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Abstract In this paper, we present a generalized non-
relativistic Chern–Simons gravity model in three spacetime
dimensions. We first study the non-relativistic limit of the
Mielke–Baekler gravity through a contraction process. The
resulting non-relativistic theory contains a source for the spa-
tial component of the torsion and the curvature measured
in terms of two parameters, denoted by p and q. We then
extend our results by defining a Newtonian version of the
Mielke–Baekler gravity theory, based on a Newtonian like
algebra which is obtained from the non-relativistic limit of
an enhanced and enlarged relativistic algebra. Remarkably, in
both cases, different known non-relativistic and Newtonian
gravity theories can be derived by fixing the (p, q) parame-
ters. In particular, torsionless models are recovered forq = 0.
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1 Introduction

Three-dimensional gravity theory has proven to be an inter-
esting laboratory to study diverse aspects and features of the
gravitational interaction and the underlying laws of quantum
gravity. They share many properties with higher-dimensional
gravity theories, as the existence of black hole solutions
and their thermodynamical behavior [1–3]. Moreover, three-
dimensional gravity models admit non-perturbative quanti-
zations [4], possess rich and non-trivial boundary dynam-
ics after considering suitable boundary conditions [5] and
offer us a consistent way of coupling gravity with higher-
spin gauge fields [6–8], among others.

The most general gravity Lagrangian being Lorentz-
invariant with both curvature and torsion can be formu-
lated through the Mielke–Baekler (MB) gravity Lagrangian
[9,10]. The MB gravity theory contains the usual Einstein–
Hilbert gravity term, a cosmological constant term plus trans-
lational and rotational terms, each one with independent cou-
pling constants. As a consequence, this theory is character-
ized by containing a source for both the constant Lorentz
curvature and the constant torsion measured by parameters
p and q, respectively. Remarkably, particular choices of the
parameters (p, q) allow us to reproduce the usual Einstein–
Hilbert gravity Lagrangian, the Teleparallel gravity and the
“exotic” Witten Lagrangian [4]. Thus, the MB gravity is a
useful toy model to study and analyze the role of the torsion
and curvature in the AdS/CFT correspondence [11]. Differ-
ent issues about the MB gravity were explored in [12–26],
such as its relation with the Chern–Simons (CS) action, black
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hole solutions, asymptotic symmetries, holography, its super-
symmetric extension and its coupling to higher-spin gauge
fields.

On the other hand, non-relativistic (NR) symmetries
have received a growing interest due to their applications
in strongly coupled condensed matter systems and non-
relativistic effective field theories [27–48]. In three space-
time dimensions, NR gravity can be formulated through a
CS action under the so-called extended Bargmann algebra
[49,50]. Such NR symmetry differs from the Galilei algebra
by two central charges which are required to avoid degener-
acy of the invariant bilinear trace. It is also worth mentioning
that the extended Bargmann gravity can be obtained as an
NR limit of a U(1)-enlargement of the Poincaré CS grav-
ity theory. In like manner, the inclusion of a cosmological
constant requires considering the extended Newton–Hooke
symmetry [51–58] which turns out to be the NR limit of the
AdS ⊕ u(1)2 algebra.

The accommodation of a non-vanishing torsion in an
NR environment requires a more subtle treatment [59–61].
Indeed torsional Newton–Cartan gravity appears by gaug-
ing the Schrödinger algebra being the conformal extension
of the Bargmann algebra [62]. In such formalism, the time-
component of the torsion is non zero. Non-vanishing torsion
condition has first been encountered in the context of Lifshitz
holography [37] and Quantum Hall Effect [43]. An alterna-
tive approach has then been presented in [63,64], consider-
ing the CS action for an NR teleparallel symmetry. In such
a case, the cosmological constant appears as a source of the
space-component of the torsion, while the time-component is
zero. Although both formalisms are quite different, there are
preliminary results in [63] that could reveal some relations
between them.

To our knowledge, although the presence of torsion and
curvature in NR gravity have been approached separately,
there is no a MB analog in the NR regime. In this work,
motivated by the different physical applications of the NR
models, we show that both known NR gravity regimes can
be obtained from a unique generalized NR CS gravity theory
based on a novel NR Lie algebra. To this end, we apply the
NR limit to the MB gravity Lagrangian presented in [25] as a
CS form. The degeneracy problem which generally appears
after considering a NR limit is avoided, analogously to the
extended Bargmann case [49,50], by adding two u (1) gen-
erators in the relativistic underlying symmetry of the MB CS
action. Thus, the NR algebra obtained contains the desired
quantities of central charges. In particular, non-degenerate
torsional and torsionless NR gravity models are recovered
from the NR MB gravity theory presented here.

We show that, as in the relativistic MB model, the NR MB
theory contains a source for the spatial component of both
torsion and curvature depending on the parameters q and p,
respectively. Interestingly, we recover different known NR

gravity theories for particular values of the (p, q) parame-
ters. We then extend our results to a Newtonian generalization
of the MB gravity considering the NR limit of an enhanced
algebra. Diverse extended Newtonian gravity theories can
also be recovered for particular choices of the (p, q) param-
eters. In particular, the Newtonian MB algebra obtained here
can be seen as a central extension of the Newtonian symmetry
introduced in [65] in which an action principle for Newtonian
gravity has been derived in four spacetime dimensions.

The paper is organized as follows: In Sect. 2 we briefly
review the MB gravity theory and its CS formulation. Sec-
tions 3 and 4 contain our main results. In Sect. 3 we first
present the NR version of the MB gravity theory by apply-
ing an NR limit to a U (1)-enlargement of the so-called MB
algebra. Section 4 is devoted to the construction of a Newto-
nian version of the MB gravity theory. Section 5 concludes
our work with some discussions about future developments.

2 Mielke–Baekler Lagrangian and Chern–Simons
formulation

A three-dimensional gravity model that is characterized by a
non-vanishing torsion was proposed by Mielke and Baekler
in [9]. The MB Lagrangian is the most general three-form
constructed with the dreibein one-form E A and the dual spin
connection one-form W A, and reads as follows

LMB[E A,W A] = σ0L0[E A] + σ1L1[E A,W A]
+σ2L2[W A] + σ3L3[E A,W A], (2.1)

where σi , i = 0, . . . , 3 are independent constants and

L0[E A] = 1

3
εABC E

AEBEC ,

L1[E A,W A] = 2EAR
A,

L2[W A] = W AdWA + 1

3
εABCWAWBWC ,

L3[E A,W A] = EAT
A. (2.2)

Here

RA = dW A + 1

2
εABCWBWC ,

T A = dE A + εABCWBEC ,

are the corresponding Lorentz curvature and torsion two-
forms, A = 0, 1, 2 are Lorentz indices which are lowered
and raised with the Minkowski metric ηAB = (−1, 1, 1) and
εABC is the three-dimensional Levi Civita tensor which sat-
isfies ε012 = −ε012 = 1. L0 yields a cosmological constant
term, L1 corresponds to the Einstein–Hilbert Lagrangian, L2

is the Chern–Simons gravitational term and L4 represents a
translational Chern–Simons term. For a particular choice of
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the σi parameters, we can recover the Einstein–Hilbert grav-
ity, teleparallel gravity and the “exotic” Witten’s gravity [4].

The equations of motion obtained from the MB Lagrangian
are given by

2σ1R
A + σ0ε

ABC EBEC + 2σ3T
A = 0 ,

2σ1T
A + 2σ2R

A + σ3ε
ABC EBEC = 0 .

Then, assuming σ 2
1 − σ2σ3 �= 0, the field equations can be

rewritten as

2T A + qεABC EBEC = 0, 2RA + pεABC EBEC = 0,

(2.3)

where

q := σ1σ3 − σ0σ2

σ 2
1 − σ2σ3

, p := σ0σ1 − σ 2
3

σ 2
1 − σ2σ3

.

In this way, the field configurations are characterized by
constant curvature and constant torsion. As we have men-
tioned before, we can identify three particular cases. First,
the EH gravity with cosmological constant is recovered for
σ2 = σ3 = 0, such that the torsion vanishes (q = 0). Second,
the teleparallel gravity theory in three-dimensions, having a
non-zero torsion and a vanishing curvature (p = 0) can be
obtained by fixing σ0σ1 − σ 2

3 = 0. In such a case, the cos-
mological constant can be seen as a source for the torsion.
Finally, considering σ0 = σ1 = 0 we recover the Witten’s
exotic gravity [4].

Let us note that the Riemann–Cartan curvature RA can be
expressed in terms of its Riemannian part R̃ A and the con-
torsion one-form K A. Indeed, decomposing the dual spin-
connection as W A = W̃ A + K A, where W̃ A is the (torsion-
less) dual Levi–Civita connection, the curvature and torsion
two-forms corresponding to the dual Levi–Civita connection
are

2R̃ A = �εABC EBEC , 2T̃ A = 0 (2.4)

where

� := −
(
p + q2

4

)
. (2.5)

Therefore, the MB gravity model describes constant curva-
ture spacetimes with cosmological constant �.

2.1 Chern–Simons formulation

As it was shown in [13,18,19,25] the MB model can be
written as a CS theory. Here, following [25], we will consider
a CS formulation of the MB model in a particular basis which
puts forward more clearly the role of the constants σi and of
the curvature and torsion parameters (p, q). Let us consider
the algebra spanned by generators (JA, PA) which satisfy the
following commutation relations

[JA, JB] = εABC J
C ,

[JA, PB] = εABC P
C ,

[PA, PB] = εABC

(
pJC + qPC

)
.

(2.6)

Here (p, q) can be arbitrary for the moment. As it was noticed
in [25], the above algebra is actually isomorphic to the AdS
algebra. Indeed, defining the new generators

P̂A = PA − q

2
JA, (2.7)

the algebra (2.6) maps to

[JA, JB] = εABC J
C ,

[JA, P̂B] = εABC P̂
C ,

[P̂A, P̂B] = −�εABC J
C ,

(2.8)

where � is defined in (2.5). Just for simplicity, along this
work we will refer to the AdS algebra in the specific basis
(2.6) as the MB algebra.

The gauge connection one-form A for the MB algebra can
be defined as follows,

A = W AJA + E APA. (2.9)

where W A is the one-form spin connection and E A is the
dreibein. Thus the curvature two-form reads

F = RA (W ) JA + RA (E) PA, (2.10)

where

RA (W ) := dW A + 1

2
εABCWBWC + p

2
εABC EBEC ,

RA (E) := dE A + εABCWBEC + q

2
εABC EBEC .

Additionally, the MB algebra (2.6) admits an invariant bilin-
ear form with the following non-vanishing components

〈JA JB〉 = σ2 ηAB, 〈JAPB〉 = σ1 ηAB,

〈PAPB〉 = (pσ2 + qσ1) ηAB . (2.11)

Considering the gauge connection one-form (2.9) and the
non-vanishing components of the invariant tensor (2.11) in
the three-dimensional CS Lagrangian,

LCS[A] =
〈
AdA + 2

3
A3

〉
, (2.12)

we find, modulo boundary terms, that

LCS[A] = (pσ1 + qσ3) L0[E A] + σ1L1[E A,W A]
+σ2L2[W A] + σ3L3[E A,W A], (2.13)

where L0, . . . , L3 are given in (2.2) and where we have
imposed

σ3 = pσ2 + qσ1. (2.14)
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Then, by further imposing

σ0 = pσ1 + qσ3, (2.15)

we find that, up to boundary terms [25]

LCS[A] = LMB[E A,W A]. (2.16)

Thus, the MB Lagrangian is a CS theory for the connection
(2.9) and the algebra spanned by (JA, PA) (2.6). Requiring
the condition for having a non-degenerate invariant tensor,
the field equations coming from the CS Lagrangian corre-
spond to the vanishing of the components of the curvature
two-form (2.10), which can be expressed as in (2.3).1

In the following sections, we will analyze non-relativistic
versions of the MB CS gravity theory previously introduced.
We will study the NR limits through a contraction process, in
which the speed of light is taken to infinity (c → ∞). As it
is well-known, taking this limit in the relativistic Lagrangian
might lead to divergences and degeneracy. One way to avoid
such difficulties is to add extra fields to the relativistic theory.
Then, in our case, we will include two new extra fields in
order to obtain finite CS Lagrangians, constructed from NR
algebras with a non-degenerate bilinear form. First, we will
consider the NR limit to an enlargement of the MB gravity. In
the second part of the work, we will show that a Newtonian
version of the MB CS gravity theory can be constructed from
the contraction of an enhancement and enlargement of the
MB algebra. In both cases, we will decompose the A-index
as follows:

A → (0, a) , a = 1, 2. (2.17)

Then, we will apply particular redefinitions to the corre-
sponding relativistic algebras and we will take the NR limits
in order to get its NR and Newtonian versions. We will also
consider the contraction at the level of the invariant tensors in
order to construct the corresponding NR CS gravity actions.

2.2 U(1) enlargements

As it was previously discussed, we will add two extra fields
to the MB CS gravity theory to obtain a finite and non-
degenerate NR Lagrangian after the contraction process. We
include two U (1) one-form gauge fields y1 and y2 in the
one-form gauge connection (2.9):

A = W AJA + E APA + y1Y1 + y2Y2, (2.18)

where the new Abelian generators satisfy the following non-
vanishing invariant tensors

〈Y1Y1〉 = σ3 = pσ2 + qσ1,

〈Y1Y2〉 = σ1, 〈Y2Y2〉 = σ2. (2.19)

1 The non-degeneracy of the invariant tensor is briefly described in
Appendix A.

Then, the non-zero components of the invariant tensor for
the algebra (JA, PA) enlarged with two u(1) generators are
given by (2.11) along with (2.19). The relativistic enlarged
CS Lagrangian is written as

LU (1)
CS = σ0L0[E A] + σ1

(
L1[E A,W A] + 2y1dy2

)

+ σ2

(
L2[W A] + y2dy2

)

+ σ3

(
L3[E A,W A] + y1dy1

)
. (2.20)

In the next sections, we will show that the inclusion of these
extra gauge fields in the MB CS theory is essential as they
allow to cancel the divergences appearing in the limiting pro-
cess. Let us note that the motivation to consider the contrac-
tion of the enlarged algebra (JA, PA,Y1,Y2) is twofold. First,
as we will see, its NR version admits a non-degenerate invari-
ant tensor. Second, the NR MB CS Lagrangian leads to dif-
ferent known NR CS gravity theories when the (p, q) param-
eters are set to particular values. It is important to mention
that, as we shall see, the U(1)-enlargement is also required
to approach the Newtonian regime.

3 Non-relativistic MB gravity

In this section, we approach the construction of the NR ver-
sion of the previously introduced MB CS gravity. To this
purpose, we will first consider the NR limit to the alge-
bra (2.6) enlarged with two u(1) generators. It is obtained
by performing the indices decomposition (2.17), and subse-
quently performing an Inönü–Wigner contraction, for which
we introduce the dimensionless parameter ξ . We define the
contraction process through the identification of the relativis-
tic generators with the NR generators as

J0 = J

2
+ ξ2S, Ja = ξGa, Y2 = J

2
− ξ2S,

P0 = H

2ξ
+ ξM, Pa = Pa, Y1 = H

2ξ
− ξM, (3.1)

along with the following scaling

p → p

ξ2 , q → q

ξ
. (3.2)

which is required to have a well-defined limit ξ → ∞. Then,
after applying the previous steps to (2.6), we get a NR version
of the MB algebra:

[J,Ga] = εabGb, [J, Pa] = εab Pb,

[Ga, Pb] = −εabM,

[Ga,Ga] = −εabS, [Pa, Pb] = −εab (pS + qM) ,

[H,Ga] = εab Pb, [H, Pa] = εab (pGb + qPb) ,

(3.3)
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Table 1 Non-relativistic symmetries for different values of p and q in
the NR MB algebra

NR algebra p q

NR torsional algebra 0 −2/�

Extended Newton–Hooke algebra 1/�2 0

Extended Bargmann algebra 0 0

where a = 1, 2, εab ≡ ε0ab, εab ≡ ε0ab. This NR alge-
bra consists of spatial translations Pa , spatial rotations J ,
Galilean boosts Ga , time translations H and two central
charges S and M . Let us note that different known NR alge-
bras can be derived from (3.3) when the (p, q) parameters are
fixed to certain values. Indeed, the extended Bargmann alge-
bra [49,50], the torsional NR algebra presented in [63] and
the extended Newton–Hooke algebra [55–58] are obtained
when the parameters are set as shown in Table 1.

Let us note that the presence of the two central charges S
and M is essential to have a non-degenerate invariant tensor.
Indeed, when we set M = S = 0, the resulting algebra
corresponds to the torsional galilean-AdS algebra introduced
in [66], which can not be equipped with a non-degenerate
invariant bilinear form. In this way, the NR MB algebra (3.3)
can be seen as a central extension of the torsional galilean-
AdS algebra.

3.1 Non-relativistic Chern–Simons Lagrangian

Now, we extend our study to the explicit construction of a CS
action for the NR algebra (3.3). To this end, let us consider
the corresponding gauge connection one-form A,

A = τH + ea Pa + ωJ + ωaGa + mM + sS. (3.4)

The curvature two-form F = d A + 1
2 [A, A] is given by

F = R (τ ) H + Ra
(
eb

)
Pa + R (ω) J

+Ra
(
ωb

)
Ga + R (m) M + R (s) S, (3.5)

where the components are explicitly given by:

R (τ ) = dτ , Ra
(
eb

)
=dea+εacωec+εacτωc+qεacτec ,

R (ω) = dω , Ra
(
ωb

)
= dωa + εacωωc + pεacτec ,

R (m) = dm + εaceaωc + q

2
εaceaec ,

R (s) = ds + 1

2
εacωaωc + p

2
εaceaec. (3.6)

Naturally, when we fix the (p, q) parameters to the values
given in the table, the NR two-form curvatures constructed
from those algebras are recovered.

The non-vanishing components of a non-degenerate invari-
ant tensor are obtained by applying the contraction process
to the relativistic invariant tensors (2.11) and (2.19). These
are given by

〈J S〉 = −σ̃2 ,

〈GaGb〉 = σ̃2δab ,

〈Ga Pb〉 = σ̃1δab ,

〈HS〉 = 〈MJ 〉 = −σ̃1 ,

〈Pa Pb〉 = (pσ̃2 + qσ̃1) δab ,

〈HM〉 = − (pσ̃2 + qσ̃1) , (3.7)

where we have considered the following rescaling for the σ1

and σ2 parameters

σ1 = σ̃1ξ, σ2 = σ̃2ξ
2 (3.8)

which is required to end with a finite NR CS Lagrangian.
Then, the NR CS Lagrangian gauge-invariant under the NR
MB algebra (3.3) is

LNRMB = −σ̃0ε
acτeaec + σ̃1

[
ea R̂

a
(
ωb

)

+ωa R̂
a
(
eb

)
− 2mR(ω) − 2sR(τ )

]

+σ̃2

[
ωa R̂

a
(
ωb

)
− 2sR (ω)

]

+σ̃3

[
ea R̂

a
(
eb

)
− mR(τ ) − τ R̂(m)

]
. (3.9)

where we have defined

R̂a
(
eb

)
= dea + εacωec + εacτωc ,

R̂a
(
ωb

)
= dωa + εacωωc , (3.10)

R̂ (m) = dm + εaceaωc , (3.11)

and

σ̃3 = pσ̃2 + qσ̃1 ,

σ̃0 = pσ̃1 + qσ̃3 (3.12)

The NR Lagrangian (3.9) corresponds to the NR counter-
part of the MB gravity Lagrangian (2.1) and can be seen as
the most general NR gravity Lagrangian in three-dimensions
invariant under the NR version of the MB algebra (3.3). As
Table 1 indicates, depending on the values of p and q, the
previous Lagrangian leads to different NR gravity theories.
When p = q = 0, and consequently when σ̃3 = σ̃0 = 0, the
NR Lagrangian corresponds to the Extended Bargmann grav-
ity [50]. On the other hand, when q = 0 and p = 1/�2, the
Lagrangian reduces to the Extended Newton-Hooke grav-
ity theory. Setting p = 0 and q = −2/� the Lagrangian
reproduces the NR torsional gravity introduced in [63]. For
arbitrary values of p and q, the equations of motion are given
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by the vanishing of the curvatures (3.6). Fixing p and q as it
was discussed above, reproduces diverse NR dynamics with
and without non-zero spatial torsion R̂a (ea).

It is important to clarify that each of those NR gravity mod-
els, which appear as particular subcases of the NR MB gravity
theory, has a physical interest of it own and thus its physi-
cal implications change in different ways. Interestingly, both
torsional and torsionless NR theories recovered here admit a
non-degenerate invariant tensor. The non-degeneracy of the
invariant bilinear form (3.7) ensures that the Lagrangian (3.9)
involves a kinetic term for each gauge field and the field equa-
tions of the theory are given by the vanishing of the curva-
ture two-form (3.6).2 Indeed, the equations of motion derived
from (3.9) are given by

δωa : σ̃1R
a
(
eb

)
+ σ̃2R

a
(
ωb

)
= 0,

δω : σ̃1R (m) + σ̃2R (s) = 0,

δea : σ̃1

[
Ra

(
ωb

)
+ qRa

(
eb

)]
+ σ̃2 pRa

(
eb

)
= 0,

δτ : σ̃1 [R (s) + qR (m)] + σ̃2 pR (m) = 0,

δs : σ̃1R (τ ) + σ̃2R (ω) = 0,

δm : σ̃1 [R (ω) + qR (τ )] + σ̃2 pR (τ ) = 0, (3.13)

where we have used (3.12). In particular, the non-degeneracy
of the invariant tensor (3.7) is satisfied for σ̃ 2

1 − σ̃2σ̃3 �= 0
which implies the vanishing of the curvatures (3.6). Of partic-
ular interest is the vanishing of Ra

(
eb

) = 0 and Ra
(
ωb

) = 0
which implies the non-vanishing of the usual spatial torsion
R̂a

(
eb

) �= 0 and the spatial curvature R̂a
(
ωb

) �= 0. This
feature is inherited from the relativistic MB theory which
contains a source for both torsion and Lorentz curvature
measured by a parameter q and p, respectively. At the NR
regime, the same behavior appears along the spatial com-
ponent of the torsion R̂a

(
eb

) = −qεacτec and the curva-

ture R̂a
(
ωb

) = −pεacτec. Naturally, for q = 0, the the-
ory is torsionless and the geometry remains Riemannian.
It is also important to mention that there are no values for
(p, q) allowing to turn on the time component of the torsion
R (τ ) as in the torsional Newton–Cartan gravity [59–61]. As
it was discussed in [63], although our NR model contains a
zero time-like torsion R (τ ), the presence of a non-vanishing
spatial torsion in a CS formalism could be useful for intro-
ducing non-zero time-like torsion. Unlike our approach, the
torsional Newton–Cartan model appears by gauging the con-
formal extension of the Bargmann algebra [62].

Let us note that the NR gravity action (3.9) can be alterna-
tively recovered from the relativistic U (1)-enlarged MB CS
action (2.20). Indeed, one can express the relativistic gauge
fields in terms of the NR ones as follows:

2 The non-relativistic limit of the MB algebra without U (1) enlarge-
ment reproduces a finite NR algebra which suffers from degeneracy as
it was shown in appendix 1.

W 0 = ω + s

2ξ2 , Wa = ωa

ξ
, y2 = ω − s

2ξ2 ,

E0 = ξτ + m

2ξ
, Ea = ea, y1 = ξτ − m

2ξ
, (3.14)

The NR CS action (3.9) is obtained considering these last
expressions along with the rescaling of the relativistic param-
eters (3.8) on the relativistic CS action (2.20) and then apply-
ing the limit ξ → ∞.

4 Newtonian MB gravity

In this section, we present a Newtonian version of the MB
gravity theory in three dimensions, which is based on a
novel non-relativistic algebra obtained as a contraction of
an enhancement and enlargement of the MB algebra (2.6).
The obtained Newtonian MB symmetry results to be a central
extension of the Newtonian algebra appearing as the under-
lying symmetry of an action principle for Newtonian gravity
[65].

4.1 Enhanced MB algebra and U(1)-enlargement

An enhancement of the MB algebra with two additional gen-
erators {SA, L A} satisfies the commutators (2.6) along with
the following ones:

[JA, SB] = εABC S
C , [JA, LB] = εABC L

C ,

[SA, PB] = εABC L
C , [L A, PB] = εABC (pSC + qLC ).

(4.1)

One can notice that such enhancement is isomorphic to the
coadjoint AdS algebra defined in [67]. In fact, by considering
the redefinition

P̂A = PA − q

2
JA,

L̂ A = L A − q

2
SA,

the algebra satisfies the coadjoint AdS commutation rela-
tions:

[JA, JB] = εABC J
C ,

[
JA, P̂B

]
= εABC P̂

C ,[
P̂A, P̂B

]
= −�εABC J

C , [JA, SB] = εABC S
C ,[

JA, L̂ B

]
= εABC L̂

C ,
[
SA, P̂B

]
= εABC L̂

C ,[
L̂ A, P̂B

]
= −�εABC S

C , (4.2)

with � being defined as in (2.5). Let us note that when
p = q = 0, the enhanced MB algebra (4.1) reduces to
the coadjoint Poincaré algebra [67–69]. Furthermore, when
q = 0 and p = 1/�2, it reproduces the coadjoint AdS alge-
bra. On the other hand, when p = 0 and q = −2/� the
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enhanced teleparallel algebra introduced in [64] is recov-
ered. Analogously to the cases studied in [64,67], to obtain a
non-degenerate invariant tensor in the non-relativistic limit,
it is also necessary to include u(1) generators, Y1 and Y2, as
it was considered in the previous section. At the relativistic
level, the non-vanishing components of the invariant bilin-
ear form for the enlarged enhanced MB algebra are given by
(2.11), (2.19), and those components involving the additional
generators (SA, L A):

〈JASB〉 = β2 ηAB, 〈JALB〉 = β1 ηAB,

〈PASB〉 = β1 ηAB, 〈PALB〉 = (pβ2 + qβ1) ηAB, (4.3)

where β1 and β2 are arbitrary constants. Then, the enhance-
ment of the MB algebra does not modify the original MB
Lagrangian (2.1) but add new contributions along β1 and β2

which will be crucial to elucidate a Newtonian version of the
MB gravity theory.

4.2 Newtonian MB algebra

A non-relativistic version of an enlargement and enhance-
ment of the MB algebra can be obtained by applying an
Inönü-Wigner contraction to (2.6) and (4.1). To apply the
contraction we have to first express the relativistic generators
as a linear combination of the non-relativistic ones through
a dimensionless parameter ξ as follows:

J0 = J

2
− ξ4Z , Ja = ξ

2
Ga − ξ3

2
Ba ,

P0 = H

2
− ξ4Y , Pa = ξ

2
Pa − ξ3

2
La ,

S0 = −ξ2S − ξ4Z , Sa = −ξGa − ξ3Ba ,

L0 = −ξ2M − ξ4Y , La = −ξTa − ξ3La ,

Y1 = J

2
+ ξ4Z ,Y2 = H

2
+ ξ4Y. (4.4)

Then, in the limit ξ → ∞, the non-relativistic genera-
tors {J, H,Ga, Pa, S, M, Ba, La,Y, Z}, satisfy the commu-
tation relations of the extended Newtonian algebra:

[J,Ga] = εabGb , [Ga,Gb] = −εabS , [H,Ga] = εab Pb ,

[J, Pa] = εab Pb , [Ga, Pb] = −εabM , [H, Ba] = εabLb ,

[J, Ba] = εabBb , [Ga, Bb] = −εab Z , [S,Ga] = εabBb ,

[J, La] = εabLb , [Ga, Lb] = −εabY , [S, Pa] = εabLb ,

[M,Ga] = εabLb , [Pa, Bb] = −εabY, (4.5)

along with

[H, Pa] = εab (pGb + qPb) , [Pa, Pb] = −εab(pS + qM) ,

[H, La] = εab(pBb + qLb) ,

[M, Pa] = εab(pBb + qLb) , [Pa, Lb] = −εab(pZ + qY ).

(4.6)

Table 2 Newtonian symmetries for different values of p and q in the
NMB algebra

Newtonian type algebra p q

TEN algebra 0 −2/�

Newton-Hooke-Newtonian algebra 1/�2 0

Extended Newtonian algebra 0 0

This new non-relativistic symmetry is denoted as the Newto-
nian MB (NMB) algebra. Such symmetry, unlike the Newto-
nian one introduced in [65], is characterized by the presence
of two central charges Z and Y which, as we shall see, are
required for having non-degenerate invariant bilinear trace.
As in the previous section, different Newtonian type algebras
can be derived from the NMB algebra. Indeed, the Extended
Newtonian algebra [70], the Newton–Hooke version of the
Newtonian algebra [67,71,72] and the torsional extended
Newtonian (TEN) algebra [64] are obtained once we fix the
(p, q) parameters as shown in Table 2.

4.3 Newtonian MB Chern–Simons gravity action

For the construction of the CS Lagrangian it is required the
invariant tensor for the NMB algebra. It is possible to show
that the non-vanishing components of the invariant tensor
are:

〈SS〉 = 〈J Z〉 = −β̃2,

〈GaBb〉 = β̃2δab,

〈MS〉 = 〈HZ〉 = 〈JY 〉 = −β̃1,

〈PaBb〉 = 〈GaLb〉 = β̃1δab,

〈HY 〉 = 〈MM〉 = −
(
pβ̃2 + qβ̃1

)
,

〈PaLb〉 =
(
pβ̃2 + qβ̃1

)
δab. (4.7)

which can be obtained from the relativistic components
(2.11), (2.19) and (4.3) by applying the limit ξ → ∞ after
considering the contraction of the generators (4.4) and the
rescaling of the relativistic parameters as

σ2 = β2 = −β̃2ξ
4, σ1 = β1 = −β̃1ξ

4. (4.8)

Furthermore, the NMB algebra also admits the bilinear
invariant trace for the non-relativistic MB algebra defined in
the previous section, namely

〈J S〉 = −σ̃2 ,

〈GaGb〉 = σ̃2δab ,

〈Ga Pb〉 = σ̃1δab ,

〈HS〉 = 〈MJ 〉 = −σ̃1 ,

〈Pa Pb〉 = (pσ̃2 + qσ̃1) δab ,

〈HM〉 = − (pσ̃2 + qσ̃1) , (4.9)
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where the relativistic parameters obey σ2 = σ1 = 0 along
the following rescaling:

β2 = −σ̃2ξ
2, β1 = −σ̃1ξ

2. (4.10)

Let us note that the components of the invariant tensor pro-
portional to σ̃ ’s are degenerate for the whole NMB algebra
although they define a non-degenerate invariant trace for the
NR MB algebra obtained in the previous section. The non-
degeneracy requires to consider the invariant tensor given by
(4.7) or to consider both contributions proportional to σ̃ ’s and
β̃’s. For completeness, we shall consider the complete set of
non-vanishing components of the invariant tensor keeping in
mind that two inequivalent limits at the level of the relativistic
CS constants are considered for obtaining the NR invariant
tensor (4.7) and (4.9).

The one-form gauge connection for the NMB algebra
reads

A = τH + ea Pa + ωJ + ωaGa + mM

+sS + la La + ba Ba + yY + zZ . (4.11)

The curvature two-form F = d A + 1
2 [A, A] is given by

F = R (τ ) H + Ra
(
eb

)
Pa + R (ω) J

+Ra
(
ωb

)
Ga + R (m) M + R (s) S + Ra

(
lb

)
La

+Ra
(
bb

)
Ba + R(y)Y + R(z)Z , (4.12)

where the components are explicitly given by:

R(ω) = dω,

R(s) = ds + 1

2
εacωaωc + p

2
εaceaec,

R(z) = dz + εacωabc + pεacealc,

R(τ ) = dτ,

R(m) = dm + εacωaec + q

2
εaceaec,

R(y) = dy + εacωalc + εacbaec + qεacealc,

Ra(ωb) = dωa + εacωωc + pεacτec,

Ra(bb) = dba + εacωbc + εacsωc + pεacτ lc + pεacmec,

Ra(eb) = dea + εacωec + εacτωc + qεacτec,

Ra(lb) = dla + εacωlc + εacsec + εacτbc

+εacmωc + qεacτ lc + qεacmec. (4.13)

From the previous expressions, we can see that when p =
q = 0, the curvature two-forms of the extended Newtonian
are recovered. On the other hand, when we fix q = 0 and
p = 1/�2, the curvatures reduce to those of the Newton
Hooke version of the Newtonian algebra. Similarly, when
p = 0 and q = −2/�, the TEN curvatures are obtained.
The same analysis is valid at the level of the invariant ten-
sors. Let us note that if we consider the contraction at the
level of the CS Lagrangian based on the enhancement and

enlargement of the MB algebra, the resulting non-relativistic
Lagrangian will depend on the choice of the rescaling of the
arbitrary constants, namely, (4.8) or (4.10). To construct the
most general and non-degenerate Lagrangian for the NMB
algebra, we will consider both families of invariant tensors.

A CS Lagrangian based on the NMB algebra (4.5) and
(4.6) is constructed considering the gauge connection one-
form (4.11) and the non-vanishing components of the invari-
ant tensor (4.7) and (4.9) in the CS Lagrangian (2.12),

L = LNRMB + LNMB, (4.14)

where LNMB is the non-relativistic Lagrangian (3.9) obtain
previously and LNMB is given by

LNMB = −β̃0
(
εacτealc + εacmeaec

)
+β̃1

[
2ea R̂

a
(
bb

)
+ 2la R̂

a
(
ωb

)

−2τ R̂(z) − 2mR̂(s)

−2yR(ω)] + β̃2

[
ωa R̂

a
(
bb

)

+ba R̂
a
(
ωb

)
− 2zR (ω) − sds

]

+β̃3

[
ea R̂

a
(
lb

)
+ la R̂

a
(
eb

)

−mR̂(m) − τ R(y) − yR(τ )
]
.

(4.15)

where we have defined

R̂a
(
bb

)
= dba + εacωbc + εacsωc ,

R̂a
(
lb

)
= dla + εacωlc + εacsec + εacτbc ,

R̂ (y) = dy + εacωalc + εacbaec ,

R̂ (z) = dz + εacωabc , (4.16)

and

β̃3 = pβ̃2 + qβ̃1 ,

β̃0 = pβ̃1 + qβ̃3 . (4.17)

Let us note that the term proportional to β̃1 is the extended
Newtonian Lagrangian introduced in [70]. The cosmological
term appears along β̃0. On the other hand, the term along β̃2

can be seen as the Newtonian version of the CS gravitational
term. The torsional term of the Newtonian MB gravity theory
appears along β̃3. It also turns out appealing that the diverse
Newtonian gravity Lagrangians known in the literature [64,
67,70–72], appear by fixing the (p, q) parameters as in Table
2.

In particular, post-Newtonian gravity [67,72,73] and its
cosmological extension [64,71] can be recovered from the
Newtonian MB gravity action (4.15). In the flat case, the
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extended Newtonian algebra [73] obtained for p = q = 0
differs from the Newtonian symmetry introduced in [65] as
the underlying symmetry of the Newtonian gravity. Although
the differences at the level of action and the matter cou-
pling [65,73], the extended Newtonian symmetry allows us to
define a proper three-dimensional Newtonian CS action with-
out degeneracy which admits backgrounds with non-trivial
curvature whenever matter is present [73]. Moreover both
torsionless and torsional Newtonian algebras, contained as
particular subcases of the NMB one, admit non-degenerate
invariant tensor.

In presence of non-degenerate invariant bilinear form, the
field equations reduce to the vanishing of the curvature two-
forms. Here, the equations of motion of the NMB gravity
theory derived from (4.15) read

δωa : β̃1R
a
(
sb

)
+ β̃2R

a
(
bb

)
= 0,

δω : β̃1R (y) + β̃2R (z) = 0,

δea : β̃1

[
Ra

(
bb

)
+ qRa

(
lb

)]
+ β̃2 pRa

(
lb

)
= 0,

δτ : β̃1 [R (z) + qR (y)] + β̃2 pR (y) = 0,

δs : β̃1R (m) + β̃2R (s) = 0,

δm : β̃1 [R (s) + qR (m)] + β̃2 pR (m) = 0,

δz : β̃1R (τ ) + β̃2R (ω) = 0,

δba : β̃1R
a
(
eb

)
+ β̃2 Ra

(
ωb

)
= 0,

δy : β̃1 [R (ω) + qR (τ )] + β̃2 pR (τ ) = 0,

δla : β̃1

[
Ra

(
ωb

)
+ qRa

(
eb

)]
+ β̃2 pRa

(
eb

)
= 0,

(4.18)

where we have used (4.17). The non-degeneracy of the invari-
ant tensor implies that β̃2

1 − β̃2β̃3 �= 0 and β̃1 �= 0 which
ensures the vanishing of the NMB curvatures (4.13). One
can note that, as in the NR MB case studied previously, only
the spatial component of the torsion R̂a

(
eb

) = −qεacτec
remains turned on.

5 Conclusions

In this work, we presented the NR regime of the MB gravity
model. To this end, we have applied an NR limit to the so-
called MB algebra enlarged with two u (1) generators. Such
enlargement ensures the presence of central charges allowing
to define a non-degenerate invariant bilinear trace. As in the
relativistic MB gravity, the NR counterpart contains a source
for both, constant torsion and constant curvature measured
by the parameters q and p, respectively. We were able to
make contact with different NR gravity models defined in
three spacetime dimensions by considering specific values of
the (p, q) parameters. Subsequently, we extended our results

to the Newtonian realm by considering the NR limit to an
enhanced MB algebra enlarged with two u (1) generators.

The results obtained here could bring valuable information
about the role of torsion in the NR regime from the MB
formalism. In particular, both NR and Newtonian versions of
the MB gravity are characterized by containing sources for
the diverse components of the curvature two-form F in terms
of the (p, q) parameters. However, the time-component of
the torsion remains equal to zero in the NR and Newtonian
limit for any value of the (p, q) parameters. It would be then
interesting to study if our model can be related to the torsional
Newton-Cartan gravity theory [59–61] in which the non-zero
torsion condition implies the presence of a non-vanishing
time-like torsion. As it was noticed in [63], having a spatial-
component of the torsion in the NR teleparallel gravity would
imply, at the level of the boost behavior, introducing a non-
zero time-like torsion as well. Let us note that a non-vanishing
time-like torsion condition in an NR environment has first
been encountered in Lifshitz holography context [37] and
Quantum Hall effect [43].

One could go further in the study of the NR version of an
MB gravity model. It would be interesting to include super-
symmetry and higher-spin gauge fields in our NR model.
Despite the numerous applications of both supergravity and
higher-spin gravity in the relativistic context, NR super-
gravity and NR gravity coupled to higher spin has just
been recently approached in [50,59,70,74,75] and [76–78],
respectively. On the other hand, the supersymmetric exten-
sion of the MB gravity has been explored in [19,20,26]. Nev-
ertheless, the NR limit of MB supergravity cannot naively be
applied due to the appearance of degeneracy. One way to cir-
cumvent the difficulty encountered in the NR contraction pro-
cess is to consider the Lie algebra expansion method [79–82].
As it was noticed in [72], the semigroup expansion method
[81] offers us a straightforward mechanism to derive a non-
degenerate NR algebra from a relativistic one for a particular
semigroup S. Then, following the procedure employed in the
presence of supersymmetry [73,83–86], one could elucidate
the corresponding supersymmetric extension of our results.
One could expect that the extended Bargmann supergravity
[50], the extended Newton-Hooke [73] and the recent NR
teleparallel supergravity [63] appear for particular values of
the (p, q) parameters. In the higher-spin case, one could start
by exploring the NR limit of the spin-3 MB gravity theory
studied in [24] and check if the spin-3 extended Bargmann
gravity introduced in [76,77] appears as a particular subcase.
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Appendix A: Degeneracy of the invariant tensor for a
given Lie algebra

Let us consider a Lie algebra defined by the generators TM
and their commutators [TM , TN ] = CP

MNTP , where CP
MN

are the corresponding structure constants. Then, the invari-
ant tensor defined as a bilinear form gMN = 〈TMTN 〉 is
degenerate if the matrix gMN has a vanishing determinant.
In particular, if there exists a generator that is operated with
this bilinear form with all the rest of the generators and the
result is zero, then the invariant tensor will be degenerate.

It should also be noted that the non-degeneration of the
invariant tensor is essential to determine that the field equa-
tions correspond to the vanishing of the strength field. Indeed,
the field equations of a Chern–Simons are given by:

〈FδA〉 = gMN F
MδAN = 0 (5.1)

From this equation it is direct to see that the field equations
are equivalent to FM = 0, if and only if det (gMN ) �= 0.
As it is shown in the example given in the next appendix, at
the level of the action, the degeneracy of the invariant tensor
prevents having a kinetic term for each gauge field.

Appendix B: Non-relativistic limit of theMielke–Baekler
CS gravity

A Galilean version of the MB algebra (2.1) can be obtained
after performing a NR limit through the identification of the
relativistic MB generators as

J0 = J , Ja = ξGa , P0 = H , Pa = ξ Pa . (5.2)

Then, after considering the limit ξ → ∞ in (2.1), the NR
generators satisfy the following commutation relations:

[J,Ga] = εabGb,

[J, Pa] = εab Pb,

[H,Ga] = εab Pb,

[H, Pa] = εab (pGb + qPb) . (5.3)

One can note that the Galilean algebra is recovered for
p = q = 0. On the other hand, fixing p = 1/�2 and q = 0
reproduce the Newton–Hooke algebra. Interestingly the tor-
sional Galilean-AdS algebra [66] appears for p = 0 and
q = −2/�2.

The Galilean MB algebra (5.3) admits the following non-
vanishing components of an invariant tensor:

〈J J 〉 = −σ̃2 ,

〈J H〉 = −σ̃1 ,

〈HH〉 = − (pσ̃2 + qσ̃1) , (5.4)

which can be obtained after applying the contraction (5.2)
to the relativistic invariant tensor (2.11) and considering the
following redefinitions of the parameters

σ1 = σ̃1, σ2 = σ̃2. (5.5)

Unlike the NR MB algebra obtained in Sect. 3, the Galilean
one does not admit a non-degenerate invariant tensor. Indeed,
according to the observations indicated in Appendix 1, one
can directly see that there are no invariant tensors in the sec-
tor involving generators Ga and Pa . In particular, the CS
Lagrangian based on the Galilean MB algebra (5.3) reads

LCS = −σ̃1 τdω + σ̃2 ωdω + σ̃3 τdτ, (5.6)

with

σ̃3 = pσ̃2 + qσ̃1. (5.7)

Here we have considered the non-vanishing components of
the invariant tensor (5.4) and the one-form gauge connection
A = τH + ea Pa + ωJ + ωaGa in the general CS expres-
sion (2.12). One can notice that the term along σ̃1 coincides
with the Galilean CS Lagrangian defined on three spacetime
dimensions [72,87]. On the other hand, the exotic Galilean
term and the torsional term appear along σ̃2 and σ̃3, respec-
tively. However, the degeneracy appearing in the invariant
tensor of the Galilean MB algebra (5.3) prevents to define
a proper CS Lagrangian involving a kinetic term for each
gauge field. Moreover, no cosmological constant term appear
in the Lagrangian. One can easily check that considering an
additional u (1) generator in the relativistic MB algebra does
not solve the degeneracy problem. Thus, as it was shown in
Sect. 3, the minimal setup allowing us to define a proper NR
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regime of the MB gravity theory without degeneracy requires
two u(1) generators in the relativistic counterpart.3
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