The left diagram can be evaluated exactly, yielding the

following contribution

�
(1)
VV(p2) = g2

V

64π2 e
−m2

h
�2

[
�2 + m2

he
m2
h

�2 Ei
(−m2

h

�2

)]
, (6)

where g2
W = g2, g2

Z = g2 + g′2 and mh is the Higgs mass
= 125 GeV. The diagram on the right is more complicated,
however, in the limit of a vanishing external momentum

3 We should note that the non-local versions of the EW sector and Higgs
mechanism have not been fully developed yet and still face issues, such
as the putative existence of ghost degrees of freedom (see for instance
[48] and the proposed solution [49]). Nevertheless, we can ignore these
issues and proceed by placing the non-locality on the Higgs propagator
and assuming local interactions with gauge fields.

Fig. 2 The Higgs contribution to the T parameter in a non-local QFT
as a function of the non-locality scale �

(valid for calculating the T parameter for instance), it sim-
plifies greatly and can be done exactly. Therefore, we focus
on this case and limit ourselves to calculating the T param-
eter, which is sufficient to illustrate our point. At vanishing
external momentum, the second diagram yields

�
(2)
VV(p2 = 0) = v2g2

V

64π2

( 1

m2
V − m2

h

)

×
[
m2

V e
m2
V −m2

h
�2 Ei

(−2m2
V

�2

)
− m2

he
m2
h−m2

V
�2 Ei

(−2m2
h

�2

)]
,

(7)

and the T parameter is defined as

T ≡ 1

α

(�WW (0)

m2
W

− �Z Z (0)

m2
Z

)
. (8)

Inspecting Eq. (6), we can easily see that�(1)
VV yields a van-

ishing contribution to the T parameter. On the other hand,
the contribution from �

(2)
VV is non-vanishing. We plot this

contribution in Fig. 2 against the non-locality scale. The plot
shows that the correction to the T parameter is unacceptably
large. For instance, the LHC constrains � � 2.5 − 3 TeV
[10]. This corresponds to a T parameter of ∼ 0.43 − 0.47,
which is already excluded! Furthermore, the T parameter
increases with the scale of non-locality (albeit logarithmi-
cally), which is both counter-intuitive and unphysical. The
reason why this behavior is unacceptable is that for an EFT
to be sound, the IR sector should be insensitive to the UV
physics, i.e., any UV physics should, once integrated out, be
represented by an irrelevant operator (or operators) yielding
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suppressed contributions that become smaller the higher the
UV scale, eventually decoupling completely when the UV
scale is sent to infinity. However, what we are witnessing
here is exactly the opposite behavior!

Inspecting Eq. (7), it is easy to see that this behavior orig-
inates from the exponential integral function Ei(x). Expand-
ing Ei(x) for small (real) arguments, we find

Ei
(−m2

�2

)
� γE + log

(m2

�2

)
+ O

(m2

�2

)
, (9)

which diverges logarithmically for � → ∞.
The two previous examples have shown us that for certain

types of momentum integrals, specifically ones where the
local QFT are either quadratically or logarithmically diver-
gent, although non-locality does indeed render such inte-
grals finite, it nonetheless does not protect IR observables
from large corrections from the non-local UV sector. Specif-
ically, the quadratic UV divergence in the local case trans-
lates into a quadratic dependence on the scale of non-locality,
whereas logarithmic divergences in the local QFT translate
into a logarithm-like dependence of the scale of non-locality
through the exponential integral function Ei(x). Therefore,
we are faced with one of two options: (1) either we abandon
non-locality as a viable UV completion for local QFTs (at
least in the form presented here through an infinite deriva-
tive form factor), or (2) we enhance non-local QFTs with an
appropriate renormalization scheme to remove the non-local
divergence-like terms. We propose a non-local renormaliza-
tion scheme to eliminate the terms that diverge in the limit
� → ∞ in the next section.

3 Non-locality renormalization scheme (NRS)

As we saw in the previous section, although non-locality
does indeed cut-off UV divergences, it nonetheless results
in unacceptably large threshold corrections to IR observ-
ables. In addition, the quadratic (and potentially logarithmic)
dependence on the non-locality scale makes non-local QFTs
unsound as an EFT description. We thus propose to remedy
this situation by formulating a renormalization scheme for
non-local QFTs that is inspired by DR in local QFTs.

When applying DR to local QFTs, divergences (such as
in Eq. (2)) are subtracted by counterterms. When only the
divergence is subtracted (i.e. ε−1), the scheme is called
Minimum Subtraction (MS), whereas when one subtracts
ε−1 + γE + log (4π), the scheme is dubbed Modified Mini-
mum Subtraction or MS. The physical interpretation of this
procedure is that the quantities appearing in the Lagrangian,
which are called bare quantities, contain an infinite piece
that is unobservable and should be part of the definition of
the normalization of the quantity, and thus should be sub-

Fig. 3 Local (left) vs. non-local (right) interaction

tracted leaving behind the observable part only. For example,
in QED, the bare charge can never be observed, as at short
distances around it the vacuum becomes polarized, thereby
screening the bare charge and rendering only the screened
(physical) charge as the observable part.

Inspired by DR, we formulate the NRS as follows:

1. Quantities in the non-local Lagrangian are considered
bare quantities that are physically unobservable, with the
non-local divergence-like contributions to be removed by
appropriate counterterms,

2. Any quadratic dependence on the non-locality scale �

should be absent from all physical observables,
3. The logarithmic dependence on � may or may not be

subtracted, depending on the scheme. If the logarithmic
dependence is to be subtracted, then we do so via the
following prescription

Ei
(−m2

�2

)
→ Ei

(−m2

�2

)
− Ei

(−μ2

�2

)
, (10)

with μ to be identified with the renormalization scale,
just like in DR.

4. In the limit � → ∞, the renormalized non-local quantity
should agree with the corresponding dimensionally reg-
ularized local quantity up to possibly scheme-dependent
constant terms.

We call applying condition (1) alone the Minimum Non-
locality Subtraction (MNS) scheme, and we call applying
both conditions (1) and (3) the Modified Minimum Non-
locality Subtraction (MNS) scheme, in analogy with the MS
and MS schemes in DR.

The physical interpretation of the NRS is as follows: non-
locality can be viewed as the quantum fuzziness in the par-
ticle’s wavefunction. It serves as to smear point-like inter-
actions as in Fig. 3. This quantum fuzziness should be part
of the definition of the renormalization of physical quanti-
ties and should not be physically observable, as it screens all
scales smaller than it, in a manner similar to charge screening
in local QED.

We illustrate the NRS with a few simply examples in the
φ4 and φ3 theories.
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3.1 Renormalizing the φ4 theory

First, let’s consider the renormalization of the non-local φ4

theory given in Eq. (1). The quantities appearing in the
Lagrangian are taken to be bare quantities. Thus, we first
perform the following rescaling

φ0 = √
Z exp

(m2 − m2
0

2�2

)
φ, (11)

with the subscript indicating bare quantities. Next, we define
the following conterterms

δZ = Z − 1, (12)

δm = Zm2
0 − m2, (13)

δλ = λ0Z
2 exp

(2(m2 − m2
0)

�2

)
− λ. (14)

With these substitutions, Eq. (1) becomes

Lφ = − 1

2
φe

�+m2

�2 (� + m2)φ − λ

4!φ
4

− 1

2
φe

�+m2

�2 (δZ� + δm)φ − δλ

4! φ
4, (15)

with the m and λ now being the physical quantities. It is
straightforward to obtain the Feynman rules of the non-local
counterterms.

= −ie
−p2+m2

�2 (−p2δZ + δm),

= −iδλ.

(16)

With these counterterms, we can proceed with renormal-
izing “divergent” quantities. It is easy to show that in the φ4

theory, only the 2-point and 4-point functions need renormal-
ization, as all other n-point functions are already finite in the
limit � → ∞.

3.1.1 2-point function

The non-renormalized non-local 2-point function is given
in Eq. (4). In order to renormalize it, we add to it the first
counterterm in Eq. (16), and demand that sum be equal to
the renormalized local result given in Eq. (3) up to scheme-
dependent constants. For example, in the MNS scheme, we
only need to subtract �2. Thus we impose

− λ

32π2 e
−m2

�2 �2 + e
−p2+m2

�2
[
p2δZ − δm

]
p2=m2

= 0, (17)

where we have defined the renormalization on-shell for con-
venience. Equation (17) does not specify the renormalization
conditions uniquely, however, one can define the following
suitable conditions

δm = − λ

32π2 e
−m2

�2 �2, (18)

δZ = 0, (19)

which immediately define the renormalized 2-point function
to be

�MNS
2 = − λm2

32π2 Ei
(−m2

�2

)
. (20)

Notice that in the limit � → ∞, we can expand the func-
tion Ei(−m2/�2) as in Eq. (9). Keeping the leading term,
we have

�MNS
2 � − λm2

32π2

[
γE + log

(m2

�2

)]

= �Local
2 (μ2 = �2) + constant terms, (21)

as it should. On the other hand, in MNS, we need to subtract
the divergence in Ei(−m2/�2) in addition to subtracting �2.
Therefore, instead of setting the L.H.S of Eq. (17) to vanish,
we set it equal to

λm2

32π2

[
1 − Ei

(−m2

�2

)
+ Ei

(−μ2

�2

)]
. (22)

Imposing this renormalization condition with the on-shell
condition assumed, it is fairly simple to see that δm remains
unchanged, whereas δZ becomes

δZ = λ

32π2

[
1 + Ei

(−μ2

�2

)]
, (23)

and the renormalized 2-point function in the MNS reads

�MNS
2 = λm2

32π2

[
1 + Ei

(−μ2

�2

)
− Ei

(−m2

�2

)]
, (24)

and it is a simple exercise to verify that it reduces to the
renormalized local case given in Eq. (3) in the limit � → ∞.

3.1.2 4-point function

Now we turn our attention to renormalizing the 4-point func-
tion. Notice that the interaction and its counterterm (second
line in Eq. (16)) are identical to the local case, however,
the propagators are modified by the non-locality form factor,
which means that the effect of non-locality only arises from
loops. The contributions to the 4-point functions are shown
in Fig. 4 below.
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Fig. 4 Contributions to the φ4 4-point function

Following [50] for the local case, the renormalization con-
dition is set to be i4 = −iλ at s = 4m2 and t = u = 0, with
s, t and u being the Mandelstam variables. The renormalized
local 4-point function thus reads

Local
4 = −λ − λ2

32π2

∫ 1

0
dx

[
log

( f (s)

f (4m2)

)

+ log
( f (t)

f (0)

)
+ log

( f (u)

f (0)

)]
, (25)

where f (τ ) = (m2 − x(1 − x)τ ). On the other hand, the
non-local matrix element reads

NL
4 = −λ + (−iλ)2

[
V (s) + V (t) + V (u)

]
− δλ, (26)

where

iV (p2) = 1

S

∫
d4k

(2π)4

ie
k2−m2

�2

k2 − m2

ie
(p+k)2−m2

�2

(p + k)2 − m2 , (27)

where S = 2 is a symmetry factor. In general, the momentum
integral is not doable exactly, however, in the limit �2 	
m2, p2, it can be done to a good level of approximation.
We show how to evaluate this integral approximately in the
Appendix. Given the approximate result in Eq. (A6), we see
that the non-local 4-point function lacks a �2 term, and thus
it is already renormalized in the MNS scheme, however, it
does contain the term Ei(−2m2/�2), which still needs to
be subtracted in the MNS scheme. So, plugging Eq. (A6) in
Eq. (26) and imposing the same renormalization condition as
in the local case, we arrive at the following renormalization
condition

δλ � − λ2

32π2 e
− 2m2

�2
[
1 + 3Ei

(−2m2

�2

)]
, (28)

and the renormalized non-local 4-point function immediately
follows

MNS
4 � −λ − λ2

32π2 e
− 2m2

�2

∫ 1

0
dx

[
2 − 3Ei

(−2m2

�2

)

+ Ei
(−2 f (s)

�2

)
+ Ei

(−2 f (t)

�2

)
+ Ei

(−2 f (u)

�2

)]
.

(29)

Expanding the exponential integral functions and keeping
in mind that

−
∫ 1

0
dx log (1 − 2x)2 = 2, (30)

it is easy to show that MNS
4 reduces to the local case in Eq.

(25) in the limit � → ∞.

3.2 Renormalizing the φ3 theory

Another example that will be useful for our purposes is the
non-local φ3 theory, which is essentially given by Eq. (1) with
the interaction term being replaced with 1

3!κ0φ
3. Performing

the rescaling in Eq. (11), and defining the counterterms in
Eqs. (12) and (13), in addition to the following conterterm
for κ0

δκ = κ0Z
√
Z exp

(3(m2 − m2
0)

2�2

)
− κ, (31)

it is easy to see that the propagator counterterm remains
unchanged, whereas the interaction counterterm is simply
given by −iδκ .

It is fairly simple to show that all n-point functions for
n > 2 in the non-local theory are finite in the limit � →
∞, and therefore they do not need to be renormalized. This
leaves us with only the 2-point function, which naively has
a logarithmic divergence (in the limit � → ∞).

Starting with the local theory, it is fairly simple to show
that in the MS scheme, the renormalized 2-point function
reads

�Local
2 = − κ2

32π2

[
log

(m2

μ2

)
+ C

]
, (32)

where we have collected all constant terms in C . Follow-
ing the MNS prescription, we can define the renormalization
conditions as

δm = −κ2e
−2m2

�2

32π2

∫ 1

0
dx

{
1 − C + Ei

[g(x)μ2

�2

]}
(33)

δZ = 0, (34)

where g(x) = −2(1 − x + x2) and thus the renormalized
2-point function reads

�MNS
2 = κ2

32π2 e
−2m2

�2

∫ 1

0
dx

{
Ei

[g(x)μ2

�2

]

− Ei
[g(x)m2

�2

]
− C

}
, (35)

which can be shown to reduce to Eq. (32) in the limit � → ∞
by simply expanding the exponential integral function.
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3.3 The φ4 β-function

Since the β-function should be independent of the renormal-
ization scheme, it is worthwhile to compare the β-function
in both the renormalized and unrenormalized cases and see
if they agree. This would provide a good sanity check for the
NRS. Here we do it for the φ4 theory, and to keep things sim-
ple, we consider the massless case. The 1-loop β-function of
the unrenormalized case is given by [16]

β
(1)
λ = 3λ3

16π2 e
− 2μ2

�2 . (36)

The β-function can be found from the 4-point function
calculated with a UV-cutoff M as follows

β
(1)
λ = −M

∂

∂M
4

∣∣∣∣
M→μ

, (37)

where μ is the renormalization scale. In the massless limit,
the 4-point function reads (see Eq. (26))

4 = −λ − 3λ2V (p2 = 0) − δλ, (38)

where V (p2) is given by Eq. (27) with m2 → 0. Requiring
that the 4-point function be equal to −iλ when s = t = u = 0
fixes the counterterm to be

δλ = −3λ2V (p2 = 0) = 3λ2

2

∫ M d4k

(2π)4

e2k2/�2

k4 . (39)

It is easy to see that the only dependence on the UV cutoff
in the 4-point function arises from the counterterm. Thus, the
β function becomes

β
NSR(1)
λ = M

∂δλ

∂M

∣∣∣∣
M→μ

= 3λ2

16π2 e
− 2μ2

� , (40)

which agrees with Eq. (40), thereby exonerating the NRS.

3.4 Suppressing the corrections to the T parameter

Finally, we show how the NRS can solve the issue of the
large contributions to the T parameter discussed in Sect. 2.2.
From Eq. (7), it is easy to see that we need to apply the MNS
in order to subtracted the logarithmic-like divergences. Thus,
we substitute

Ei
(−2m2

x

�2

)
→ Ei

(−2m2
x

�2

)
− Ei

(−2μ2

�2

)
,

� log
(m2

x

μ2

)
, (41)

where x = {φ,W, Z} and μ is an appropriately chosen renor-
malization scale. After renormalization, Eq. (7) becomes:

�
(2)
VV(p2 = 0) = v2g2

V

64π2

( 1

m2
V − m2

h

)

×
[
m2

V e
m2
V −m2

h
�2 log

(−2m2
V

μ2

)
− m2

he
m2
h−m2

V
�2 log

(−2m2
h

μ2

)]
,

(42)

and keeping in mind the definition in Eq. (8), it is easy to
show that the contribution to the T parameter can be made
small by an appropriate choice of the renormalization scale
μ. For instance, it is easy to how that setting μ � 208 GeV
∼ O(EW) yields a vanishing contribution to the T parameter.

4 Application to the hierarchy problem

4.1 The old view and the modern view

The old view of the hierarchy problem is related to the issue of
the quadratic (and to a lesser extent logarithmic) divergences
in the corrections to the Higgs mass. More specifically, when
calculating the 1-loop corrections to the Higgs mass using a
UV cut-off �UV , these corrections turn out to be proportional
to�2

UV and/or log (�2
UV /m2), thus rendering the Higgs mass

unnatural as the UV cutoff is taken to be large, and avoiding
this would require unnatural fine-tuning [51,52].

With the old view of the hierarchy problem, the potential
of non-local QFTs to solve these divergences was recognized
early on, because non-local momentum integrals are finite in
the limit k → ∞, since they have the scale of non-locality
as a natural cutoff that regularizes them (see for instance
[26–28]). However, the price that one pays is that instead
of the quadratic divergence, the mass corrections become
quadratically dependent on the scale of non-locality as we
have shown earlier. This meant that in order to have a natural
solution that is not fine-tuned, the scale of non-locality had
to be low, potentially � ∼ 1 − 10 TeV.

The null results in the LHC (albeit still leaving some room
for new physics below ∼ 10 TeV), have induced a different
view of the hierarchy problem. One no longer refers to any
quadratic divergences, as DR is used to regularize divergent
integrals of the Higgs mass corrections arising from the SM
degrees of freedom. However, the Higgs sector would still
suffer from a naturalness problem if it coupled to some heavy
sector, as this sector would yield large threshold corrections
even after subtracting the divergences with DR. To better
illustrate the modern viewpoint of the hierarchy problem,
let’s assume that the SM Higgs couples to some heavy particle
of mass M 	 mh . Viewing the SM as an EFT of the full
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UV sector, one can show that once this UV sector has been
integrated out, the physical Higgs mass would schematically
be given by

m2
h = m2

H − 1

16π2

[
C0M

2 +C1m
2
H +C2

m4
H

M2 + · · ·
]
, (43)

where mH is the bare mass, and Ci are Wilson coefficients
arising from integrating out higher-order operators that con-
tribute to the Higgs mass from the heavy sector. One can see
that we need to tune M

4π
	 mh against mH in order to have

mh ∼ O(100) GeV, which is obviously unnatural. This is
precisely the origin of the fine-tuning problem in the Higgs
sector, which is most transparent in this Wilsonian approach.4

On the other hand, if the Higgs boson does not couple to any
UV sector, then its mass will not receive any large threshold
corrections and the fine-tuning problem is averted. Nonethe-
less, there are compelling reasons to believe that the Higgs
does indeed couple to a UV sector (or sectors), most notable
of which are to provide a natural explanation of neutrino
masses via the see-saw mechanism, the unification of gauge
couplings at the GUT scale, and the emergence of quantum
gravity at the Planck scale. Thus, the hierarchy problem is
indeed worth careful investigation.

4.2 Non-locality as a solution in the modern view

Armed with the NRS, we would like to evaluate the viability
of (renormalized) non-local QFTs for solving the hierarchy
problem in its modern form. To this avail, we shall analyze
a simplified scalar toy model that consists of a light Higgs-
like scalar singlet φ of mass m ∼ O(EW) that is coupled
to another heavy scalar singlet H with mass M 	 m. To
keep our analysis simple, we shall impose Z2 symmetry on
φ and assume a universal non-locality scale. The most general
Lagrangian that one can write is

LφH = −1

2
φe

�+m2

�2 (� + m2)φ − 1

2
He

�+M2

�2 (� + M2)H

− λ1

4! φ
4 − λ2

3! MH3 − λ3

2
Mφ2H − λ4

4
φ2H2, (44)

where we have factored out the mass of H in the trilinear
couplings. In general, we could also have a H4 term, however,
it is irrelevant for our analysis.

The 1-loop corrections of the mass of φ are shown in
Fig. 5. In calculating the mass corrections, it is convenient to
employ the MNS scheme. But before doing so, let’s discuss
the unrenormalized case. The unsubtracted corrections are
given by

4 We refer the interested reader to [53] for an in-depth discussion of
the hierarchy problem both from the Wilsonian view and the DR view,
where it is shown that these two approaches agree.

Fig. 5 1-loop corrections to the mass of φ

δm2
1 = λ1

32π2 e
−m2

�2
[
�2 + m2e

m2

�2 Ei
(−m2

�2

)]
, (45)

δm2
2 = λ4

32π2 e
− M2

�2
[
�2 + M2e

M2

�2 Ei
(−M2

�2

)]
, (46)

δm2
3 = −λ2

3

32π2 e
−m2−M2

�2
[
�2 + m2e

m2

�2 Ei
(−m2

�2

)]
, (47)

δm2
4 = − λ2λ3

32π2 e
− 2M2

�2
[
�2 + M2e

M2

�2 Ei
(−M2

�2

)]
, (48)

δm2
5 = λ2

3

32π2 M
2e

M2

�2 Ei
(−2M2

�2

)
, (49)

where the MNS renormalized corrections are obtained sim-
ply by dropping the �2 term from Eqs. (45)–(48) with Eq.
(49) remaining unchanged. Notice that δm2

2−5 arise from the
UV sector, whereas δm2

1 is an IR threshold correction due to
the light scalar’s self-energy.

In the unrenormalized case, and for � � M , all correc-
tions in Eqs. (45)–(49) are too large, i.e. non-locality does
not protect the mass m from any large corrections from the
heavy sector. This is easy to understand by inspecting the
exponential form factor used to express non-locality. On the
other hand, when � is sufficiently smaller than M , then it is
easy to show that the corrections (46)–(49) are always expo-
nentially suppressed, and thus non-locality does indeed pro-
tect the mass from receiving large corrections from the UV
sector, however, the IR contribution (45) will now acquire a
threshold correction ∼ �2, which will be large unless � is
not much larger than m.
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Fig. 6 The scale non-locality � plotted against the level of fine-tuning
in the mass of the light scalar φ. Here we set λ1 = 1 and m = 125 GeV.
The red dashed lines indicate a fine-tuning level of δm2/m2 = 10% and
the corresponding scale of 7 TeV. Notice that this is the IR correction
only as all corrections from the UV sector are exponentially suppressed
for � sufficiently smaller than M

Despite the threshold correction in the self-energy of φ, it
is possible to keep the mass of φ naturally light while at the
same time evade the constraints from the LHC. If we estimate
the level of fine-tuning in the mass of φ as δm2/m2, then
evading the LHC limit of � � 3 TeV [12], would require
fine-tuning of only ∼ O(50%). On the other hand, if we
demand that the level of fine-tuning not exceed O(10%), then
we must have � � 7 TeV. We show the scale of non-locality
as a function of the fine-tuning in Fig. 6.

Notice that the (renormalized) local case in Eq. (3) yields
smaller corrections ∼ m2

32π2 as opposed to ∼ �2

32π2 . So, when
introducing non-locality without renormalization, one loses
in the IR sector what one gains in the UV sector.

As we argued earlier, this is merely an artifact of not renor-
malizing the non-local theory, and things improve drastically
when we apply the NRS, as large IR corrections are com-
pletely absent. To be more specific, in the MNS scheme, all
corrections in Eqs. (45)–(49) will be suppressed as long as
� is sufficiently smaller than M , i.e. not only is the mass of
φ protected from large corrections from the UV sector, but
also from the threshold corrections of the IR sector, consis-
tent with the dimensionally-regularized local case. We show
this suppression in Fig. 7. As the figure shows, all mass cor-
rections remain negligible as long as � is sufficiently smaller
than M . However, once � becomes sufficiently close to M ,

Fig. 7 The MNS-subtracted mass corrections as a function of the non-
locality scale �. Here, we fix λ1 = 1, λ2 = 0.8, λ3 = 1.2, λ4 = 0.9,
m = 125 GeV and M = 1015 GeV

the corrections from the UV sector starts to increase sharply
and eventually saturate to a very large value ∼ M , simi-
lar to the unsubtracted case. This behavior can easily be
understood by inspecting Eqs. (46), (48) and (49). After
subtracting �2 in the MNS scheme, we can see that all
of these corrections are proportional to M2Ei(−M2/�2),
which becomes vanishingly small in the limit M/� 	 1,
because limx→∞ Ei(−x) = 0. On the other hand, when
M/� 
 1, M2Ei(−M2/�2) � M2 log (−M2/�2) +
O(M4/�2) yielding large corrections. The situation isn’t
improved by employing the MNS scheme, as the corrections
become ∼ M2[Ei(−M2/�2)−Ei(−μ2/�2)], which would
yield large corrections unless we set μ2 ∼ M2, and the result
isn’t much different from the MNS scheme.

We can therefore summarize our main conclusion as fol-
lows: Non-locality eliminates all mass corrections from all
UV sectors at mass scales that are sufficiently larger than the
scale of non-locality, and applying NRS obviates any large
threshold corrections from the IR sector that emanate from
introducing the said non-locality, in addition to improving the
UV behavior of the non-local theory, however, non-locality
does not protect the mass of the any scalar in the IR sec-
tor from receiving large corrections from UV sectors at mass
scales comparable to or smaller than �. Therefore, in order to
furnish an acceptable solution to the hierarchy problem that
avoids fine-tuning, we need to assume that the SM Higss does
not couple to any sector in the region ∼ O(EW) 
 E ∼ �,
whereas it can couple to any other UV sectors at scales suf-
ficiently larger than �.

This assumption is not as constraining as it seems, since
the scales of NP to which the Higgs is expected to couple
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Fig. 8 The ratio �2

M2 needed to keep δm2

m2 = 1 as a function of the mass
of the heavy sector M . The benchmark values are the same as in Fig. 6.
The plot shows that as we increase the scale of the UV sector, the scale
of non-locality needs to kick in earlier. Nonetheless, the dependence is
logarithmic, and � that is roughly an order of magnitude smaller than
M is sufficient to suppress all contributions from the UV sector

are the GUT scale and and Plank scale. Therefore, if we
assume � to be sufficiently smaller than the GUT scale, all
the problematic corrections to its mass are filtered out. This
also allows us to push the scale of non-locality to very large
scales,5 which would both help evade all experimental con-
straints, and confine any acausality to very short distances,
rendering its effects highly suppressed at lower energies. Fur-
thermore, non-locality can allow supersymmetry (SUSY) to
be realized at much higher energies while still being natural,
as long as the SUSY-breaking scale is sufficiently larger than
the scale of nonlocality to eliminate threshold corrections
from superpartners.

Before we conclude this section, we need to investigate
how “sufficiently smaller” � needs to be compared to M . As
Fig. 7 shows, the mass corrections start becoming large at a
scale slightly smaller than M . To quantify this, we plot in
Fig. 8 the ratio �2

M2 at which the tuning δm2

m2 = 1, against M .
As the plot shows, one must increase the separation between
the non-locality scale and the scale of the UV sector as the
latter increases. This dependence is logarithmic. We can see
from the plot that even for very large scales of the UV sector
M , the scale of non-locality should be smaller by roughly an

5 In [54], unitarity was used to derive a model-independent Veltman
condition, which yielded an upper bound of ∼ 19 TeV on the scale of
any NP that can solve the hierarchy problem. However, that analysis
was conducted in the local case, and calculating the loop corrections in
the renormalized non-local theory would avoid this upper limit.

order of magnitude at most in order to provide the required
suppression.

5 Conclusions

In this paper, we formulated a renormalization scheme
inspired by DR for non-local QFTs with infinite deriva-
tives. In this scheme which we called NRS, we defined two
subtraction schemes to eliminate the quadratic dependence
(MNS) and the logarithmic-like dependence (MNS) on the
non-locality scale, which are divergent in the limit � → ∞.
We showed how renormalizing non-local QFTs links with
the dimensionally renormalized local case and we illustrated
this scheme using a few simple examples in the φ3 and φ4

theories.
We applied our results to the hierarchy problem in its mod-

ern view using a simple toy model, and we showed that when
we enhance non-local QFTs with NRS, then not only does
non-locality protect the mass of light scalars from large cor-
rections arising from any UV sector that is sufficiently larger
than the scale of non-locality, but also it can eliminate all
threshold corrections from the IR sector. However, we found
that non-locality does not eliminate large corrections to the
mass of the scalar from heavy sectors that reside at scales
comparable to or smaller than �. This implies that for the
non-locality of be a viable solution to the SM hierarchy prob-
lem, then the SM Higgs can only couple to UV sectors suf-
ficiently larger than the scale of non-locality.

Although we have formulated our scheme using a specific
non-local form factor that is the exponential of an entire func-
tion, generalizing the NRS to any non-local form factor that is
an entire function should be straightforward. It would also be
interesting to apply the NRS to other non-local sectors, such
as non-local QED and the non-local EW sector and investi-
gate their applications to Electroweak Precision Observables
(EWPO), especially the STU parameters, in order to set lim-
its on the scale of non-locality. We postpone this to future
work.
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Appendix A: 4-point scalar integral

Here we show how to approximate the 4-point scalar integral
given in Eq. (27) in the limit m2, p2 
 �2. In general, this
limit is quite sufficient for m2, p2 ∼ O(EW) in light of the
LHC constraints on the scale of non-locality.

Introducing the Feynman parameter and shifting k, it is
easy to show that Eq. (27) can be written as

iV (p2) = −1

2
e− 2m2

�2

∫ 1

0
dx

∫
d4k

(2π)4

exp
[

2k2−2ap.k+bp2

�2

]

(k2 − �)2 ,

(A1)

where a=(1−2x), b=(1−2x+2x2) and �=m2 + x(x−1)

p2. Now, expanding the linear term in k in the exponent

exp
(−2ap.k

�2

)
= 1−

(2ap.k

�2

)
+ 1

2!
(2ap.k

�2

)2 +· · · , (A2)

and noting that the function e2k2
/(k2 − �)2 is even in k, it

follows that all odd terms in Eq. (A2) vanish upon integration.
Thus Eq. (A2) simplifies to

exp
(−2ap.k

�2

)
= 1 + 1

2!
(a2 p2k2

�4

)
+ · · · , (A3)

where we have used the identity qμqν = 1
4q

2gμν to simplify
the dot product. Using Eq. (A3), and after performing the
Wick rotation and the angular integral, Eq. (A1) becomes

V (p2) = −e− 2m2

�2

16π2

∫ 1

0
dx exp

[ (1 − 2x + 2x2)p2

�2

]

×
∫ ∞

0
dk

k3e− 2k2

�2

(k2 + �)2

[
1 −

(a2 p2k2

2!�4

)
+ · · ·

]
.

(A4)

The integral is still not doable analytically for p2 �= 0,
however, in the limit p2 
 �2, we can approximate it as

V (p2) � −e− 2m2

�2

16π2

∫ 1

0
dx

∫ ∞

0
dk

k3e− 2k2

�2

(k2 + �)2 , (A5)

and now this integral is doable exactly for the renormalization
condition for the φ4 2-point function, thus we find for m2 

�2

V (p2 = 0) � 1

32π2 e
− 2m2

�2
[
1 + Ei

(−2m2

�2

)]
,

V (p2 = 4m2) � −1

32π2 e
− 2m2

�2
[
1 − Ei

(−2m2

�2

)]
. (A6)

We have checked that for � = 20m (with the on-shell
condition assumed), Eq. (A5) differs from the exact numer-
ical result by less than 1%. Given than the LHC constrains
� � 2.5 TeV, this approximation is justified.
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