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Abstract: A reheating phase in the early universe is an essential part of all inflationary
models during which not only the Standard Model (SM) quanta are produced but it can
also shed light on the production of dark matter. In this work, we explore a class of
reheating models where the reheating is induced by a cubic interaction of the inflaton φ

to the SM Higgs boson h of the form ghφMPlφ|h|2 adopting the α-attractor T-model of
inflation. Assuming inflaton as a background field such interaction implies a φ-dependent
mass term of the Higgs boson and a non-trivial phase-space suppression of the reheating
efficiency. As a consequence, the reheating is prolonged and the maximal temperature of
the SM thermal bath is reduced. In particular, due to oscillations of the inflaton field the
φ-dependent Higgs boson mass results in periodic transitions between phases of broken and
unbroken electroweak gauge symmetry. The consequences of these rapid phase transitions
have been studied in detail. A purely gravitational reheating mechanism in the presence
of the inflaton background, i.e., for ghφ = 0, has also been investigated. It turned out
that even though it may account for the total production of SM radiation in the absence
of ghφ, its contribution to the reheating is subdominant for the range of ghφ considered in
this work. Approximate analytical solutions of Boltzmann equations for energy densities
of the inflaton and SM radiation have been obtained. As a dark matter candidate a
massive Abelian vector boson, Xµ, has been considered. Various production mechanisms
of Xµ have been discussed including (i) purely gravitational production from the inflaton
background, (ii) gravitational freeze-in from the SM quanta, (iii) inflaton decay through a
dim-5 effective operator, and (iv) Higgs portal freeze-in and Higgs decay through a dim-6
effective operator. Parameters that properly describe the observed relic abundance have
been determined.
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1 Introduction

The most successful theory of the early Universe is cosmic inflation which results in a pe-
riod of exponential expansion [1, 2]. The theory of inflation can be effectively described by
a slowly-rolling single scalar field, called the inflaton φ, with an approximately flat poten-
tial. Inflation successfully explains puzzles of the early Universe, e.g., the horizon problem,
flatness problem, and seeds for Large Scale Structures (for a review see [3]). Many of the
non-trivial features of the inflationary paradigm can be tested in cosmological observations.
For instance, the slow-roll single field inflation naturally leads to a nearly scale-invariant

– 1 –



J
H
E
P
0
2
(
2
0
2
3
)
1
9
6

power spectrum, which matches very well with the recent observations from the cosmic mi-
crowave background (CMB) measurements [4]. During the inflationary phase, the Universe
expands exponentially, and therefore, inflation ends with an empty (no radiation/matter)
and cold (non-thermal) Universe with total energy density stored in the inflaton field. To
populate the Universe, one needs a mechanism that converts the inflaton energy density
to the Standard Model (SM) and possibly to the dark sector. The process of transferring
energy density from the inflaton field to the SM through perturbative decays is referred to
as reheating [5–10].

The perturbative reheating can be realized through some interactions between the
inflaton and the SM fields. The lowest dimensional SM gauge singlet operator is |h|2 = h†h,
where h is the SM Higgs doublet. Hence, in generic scalar field inflationary models, one
would expect the leading inflaton-SM interaction is through the φ|h|2 term. Whereas
interactions of the scalar inflaton with the SM gauge singlet operators involving fermions
and gauge bosons are higher dimensional (≥ 5) and, therefore, would be suppressed by
the inflationary scale Λ. In order not to spoil the flatness of the inflaton potential, such
interactions are expected to be subdominant during the inflationary phase. However, after
the end of inflation, the perturbative reheating predominantly follows through the inflaton-
Higgs interaction.1 Regarding the inflaton field as a classical background field, the φ|h|2
term is also a source of φ-dependent Higgs mass that oscillates in time due to coherent
oscillations of the inflaton field.

In this work, we aim to study in detail consequences of Higgs dynamics due to inflaton-
Higgs interaction during the reheating phase. In particular, our goal is to analyze the
implications of the φ-dependent Higgs mass, which oscillates and results in rapid transitions
between phases of broken and unbroken electroweak symmetry. We notice that this non-
trivial Higgs mass leads to the suppression of perturbative decays of the inflaton field to
Higgs boson pairs, which not only leads to elongations of the reheating period but also
suppresses the production of the SM radiation energy density. As a result, evolution of
the temperature of the SM bath is modified, which in turn can significantly affect the
freeze-in production of dark matter (DM) during the reheating phase, see also [13–16].
The reheating dynamics due to this non-trivial φ-dependent Higgs mass is referred to as
the massive reheating scenario, whereas for a comparison we consider the case where such
mass effects are neglected, hence referred to as the massless reheating scenario. In this
work we consider reheating through the SM Higgs boson, however, the results obtained
here are straightforward to generalize to any other scalar field which interacts with the
inflation field.

As an example, we employ the α-attractor T-model of inflation [17, 18] whose poten-
tial is approximately flat for large inflaton field values suitable for inflation and it has a
monomial shape of the form ∝ φ2n during the reheating phase. In this work, we consider

1We note that non-perturbative effects can potentially become relevant for larger inflaton-Higgs cou-
plings, which lead to tachyonic resonant production of Higgs modes, i.e., the so-called preheating regime.
However, the tachyonic resonant Higgs production is suppressed in the presence of relatively large quartic
SM Higgs coupling, see section 4.5. Therefore, the dominant mechanism of energy transfer from the inflaton
field to the Higgs field remains the perturbative decay, see also [11, 12].
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generic n which leads to an effective equation of state w = (n − 1)/(n + 1) during the
reheating phase and determines the evolution of the Universe during this period.2 We
provide analytic and numerical results for the dynamics of the inflaton field during the
inflationary and reheating phases in the presence of inflaton-Higgs interaction.

Furthermore, to investigate non-trivial implications of the Higgs-induced reheating on
the DM production, we consider a model with the DM candidate being a massive vector
field Xµ of a dark Abelian gauge symmetry U(1)X . The vector DM Xµ interacts with
the SM as well as with the inflaton field through gravity and higher dimensional operators
suppressed by the Planck mass. We study production of such DM particles during the
reheating phase. Since the DM interactions with the SM and inflaton are assumed to
be Planck mass suppressed, therefore vector DM is not in thermal equilibrium with the
SM bath. We study DM production through its gravitational interactions with the inflaton
background field [12, 19–31] as well as through the annihilation of SM particles, also known
as the gravitational freeze-in mechanism [31–37]. Moreover, DM production through direct
inflaton decay is also investigated. In the case of vector DM, the leading contribution from
the inflaton decay turns out to be triggered by a dim-5 operator suppressed by the Planck
mass. Another source of DM production is through an effective dim-6 operator suppressed
by the Planck mass squared involving the Higgs doublet and DM fields [35, 37–39]. In this
case, the production can occur due to the annihilation and decay of the Higgs bosons.

The paper is organized as follows. In section 2 we describe details of our model, which
include the inflaton, the SM Higgs, and the vector DM. In section 3, we study inflaton
dynamics during the inflationary phase as well as during the early stages of reheating,
where the SM radiation energy density is negligible compared to that of the inflaton field.
The reheating dynamics is presented in section 4 where we analyze non-trivial effects of the
inflaton-induced Higgs mass on the production of SM radiation quanta, including effects of
rapid electroweak phase transitions. In particular, we present the analytic and numerical
results for the SM radiation energy density and the SM bath temperature evolution during
this phase. In section 5 we discuss implications of the Higgs-induced reheating on the
gravitational production of DM via graviton exchange from the inflaton background and SM
radiation. Moreover, we study the DM production due to the inflaton decay and through
the direct annihilation and decays of Higgs bosons. We summarize our findings in section 6.
In appendix A, we present recent constraints on the inflationary model parameters due to
recent CMB measurements by Planck collaboration [4]. Moreover, we supplement our
results with a detailed derivation of the direct production of the SM and DM particles in
the presence of oscillating inflaton background as well as the inflaton-induced gravitational
production in appendix B.

2This work is a continuation and significant extension of the research described in our earlier paper [12]
which was limited to the n = 1 case only and focused on implications of time-dependent inflaton decay
width.
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2 The model

In this section, we present our model to describe the inflationary/reheating dynamics and
dark matter production. It has been assumed that the mass scale for interactions between
the SM, inflaton, and/or DM sector is set by the Planck mass MPl. We consider the
following action where the SM, inflaton, and vector DM interact minimally with gravity,

S =
∫

d4x
√
−g
[
M2

Pl
2 R+ Lφ + LSM + LDM + Lint

]
, (2.1)

with Lφ, LSM and LDM being the Lagrangian densities for the inflaton, SM, and DM,
respectively, whereas, Lint describes interactions among the inflaton, SM, vector DM, and
graviton. Above MPl = 2.4 × 1018 GeV denotes the reduced Planck mass, while R is the
Ricci scalar for background metric gµν and g denotes its determinant. We consider the
background metric as the FLRW metric, i.e.,

ds2 = dt2 − a(t)2dx2, (2.2)

where the x vector denotes the three spatial coordinates and a(t) is the scale factor.
The Lagrangian density for the inflaton field reads

Lφ = 1
2∂µφ∂

µφ− V (φ), (2.3)

where V (φ) denotes the inflaton potential. Note that in the above Lagrangian, and here-
after, the indices are raised and lowered via the background metric gµν . In this work, we
consider the α-attractor T-model of inflation [17, 18], such that the inflaton potential is

V (φ) = Λ4 tanh2n
( |φ|
M

)
'

Λ4 |φ| �M

Λ4
∣∣∣ φM ∣∣∣2n |φ| �M

, (2.4)

where Λ determines the scale of inflation, whereas M is related to the reduced Planck mass
with the α parameter of the α-attractor T-model as M ≡

√
6αMPl. The potential V (φ)

has a minimum at φ = 0 for positive values of n. The current experimental data [4, 40]
constrain values of the potential parameters. The inflation scale Λ can be limited by
the amplitude of the scalar perturbations, As, and the spectral tilt ns from inflationary
observables of the CMB. Planck 2018 data [40] sets the upper limit Λ . 1.4× 1016 GeV,
see appendix A. Furthermore, the current upper bound on the tensor to scalar power
spectrum ratio, r . 0.032, limits the value of the α parameter or M from above, such that,
M . 10MPl. Hereinafter, without loss of generality, we fix α = 1/6, such that M = MPl,
and Λ = 3× 10−3MPl.

In figure 1 we have plotted V (φ)/Λ4 as a function of the φ field for α = 1/6 with
benchmark values of n = {2/3, 1, 3/2, 2}. For large field values, i.e., |φ| �M , the potential
has a plateau V (φ) ' Λ4. This region is suitable for cosmic inflation, as the flatness of
V (φ) guarantees that cosmic inflation lasts long enough. In particular, requiring 50 e-folds
of inflation leads to an initial condition on φ (indicated by the colored, empty dots) at
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Figure 1. The V (φ)/Λ4 term as a function of φ/MPl for different values of n and α = 1/6. Solid
curves present the full form of V (φ), while dashed curves show the small-field expansion of V (φ)
(the lower line of eq. (2.4)). The empty, colored dotes indicate the initial value of the φ field, for
which one gets 50 e-folds of inflation.

the scale factor a?, which gives φ(a?) ' {3.14, 3.35, 3.55, 3.69}MPl for n = {2/3, 1, 3/2, 2},
respectively. When φ rolls down to smaller values, i.e., |φ| ∼ M , inflation ends, and φ

starts to oscillate around the bottom of its potential. For smaller field values, |φ| � M ,
i.e., during the reheating phase, the potential can be well approximated by the power-law
form Λ4(|φ|/M)2n (dashed curves). Note that for n = 1 and n = 2 we reproduce the
standard quadratic and quartic inflaton potential, respectively.

The Lagrangian density for the Abelian vector DM Xµ is

LDM = −1
4XµνX

µν + 1
2m

2
XXµX

µ, (2.5)

where Xµν ≡ ∂µXν − ∂νXµ denotes the field strength tensor. The mass for the DM vector
boson, mX , is generated via an Abelian Higgs mechanism with a large expectation value of
a dark Higgs field Φ so that the radial Higgs mode is heavy and therefore is integrated out.

We consider the following form of interaction Lagrangian,

Lint = −
{
hµν

MPl

[
T φµν + T SM

µν + TDM
µν

]
+ ghφMPlφ|h|2 + C

φ
Xm

2
X

2MPl
φXµX

µ + C
h
Xm

2
X

2M2
Pl
XµX

µ|h|2
}
,

(2.6)
where T φµν , T SM

µν , and TDM
µν are the energy-momentum tensors for the inflaton, SM, and DM

sectors, respectively. Above hµν denotes the graviton field and h is the SM Higgs doublet,
which in the linear parametrization can be written as

h = 1√
2

(
h2 + ih3
h0 + ih1

)
, (2.7)

where hi (i = 0, 1, 2, 3) are the four real scalar components. The dimensionless constant ghφ
parametrizes interactions between the inflaton and the SM Higgs, while CφX and Ch

X are the
dimensionless Wilson coefficients for the DM-inflaton and DM-Higgs effective interactions,
respectively. In what follows, we assume that all couplings i.e., ghφ, CφX and Ch

X are real and
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positive. Note that higher powers of φ could also appear in the interaction Lagrangian (2.6);
however, for simplicity, we will consider only the lowest-dimensional operators that allow
the inflaton to communicate with the SM and DM sectors. In the case of the vector DM
discussed here, the lowest order direct interaction between the SM and DM appears through
the dim-6 operator Ch

Xm
2
X/(2M2

Pl)XµX
µ|h|2 [38] and therefore must be suppressed by the

UV cut-off scale assumed here to be MPl. Moreover, the interaction Lagrangian contains
only linear terms in the graviton field hµν which induces tree-level interactions between the
SM and DM via a single graviton s-channel exchange [32–34].

Note that the last two terms in eq. (2.6) can be written in a proper gauge invariant
form by coupling the inflaton field and the SM Higgs doublet to the kinetic term of the
dark Higgs field Φ, i.e.,

Lint ⊃ −
1
2
CφX
MPl

φ |DµΦ|2 − 1
2
Ch
X

M2
Pl
|h|2|DµΦ|2, (2.8)

where DµΦ = (∂µ− igXXµ)Φ is the covariant derivative of the Φ field and gX is the U(1)X
gauge coupling. When the dark Higgs field Φ acquires vacuum-expectation-value (vev) 〈Φ〉,
the dark U(1)X symmetry is spontaneously broken, and a mass term for the vector DM
field is generated with mass mX ≡ gX〈Φ〉. Assuming the radial mode of the dark Higgs is
much heavier than the dark gauge boson, we can integrate out so that effective interaction
terms for the vector DM with the inflaton and the SM Higgs doublet are generated as in the
interaction Lagrangian (2.6). Furthermore, one can also write a dim-5 effective interaction
between the inflaton and vector DM of the form, (φ/MPl)XµνX

µν . However, note that
the corresponding vertex would involve the momentum of the gauge bosons, which is of
the same order as the DM mass since the DM is not in thermal equilibrium. Therefore,
effectively the above operator is similar to the one considered in eq. (2.6).

It is also important to emphasize that the graviton coupling to the SM and DM energy-
momentum tensors (2.6) leads to an indirect interaction between these two sectors propor-
tional to 1/M2

Pl, which is of the same order as the interaction via the effective DM-SM
Higgs portal operator for Ch

X ∼ O(1). This was one of our primary motivations to consider
such effective operators in the model. On the other hand, spin-0 and spin-1/2 DM particles
would interact with the SM sector through effective operators of dim-4 and dim-5, respec-
tively. Then, DM would couple to the SM sector much stronger than its coupling induced
by a single graviton exchange. In such a scenario, one needs tuning of the DM-SM effec-
tive couplings to be suppressed to get a similar strength to the gravitational interaction.
Therefore, we have found these options less interesting than the spin-1 case.

Note also that a possible dim-4 mixing of the SM hypercharge and Abelian dark gauge
bosons, of the form εBµνX

µν , is absent in our model due to dark charge conjugation
symmetry, which ensures the stability of DM. However, for mixing parameter ε small
enough, such mixing would be allowed if the DM lifetime was longer than the age of the
Universe.

It is crucial to notice that dynamics of the φ field during the inflationary epoch could
be modified by its couplings to the SM Higgs and DM specified in Lint (2.6). Therefore, let
us first discuss perturbativity limits imposed upon the strength of the ghφ coupling and the
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Willson coefficients CφX and Ch
X . Requiring, for instance, that amplitude for h scattering

in a background of an inflaton classical field with its double insertion is smaller than the
corresponding amplitude with a single insertion implies

ghφ .

(
Λ2

φMPl

)
, (2.9)

where φ denotes the strength of the external classical inflaton field determined by its
equation of motion (EOM). Similar reasoning implies

CφX .
(
MPl
φ

)( Λ
mX

)2
, (2.10)

where it has been assumed that Λ & mX . On the other hand, perturbativity of the
XµX

µ|h|2 operator together with the requirement that the maximum temperature Tmax
of the thermal bath during reheating remains below the cut-off scale, Λ, for the effective
operator (DµΦ)†(DµΦ)|h|2 implies

Ch
X . min

{(
MPl
mX

)2
,

(
MPl
Tmax

)2
}
. (2.11)

Before moving forward, let us discuss here the role of the SM Higgs field during the inflation
and reheating phases in more detail. Note that typical energy scales for inflation and
reheating are much larger than the scale of electroweak interactions. Therefore, the Higgs
potential during inflation and reheating periods can be approximated as

V (h) = λh

(
|h|2 − v2

EW
2

)2
' λh|h|4, (2.12)

where λh is the Higgs-boson quartic coupling. At the electroweak scale
vEW ' 246GeV, the value of Higgs quartic coupling is λh ' 0.13 corresponding to the
Higgs mass mEW

h0
= 125GeV. Due to quantum corrections, within the SM, the Higgs quar-

tic coupling λh runs down to negative values at energy scales ∼ 1010 GeV making the Higgs
potential unstable [41]. However, in the presence of the new physics interactions as con-
sidered in this work in eq. (2.6), the Higgs stability can be achieved for larger Higgs field
values [41]. In particular, the inflaton-Higgs interaction term, ghφMPl φ |h|2, generates a
φ-dependent Higgs-boson mass m2

h0
= ghφMPl|φ|, with |φ| ∼ O(few)M during inflation,

which leads to the stability/positivity of the Higgs potential. The maximal Higgs field
strength up to which the potential is stable could be estimated as |hmax|2 ∼ ghφMPlφ/λh.

During the inflationary phase, besides the inflaton potential V (φ), one could consider
contributions to inflaton dynamics that originate from the SM Higgs quartic interactions
and the inflaton-Higgs coupling. However, in this work, we consider a parameter space
where the inflationary dynamics is dominated by the cosmological constant term Λ4. Thus,
we require that both λh|h|4 and ghφMPl φ |h|2 terms are smaller than Λ4 in the whole region
of stability, i.e., up to the largest allowed Higgs-field strength h = hmax. It is easy to see
that the required condition reads

ghφ .
√
λh

(
Λ2

φMPl

)
. (2.13)

– 7 –
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Which gives a stronger bound than eq. (2.9) for λh < 1, and hence we adopt the (2.13)
constraint in the following analysis.

Furthermore, as shown in ref. [41], for the Higgs mass mh0 > 3HI/2 the Higgs field
fluctuations during inflation are strongly suppressed ensuring stability, where HI denotes
the Hubble parameter during inflation. This condition could be written in terms of a lower
limit for ghφ, i.e.,

ghφ &
3
4
√

6α
(

Λ2

φMPl

)2 (
φ

M

)
. (2.14)

For the benchmark values of Λ = 3× 10−3MPl and α = 1/6, and assuming that φ ∼M =
MPl, we obtain the following consistency region for ghφ:

6 · 10−11 . ghφ . 3 · 10−6 (2.15)

Hereinafter, for numerical calculations, we adopt the EW value of the Higgs quartic cou-
pling λh = 0.13. Note that the above limits are a subject of λh; increasing λh implies larger
ghφ allowed values.

3 Inflaton dynamics

In this section, we discuss the dynamics of the inflaton field. Based on the arguments
above, we ignore Higgs boson contributions to the inflaton dynamics so that the classical
equation of motion for φ in the FLRW background is given by

φ̈+ 3Hφ̇+ V,φ(φ) = 0, (3.1)

where H ≡ ȧ/a is the Hubble rate, the overdot denotes derivative w.r.t. the cosmic time,
t, whereas V,φ(φ) is derivative of the potential w.r.t. the φ field. In the above EoM, we
have neglected spatial derivatives of the inflaton, regarding φ as a spatially-homogeneous
scalar field. Later on, for collision terms in the Boltzmann equations, we will calculate
S-matrix elements in the presence of classical inflaton fields that are solutions of (3.1). In
other words, we will treat the SM and DM fields as small perturbations as compared to
solutions of (3.1) and their possible back-reaction on the inflaton field will be neglected.3
As discussed above, the inflaton-Higgs interaction term, i.e., ghφMPlφ|h|2, is suppressed
during inflation; therefore, eq. (3.1) is valid during this period as well as during the early
stages of reheating. However, once the reheating resumes, the Higgs field is produced
through the coherent oscillations of the inflaton field. As we will see below, the Higgs
dynamics will be taken into account in the Boltzmann equation. Assuming that the SM
radiation and DM energy densities are negligible in the primordial Universe, one can write
the first Friedmann equation as

H2 ' ρφ
3M2

Pl
. (3.2)

3This is similar, e.g., to the Rutherford scattering which is an elastic scattering of a charged particle by a
static Coulomb point-particle potential that is a solution of Maxwell equations in empty space undisturbed
by the presence of any other particles.

– 8 –
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The energy density, ρφ, and the pressure, pφ, for the homogenous, scalar field are

ρφ = 1
2 φ̇

2 + V (φ), pφ = 1
2 φ̇

2 − V (φ). (3.3)

We can now discuss solutions to eq. (3.1) during and after inflation. As we have al-
ready pointed out above, during the phase of the accelerated expansion, V (φ) is approx-
imately flat. In this period φ̈ is negligible and V (φ) � φ̇2/2, which in turn implies
H2 ' V (φ)/(3M2

Pl). Using these two simplifying assumptions during the inflationary
phase one finds constant solutions for the inflaton field φI(t) ' φ(a?) and the Hubble rate
HI ' Λ2/(

√
3MPl). The slow-roll evolution of the inflaton field can be parameterized by

the so-called potential slow-roll parameters εV and ηV , defined as

εV = M2
Pl

2

(
V,φ(φ)
V (φ)

)2
, ηV = M2

Pl
V,φφ(φ)
V (φ) . (3.4)

Note that the two cosmological observables, the spectral index ns and the tensor-to-scalar
ratio r, can be related to the potential slow-roll parameters as

r = 16εV , ns = 1− 6εV + 2ηV . (3.5)

For the α-attractor inflaton potential (2.4), the slow-roll potential parameters are

εV = 8n2
(
MPl
M

)2
csch2

(2|φ|
M

)
, (3.6)

ηV = 8n
(
MPl
M

)2 [
2n− cosh

(2|φ|
M

)]
csch2

(2|φ|
M

)
. (3.7)

To achieve sufficiently many e-folds (∼ 50− 60) of expansion, the slow-roll parameters are
required to be small, i.e., εV , |ηV | � 1, for a long enough period. The accelerated expansion
of the Universe ends when ä = 0, which corresponds to εV ' 1. This condition determines
the value of φ(ae) at the end of inflation, i.e., at a = ae.

After the end of inflation, the inflaton field φ starts to oscillate around the minimum of
its potential with decreasing amplitude. Moreover, the character of the oscillations strongly
depends on the shape of V (φ) in the vicinity of the minimum. Note that the time scale
of the inflaton oscillations is typically much shorter than the variation of its amplitude.
Thus, in this phase, a generic solution to eq. (3.1) can be written as a product of two
functions [9, 13, 26, 42],

φ(t) = ϕ(t) · P(t), (3.8)

where P(t) is a quasi-periodic, fast-oscillating function, while ϕ(t) denotes a slowly-varying
(w.r.t. the time scale of the oscillations) envelope function defined by the following condi-
tion:

ρφ = V (ϕ) = Λ4
( ϕ

MPl

)2n
, (3.9)

– 9 –
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Figure 2. Numerical solutions for the inflaton EoM (3.1) and (3.2) as a function of the scale factor
a for various choices on n. The vertical dashed line indicates the end of inflation, defined by the
condition εV (φ(ae)) = 1. Colored dots present the value of φ(ae) for different values of n.

where the inflaton potential has been expanded in a form applicable during the reheating
phase with α = 1/6. In figure 2 we show the numerical solution for φ(a), obtained after
solving two coupled equations (3.1) and (3.2). The rapid oscillations of P(a) are damped
by the decreasing envelope ϕ(a) due to the redshift of the Universe. The frequency of
oscillations as well as their amplitude depends on the slope of the inflaton potential n. The
explicit form of ϕ and P will be determined below.

Our goal now is to obtain approximate analytical solutions of (3.1) during the oscil-
latory phase. Before we do that, let us first find a relation between the inflaton energy
density ρφ and pressure pφ. To that end, we differentiate ρφ (3.3) w.r.t. time and using (3.1)
we obtain the continuity equation

ρ̇φ + 3H(1 + w)ρφ = 0, w ≡ pφ/ρφ, (3.10)

where the barotropic parameter w is, in general, time-dependent. Note that at this stage,
the effects of quantum particle production are ignored, so that (3.10) holds during inflation
and the beginning of reheating as long as the inflaton energy density dominates, i.e., the
inflaton decay rate is smaller than the Hubble rate. Ignoring expansion, assuming peri-
odicity, and averaging over one period of oscillations, we can express the inflaton energy
density and pressure (3.3) as [9, 13, 26, 42],

〈ρφ〉 = V (ϕ) = ρφ (3.11)

〈pφ〉 = n− 1
n+ 1V (ϕ) = n− 1

n+ 1ρφ, (3.12)
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where we have used eq. (3.9) along with the relation 〈|P2n|〉 = 1/(n + 1). Hereinafter,
the following definition for the time-average of a quantity f(t) over one period of inflaton
oscillation is employed,

〈f(ti)〉 = 1
T (ti)

∫ ti+T (ti)

ti

dt f(t), (3.13)

where ti is some reference time at a particular instant during the oscillatory phase. Above,
T (ti) denotes the period of the inflaton oscillations, which in general can be time-dependent.
We can now define the averaged equation-of-state parameter during the reheating phase as

w̄ ≡ 〈pφ〉
〈ρφ〉

= n− 1
n+ 1 . (3.14)

In particular, we have w̄ ∈ {−1/5, 0, 1/5, 1/3} for n ∈ {2/3, 1, 3/2, 2}, respectively. The
evolution of the equation of state w ≡ ρφ/pφ and the its time-averaged value w̄ is shown in
figure 3 as a function of the scale factor a. During inflation, i.e., for a < ae, the potential
term V (φ) dominates over the kinetic term, φ̇2/2, and the ρφ/pφ ratio is constant, i.e.,
w ' −1. After the end of inflation, w starts to oscillate between −1 and 1, while w̄ quickly
approaches a constant limit, consistent with the prediction (3.14).

Using the continuity equation (3.10) together with the definition (3.9) and (3.14) one
can derive the equation of motion for the envelope

ϕ̇(t) = − 3
n+ 1Hϕ(t). (3.15)

Form of the above equation proves that indeed ϕ is a slowly varying function of time and
fast oscillations are relegated to the P function.4 The solution to this equation as a function
of the scale factor a reads

ϕ(a) = ϕe
(ae
a

) 3
n+1

, (3.16)

where ϕe ≡ ϕ(ae) denotes the initial value of the envelope determined by the condition
εV (φ(ae)) = 1 at the end of inflation, cf. eq. (3.6), and for α = 1/6 it is given by

ϕe ≡ ϕ(ae) = MPl
2 ArcSinh

(
2
√

2n
)
. (3.17)

Note that for n > 0, ϕ(a) decreases with time during the oscillatory phase. Using the
Friedmann equation (3.2) together with eq. (3.9), we obtain the following equation that
governs the evolution of the scale factor a with t,

da

a
= 1√

3MPl
Λ2
(

ϕ

MPl

)n
dt. (3.18)

Using eq. (3.16) we get

a(t) = ae

[
1 + 3n

n+ 1
Λ2
√

3MPl

( ϕe
MPl

)n
(t− te)

]n+1
3n
, (3.19)

4Note that the definition of the envelope function (3.9) implies that d〈ρφ〉/dt = 〈ρ̇φ〉 assuming periodicity
and neglecting cosmological time evolution while averaging over a period.
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Figure 3. The equation-of-state parameter, w, as a function of the scale factor a. Thin colored
curves show the full numerical solutions, i.e., pφ/ρφ, while thick lines present the time-averaged
barotropic parameter, i.e., w̄ = 〈pφ〉/〈ρφ〉 (3.14). The horizontal axes are normalized to the scale
factor at the end of inflation ae.

where te denotes the cosmic time at end of inflation. Note that the above relation implies
ϕ(t) ∼ t−1 for n = 1, whereas, for the quartic potential, i.e., n = 2, we get ϕ(t) ∼ t−1/2.

In order to find a dynamical equation for the quasi-periodic function P(t) we differen-
tiate (3.8) w.r.t. time, obtaining

φ̇ = ϕ̇P + ϕṖ, (3.20)

which, in turn, implies

Ṗ(t) = ±

√
2(ρφ − V (φ))

ϕ
+ 3n
n+ 1HP(t), (3.21)
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where the ± sign corresponds to φ̇ > 0 and φ̇ < 0, respectively. Note that the second term
in the r.h.s. of (3.21) is negligible as long as the time scale of the inflaton oscillations is
much shorter than the time scale of expansion. Consequently, one can simplify eq. (3.21) as

Ṗ ' ± mφ√
n(2n− 1)

√
1− |P|2n, (3.22)

where we have introduced an effective mass of the inflaton field, see also [13, 26, 43],

m2
φ ≡

∂2V (φ)
∂φ2

∣∣∣∣
φ=ϕ

= 2n(2n− 1) Λ4

M2
Pl

( ρφ
Λ4

)n−1
n
, (3.23)

which is time-dependent for n 6= 1. In particular, since ρφ decreases due to the expansion,
mφ increases for n < 1, while for n > 1 it decreases with time in the oscillatory phase.
Using eqs. (3.9), (3.16) and (3.23) we can obtain an explicit formula for mφ as a function
of the scale factor a

mφ(a) =
√

2n(2n− 1) Λ2

MPl

( ϕe
MPl

)n−1(ae
a

) 3(n−1)
n+1

. (3.24)

Since mφ varies on the time scale much larger than the oscillation time scale, we can solve
eq. (3.22) assuming that mφ is constant during one period of oscillations. Then the generic
solution for the quasi-periodic function P(t) can be written in terms of the inverse of the
regularized incomplete beta function I−1

z (i, j) as

P(a) =
[
I−1
z

( 1
2n,

1
2
)] 1

2n
, (3.25)

with

z ≡ 1− 4
T

(t− t0)

= 1− 4
T
n+ 1√

3n
MPl
Λ2

(MPl
ϕe

)n[( a
ae

) 3n
n+1 − 1

]
, (3.26)

where the period of the oscillations, T , is given by

T ≡ 2π
ω

=
√

4π
mφ

√
2n− 1
n

Γ
(

1
2n

)
Γ
(
n+1
2n

) , (3.27)

with frequency ω. For the quadratic potential i.e., n = 1 we recover the well-known results:
T = 2π/mφ and P(t) = cos(mφt) [10]. Note that the slow variation of mφ w.r.t. time is
also a source of the variation of the period. Because mφ increases (decreases) for n < 1
(n > 1), T decreases (increases) with time. In the next section, we employ these results
obtained for the inflaton profile as well as its time-dependent mass to study the reheating
dynamics, including the inflaton interactions with the Higgs boson.
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4 Reheating dynamics

The reheating dynamics involve the coherently oscillating inflaton field φ, the SM radia-
tion produced through decays of the inflaton field to the SM Higgs boson, and the vector
DM Xµ. To track the evolution of this system, one has to consider three coupled Boltz-
mann equations averaged over the inflaton oscillations. The energy or number density of
each considered species changes due to the expansion of the Universe, controlled by terms
proportional to the Hubble rate H, and interactions between those three sectors. In what
follows, we assume that φ can directly “decay”5 to the SM Higgs pairs, with an averaged
(over each oscillation period) decay rate 〈Γφ→hh〉, and to DM vectors, with an averaged
rate 〈Γφ→XX〉. Due to the fact that the latter process arises from the dim-5 operator,
φ(DµΦ)†(DµΦ)/MPl, the φ→ XX process is subdominant, and the reheating dynamics is
dominantly governed by perturbative decays of the inflaton field to the SM Higgs bosons.

During the reheating period, the Higgs potential can be written as

V (h) = µ2
h |h|2 + λh |h|4 , (4.1)

where the Higgs mass parameter is

µ2
h(φ) ≡ ghφMPl φ(t). (4.2)

In the above expression we have neglected the Higgs mass contributions proportional to
the electroweak vev vEW ' 246GeV. In the presence of an oscillating inflating field, the
Higgs field undergoes rapid phase transitions acquiring a φ(t)-dependent vev during the
reheating phase, i.e.,

vh =


0 , φ(t) > 0 ,√
|µ2
h

(φ)|
λh

, φ(t) < 0.
(4.3)

Note that vh is a function of the inflaton field φ, therefore at the end of the reheating
phase, this non-trivial inflaton-induced vacuum-expectation-value (vev) vanishes, and the
Higgs field remains in the symmetric phase until the electroweak phase transition at the
temperature scale O(100)GeV. Furthermore during reheating all SM massive particles
receive a non-zero mass due to their coupling to the Higgs field, i.e.,

mSM = mEW
SM

vEW
vh, (4.4)

where mEW
SM denotes the EW mass of SM particles.

Before moving ahead, we would like to comment on the gravitational production of the
SM radiation from the inflaton background through a graviton exchange [24, 26, 28, 44].
This production mechanism is universal and independent of any direct coupling of the

5The inflaton “decay” to the SM Higgs boson and vector DM can be understood as the production of the
pairs of SM Higgs bosons and DM vector bosons in a quantum process out of the vacuum in the presence
of the classical inflaton field (3.8).
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inflaton to the SM sector. However, as we show in appendix B, in the presence of the
inflaton-Higgs interaction (2.6) with ghφ satisfying the bound (B.57) the gravitational pro-
duction of SM radiation through the inflaton background field is subdominant. Therefore,
we do not discuss the gravitational production of the SM radiation in the following and
only consider the production of the SM radiation through inflaton decays to the SM Higgs.

During the reheating epoch the DM particles can be produced through the following
types of processes:

• Inflaton decays: in this case, the DM Xµ particles are produced from the inflaton
decays through the effective interaction (2.6).

• Gravitational production from the inflaton field : this is an irreducible DM production
mechanism where the inflaton background field transfers its energy density to the DM
through the graviton exchange. This production mechanism is a result of graviton
universal coupling to energy-momentum tensors of the inflaton and DM fields (2.6).

• Gravitational freeze-in: annihilation of SM particles to the DM through s-channel
graviton hµν exchange can be considered as an irreducible mechanism of DM produc-
tion, which does not require any additional coupling between these two sectors. An
amplitude for this process is suppressed by 1/M2

Pl as a result of graviton universal
coupling to energy-momentum tensors of the SM and DM sectors (2.6).

• Higgs portal freeze-in and Higgs decays: in this case, the dark sector is produced
through annihilations of Higgs bosons due to the dim-6 operator (2.6). In the massive
reheating scenario, Higgs boson acquires the inflaton-induced vev (4.3) and therefore
the contact operator Ch

X m
2
X/(2M2

Pl)XµX
µ|h|2, after expanding around the vev vh,

generates an additional Higgs-DM interaction responsible for h0 → XX decays, i.e.,

Ch
X m

2
X

2M2
Pl
vhh0XµX

µ + · · · .

Furthermore, the above term opens a new DM production channel, in which X par-
ticles are created from the annihilation of SM species with s-channel Higgs exchange,
i.e., SM SM → h0 → XX. Here we should point out that both processes h0 → XX

and SM SM → h0 → XX are possible only in the broken phase, i.e., half-period of
the inflaton oscillations when φ < 0 and the Higgs boson vev is non-zero. Note that
in the massless reheating scenario DM particles are produced only through the Higgs
annihilations via the contact diagram hh→ XX.

In figure 4 we collect all possible interactions among the inflaton, SM and DM fields. Where
“cross” denotes the inflaton background interaction with the graviton field.

We write the time-averaged Boltzmann equations (BEq) for the inflaton energy density
ρφ, the SM radiation energy density ρSM, and the DM number density nX during the
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X

Figure 4. Feynman diagrams for all possible interactions between the inflaton, SM, and DM, where
“cross” indicate the inflaton background interaction with the graviton field.

reheating phase as

ρ̇φ + 6n
n+ 1Hρφ = −〈Γφ〉ρφ, (4.5)

ρ̇SM + 4HρSM = 〈Γφ→SM SM〉ρφ − 2〈EX〉SSM − 〈Eh0〉Dh0 , (4.6)
ṅX + 3HnX = Dφ + Sφ + SSM +Dh0 , (4.7)

where the Hubble rate is

H2 = 1
3M2

Pl
(ρφ + ρSM + ρX) . (4.8)

Above 〈· · · 〉 stands for thermal or (and) time-averaged quantity. The total inflaton decay
rate, 〈Γφ〉, contains two terms induced by the contact inflaton interactions with the Higgs
field and DM vectors, as well as terms generated by indirect interactions through gravity.
For details see appendix B. The first two terms in the third Boltzmann equation, i.e., Dφ
and Sφ, account for the DM pair production from the vacuum in the presence of the inflaton
background via the effective dim-5 operator (2.6) and through gravity, respectively. The
explicit form of the these two terms has been derived in appendix B where we have used
the notation Dφ ≡ D(1)

φ→XX , and Sφ ≡ D
(2)
φ→XX . Next two terms in the r.h.s. of eq. (4.7)

are defined as

SSM ≡ n̄2
X 〈σXX→SM SM|v|〉, Dh0 ≡ n̄h0〈Γh0→XX〉, (4.9)

with σXX→SM SM being the DM annihilation cross-section to the SM, whereas Γh0→XX
denotes the Higgs decay rate to DM particles. Above 〈EX〉 and 〈Eh0〉 denote averaged
energies of the X and h0 particles, respectively. Note that in the above relations (4.9) we
have assumed that the number density of the Higgs field follows the thermal equilibrium
value, i.e., nh0 ' n̄h0 , while the dark sector is assumed to be out-of-thermal equilibrium, i.e.,
nX � n̄X . Ignoring quantum statistics and adopting the Maxwell-Boltzmann distribution
function, the equilibrium number density of species i with spin Ji is given by

n̄i = (2Ji + 1)
2π2 m2

i T K2

(
mi

T

)
, (4.10)
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where K2(x) denotes the modified Bessel function of the second kind. Finally, let us em-
phasize that in the above Boltzmann equations we have assumed that during one oscillation
period variations of the Hubble rate H and the effective mass of the inflaton field mφ could
be neglected.

In this section, we assume that the presence of DM interactions does not modify
substantially the reheating dynamics, which is mainly driven by the first two Boltzmann
equations (4.5)–(4.6). In particular, we assume that inflaton predominantly transfers its
energy into the radiation sector through the Higgs portal, since the inflaton’s higher di-
mensional interactions through gravity to the SM and DM as well as direct coupling to the
vector DM are negligible as compared to a relevant (dim-3) Higgs portal operator. Such
that 〈Γφ〉 ' 〈Γφ→SM SM〉 ' 〈Γφ→hh〉. Furthermore, in the evolution of inflation and SM
radiation energy densities, we ignore the DM scatting and Higgs decays to DM particles.
This is a reasonable approximation for the freeze-in DM scenario with a negligible DM
abundance at the onset of the reheating period.

There are several other comments here in order. Firstly, notice that we are assuming
that the whole SM is created from Higgs boson pairs emerging in the process of inflaton
“decays”, i.e., the Higgs bosons decay and scatter to produce the rest of the SM. Secondly,
we assume the SM particles produced are thermalized instantaneously. This is a reason-
able assumption given that once the Higgs bosons are produced, they would immediately
decay/scatter to the rest of the SM particles, leading to instantaneous thermalization [45].
Thirdly, note that the r.h.s. of (4.5) was not present when we have discussed the inflaton
dynamics in section 3, cf. (3.10). Here it describes a quantum process of the particle pair
production (in other words, a transition from the quantum vacuum to the two-particles
final state) in the presence of the oscillating classical inflaton field. Fourthly, let us define
the temperature of the thermal bath, T , through the following well-known relation,

ρSM = π2

30g?(T )T 4, (4.11)

where g?(T ) counts an effective number of relativistic degrees of freedom at the tempera-
ture T . Here we approximate g?(T ) by the constant value of 106.75.

Finally, we would like to comment on possible thermal effects on the Higgs poten-
tial (4.1) and in particular thermal corrections to the Higgs mass parameter µ2

h during the
reheating phase. In the large temperature limit, i.e., T � mSM, the thermal corrections to
the Higgs mass δµ2

h(T ) are [46],

δµ2
h(T ) '

[3g2

16 + g′2

16 + y2
t

4 + λh
2

]
T 2 ' 0.4T 2, (4.12)

where g/g′ and yt are the SM electroweak gauge and top Yukawa couplings, respectively.
The temperature-dependent contribution to the Higgs mass arises from the Higgs interac-
tions with the high-temperature bath of relativistic particles. In the following analysis, we
neglect such thermal corrections which become relevant only when T & |µh(ϕ)|.
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4.1 Evolution of the inflaton and SM energy densities

In the following, our goal is to find approximate analytical solutions for the inflaton and the
SM radiation energy densities by solving the first two Boltzmann eqs. (4.5)–(4.6). After
employing the simplifications discussed above, the Boltzmann eqs. (4.5)–(4.6) take the
simple form,

ρ̇φ + 6n
n+ 1Hρφ = 0, (4.13)

ρ̇SM + 4HρSM = 〈Γφ→hh〉ρφ. (4.14)

Above in the first equation, we have neglected the inflaton decay rate 〈Γφ〉 compared to the
Hubble rate H during the reheating phase. We use the above set of simplified Boltzmann
equations to analytically determine the reheating dynamics, however, note that for the
numerical analysis we consider solutions of the exact Boltzmann eqs. (4.5)–(4.6). The
initial conditions for the inflaton energy density ρφ and the SM energy density ρSM at the
onset of the reheating phase are

ρφe ≡ ρφ(ae) = Λ4
( ϕe
MPl

)2n
, ρSM(ae) = 0, (4.15)

where we have employed eq. (3.9). Hereinafter, we use the scale factor a as an independent
time variable rather than physical time t, where the two are related during the reheating
phase through eq. (3.19). Therefore, the inflaton energy density during reheating evolves as

ρφ(a) = ρφe

(ae
a

) 6n
n+1

, for a ∈ [ae, arh], (4.16)

where arh denotes the scale factor at the end of reheating which we define by the equality
of the inflaton and radiation energy densities, i.e., ρφ(arh) = ρSM(arh). As we see in the
following, the end of reheating roughly coincides with the condition 〈Γφ〉 ∼ H.

Since the inflaton energy density dominates the total energy density during reheating,
we can solve the Friedmann equation (4.8), obtaining

H(a) = He

(
ae
a

) 3n
n+1

, for a ∈ [ae, arh], (4.17)

where He ≡ H(ae) = √ρφe/(
√

3MPl). It is instructive to rewrite the Boltzmann equation
for the SM energy density (4.14) as

d(a4ρSM)
da

' 〈Γφ→hh〉
H

a3ρφ. (4.18)

After using the solutions for the inflaton energy density (4.16) and the Hubble rate (4.17)
during the reheating phase, we can rewrite eq. (4.18) as

d(a4ρSM)
da

' 3M2
PlHe〈Γφ→hh〉a3

e

( a
ae

) 3
n+1

, (4.19)

which is straightforward to solve when the inflaton decay rate to SM Higgs boson pairs is
known. As we will show in the following subsections, in general, the width is a function
of time [12]. In the next subsection, we calculate the inflaton “decay” to a pair of Higgs
bosons, taking into account the non-trivial φ-depenent Higgs mass.
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4.2 Higgs boson production from oscillating inflaton

In this subsection, we calculate the energy gain E of the SM radiation due to the Higgs
pair production at the expense of the inflaton field. The process that is considered is a
quantum production from a vacuum state, |0〉, to the two-Higgs-boson final state, |hh〉, in
the presence of the classical inflaton field, see also [13, 26, 30, 47, 48]. Due to the energy
conservation, the energy density gained by the Higgs pair production from the vacuum
must be equal to the energy loss of the inflaton field. To put it another way, the energy
density, initially accumulated in the coherent oscillations of the inflaton field, is transferred
to the SM radiation sector during reheating due to the cubic inflaton-Higgs coupling φ|h|2.
Note that in this term, φ = ϕP should be interpreted as a given time-dependent coefficient,
so effectively it makes the Higgs boson mass vary with time. For interactions linear in the
φ field the energy gain per unit volume V and per unit time due to the pair production of
final state particles f with mass mf can be calculated as

1
V

dE

dt
= ϕ2(t)

8π

∞∑
k=1

kω|Pk|2
∣∣∣Mφ→ff (k)

∣∣∣2Re

√1−
4m2

f

k2ω2

 , (4.20)

where V is the volume factor. The matrix element squared |Mφ→ff |2, summed over
spin/polarization of final states, describes the quantum process of production of pair of
particles out of the vacuum in the presence of the classical inflaton background, while Pk
denotes Fourier coefficients in the expansion of P(t):

P(t) =
∞∑

k=−∞
Pke−ikωt , (4.21)

with the oscillation frequency/energy ω = 2π/T (3.27) and Fourier mode number k,

Pk = 1
T (t0)

∫ t0+T (t0)

t0
dtP(t)eikωt. (4.22)

Note that for n = 1 the only non-zero Fourier coefficient is P1 = 1/2, while for n = 2/3,
n = 3/2 and n = 2 all even coefficients are zero. Moreover, the value of Pk quickly decreases
with k such that the sum ∑

k |Pk|2 converges around k of the order ten. The numerical
values of ∑k |Pk|2 are collected in table 1.

It is understood that the above process is possible only if it is kinematically allowed,
i.e., when kw > 2mf . Then, the collision term in eq. (4.5) could be written by defining the
inflaton “decay width” as

1
V

dE

dt
≡ ρφ Γφ. (4.23)

Adopting the r.h.s. of the above expression, one can mimic the standard form of the col-
lision term for decaying particles with the “width” calculated using the classical solution
of (3.1). It would be an acceptable iterative procedure that starts with the classical solu-
tion. Nevertheless, we will adopt an alternative approach. It is important to realize that
the “width” defined by (4.23) non-trivially depends on ρφ, i.e., on the function we are seek-
ing by solving the respective Boltzmann equation. Therefore we find it more appropriate to
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n
∑
k k|Pk|2

∑
k |P2n

k |2

2/3 0.2605 0.1883
1 1/4 1/16

3/2 0.2377 0.1455
2 0.2286 0.0635

Table 1. Numerical values of the summation factors appearing in eq. (4.20) (first column) and
eq. (5.3) (second column) for different values of n.

express the whole r.h.s. of (4.5) in terms of the inflaton density ρφ adopting (3.9). Solutions
of the Boltzmann equations in both cases approximately coincide during reheating when
the “width” is smaller than the Hubble rate. Formally the difference is of higher order in
powers of coupling constant that enters the “width”.

Our next step is to calculate the time-averaged inflaton decay width, 〈Γφ→hh〉, using the
strategy described above. For the cubic inflaton-Higgs interaction, we obtain the following
expression by averaging over the fast oscillations of the inflaton field,

〈Γφ→hh〉 =
g2
hφ

32π
M2

Pl
mφ

γh , (4.24)

with

γh ≡
8n
√
πn(2n− 1)Γ

(
n+1
2n

)
Γ
(

1
2n

) 3∑
i=0

∞∑
k=1

k|Pk|2
〈

Re

√1−
4m2

hi

k2ω2

〉, (4.25)

where we have employed eq. (4.20) and (4.23). Above the inflaton decay is summed over
four real components, hi, of the Higgs doublet. Note that 〈Γφ→hh〉 has two sources of
time-dependence:

(i) the effective mass of the inflaton field mφ (3.23),

(ii) the inflaton-induced mass of the SM Higgs mhi (4.2).

The time-averaged inflaton decay rate is time-independent only in the massless reheating
scenario, i.e., mhi = 0 with the quadratic inflaton potential, i.e., n = 1. In this special case
γh = 4 due to the four real massless scalar components of the Higgs field.

Since the energy scale of the electroweak symmetry breaking is much smaller than
the energy scale of reheating, the EW mass of the Higgs boson can be neglected during
this period. However, all Higgs doublet components, hi, acquire non-zero masses via their
coupling to the inflaton field,

m2
hi = ghφMPl ϕ


|P|, P > 0, i = 0, 1, 2, 3,
2|P|, P < 0, i = 0,
∞, P < 0, i = 1, 2, 3.

(4.26)
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We see that m2
hi

is subjected to the short-scale oscillations of the inflaton field through
P and that is why we have to average the square root in (4.24). Though, the summation
and averaging performed in (4.24) deserves an explanation. During one half of the inflaton
oscillation period, when P > 0, the electroweak symmetry remains unbroken, and each
Higgs doublet component receives a mass mhi =

√
ghMPlϕ|P|. In the second half of the

period, when P becomes negative, the physical Higgs mass is mh0 =
√

2ghMPlϕ|P|, while
the three Goldstone bosons become the longitudinal components of the SM gauge bosons
and decouple from the inflaton. In the unitary gauge that corresponds to an infinite mass
of hi for i = 1, 2, 3, these are non-dynamical modes. The averaging performed in (4.24)
takes the above properties of m2

hi
into account. It is instructive to write the averaged

masses of the Higgs boson components as

〈mhi〉 =
√
ghφMPl ϕ

Γ
(

3
4n

)
Γ
(
n+1
2n

)
Γ
(

2n+3
4n

)
Γ
(

1
2n

)


1+
√

2
2 , i = 0,

1
2 , i = 1, 2, 3,

(4.27)

which depends on time only through the slow varying envelope function ϕ(a) given in
eq. (3.16).

Note that the non-trivial Higgs mass effects appear only through the phase-space factor
〈
√

1− (2mhi/kω)2〉 in γh (4.25). In particular, the phase-space kinematic effects are only
relevant when the energy kω of the inflaton mode k is larger than twice Higgs boson mass
mhi . We also note that for a general value of n the dominant contribution originates from
the first Fourier mode, i.e., k = 1, as the amplitude Pk drops quickly for larger mode
numbers. Therefore it is instructive to write the ratio

〈mh〉
ω
'
√
ghφMPl ϕ

mφ

√
2n− 1
π n

Γ
(

3
4n

)
Γ
(

2n+3
4n

) ,
=
√
ghφ√
2π n

M2
Pl

Λ2

Γ
(

3
4n

)
Γ
(

2n+3
4n

)( ϕe
MPl

) 3−2n
2
( a
ae

) 3(2n−3)
2(n+1)

, (4.28)

where for brevity we have neglected the Higgs field hi component-dependent contribution
(1 +

√
2)/2 for i = 0 and 1/2 for i = 1, 2, 3. In the second line of eq. (4.28) we have

employed the solution for ϕ(a) (3.16), which is valid during reheating, i.e., 〈Γφ→hh〉 �
H, and the expression for the inflaton mass mφ (3.24). Note that the time-dependence
of 〈mh〉/ω through the scale factor a disappears for n = 3/2, while for n < 3/2 (n >

3/2) it decreases (increases) with time during reheating. This implies that the kinematic
suppression amplifies over time for n > 3/2 and stays constant for n = 3/2. However,
for n < 3/2, the role of the kinematic suppression becomes less and less important as the
Universe expands.

The crucial factor in the calculation of the inflaton width (4.24) is 〈
√

1− (2mhi/kω)2〉,
which captures the kinematic phase-space suppression due to non-trivial Higgs mass. We
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find the phase-space factor after time-averaging over fast inflaton oscillations as

〈√
1−

4m2
hi

k2ω2

〉
≈
⌈9κi nΓ

(
n+1
2n

)
16
√
π Γ

(
1

2n

) k2ω2

ghφMPlϕ

⌉
,

=
⌈ 9
√
πκin

2Γ
(
n+1
2n

)3

16(2n− 1)Γ
(

1
2n

)3
k2m2

φ

ghφMPlϕ

⌉
, (4.29)

where for i = 0 component of the Higgs field κ0 = 1, whereas for i = 1, 2, 3 components
κ1,2,3 = 1/2 due to the fact that these modes become Goldstone modes in the broken phase.
Above ‘ceiling’ function d· · · e is defined as follows:

dxe =

1, x ≥ 1,
x, x < 1,

(4.30)

where d· · · e = 1 implies massless final states, i.e., no kinematic suppression. Note that in
the above expression, for a generic n, the time dependence enters through the inflaton en-
velope function ϕ(a) (3.16) and the inflaton mass mφ (3.24). We can also rewrite eq. (4.29)
as a function of the scale factor:

〈√
1−

4m2
hi

k2ω2

〉
≈
⌈
gk
ghφ

(ae
a

) 3(2n−3)
(n+1)

⌉
, (4.31)

where we have used M = MPl (α = 1/6), ϕe ∼MPl and defined

gk ≡
9
√
πκik

2n3Λ4 Γ
(
n+1
2n

)3

8M4
Pl Γ

(
1

2n

)3 . (4.32)

From eq. (4.31) we see that the phase-space factor 〈
√

1− (2mhi/kω)2〉 increases (decreases)
with time for n < 3/2 (n > 3/2), whereas it stays constant for n = 3/2 as shown in figure 5.

Moreover, one can estimate the scale factor ak at which the kinematic suppression
becomes irrelevant (for n < 3/2) or relevant (for n > 3/2) by the condition d· · · e = 1 in
the above expression as

ak ≡ ae
(
gk
ghφ

) (n+1)
3(2n−3)

, n 6= 3/2. (4.33)

Whereas for the special case n = 3/2 the phase-space (4.31) suppression is a time-indepen-
dent constant factor when ghφ > gk for k = 1. Note that depending on the strength of
ghφ, the kinematic suppression may end during the reheating phase for n < 3/2. In this
case, for scale factor ak < a ≤ arh the reheating dynamics would be the same as that of
massless Higgs final states. On the other hand, the kinematic suppression becomes more
and more significant with time for n > 3/2. This is because even if the averaged Higgs
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Figure 5. Evolution of the phase-space factor
〈√

1− (2mhi/kω)2
〉
for the inflaton decay to a pair

Higgs bosons as a function of the scale factor a for k = 1 and ghφ = 10−5 and 10−10 in the left-
and right-panels, respectively. Solid (dashed) lines are for the i = 0 (1, 2, 3) component of the SM
Higgs doublet.

mass was much smaller than the inflaton energy at the onset of reheating, it would soon
become of the order of kω, and hence the kinematic effects would be important until the
end of the reheating phase. With the above definition of ak, we can recast the phase-phase
factor (4.31) as

〈√
1−

4m2
hi

k2ω2

〉
≈


⌈(

ak
a

) 3(2n−3)
(n+1)

⌉
, n 6= 3/2,⌈

gk
ghφ

⌉
, n = 3/2.

(4.34)

In figure 5 we have plotted exact numerical results for the phase-space factor
〈
√

1− (2mhi/kω)2〉 with k = 1 as a function of the scale factor a for two values of the
inflaton-Higgs coupling ghφ = 10−5 (left panel) and 10−10 (rightpanel). First of all, let us
note that if the mass of the SM Higgs is small as compared to the inflaton mode energy kω,
the phase-space factor 〈

√
1− (2mhi/kω)2〉 = 1. For n < 3/2 and sufficient strong inflaton-

Higgs coupling, e.g., ghφ = 10−5, the 〈
√

1− (2mhi/kω)2〉 factor initially grows with the
scale factor a, until the inflaton-induced mass of the Higgs boson becomes negligible and the
kinematical suppression is no longer relevant. From the left-panel of figure 5 for ghφ = 10−5

the number of e-folds for kinematic suppression is Nk ∼ 4.5 and 9 for n = 2/3 and n = 1,
respectively. As noted above for n = 3/2, the phase-space factor is time-independent and
is given by 〈

√
1− (2mhi/kω)2〉 ∼ dκiΛ4/(4ghφM4

Pl)e. This means that the kinematical
suppression is present during the whole period of reheating unless the ghφ coupling is very
weak and the ceiling function approaches 1. For n > 3/2, the role of the non-zero mass of
the Higgs boson increases with time so that 〈

√
1− (2mhi/kω)2〉 decreases as the scale fac-

tor increases. This means that even if the effects of the non-zero Higgs mass are negligible
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Figure 6. The evolution of the Higgs mass mh0(a) for two values of the inflaton-Higgs coupling:
ghφ = 10−5 (blue) and ghφ = 10−7 (red) for n = 2/3 and 3/2 in the left and right-panel, respectively.
The colored (blue, red) dashed curves show the evolution of the averaged Higgs mass, i.e., 〈mh0(a)〉.
The thick solid purple and light blue lines denote T (a) for ghφ = 10−5 and 10−7, respectively,
whereas the loosely dashed green line illustrates the evolution of the inflaton mass mφ.

at the onset of reheating period with increasing time, the kinematical suppression becomes
more and more relevant. The numerical results for the phase-space factor agree with our
approximate analytic results (4.31) to very good precision.

In figure 6 we show the evolution of the mass of the 0-component of the Higgs doublet,
mh0 (4.26), its average 〈mh0〉 (4.27), and the effective inflaton energy ω (3.27) as a function
of the scale factor during the first few e-folds of reheating. In these plots we have fix
n = 2/3 (left-panel) and 3/2 (right-panel) for two values of ghφ = 10−5, 10−7. Note that
kinematic phase-space suppression discussed above is relevant for regions where 〈mh0〉 &
mφ. Furthermore, in figure 6 we also have compared mh0(a) with the evolution of the
thermal bath temperature T (see below for details). When the Higgs mass is larger than
the SM bath temperature it behaves as a non-relativistic matter. We note that the φ-
dependent mass of the SM Higgs drops below the temperature, roughly corresponding to
the a ' ak.

4.3 Reheating through massless Higgs bosons

In this subsection, we consider the reheating dynamics by neglecting the φ-dependent
Higgs mass, which we refer to as the massless reheating scenario. In other words, we
neglect the contribution to the Higgs boson mass originating from the cubic interaction
term φ|h|2 in the Lagrangian (2.6). This is, of course, merely a reference point introduced
to illustrate kinematical mass effects in the realistic case, i.e., with mhi 6= 0. As shown
in the following subsection, there are significant differences between the massless scenario
and the case where we consider the inflaton-induced Higgs mass. Our main goal is to find
an approximate analytical solution to the Boltzmann equation for the SM radiation (4.19),
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which then allows us to determine the temperature evolution during the reheating phase.
In the massless reheating scenario, there is no kinematical suppression of the Higgs boson
production. Thus, the only source of time-dependence of the inflaton decay rate (4.24)
is through the effective inflaton mass mφ (3.24). In this case, the inflaton decay can be
written as

〈Γ(0)
φ→hh(a)〉 = Γ̃(0)

φ→hh

( a
ae

) 3(n−1)
n+1

, (4.35)

with the constant width

Γ̃(0)
φ→hh ≡

g2
hφ√
2π

nΓ
(
n+1
2n

)
Γ
(

1
2n

) M3
Pl

Λ2

(MPl
ϕe

)n−1 ∞∑
k=1

k|Pk|2, (4.36)

where superscript “(0)” denotes the massless Higgs boson case. Note that for a generic
value of n 6= 1 the inflaton decay width is a function of time which can lead to non-trivial
consequences for reheating dynamics [12]. In particular, for n < 1, Γ(0)

φ→hh decreases with
the growth of the scale factor, while for n > 1 it increases. Therefore, one can expect
that for fixed values of the model parameters (ghφ,Λ), the reheating is the most efficient
for n > 1, whereas for n < 1, the duration of reheating is prolonged. Moreover, for the
quadratic inflaton potential, i.e., n = 1 we reproduce the well-known expression for the
time-independent decay width, i.e., Γ(0)

φ→hh = (ghφMPl)2/(8πmφ), with mφ =
√

2Λ2/M and
Pk = δ1k/2.

Inserting formula (4.35) into eq. (4.19) one obtains the following solution for the SM
radiation energy density,

ρ
(0)
SM(a) = 3M2

PlHe Γ̃(0)
φ→hh

n+ 1
4n+ 1

[(ae
a

) 3
n+1 −

(ae
a

)4]
, (4.37)

for a ∈ [ae, arh]. Note that for positive n, the first term in the square brackets above
dominates over the second one during the reheating phase, i.e., ae < a ≤ arh. Consequently,
the temperature of the thermal bath (4.11) during reheating evolves as

T (0)(a) '
[90(n+ 1)M2

PlHe Γ̃(0)
φ→hh

(4n+ 1)π2 g?(T )

]1/4(ae
a

) 3
4(n+1)

. (4.38)

For n = 1 we obtain standard scaling of temperature w.r.t. the scale factor, i.e., T ∝ a−3/8,
however for n < 1 (n > 1) the dependence of the temperature on the scale factor is more
(less) steeper. The explicit dependence on the scale factor of the SM energy density ρSM(a)
and temperature T (a) for different n is listed in table 2.

Another quantity of physical importance is the maximum temperature of the SM bath
T

(0)
max. In the massless reheating scenario, T (0)

max is typically reached just after the end of
inflation, at

a(0)
max = ae

(4(n+ 1)
3

) n+1
4n+1

, (4.39)
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Thus, the maximum temperature in the massless reheating scenario is

T (0)
max =

[90(n+ 1)M2
PlHe Γ̃(0)

φ→hh
(4n+ 1)π2 g?(T )

]1/4( 3
4(n+ 1)

) 3
4(4n+1)

. (4.40)

4.4 Reheating through massive Higgs bosons

In this subsection, we discuss the reheating through inflaton decays to Higgs boson pairs,
taking into account the effects of the inflaton-induced Higgs boson mass on the reheating
dynamics. The important difference of this scenario as compared to the reheating with
the massless Higgs, discussed above, is the non-trivial kinematical phase-space suppression
of the inflaton decay width, 〈Γφ→hh〉 (4.24) through γh factor (4.25). In particular, the
main difference is the time-averaged phase-space factor 〈

√
1− (2mhi/kω)2〉 that generates

a kinematical suppression due to the non-zero Higgs mass, as discussed above in section 4.2.
The explicit form of the time-dependence of the phase-space factor has been calculated in
eq. (4.31) for the four components of the SM Higgs doublet. Moreover, as it has been
pointed out above, the γh factor (4.25) is time-independent during the reheating phase
for n = 3/2, whereas for n < 3/2 (n > 3/2), γh increases (decreases) during reheating.
For n < 3/2 the kinematic suppression gradually disappears as the averaged Higgs mass
becomes smaller compared to the inflaton energy, i.e., 〈mh〉 . ω. The scale factor at
which the kinematic suppression vanishes is denoted by ak. Note that, in principle, the
kinematic suppression can be present throughout the reheating phase, or it may vanish
during this phase, i.e., ak < arh. In the latter case, the inflaton-induced mass of the Higgs
field suppresses the radiation production for ae < a ≤ ak, while for ak < a ≤ arh, the
kinematic suppression is irrelevant, and the reheating dynamics follows the same evolution
as that of the massless reheating scenario discussed above. On the other hand, for n > 3/2
it can happen that at the onset of reheating, the kinematical suppression has a negligible
impact on the reheating dynamics, but at some point, ak, when the averaged Higgs mass
approaches the inflaton energy, i.e., 〈mh〉 ∼ ω, it starts to affect the reheating dynamics
until the end of reheating phase.

The averaged inflaton decay width eq. (4.24) with inflaton-induced Higgs mass is
given by,

〈Γφ→hh(a)〉 ' Γ̃φ→hh
( a
ae

) 3(n−1)
n+1 ×

∞∑
k=1

k|Pk|2


⌈(

ak
a

) 3(2n−3)
(n+1)

⌉
, n 6= 3/2,⌈

gk
ghφ

⌉
, n = 3/2,

(4.41)

where constant width Γ̃φ→hh is defined as

Γ̃φ→hh ≡
g2
hφ√
2π

nΓ
(
n+1
2n

)
Γ
(

1
2n

) M3
Pl

Λ2

(MPl
ϕe

)n−1
. (4.42)

Consequently, in the massive reheating scenario, the Boltzmann equation for the SM radi-
ation energy density (4.19) can be analytically solved with the inflaton decay rate (4.41).
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In the following, we calculate the SM radiation energy density and temperature for three
different cases, n ≶ 3/2, and n = 3/2.

In this case when n ≶ 3/2 for a ≷ ak the inflaton decay rate to the SM Higgs bo-
son (4.41) has no phase-space suppression, and it is equal to that of the massless Higgs
boson case eq. (4.35). Therefore for n ≶ 3/2 and a ≷ ak the SM radiation energy density
is the same as the massless case eq. (4.37). However, for a ≶ ak with n ≶ 3/2 we have a
phase-space kinematic suppression in the inflaton decay rate (4.41) and, therefore, the SM
energy density is modified in comparison to the massless case eq. (4.37). Similarly, for the
case when n = 3/2, there is no time-dependent kinematical suppression for the inflaton
decay rate; however, there is a constant suppression proportional to dgk/ghφe. Therefore,
for n = 3/2, the time dependence of the SM energy density and the temperature would be
the same as that of the massless case up to constant kinematical suppression. Hence we
can write the SM energy density for different values of n as

ρSM(a)

' 3M2
PlHeΓ̃φ→hh



n+1
2(5−n)

[(
ae
a

) 6(n−1)
n+1 −

(
ae
a

)4
]∑∞

k=1 k|Pk|2
(
ak
ae

) 3(2n−3)
(n+1)

, a ≶ ak, n ≶ 3/2,

n+1
4n+1

[(
ae
a

) 3
n+1 −

(
ae
a

)4
]∑∞

k=1 k|Pk|2, a ≷ ak, n ≶ 3/2,

n+1
4n+1

[(
ae
a

) 3
n+1 −

(
ae
a

)4
]∑∞

k=1 k|Pk|2
⌈
gk
ghφ

⌉
, n = 3/2,

(4.43)

where the time-dependence through the scale factor is dominated by the first terms in the
square brackets above. Thus, during the kinematical suppression phase, i.e., a ≶ ak for
n ≶ 3/2, the SM radiation energy density and the temperature scale as

ρSM ∝ a
6(1−n)
n+1 , T ∝ a

3(1−n)
2(n+1) , a ≶ ak, n ≶ 3/2. (4.44)

Whereas, during the region of parameters where the time-dependent kinematical suppres-
sion is absent, we get the scaling as that of the massless Higgs case, i.e.,

ρSM ∼ ρ
(0)
SM ∝ a

−3
n+1 , T ∼ T (0) ∝ a

−3
4(n+1) , a ≷ ak, n Q 3/2. (4.45)

It is important to note that the above scaling behavior is very unusual for the SM
radiation energy density. Thus, the temperature of the thermal bath during reheating
when the kinematical suppression is present. It turns out that in the massive scenario for
n = 2/3, both ρSM and T increases with time, whereas for n = 1 they are nearly constant.
As we have discussed earlier on, for n = 3/2 the inflaton decay rate depends on time only
though mφ and thus, in both massless and massive cases, we obtain the same scaling.
Finally, for n > 3/2, the ρSM dependence on the scale factor is steeper in the massive
reheating scenario in comparison to the massless Higgs case. The approximate scalings of
averaged inflaton decay width, 〈Γφ→hh〉, the SM radiation energy density, ρSM, and the
temperature, T , with the scale factor, a, are collected in table 2 for the massless (when the
kinematic suppression is irrelevant) and massive reheating scenarios (when the kinematic
suppression is relevant).
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n 〈Γ(0)
φ→hh〉 ρ

(0)
SM T (0) 〈Γφ→hh〉 ρSM T

2/3 a−3/5 a−9/5 a−9/20 a12/5 a6/5 a3/10

1 a0 a−3/2 a−3/8 a3/2 a0 a0

3/2 a3/5 a−6/5 a−3/10 a3/5 a−6/5 a−3/10

2 a1 a−1 a−1/4 a0 a−2 a−1/2

Table 2. Approximate scaling of the averaged inflaton decay width, 〈Γφ→hh〉, the SM radiation
energy density, ρSM, and the temperature, T , with the scale factor, a, in the massless (with super-
script (0)) and massive reheating scenario when the kinematic suppression is relevant.

4.5 Tachyonic resonant production of Higgs bosons

Before we go onto the numerical analysis of the reheating dynamics we would like to make
some comments here regarding the possible tachyonic resonant production of Higgs boson
during the early phases of reheating. In our model Higgs boson Lagrangian has the form,

L ⊃
√
−g
[
gµν (∂νh)† (∂µh)− µ2

h|h|2 − λh|h|4
]

(4.46)

where the inflaton-induced Higgs mass µ2
h ≡ ghφMPlφ (4.1) could be larger than the inflaton

effective mass m2
φ (3.23) at the onset of reheating phase, i.e. φ = φe ∼ MPl for values of

ghφ satisfying (2.13) and (2.14), i.e.

√
λh

(
Λ2

φMPl

)
& ghφ &

3
4

(
Λ2

φMPl

)2 (
φ

MPl

)
. (4.47)

for α = 1/6. Therefore tachyonic resonant production of Higgs boson can constitute an
efficient source of (p)reheating [49, 50]. This can be easily seen from the equation of motion
of the Higgs field in the unitary gauge as,(

d2

dt2
− ∇

2

a2 + 3H d

dt
+ ghφMPlφ

)
h0 = −λhh3

0 (4.48)

where the non-linear term is present due to Higgs self-interactions. General solution of the
above non-linear equation with the expanding background is difficult to handle and require
lattice simulations. However, in the following we employ the Hartree approximation to
replace the non-linear term by a linear term as λhh3

0 → 3λh〈h2
0〉h0, where 〈h2

0〉 is variance
of the Higgs field which can be calculated using the linear solution (or iteratively in orders
of non-linearity parameter λh) for the Higgs mode function h0,k with mode momentum
k as, 〈

h2
0

〉
(t) = 1

2π2

∫ ∞
0

dk k2 |h0,k(t)|2 . (4.49)

The Higgs mode function h0,k satisfies the mode equation

ḧ0,k + 3Hḣ0,k +
(
k2

a2 + ghφMPlφ+ 3λh
〈
h2

0

〉)
h0,k = 0, (4.50)
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where we have adopted the Hartree approximation. Applying the field redefinition, h̃0,k ≡
a3/2h0,k, we can recast the above mode equation as

¨̃h0,k + ω2
kh̃0,k = 0, (4.51)

where the dispersion relation is

ω2
k ≡

k2

a2 + 9
4H

2w + ghφMPlφ+ 3λh
〈
h2

0

〉
, (4.52)

with w = p/ρ which can be in the range w ∈ [−1, 1] for our choice of inflaton poten-
tial (2.4). In the above dispersion relation ω2

k second and third terms can be negative and
hence source the non-perturbative production of Higgs modes, i.e. preheating dynamics.
However, note that second term H2w is much smaller compared to the inflaton-induced
Higgs mass when φ is oscillating with an amplitude ∼ MPl and ghφ satisfying (4.47).
Therefore tachyonic resonant Higgs production is mainly driven by large negative Higgs
mass term µ2

h ∼ −ghφMPl|φ|. However, the positive large self-interaction contribution term
λh
〈
h2

0
〉
to mode frequency shuts off the tachyonic production for any k mode if

3λh
〈
h2

0

〉
& |µ2

h|. (4.53)

This gives a lower-bound on the Higgs quartic coupling for which the tachyonic resonant
production is irrelevant for µ2

h < 0. We calculate the variance of the Higgs field 〈h2
0〉 (4.49)

for µ2
h < 0 by using the leading linear solution for the mode function h0,k(t), i.e. neglecting

λh term in the mode equation (4.50), see also [49], as

〈h2
0〉 ∼

|µh|Λ2

16π2MPl
exp

(4|µh|MPl
Λ2

)
. (4.54)

Hence the lower-bound on the Higgs quartic coupling (4.53) reads,

λh &
16π2

3

√
ghφ|φ|M

3/2
Pl

Λ2 exp
(
−

4
√
ghφ|φ|M

3/2
Pl

Λ2

)
. (4.55)

For the values of Higgs quartic coupling employed throughout this work, λh ∼ 0.1, the
lower limit for ghφ to block the tachyonic resonant production of Higgs boson reads,

ghφ &
4Λ4

M3
Pl|φ|

. (4.56)

Note that the above lower limit for ghφ is slightly stronger than the one in (4.47). On the
other hand we find that for

3
4

(
Λ4

M3
Pl|φ|

)
. ghφ . 4

(
Λ4

M3
Pl|φ|

)
. (4.57)

and λh ∼ 0.1 tachyonic resonant production of Higgs modes is possible. A detailed analysis
of this possibility is an interesting possibility, however it is beyond the scope of present
work.
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To summarize, our analysis above (with an order of magnitude approximations) con-
cludes that in the parameter space considered in this work (with ghφ respecting lower
bound (4.56)) the tachyonic resonant Higgs production is inefficient due to Higgs self-
interactions. Therefore in the following numerical analysis we only focus on the perturba-
tive production of Higgs bosons as discussed in the subsections above.

4.6 Numerical analysis

In this subsection, we present a numerical analysis of the reheating dynamics due to the in-
flaton decays to the SM Higgs boson through cubic interaction of the form ghφMPlφ|h|2 (2.6).
In particular, we provide solutions of the first two Boltzmann equations (4.5) and (4.6) for
the inflaton ρφ(a) and SM radiation ρSM(a) energy densities. The reheating dynamics
depend only on the form of the inflaton potential and inflaton-Higgs interaction term.6
For the numerical analysis, we consider the α-attractor T-model of inflaton with po-
tential (2.4), where we have fixed α = 1/6, such that M = MPl, and the scale of in-
flation Λ = 3 × 10−3MPl. Whereas, the benchmark values for n have been chosen to
be 2/3, 1, 3/2, 2 which correspond to the equation of state during the reheating phase
w̄ = −1/5, 0, 1/5, 1/3, respectively. Furthermore, we consider two values for the inflaton-
Higgs interaction ghφ = 10−5 and 10−10, which are close to its upper and lower bounds,
see eq. (2.15).

In the upper panel of figure 7 and figure 8 we have plotted the numerical solutions
for the inflaton (orange) and radiation (purple) energy densities for fixed ghφ = 10−5

and 10−10 in figure 7 and figure 8, respectively. The lower panel of each figure presents
the evolution of the thermal bath temperature (blue), the Hubble rate (green), and the
averaged inflaton decay width (red) as functions of the scale factor. The solid and dashed
curves correspond to the massive and massless reheating scenario, respectively. The empty
(filled) dots indicate the end of reheating phase, i.e., the moment at which the inflaton
energy density becomes equal to the SM radiation energy density in the massless (massive)
scenario. Note that the ρφ(arh) = ρSM(arh) equality roughly coincides with 〈Γφ→hh〉 ∼ H

in both considered scenarios.
First of all, let us recall that in the both considered reheating scenarios the inflaton

energy density scales as a−6n/(n+1) (4.16) for a < arh, while after the end of reheating ρφ
sharply drops as it is seen in upper panels of figure 7 and figure 8. However, the evolution
of the SM radiation energy density during the reheating period is drastically different in
the massive reheating scenario as compared to the case where the inflaton-induced Higgs
mass has been neglected. This non-trivial behavior not only changes the SM radiation
energy density but also affects the duration of reheating in the two cases. Note that when
inflaton-induced Higgs mass effects are taken into account, the SM radiation energy density
is suppressed compared to the massless case, which results in elongation of the reheating
period for the massive reheating case. Such effects are more significant for relatively large
inflaton-Higgs coupling ghφ, which is manifestly shown in figure 7 and figure 8. These

6We assume that the inflaton interactions with other SM fields and DM are much smaller than the
leading inflaton-Higgs coupling through the dim-3 operator.
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Figure 7. Solutions of the first two Boltzmann equations (4.5) and (4.6) for the inflaton ρφ and
radiation ρSM energy densities are plotted in the upper panel as a function of the scale factor a.
The empty and filled dots indicate the end of reheating if produced Higgs boson pairs are massless
and massive, respectively. The lower panel shows thermal bath temperature T (blue), the Hubble
parameter H (green) and the averaged inflaton width 〈Γφ→hh〉 (red) for the massless and massive
cases.The empty and filled stars show where the maximal temperature during reheating has been
obtained for the massless and massive cases, respectively. Adopted parameters are specified above.
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Figure 8. Same as in figure 7 except for ghφ = 10−10.
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numerical results for the SM radiation energy density agree well with our analytic results
eq. (4.37) for massless and eq. (4.43) for massive reheating cases. Similarly, the SM bath
temperature T , shown in the lower panel of these plots, also agrees with our analytic
results obtained above. Finally, we should also emphasize that after the end of reheating,
i.e., a > arh, the energy density of the Universe is mainly dominated by the SM radiation
energy density which scales as a−4 in both considered scenarios.

As it is shown in the lower panel of these plots, the Hubble rate H(a) scales as
a−3n/(n+1) during the reheating phase and as a−2 afterward, independent of the Higgs
mass effects. However, as discussed above, the most significant effect of the non-trivial
Higgs mass during reheating is on the inflaton decay rate to the Higgs boson due to phase
space suppression. In the scenario with the massless Higgs boson, the inflaton decay rate
scales as a−3(n−1)/(n+1) (4.35), which is constant for n = 1. Whereas, in the presence of
the kinematical suppression the evolution of the inflaton decay rate presented in figure 7
and figure 8 agrees well with analytic result (4.41). Note, however, that the above ana-
lytical results are only valid during the reheating period (ae ≤ a ≤ arh) when the inflaton
energy density (4.16) is analytically calculated. Since after the end of reheating a > arh
the inflaton energy sharply vanishes, therefore the inflaton decay rate scale accordingly. In
particular, as it has been discussed below eq. (4.23), the inflaton width 〈Γφ→hh〉 adopted
in the r.h.s. of eq. (4.5) depends on ρφ through this inflaton mass (3.23). Thus, for n > 1,
according to eq. (4.24) the vanishing inflaton energy density ρφ after the end of reheat-
ing implies divergent averaged “width”, which is indeed seen in figure 7 and figure 8 for
n = 3/2, 2. The Higgs mass effects are clearly important for large inflaton-Higgs coupling
e.g., ghφ = 10−5, however as discussed in section 4.2 even for relatively small coupling e.g.,
ghφ = 10−10 for n > 3/2 the kinematical suppression can be significant. This effect is can
be seen in figure 8 with n = 2.

It should also be pointed out that when the kinematic suppression of the inflaton
decay width disappears at a ≷ ak for n ≶ 3/2, the averaged inflaton decay rate 〈Γφ→hh〉
for massless and massive cases nearly merge. As mentioned above the convergence of the
two cases is not perfect as for the massless reheating case the inflaton “decays” to four
massless Higgs components. On the other hand, for the massive case (even if the mass
contribution is tiny), during one half of the oscillation period (P < 0 the electroweak
symmetry broken phase), the decay final state is just one real Higgs particle h0, while
during the other half (P > 0 unbroken phase) the final state is made of four massive Higgs
components hi degenerate in mass. Therefore, eventually, the averaged inflaton decay rate
〈Γφ→hh〉 for the massive case, in the limit when mass effects are negligible, is a factor 5/8
smaller than that of the massless case, see figure 7 and figure 8.

We have seen that the consequences of the non-zero SM Higgs mass during the reheat-
ing phase can be dramatic. Not only does it change the evolution of the radiation energy
density and the temperature, but it also affects the duration of the reheating period, cf. the
left panel of figure 9, where we have compared the number of e-folds for reheating phase,
Nrh, as a function of the inflaton-Higgs coupling, ghφ, in both the massless and massive
cases. In the massive case, reheating is not only delayed but also strongly suppressed. In
the scenario with the massive Higgs field, the production of the SM radiation is always less
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Figure 9. Left panel: relation between reheating numbers of e-folds Nrh and the value of the
inflaton-Higgs coupling ghφ. Right panel: relation between the maximal temperature, Tmax, ob-
tained during reheating and the value of the inflaton-Higgs coupling ghφ. Filled (empty) dotes
present pairs of (ghφ, Nrh) obtained assuming the massive (massless) reheating scenario, whereas
solid (dashed) lines are corresponding linear interpolations to the data. In the upper panel, colored
regions show constraints on Nrh for different values of n, see table (3).

efficient than in the massless case. Therefore, the thermal bath temperature, measured by
ρSM, in the massive scenario is reduced compared to the massless case during the reheating
phase, shown in the right-panel of figure 9 as a function of ghφ. It is worth noting that
in the standard scenario with massless Higgs, the maximal temperature, Tmax, is typically
attained shortly after the end of inflation. However, in the massless case and for n = 2/3
it is reached after a few e-folds of reheating when kinematic suppression becomes irrelevant
and 〈Γφ→hh〉 approaches 〈Γ(0)

φ→hh〉. The relation between the maximal temperature of the
thermal bath and the value of the inflaton-Higgs coupling in both reheating scenarios is
shown in the lower panel in figure 9. The largest discrepancy between the massless and
massive cases is again observed for the n = 2 curve. As the strength of the inflaton-Higgs
interactions decreases, the role of the non-zero mass of the Higgs boson becomes less and
less relevant for the dynamics of reheating, and as we can see in the left panel of figure 9,
all solid lines slowly approach the corresponding dashed lines. For the small value of the
inflaton-Higgs coupling, e.g., ghφ = 10−10, the distinction between solid and the corre-
sponding dashed lines is relatively small. However, the n = 2 line is an exception to this
rule, and even for ghφ = 10−10 we observe a non-negligible deviation from the massless
case. This is caused by the fact that for the n = 2 case, the slope of ρSM as a function of
a is steeper in the massive scenario, and thus it takes more e-folds of reheating to drop ρφ
below ρSM.
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5 DM production during reheating

In this section, we study implications of Higgs-boson-induced reheating discussed in the
above section for the production of vector DM. As outlined in section 2 and specified
in (2.6), the vector DM Xµ interacts directly with the inflaton field and the SM Higgs
bosons through dim-5 (CφXm2

X/MPlφXµX
µ) and dim-6 (Ch

Xm
2
X/M

2
Pl|h|2XµX

µ) operators,
respectively. Moreover, the vector DM couples indirectly to the energy-momentum tensor of
the inflaton and the SM through s-channel graviton exchange. Furthermore, in the massive
reheating scenario, the Higgs portal operator Ch

Xm
2
X/M

2
Pl|h|2XµX

µ expanded around vh
provides a term ∝ vhh0XµX

µ, which accounts not only for the Higgs boson decays to DM
pairs, but it also generates indirect DM-SM interactions mediated by the Higgs exchange.
As already noted in section 2, such processes can only occur in the one-half of the inflaton
oscillations period, when the symmetry is broken and vh is non-zero. To sum up, ignoring
the inflaton-induced Higgs mass, i.e., in the massless reheating scenario, the dark sector
can be populated either due to gravitational interactions with the inflaton and SM particles
or a result of direct higher-dimensional interactions with the φ and Higgs field. On the
other hand, in the massive scenario, there exist two additional DM production channels,
i.e., direct decays of the SM Higgs boson h0 and freeze-in from SM particles via s-channel
h0 exchange.

The DM dynamics is governed by the Boltzmann equation (4.7), which can be recast
in the following form in terms of the comoving number density NX ≡ nXa3:

dNX

da
= a2

H

[
Dφ + Sφ + SSM +Dh0

]
. (5.1)

The first term on the r.h.s. of the above equation takes into account DM production
through inflaton decays. The source term Sφ describes the gain of DM number density
due to gravitational interactions with the inflaton. In the scattering term, SSM(4.9), the
annihilation cross-section σXX→SM SM includes contributions from the graviton exchange
and the Higgs portal operator. Finally, the decay term Dh0 , defined in eq. (4.9), accounts
for Higgs boson decays into pairs of DM vectors.

All the terms on the r.h.s. of (5.1) can be equally important for DM production.
However, their origin is very different, and thus it is convenient to discuss each channel
separately. In particular, the gravitational DM production, through the graviton exchange
with the inflaton background field and the SM radiation bath, can be treated as an irre-
ducible production mechanism that is always present, regardless of other DM interactions.
Let us also emphasize that these two sources of gravitational production of DM are very
different despite their deceptive resemblance. In this work, we treat φ as a homogenous,
classical field, not a quantum particle. Within this framework, DM vectors are produced
from the vacuum in the oscillating background of the inflaton field. To put it another
way, the energy density of the φ field is transferred to the dark sector indirectly through
gravity which couples to Tµνφ and TµνX . Note that in this case, DM particles are produced
non-thermally since the inflaton field is not in thermal equilibrium. Thus, this kind of DM
production mechanism is insensitive to the thermal history of the Universe and depends
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mainly on the initial value of the inflaton energy density and its evolution during the re-
heating period. Contrarily, the gravitational production from the SM particles realizes a
standard freeze-in DM scenario, in which SM quantum states couple to s-channel virtual
graviton which subsequently couples to pairs of DM species. In this case, SM species are
assumed to be in thermal equilibrium, which implies a non-trivial dependence of the DM
relic abundance on the evolution of the SM temperature T .

In what follows, we assume that DM production does not have a significant impact on
the evolution of the first two Boltzmann equations, i.e., we adopt two assumptions: (i) the
inflaton decays mainly to the SM, and (ii) DM particles are not in equilibrium with the
SM thermal bath. Therefore, DM production does not substantially affect the evolution of
the SM bath temperature and the Hubble rate. This requires a small DM branching ratio,
i.e., 〈Γφ→XX〉/〈Γφ〉 � 1, and sufficiently weak interactions between the SM and DM. It is
worth emphasizing that such suppression emerges naturally in our model with vector DM
since the inflaton-DM as well as SM-DM interactions are sourced by the higher-dimensional
terms (2.6). Thus the above two assumptions seem to be well justified and robust within
our model. Therefore, in the following, we solve the Boltzmann equation (5.1) for DM
evolution with the inflaton and SM energy densities as well as other related parameters
obtained in the previous section.

5.1 Inflaton induced gravitational DM production

Let us start our discussion with the most generic production mechanism, namely the grav-
itational DM production in the background of the oscillating inflaton field. This scenario
does not require any additional (besides gravitational) coupling of X particles to the infla-
ton and thus can be treated as a kind of irreducible “background” to any DM production
mechanism, which is present regardless of other DM interactions. In particular, the gravi-
tational DM production from the φ field provides an unavoidable contribution to the relic
DM abundance, which should be taken into account in any DM scenario. Recently, it was
shown [28] that in the case of scalar and fermionic DM, pure gravitational production from
the inflaton field can account for the observed abundance of DM particles,

Ωobs
X h2 = 0.1198± 0.0012 , (5.2)

measured by the Planck Collaboration [40]. In this work, we focus on spin-1 DM field, for
which the source term Sφ takes the following form,

Sφ =
ρ2
φ

8πM4
Pl

∞∑
k=1
|P2n
k |2

(
1− 4m2

X

(kω)2 + 12m4
X

(kω)4

)√
1− 4m2

X

(kω)2 , (5.3)

where we have expressed V (φ) using the envelope ϕ and the quasi-periodic function P as
V (φ) ' Λ4(ϕ/M)2nP2n(t) and decomposed P2n(t) into the Fourier modes as

P2n(t) =
∑
k

P2n
k e−ikωt, (5.4)
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with

P2n
k = 1

T (t0)

∫ t0+T (t0)

t0
dtP2n(t) eikωt, (5.5)

and the inflaton mode energy/frequency ω = 2π/T . For n 6= 1, the inflaton mode en-
ergy/frequency ω is time-dependant, where this dependency is the same as the inflaton
effective mass time-dependance (3.24). Therefore, it is instructive to write the inflaton
mode energy/frequency ω as

ω(a) = ωe
(ae
a

) 3(n−1)
n+1

, (5.6)

where ωe ≡ ω(ae) is the mode frequency at the onset of reheating phase. The values
of the P2n

k coefficients decrease with k for all considered values of n. Consequently, the∑
k |P2n

k |2 sum quickly converges. Moreover, for n = 1 the only non-zero Fourier coefficient
is P2

2 = 1/4, whereas for n = 3/2 (n = 2) all even (odd) coefficients are zero. The numerical
values of the ∑k |P2n

k |2 sum for different values of n are collected in table 1. For details
see appendix B where Sφ ≡ D(2)

φ→XX .
For the quadratic inflaton potential, i.e., n = 1, the frequency ω = mφ =

√
2Λ2/MPl is

time-independent during the reheating phase and the only non-zero Fourier coefficient for
|P2n
k | is for k = 2. In this case, the source term eq. (5.3) simplifies as

Sφ
n=1= 1

128π
ρ2
φ

M4
Pl

(
1− m2

X

m2
φ

+ 3m4
X

m4
φ

)√√√√1− m2
X

m2
φ

. (5.7)

Note that the above expression receives time-dependence only through ρφ. Thus, the rate
of DM production is expected to be the largest at the onset of reheating. Similar behavior is
observed for other values of n for light DM (LDM) such that mX < ωe. However, in generic
case, i.e., n 6= 1, the Sφ term has another source of time-dependence — the frequency ω,
which increases (decreases) with time for n < 1 (n > 1). For instance, for the n = 1 case,
the time-independence of ω implies that there exists a constant mass threshold during the
whole period of reheating. Due to the fact that in this case, the only non-zero Fourier
coefficient is P2

2 , the phase space factor
√

1− (mX/mφ)2 requires mX < mφ. This means
that DM particles with masses exceeding the effective mass of the inflaton field cannot
be gravitationally produced from the inflaton background. For the remaining values of n,
we have infinitely many non-zero coefficients P2n

k that contribute to the source term Sφ.
In this case, we can compensate for the smallness of the frequency ω considering higher
harmonics. By increasing the value of the denominator in the

√
1− (mX/kω)2 factor,

we circumvent the standard kinematical suppression. However, in this case, Sφ receives
another suppression that comes from the Fourier coefficients, since P2n

k rapidly decreases
with increasing k. Consequently, the main contribution to the Sφ term comes from the first
(minimal) non-zero harmonic kmin, which for n = 2/3 and n = 3/2 is kmin = 1, whereas
for n = 1 and n = 2 is kmin = 2.

We should also stress that for n > 1 and for a given DM mass, the mX/ω ratio is the
smallest at the onset of reheating and increases with time. Thus, the DM production rate
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is the largest just after the end of inflation. Contrarily, for the n < 1 case, e.g., n = 2/3, the
mX/ω ratio decreases with time. Thus, in this case for heavy DM (HDM), i.e., ωe < 2mX ,
the source term Sφ is the largest at some later moment aX > ae when ω(aX) ∼ 2mX .
This behavior is manifestly shown in figure 10, where we have plotted the evolution of
the a2Sφ/H2 terms as a function of the scale factor for LDM (orange curve) and HDM
(purple and green curves) cases. For n < 1, the inflaton mode energy/frequency ω increases
with time, see eq. (5.6). Thus, even if the DM mass is larger than the mode frequency,
i.e., ω < 2mX at the onset of reheating phase, the gradual increase in the inflaton mode
energy ω can provide the phase for the production of DM before the end of reheating.
This, in particular, means that the production of HDM is kinematically disfavoured at
the onset of reheating, but if 2mX < ω(arh) such particles can be nevertheless produced
abundantly during the reheating period. It is useful to write explicitly the form of aX , i.e.,
kminω(aX) = 2mX , using eq. (5.6) as

aX = ae


⌊

2mX
ωe

⌋ 1+n
3(1−n)

, n < 1,

1, n ≥ 1.
(5.8)

Above ‘floor’ function b· · · c is defined as follows:

bxc =

1, x ≤ 1,
x, x > 1.

(5.9)

In other words, aX indicates the lowest value of the scale factor for which the lowest
non-zero harmonics kmin with a given n can produce DM species with mass mX .

The number density of DM species produced gravitationally from the inflaton back-
ground can be obtained by solving the Boltzmann equation (5.1). Keeping only the gravi-
tationally produced DM from the inflaton field, i.e., Sφ term, we get,

nX(a) = 1
a3

∫ a

ae
dã

ã2

H(ã)Sφ(ã). (5.10)

The comoving number density, NX , approaches a constant limit around af ' arh, which
results from the fact that after the end of reheating, the inflaton is depleted and the
contribution of ρφ to the total energy density quickly becomes negligible. Thus, the present-
day number density of DM particles, nX(a0), can be well approximated by the solution
of (5.10) with the upper limit of the integral taken as a = arh. Inserting solutions for H(a)
and ρφ(a), obtained in the previous section, we find

nX(a0) ' n+ 1
6n− 3

√
3

8π

(√
ρφe
MPl

)3 ∞∑
k=1
|P2n
k |2 ×

( ae
aX

) 6n−3
n+1

(ae
a0

)3[
1−

(aX
arh

) 6n−3
n+1

]
. (5.11)

In the above equation, we have neglected the phase space factor proportional to m2
X/(kω)2.

Moreover, we have also assumed that NX(arh) ' NX(a0), which reflects the fact that the
efficient DM gravitational production in the inflaton background is possible only during
reheating.
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Figure 10. The evolution of the comoving number density dNX/da = a2Sφ/H as a function of
the scale factor a for n = 2/3. For LDM, i.e., 2mX < ω(ae) (orange curve), the source term Sφ
reaches the maximal value at the beginning of reheating, i.e., a = ae. Whereas, for HDM, i.e.,
2mX > ω(ae) (purple and green curves), the source term Sφ is not maximized at a = ae due to the
kinematical suppression, but instead grows with time until ω(a) ∼ mX .

Now let us discuss the solution (5.11) in more detail. Firstly, we should emphasize that
for n > 1/2, as employed in this work, the second factor in the squared bracket is always
small, i.e., (aX/arh)6n−3/(n+1) � 1 since aX ≤ arh, therefore this factor can neglected.
Secondly, for n ≥ 1 we should always take aX = ae, since in this case the inflaton mode
energy ω is the largest at a = ae, which implies that for a > ae the phase space suppression
increases. Finally, for n < 1, aX can be larger or equal ae depending on the relation
between 2mX and ωe. In particular, the for heavy DM, i.e., 2mX > ω, the aX is related
to the DM mass through the following relation

aX = ae
(2mX

ωe

) 1+n
3(1−n)

, n < 1. (5.12)

Taking into account all simplifications we can recast eq. (5.11) as

nX(a0) '
√

3
8π

(√
ρφe
MPl

)3(ae
a0

)3 n+ 1
6n− 3

∑
k

|P2n
k |2 ×


⌈

ωe
2mX

⌉ 2n−1
1−n

, n < 1,

1, n ≥ 1.
(5.13)

In any successful model, the predicted value of a DM abundance today,

ΩX = mXnX(a0)
ρc

, (5.14)
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should match with the observed value (5.2). Above, ρc = 1.054×10−5h2 GeV cm−3 denotes
the critical density. Using eq. (5.13) we can estimate the present-day amount of DM
produced purely gravitationally from the inflaton field as

Ωgr,φ
X =

√
3

8π

(√
ρφe
MPl

)3( ae
arh

)3 s0
srh

1
ρc
× n+ 1

6n− 3
∑
k

|P2n
k |2

mX

⌈
ωe

2mX

⌉ 2n−1
1−n

, n < 1,

mX , n ≥ 1.,
(5.15)

where s is the entropy-density, and s0 = 2970 cm−3 denotes its present-day value and
srh ≡ s(arh) is the entropy density at the end of reheating. In the above relation we have
used the conservation of the entropy, i.e., srh/s(a0) ' a3

0
a3

rh
, neglecting the change of g?,S in

the period between arh and a0.
For n = 2/3 and heavy DM, i.e., 2mX > ωe we note a very peculiar behaviour of

Ωgr,φ
X h2. It turns out that in this case, the predicted abundance of DM particles does not

depend onmX , as the ‘ceiling’ function in eq. (5.15) results in ωe/(2mX) and themX factors
cancel out. This mass-independence of Ωgr,φ

X h2 for heavy DM is observed only if reheating
lasts long enough such that ω(a) equals 2mX well before the end of reheating. Thus, the
obtained approximation works only for DM particles with mass ωe . 2mX . ω(arh). Note
also that in other cases, for fixed value of Λ, α, the present-day abundance of DM species
depends only on the value of n, mX and thus on ai and arh. Therefore, it is rather not
sensitive to the evolution of the thermal bath but depends on the duration of the reheating
period.

5.2 Gravitational freeze-in production

Next, we discuss the second irreducible DM production mechanism, namely the gravita-
tional freeze-in from the SM particles. Gravitational freeze-in is a universal phenomenon in
which the SM particles annihilate to produce DM through the s-channel graviton exchange.
This mechanism only requires gravitational interaction between the SM and DM. Similar
to the mechanism discussed in the previous subsection, the gravitational freeze-in from
SM is most efficient during the reheating period. However, in this case, DM species are
produced in a quantum process from two SM particles in thermal equilibrium. Thus, the
abundance of DM particles produced from SM quanta is sensitive to the thermal history
of the Universe. Moreover, since the amplitude of such a process is proportional to s/M2

Pl,
where s is the Mandelstam variable, efficient DM production requires high energy or tem-
perature of the SM annihilating particles. In principle, it was shown, e.g., [33, 34], that
pure gravitational DM production from the SM sector can account for all the observed
DM relic density (5.2) if the reheating efficiency and the thermal bath temperature are
sufficiently high. In contrast to the production in the inflaton background, the freeze-in
DM production depends on the evolution of the radiation sector, or more precisely, on
the evolution of the thermal bath temperature during the reheating phase. Thus, the ef-
ficiency of DM gravitational freeze-in production depends on the dynamics of reheating,
which is determined by the scale of inflaton Λ, the inflaton-Higgs coupling ghφ, n and the
inflaton-induced mass of the Higgs boson.
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For the gravitational freeze-in DM production, the Boltzmann equation simplifies as

dNX

da
= a2

H
SSM = a2

H
n̄2
X〈σ|v|〉XX→hµν→SM SM, (5.16)

where we have kept only the SSM term on the r.h.s. of (5.1). The thermally averaged cross-
section 〈σ|v|〉 for any 2 → 2 annihilation process can be calculated using the standard
formula [51],

〈σ|v|〉ii→ff = (2Ji + 1)2

n̄2
i

T

32π4

∫ ∞
4m2

max

ds
√
s(s− 4m2

i )σii→ff (s)K1

(√
s

T

)
, (5.17)

where mmax ≡ max(mi,mf ), and σii→ff denotes the cross-section averaged over possible
spin states of the DM particles i in the initial state and SM particles f in the final state. For
the gravitational freeze-in production of DM, there are four relevant annihilation processes,

σXX→hµν→hihi = 1
9

1
2

1
480πs3M4

Pl

√
s− 4m̄2

hi√
s− 4m2

X

[
2m̄4

hi

(
84m4

X + 68m2
Xs+ 19s2

)

− 2m̄2
his(6m

2
X + s)(2m2

X + 7s) + 3s2(6m4
X + 2m2

Xs+ s2)
]
, (5.18)

σXX→hµν→ψ̄ψ = 1
9

1
960πs2M4

Pl

√
s− 4m̄2

ψ√
s− 4m2

X

(
1−

4m̄2
ψ

s

)[
2m̄2

ψ

(
84m4

X + 68m2
Xs+ 19s2

)

+ s(48m4
X + 56m2

Xs+ 13s2)
]
, (5.19)

σXX→hµν→V V = 1
9

1
δV

1
480πs3M4

pl

√
s− 4m̄2

V√
s− 4m2

X

[
m̄4
V (504m4

X + 408m2
Xs+ 114s2)

+ m̄2
V (408m4

Xs+ 536m2
Xs

2 + 118s3) + 114m4
Xs

2 + 118m2
Xs

3 + 29s4
]
,

(5.20)

σXX→hµν→γγ = 1
9

1
2

1
240πM4

Pl

48m4
X + 56m2

Xs+ 13s2√
s(s− 4m2

X)
, (5.21)

which account for gravitational annihilation of theX species into SM Higgs bosons, fermions,
and massive and massless vectors, respectively. Above δV = 2 for the identical gauge bosons
in the final states, otherwise δV = 1. In the above annihilation cross sections, we have taken
into account the non-trivial SM particle masses due to inflaton-induced electroweak vev
vh, where m̄ denotes the time-averaged (over fast inflaton oscillations) mass. In the limit
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mSM → 0, the corresponding thermally-averaged cross-sections are [34],

〈σ|v|〉XX→hµν→hihi = 9
32π4

1
120πM4

Pl

m6
XT

2

n̄2
X

{
3K2

1

(mX

T

)
+ 2K2

2

(mX

T

)[
1 + 4

( T

mX

)2]
+ 4 T

mX
K1
(mX

T

)
K2
(mX

T

)}
, (5.22)

〈σ|v|〉XX→hµν→ψ̄ψ = 9
32π4

1
90πM4

Pl

m6
XT

2

n̄2
X

{
11K2

1

(mX

T

)
+K2

2

(mX

T

)[
9 + 26

( T

mX

)2]
+ 13 T

mX
K1
(mX

T

)
K2
(mX

T

)}
, (5.23)

〈σ|v|〉XX→hµν→γγ = 9
32π4

3
135πM4

Pl

m6
XT

2

n̄2
X

{
11K2

1

(mX

T

)
+K2

2

(mX

T

)[
9 + 26

( T

mX

)2]
+ 13 T

mX
K1
(mX

T

)
K2
(mX

T

)}
. (5.24)

On the other hand, in the massive reheating scenario, i.e., for mSM 6= 0, the integral
over s in eq. (5.17) cannot be obtained analytically because of the non-zero mass of the
SM species, generated by their coupling to the inflaton or the Higgs doublet. In this
case we integrate (5.17) numerically using eqs. (5.18)–(5.20) and adopting the solution
for T (a) which we have found in the previous section. It is important to notice that
even in the massive reheating scenario, SM photons and gluons are still massless during
reheating. Thus, one expects that in this case the freeze-in DM production is dominated
by the annihilation of the massless SM gauge bosons, since other annihilation channels
are Boltzmann suppressed if mSM/T > 1. In the limit of asymptotically small or large
DM mass the source term, SXX→hµν→SM SM = n̄2

X〈σ|v|〉XX→hµν→SM SM, for massless SM
particles behaves as

SXX→hµν→SM SM '


Ai

40π5
T 8

M4
Pl
, mX � T,

Bi
32π4

m5
XT

3

M4
Pl
e−2mX/T , mX � T,

(5.25)

where Ai = 3, 13, 26 and Bi = 3/16, 1, 2, for SM scalars, fermions and vectors, i.e.,
i = 0, 1/2, 1, respectively. The asymptotic behavior of the SXX→hµν→SM SM term in the
considered mass regimes indicates that efficient DM production occurs only if DM mass mX

is smaller than the temperature of the thermal bath. The maximal temperature T = Tmax
plays here an important role. Note that production of heavier, i.e., mX > Tmax, DM species
is exponentially suppressed, which means that the value of Tmax sets the upper bound for
DM particle mass that can be gravitationally produced from the thermal bath.

To find a prediction for the relic abundance of DM vectors produced gravitationally,
we should solve the Boltzmann equation eq. (5.16) including all annihilation channels.
Assuming that the integrand in (5.16) is dominated by the contribution from early times,
we can integrate this equation from a = ae up to some af , such that af � a0. Since in
the massive reheating scenario we can enter regions where the inflaton-induced mass of the
Higgs field can or cannot be neglected, the analytical solution of eq. (5.16) is quite involved
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and not very illuminating. However, in the massless reheating scenario, we can obtain a
rather simple formula for the present-day number density of DM species

ngr,SM
X (a0) '

√
3A

40π5
1 + n

6n− 3
(T (0)

rh )8

M3
Pl
√
ρφe
×
(arh
ae

) 6
1+n
(ae
a0

)3[(arh
ae

) 3(2n−1)
n+1 − 1

]
, (5.26)

where A ≡ n0A0 + n1/2A1/2 + n1A1/(40π) = O(10) for n0,1/2,1 = 4, 45, 12 being the
scalar, fermion and vector d.o.f. for the SM, respectively. Above T (0)

rh ≡ T (0)(arh) is the
temperature at the end of reheating and can be obtained from eq. (4.38). Note that in
the above expression we have neglected gravitational production after the end of reheating,
assuming that the comoving number density becomes constant around a ' arh. In principle,
we have used the fact that the comoving number density of DM particles freezes-in, i.e.,
NX(arh) ' NX(a0). Although this assumption seems robust, the full numerical solutions
consider the contribution to NX from the late time after the end of reheating. Moreover, we
have also included contributions from all annihilation channels in both considered reheating
scenarios in the numerical analysis. Let us also emphasize that in the reheating scenario
with the massive Higgs field, two sources suppress DM production, (i) the Boltzmann
suppression that is present for the annihilation of massive SM particles, and (ii) the lower
temperature of the thermal bath. Since the source term Sφ for DM particles with mass
mX < Tmax is proportional to T 8 the suppression in the bath temperature significantly
affects the efficiency of the considered mechanism.

The contribution to the total relic abundance (5.14) from the gravitational scattering
of SM particles in the massless reheating scenario can be estimated as

Ωgr,SM(0)

X '
√

3A
40π5

1 + n

6n− 3
(T (0)

rh )8mX

M3
Pl
√
ρφe

s0
srh ρc

(arh
ae

) 3n
n+1

, (5.27)

for n > 1/2, which is employed throughout this work. Now we can compare the contri-
bution from the gravitational freeze-in production with the inflaton-induced gravitational
production as

Ωgr,SM(0)

X

Ωgr,φ
X

= A

5π4
(T (0)

rh )8

ρ2
φe

(arh
ae

) 3(2n+1)
n+1 × 1∑

k |P2n
k |2


⌈

ωe
2mX

⌉ 1−2n
1−n

, n < 1,

1, n ≥ 1.
(5.28)

The above estimation for the Ωgr,SM(0)

X /Ωgr,φ
X ratio indicates that for light DM with mass

mX < ωe the inflaton induced gravitational production dominates over the contribution
from the SM freeze-in mechanism. As we have highlighted in the previous subsection, for
n ≥ 1 the initial value of the inflaton’s frequency, ωe, sets the upper bound for the mass
of DM species that can be efficiently produced from the inflaton. However, the maximal
temperature of the thermal bath may exceed the initial value of ω. In such a case, the DM
production from the inflaton field is kinematically suppressed, however, for mX < Tmax, the
DM particles can still be produced from the thermal bath. Moreover, for n < 1, the inflaton
induced gravitational production always dominates over the thermal DM production. In
this case, it turns out that for heavy DM particles with mass mX ∈ (ωe, ω(arh)) and for
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generic values of model parameters (Λ, α and ghφ), the inflaton mode energy at the end of
reheating ω(arh) exceeds Tmax.

The relation between the inflaton-Higgs coupling, ghφ, and the mass of DM species,
mX , for the considered values of n (red: n = 2/3, purple: n = 1, blue: n = 3/2 and green
n = 2) satisfying the Ωgr,φ

X h2 + Ωgr,SM(0)

X h2 = Ωobs
X h2 constraint is presented in figure 11.

Solid (dashed) curves are for the massive (massless) reheating scenario, respectively. In the
region above (below) each curve, the DM is overabundant (underabundant). In particular,
we note from this figure, that for all considered values of n and a fixed ghφ, there is a
vast mass region for which DM particles are overproduced. This region is bounded from
below (small mX) by the position of the colored curves, which show a relation between
ghφ −mX for which the amount of DM vectors produced gravitationally from the inflaton
field matches the observed abundance.7 For small values of ghφ . 10−8, the overproduction
mass region is bounded from above also by the inflaton induced gravitational production.
In this case, SM bath temperature is not high enough to produce DM pairs through graviton
exchange. The upper limit for mX is set by the kinematics of the contribution from the
lowest Fourier mode in eq. (5.15). On the other hand, increasing the value of ghφ enhances
the efficiency of reheating, hence the temperature of the SM radiation bath is higher and
the annihilation through graviton exchange opens out contributing to DM production. As a
result, the limiting curves bend outward excluding larger regions. This behavior is observed
for n ≥ 1 around ghφ ∼ 10−8 in the massless reheating scenario. In this region of large
mX the inflaton contribution is eliminated by the kinematics. In the massive reheating
scenario, the kinematical suppression reduces the radiation energy density such that even
for large values of ghφ the temperature is not high enough to produce DM particles in SM
gravitational freeze-in. In this case, we observe that only the n = 1 curve (purple, solid
line) deviates from the mass threshold mX = mφ, though this deviation is much milder
than in massless reheating scenario (purple dashed line).

We shall emphasize that the result shown in figure 11 is strong and conservative, i.e.,
if any other DM production mechanism was added, the allowed region could only shrink,
in other words, the region excluded in figure 11 is always excluded by the gravitational
freeze-in and/or inflaton induced gravitational production. Let us also stress two important
features of figure 11. First of all, for the quartic inflaton potential, i.e., n = 2, the predicted
relic abundance of DM particles produced gravitationally in the inflaton background does
not depend on the value of ghφ. To put it another way, the amount of DM vectors produced
gravitationally from the inflaton field is insensitive to the efficiency of the reheating period.
From eq. (5.27) we can see that for n = 2, the relic abundance of light DM particles,

Ωgr,φ
X

n=2=
√

3
32π

( 30
π2g?

)1/4mXs0
ρc

ρ
3/4
φe

M3
Pl

∑
k

|P4
k |2, (5.29)

depends only on the initial value of the inflaton energy density, ρφe , which is fixed for
our benchmark values of α and Λ. Moreover, it turns out that the above formula is also
valid in the massive reheating scenario. From the above formula, one can determine the

7Here the contribution from the SM gravitational freeze-in is negligible.
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Figure 11. The relation between the inflaton-Higgs coupling, ghφ, and the mass of DM species, mX ,
that predicts the observed DM relic abundance (5.2) from purely gravitational interactions. Two
contributions, i.e., from the inflaton field and the SM thermal bath, are included. Solid (dashed)
curves are for the massive (massless) reheating scenario, respectively. Predicted abundance exceeds
the observed value Ωobs

X h2 in the region above colored curves (in other words in-between the curves).

value of mX for which the predicted relic abundance matches the observed value. For
the benchmark values of α,Λ we obtain mX ' 3.71GeV, which agrees with the numerical
result, cf. figure (11). Secondly, we note that for the n = 2/3 case for ghφ ∼ 10−7.5 the
produced amount of DM becomes mass-independent. This unusual behavior is observed for
DM vectors with mass in the range (ωe, ω(arh)) and was discussed in detail in the previous
subsection.

In the following part of this work, we use the results obtained in this section and
treat them as a constraint on DM production due to gravitational DM overabundance.
Strictly speaking, for fixed α, Λ, n and for a given ghφ there exists a mass region in which
DM species are overproduced, purely through gravity. Consequently, we exclude this mass
region while discussing other DM production mechanisms.

5.3 Inflaton decay

Once we have discussed irreducible mechanisms of DM production, we can investigate
the possibility of direct inflaton-DM interactions. The lowest-dimensional direct coupling
between the inflaton and vector DM X fields arises at a dim-5 level and allows DM vectors
to be pair produced from the inflaton decay. In this case, the vector DM pair is created from
the vacuum in a non-thermal quantum process in the presence of the oscillating inflaton
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field. In the Boltzmann equation (5.1) the decay term, Dφ, is given by

Dφ = |C
φ
X |2

32π

(
ρφ
Λ4

)1/n ∞∑
k=1
|Pk|2(kω)4 ×

(
1− 4m2

X

(kω)2 + 12m4
X

(kω)4

)√
1− 4m2

X

(kω)2 . (5.30)

For detailed derivation of the above result see appendix B, where Dφ ≡ D(1)
φ→XX in

eq. (B.46). In the above expression, one might want to include the time variation of
mX that originates from dim-5 effective interaction (2.6). Note, however, that the infla-
ton induced DM mass is CφX(φ/MPl)m2

X , which is the largest for maximal value of the
inflaton field, i.e., φ ' φe ∼ MPl up to O(1) α-dependent corrections. Therefore, the
inflaton-induced DM mass is always smaller than the bare DM mass for CφX . 1, hence the
time dependence of mX can be dropped and mX is not subjected to the short time-scale
oscillations.

Let us also stress, that for the quadratic inflaton potential, i.e., n = 1, the inflaton
mode energy/frequency ω = mφ becomes time-independent and the source term (5.30)
simplifies as follows,

Dφ
n=1= |CφX |2

128π
ρφm

4
φ

Λ4

(
1− 4m2

X

m2
φ

+ 12m4
X

m4
φ

)√√√√1− 4m2
X

m2
φ

. (5.31)

In the general case, the mass threshold evolves in time during the reheating phase. As
we have already discussed above, for n < 1, the inflaton mode energy ω increases with
time during reheating, allowing heavy DM particles (mX > ωe) to be pair-produced from
the inflaton decay. On the other hand, the inflaton mode energy ω decreases during the
reheating period for n > 1, which means that the production of DM above mX > ωe/2 is
kinematically suppressed. Even though we do not observe a sharp threshold limit for DM
mass, the creation of X particles with mass 2mX > ω is exponentially suppressed by the
Pk values for higher modes k > 1.

Furthermore, it is also clear that DM can be efficiently produced through φ decays
only when the energy density of the inflaton field still makes a relevant contribution to
the total energy density. After the end of reheating phase, i.e., the equality of inflaton-
radiation of energy densities, the inflaton energy density eventually drops to a negligible
amount, and DM production freezes. The drop of the inflaton energy density depends on
the value of n and can be either very rapid for n ≥ 1 or relatively slow for n < 1. This,
in turn, implies that DM particles are efficiently produced through inflaton decay only
during the reheating phase for n ≥ 1. In contrast, for n = 2/3, the φ → XX channel
is not immediately switched off after the end of reheating. Hence, in this case, the DM
production is somewhat extended to a few e-folds after the equality of inflaton-radiation
energy densities, which might be relevant only for the very heavy DM species. However, in
the following analytical discussion, we neglect this subtlety assuming that the efficient DM
production happens only during the reheating phase. Consequently, the present number
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density of LDM particles can be estimated as

nX(a0) =
√

3πn4Λ6

8M3
Pl
|CφX |

2
Γ
(
n+1
2n

)4

Γ
(

1
n

)4

(ρφe
Λ4

) 3n−2
2n ∑

k

k4|Pk|2

×


n+1
6n−9

a3
e

a3
0

(
ae
aX

) 6n−9
n+1

[
1−

(
aX
arh

) 6n−9
n+1

]
, n 6= 3/2,

a3
e

a3
0

ln
(
arh
ae

)
, n = 3/2.

(5.32)

Note that in the above expression we have used aX , which for n ≥ 1 coincides with the
initial value of the scale factor, i.e., ae = aX . On the other hand, if n ≤ 1, aX is determined
by the condition ω(aX) = 2mX and is given by eq. (5.8).

Moreover, let us emphasize that the first term in the above square bracket dominates
for n < 3/2, whereas, for n > 3/2, (ae/arh)(6n−9)/(n+1) � 1. Neglecting subdominant
terms, we find the following prediction for the present abundance of DM species produced
from the inflaton decay,

Ωφ
X '

√
3πn4mXΛ6

8ρcM3
Pl

|CφX |
2
Γ
(
n+1
2n

)4

Γ
(

1
n

)4

(ρφe
Λ4

) 3n−2
2n ∑

k

k4|Pk|2

× a3
e

a3
rh

s0
srh


n+1
6n−9 , n > 3/2,
ln
(
arh
ae

)
, n = 3/2,

n+1
9−6n

(
arh
ae

) 9−6n
n+1

, n < 3/2.

(5.33)

It is instructive to compare the vector DM production through the direct inflaton decay to
the inflaton induced gravitational production of DM, i.e.,

Ωφ
X

Ωgr,φ
X

= |CφX |
2π2n4

Γ
(
n+1
2n

)4

Γ
(

1
n

)4

( Λ4

ρφe

)1/n∑
k k

4|Pk|2∑
k |P2n

k |2

×


2n−1
2n−3 , n > 3/2,
12
5 ln

(
arh
ae

)
, n = 3/2,

2n−1
3−2n

⌈
ωe
mX

⌉(
arh
ae

) 9−6n
n+1

, n < 3/2.

(5.34)

One can conclude that for n ≥ 3/2 the direct and indirect (through the graviton exchange)
production of DM from the inflaton are approximately the same order for CφX ∼ 1. Further-
more, in this case, both processes are relatively insensitive to the dynamics of the reheating
period, e.g., its duration. On the other hand, the direct decay of the inflaton to vector DM,
φ → XX, is enhanced relative to the gravitational production by the (arh/ae)(9−6n)/(n+1)

ratio for n ≤ 3/2.
In figure 12 we have shown relation between the Wilson coefficient CφX and the vector

DM mass mX that gives the correct relic abundance for given values of ghφ and n. In
the region above (below) the CφX −mX curves the predicted relic density is overproduced
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Figure 12. The relation between the Wilson coefficient CφX and mX for ghφ = 10−5 (left panel) and
ghφ = 10−7 (right panel) that is consistent with the requirement of observed DM abundance (5.2).
Solid (dashed) curves present relation between CφX and mX for massive (massless) SM Higgs bosons.
In faded regions, DM particles are overproduced purely due the gravitational production.

(underproduced) in comparison to the observed value of Ωobs
X h2. In the gray hatched region,

the value of the Wilson coefficient CφX exceeds the perturbativity limit (2.10). In the faded
region of the curves, DM particles are overproduced purely by gravitational interactions.
Comparing the relation between CφX and mX for two considered values of ghφ, we see that
for n > 1 the predicted amount of vector DM weakly depends on the details of the reheating
dynamics. Very different behavior is observed for the n = 2/3 curves. In this case, DM
particles are easily overproduced by decays of the inflaton, and fine-tuning is required to
give the correct relation between CφX and mX . As we have already noticed above, the
Ωφ
X/Ω

gr,φ
X ratio is proportional to (arh/ae)3 which can be very large for the n = 2/3 case,

due to the long duration of the reheating period. That is why one needs extremely small
values of the Wilson coefficient CφX to suppress this effect. Moreover, in this case, DM
particles are gradually produced during the whole period of reheating, and the production
rate increases with time. Thus, for the n = 2/3 scenario (in general for n < 1), the
production of DM vectors is prolonged in time, and simultaneously enhanced. For n ≥ 1
the reheating number of e-folds Nrh is typically much smaller than for n = 2/3. Thus, DM
particles are produced for a shorter period. Moreover, the direct inflaton decay to DM,
φ → XX, is most efficient at the onset of reheating for n ≥ 1. In this case, the comoving
number density of DM species approaches a constant limit quickly after the start of the
reheating phase. Consequently, for n > 1, DM production from the inflaton decay becomes
almost independent of the duration of the reheating period.

Finally, let us also mention that DM production from the inflaton decay can be re-
garded as a non-thermal production mechanism, which does not depend on the temperature
of the thermal bath. That is why we do not observe a significant difference in the relation
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between CφX and mX in the massless and massive reheating scenarios. Rather small devi-
ations are observed only for the n = 1 and n = 2/3 curves and result from the fact that
in these two scenarios, DM relic abundance is sensitive to the number of e-folds during
reheating phase. Since in the massless scenario reheating ends earlier, DM particles are
created for a shorter period. Thus, for a given mass of DM species, one needs a slightly
larger value of CφX to reproduce observed DM relic abundance in this case.

5.4 Higgs boson decay

Let us now discuss the DM production mechanism that emerges from the inflaton-induced
EW symmetry breaking during the reheating phase. As it was already pointed out before,
in the massive reheating scenario the Higgs boson develops a time-dependent vev due
to its coupling to the oscillating inflaton. The DM-Higgs effective contact interaction
term, Ch

X/2 (m2
X/M

2
Pl)|h|2XµX

µ, expanded around vh in the EW symmetry broken phase
provides a cubic term, Ch

X/2 (mX/MPl)2vhh0XµX
µ, that accounts for the direct Higgs

field decay to the vector DM. The resulting time-averaged Higgs decay width 〈ΓXXh0
〉 ≡

〈Γh0→XX〉 is given by

〈ΓXXh0 〉 = |C
h
X |2

128π

〈
v2
hm

3
h0

M4
Pl

(
1− 4m2

X

m2
h0

+ 12m4
X

m4
h0

)√√√√1− 4m2
X

m2
h0

〉
. (5.35)

Let us emphasize that the h0 decays to DM vectors can only occur during one-half of
the inflaton oscillations period, i.e., when P < 0 and the Higgs boson acquire a non-
zero vev (4.3). Moreover, we should note that such interactions are only allowed during
the reheating phase. After the end of reheating, vh rapidly drops as vh ∝ |φ|, and the
h0 → XX channel is switched off as the Higgs boson goes into the EW symmetric phase.
Thus, DM vectors are produced from the SM Higgs field in the period between ae and arh.
After that, the comoving DM number density NX produced in the Higgs decays becomes
constant, i.e.,

NX(a0) ' NX(arh) =
∫ arh

a0
da

a2

H(a)Dh0 , (5.36)

where

Dh0 ≡ n̄h0〈ΓXXh0 〉th = 〈ΓXXh0 〉
K1(mh0/T )
K2(mh0/T ) , (5.37)

and 〈ΓXXh0
〉th is the thermally-averaged Higgs decay width. We should point out that the

amount of DM produced from the Higgs decay strongly depends on the relation between
Higgs mass mh0 and SM bath temperature T . The equilibrium number density of the
Higgs particles, n̄h0 , is exponentially suppressed in the non-relativistic limit, i.e., mh0 � T .
However, since the inflaton-induced Higgs boson mass typically decreases more rapidly than
the temperature T , therefore the DM production rate grows with time. Thus, the main
contribution to the integral in eq. (5.36) comes from the moment at which the Higgs mass
becomes comparable with the thermal bath temperature, i.e., mh0 ∼ T .
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The present-day relic density of the DM species produced from the Higgs decay, Ωh
Xh

2,
can be calculated analogously to the mechanisms discussed above. The contribution of
Ωh
Xh

2 to the total DM abundance is presented in figure 16 in dashed colored curves, which
we discuss in the following subsection.

5.5 Higgs portal freeze-in production

Let us now explore a standard freeze-in scenario in which DM particles with negligible
initial density are gradually produced from the SM thermal bath in the early universe. In
particular, we focus on a scenario in which DM vectors are pair-produced from Higgs par-
ticles via the effective dim-6 contact operator Ch

X m
2
X/(2M2

Pl)XµX
µ|h|2 [38]. As we have

already pointed out above, in the massive reheating scenario, the Higgs portal generates the
3-point vertex h0 → XX, which not only accounts for the direct Higgs decays but also en-
ables massive SM particles to annihilate into DM vectors through the SM SM→ h0 → XX

channel. It should be noted that such interactions might occur during reheating only in the
broken phase when vh 6= 0. Furthermore, we assume that DM interactions with the SM sec-
tor are feeble such that vector DM can neither reach thermal equilibrium with themselves
nor with the SM thermal bath due to the Planck mass suppress effective operator. As a
result, the XX → SM SM channel is almost completely turned off, and thus, DM particles,
produced in the reverse process, accumulate as the Universe expands, i.e., the freeze-in
mechanism. In the rest part of this section, we will discuss solutions to the Boltzmann
equation (5.1), assuming that DM species are only produced from the annihilation of SM
particles, neglecting contribution from the inflaton decay, i.e., keeping CφX = 0. Addition-
ally, we impose gravitational constraints, obtained in the first two subsections, on the final
results.

The cross-section that accounts for all considered diagrams of the type XX → SM SM
can be written as a sum of four contributions

σXX→SM SM = σXX→h0h0 + (n0 − 1)σXX→hjhj + n1/2 σXX→ψ̄ψ + n1σXX→V V . (5.38)

Note that the σXX→h0h0 term contains contributions from the XX → h0h0 process, s-
channel Higgs exchange XX → h?0 → h0h0 and the interference term. The second term in
the above expression, σXX→hjhj , accounts for the contact diagram XX → hjhj with j 6= 0.
While σXX→ψ̄ψ and σXX→V V describe the DM annihilation into massive SM fermions
and vectors through the Higgs exchange, respectively (see figure 4 second line). Note,
however, that we neglect the interference terms between the Higgs portal and graviton
exchange SM SM → XX processes. As discussed in the previous section, we treat the
graviton-mediated freeze-in production as an independent mechanism as it only depends
on the gravitational interactions. Whereas, the Higgs portal interaction is non-minimal
and requires a UV model where the DM-Higgs effective operator is generated. Let us start
our discussion with the contact Higgs-DM interaction which is present in both considered
reheating scenarios. The spin-averaged annihilation cross-section for the XX → hihi
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diagram takes the following form

σXX→hihi = 1
9
|Ch
X |2

128π
s

M4
Pl

(
1− 4m2

X

s
+ 12m4

X

s2

)√√√√s− 4m̄2
hi

s− 4m2
X

. (5.39)

Note that for mhi 6= 0 the integral over s in eq. (5.17) cannot be calculated analytically.
In the massless reheating scenario, we get the following thermally-averaged cross-

section,

〈σ|v|〉XX→hh
mhi=0

= 3|Ch
X |2

64π5M4
Pl

m6
XT

2

n̄2
X

[4T 2

m2
X

K2
2

(mX

T

)
+K2

1

(mX

T

)
+ 2T
mX

K1
(mX

T

)
K2
(mX

T

)]
.

(5.40)
In the above expression we have factored out a factor of 4, which arises from the fact
that for temperatures higher than the temperature of electro-weak symmetry breaking,
we have ∑3

i=0〈σ|v|〉XX→hihi = 4〈σ|v|〉XX→h0h0 ≡ 〈σ|v|〉XX→hh. In this case, the source
term, SXX→hh ≡ 〈σ|v|〉XX→hhn̄2

X , can be approximated as

SXX→hh
mhi=0
' 3|Ch

X |2

128π4M4
Pl


32
π T

8, mX � T,

m5
XT

3 e−2mX/T , mX � T.
(5.41)

From the above formula, it is clear that efficient DM production can only occur in the
early Universe when the temperature of the thermal bath exceeds the DM mass. Moreover,
this mechanism is most efficient at the maximal temperature Tmax, which, in the standard
(massless Higgs boson) scenario, is obtained shortly after the end of inflation, see eq. (4.40).

The evolution of the source term SXX→h0h0 as a function of the scale factor a for two
values of n, i.e., n = 2/3 (left panel) and n = 3/2 (right panel), and for two DM masses
mX = 5 · 1014 GeV and mX = 1012 GeV is shown in figure 13. As we can see from these
two figures, in the massless scenario (dashed curves), the source term has a maximum
at a = a

(0)
max, i.e., at the moment at which the temperature is the highest. Note that we

have used DM mass such that mX < T
(0)
max. Following approximation (5.41), SXX→hh

evolves independently of the DM mass at the onset of the reheating period, as long as
mX < T

(0)
max. When the thermal bath temperature drops below the DM mass mX , the

source term becomes exponentially suppressed and DM particles are no longer efficiently
produced. The temperature-DM mass equality (empty circles) can happen both during
reheating (e.g., for mX = 5 · 1014 GeV and n = 2/3) and after (e.g., for mX = 1012 GeV
and n = 2/3 or n = 3/2). In both cases, the comoving number density of DM species X
becomes constant quickly after this moment. For the sake of simplicity, in the following
analytical approximations, we assume that the main contribution to the comoving number
density of vector DM comes from the reheating period. However, in numerical calculations,
we also take into account the evolution of the source term after the end of reheating.

We assume that the comoving number density of vector DM, approaches a constant
value around the end of reheating phase, which implies the following formula for the present
DM number density,

nhh
X (a0) mh=0

'
√

3(n+ 1)|Ch
X |2

4π5(2n− 1)
(T (0)

rh )8

M3
Pl
√
ρφe
×
(arh
ae

) 3(1−n)
1+n

(arh
a0

)3[(arh
ae

) 3(2n−1)
n+1 − 1

]
. (5.42)
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Figure 13. Evolution of the source term SXX→h0h0(a) for the massive (solid) and massless (dashed)
Higgs field for n = 2/3 (left panel) and n = 3/2 (right panel). In both panels blue (red) curves are
for mX = 5 · 1014 GeV (mX = 1012 GeV), other parameters are specified above each plot. Dashed
gray lines a = amax (a = a

(0)
max) indicate the moment of time at which T is maximal in the massive

(massless) reheating scenario, while black dashed lines signalize m̄h0(a) = T (a). Filled (empty)
dots indicate mX = T (a) equality, for the massless (massive case), respectively, whereas filled stars
represent the moment at which mh0(a) = mX .

The above result holds for vector DM mass mX < T
(0)
max. Note the similarity between the

above equation and eq. (5.26), obtained from the gravitational annihilation. If Ch
X ' 1, the

strength of these two interactions is comparable, and thus by adjusting the value of the
Wilson coefficient, one can control the production of DM. In particular, we can estimate the
value of the Ch

X coupling for which the gravitational and the Higgs portal DM production
are equal, i.e.

nhh
X (a0)

ngr,SM
X (a0)

= 1 =⇒ Ch
X |eq=

√
A

30 , (5.43)

where A ∼ O(10) factor. Thus, for a DM vector with mass mX < T
(0)
max, if Ch

X exceeds
Ch
X |eq the contact diagram hh→ XX dominates over the gravitational annihilation of SM

particles, while if Ch
X < Ch

X |eq, the contribution from the Higgs portal is negligible. The
relic density of DM particles produced through the Higgs portal is given by

Ωhh
X '

√
3(n+ 1)|Ch

X |2

4π5(2n− 1)
(T (0)

rh )8

M3
Pl
√
ρφe

s0
srh ρc

(arh
ae

) 3n
n+1

, (5.44)

for n > 1/2. For a given DM mass mX one can find the value of the Wilson coefficient
|Ch
X |2 such that Ωhh

X = Ωobs
X . The relation between |Ch

X |2 and mX that gives the observed
DM relic density is plotted in figure 14.
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Figure 14. The Wilson coefficient Ch
X as a function of mX for ghφ = 10−5 (left panel) and ghφ =

10−7 (right panel) consistent with the requirement of observed DM abundance. Solid (dashed) lines
satisfy Ωobs

X h2 constraint assuming that the Higgs field is massive (massless) during reheating. In
gray hatched region Ch

X exceeds the perturbativity limit (2.11). Solid (dashed) lines are constrained
by the corresponding faded regions due to gravitational production.

In this case of freeze-in from the massive reheating scenario, we should note two non-
trivial aspects of the non-zero inflaton-induced Higgs boson mass. First, as demonstrated
in the previous section, the inflaton-induced Higgs mass significantly affects the dynamics
of reheating, modifying the evolution of the thermal bath temperature and suppressing the
energy accumulated in the radiation sector. Secondly, at the onset of the reheating period,
mh typically exceeds the SM bath temperature T . In this case, even if mX < Tmax, one
expects similar exponential suppression in the source term as was observed for mX � Tmax.
Such suppression results from the lower limit of the s-integral in eq. (5.17), which for
mX < mh is equal 4m̄hi . Since the Higgs mass term decreases with time, the suppression
of SXX→hh is the strongest at the beginning of reheating. This, in turn, results in a
significant reduction of DM production compared to the massless reheating scenario, in
which the maximum temperature and thus the most efficient production is reached just
after the onset of reheating phase. In the massive reheating scenario, depending on the
value of ghφ and n, the maximal temperature is obtained at the very beginning of reheating
or slightly later.

Let us first consider the case for which the maximum temperature is obtained shortly
after the start of reheating, which happens for n = 3/2, cf. left panel of figure 13. At that
moment, the averaged Higgs mass m̄h0 exceeds T , and DM particles cannot be efficiently
produced due to the exponential suppression in the source term. If the mass of DM species
is larger than the reheating temperature Trh (solid blue curve in figure 13), the source term
SXX→h0h0 rapidly increases until the moment at which m̄h0 drops below mX (blue star)
and then decreases as e−mX/T . For DM particles with mass smaller than Trh (solid red
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curve), SXX→h0h0 reaches its maximum value at the moment when mh0 crosses T (red
star), which in this case occurs right after the end of reheating. After that, the source
term decreases as ∝ T 8 until the moment at which DM particles become non-relativistic
(red, filled circle). On the other hand, the dependence of SXX→h0h0 on the scale factor a
looks slightly different if the maximum temperature is not reached at the very beginning
of reheating, cf. right panel of figure 13. For n = 2/3 and mX > Tmax (blue solid curve),
the source term grows exponentially until m̄h0 crosses mX (blue star). Then, SXX→h0h0

evolves as a power-low, SXX→h0h0 ∝ T 8, up to the point at which T = Tmax. After that,
the source term receives strong exponential suppression. For DM particles with a mass
smaller than Tmax (solid, red curve), the peak of the SXX→h0h0 term is reached at T ∼ mh.
Then, it decreases as T 8 until the temperature drops below mX (red, solid circle). The
source term receives an exponential Boltzmann suppression from that moment, and the
DM production again becomes inefficient.

The predicated abundance of DM species in the massive reheating scenario can be
estimated numerically, analogously to the massless reheating case discussed above. The
final results are presented in figure 14, which shows the relation between mX and Ch

X

required to achieve the observed DM relic density in both considered scenarios. For a
given value of ghφ and n, colored solid (dashed) curves give the correct abundance in the
massive (massless) Higgs reheating model. In the gray hatched region in the upper right
corner, the value of the Wilson coefficient exceeds the perturbativity limit (MPl/mX)2.
Several curves are also constrained by the condition Ch

X < (MPl/Tmax)2 (the thick grey
part of the lines). Moreover, the faded parts of the curves show regions of DM masses
where vector DM is overproduced due to pure gravitational interactions.

Note that for a fixed DM mass, a larger value of the Ch
X coupling is needed to obtain

the observed DM relic abundance in the massive reheating scenario in comparison to the
massless reheating scenario. Hence, all dashed curves lie below the corresponding solid
ones. This behavior results from the fact that in the massive reheating scenario DM
production is Boltzmann suppressed and occurs in the lower temperatures than in massless
reheating scenario. Furthermore, decreasing the value of the inflaton-Higgs coupling leads
to a cutdown of the allowed parameter space in both considered scenarios. For weaker
inflaton-Higgs coupling, the efficiency of the reheating process is reduced, which implies a
lower temperature of the thermal bath. Thereby all the curves move up towards a larger
value of Ch

X . Moreover, in the massless reheating scenario, for a given mX the largest
(smallest) value of Ch

X is required for the n = 2/3 (n = 2) cosmology to produce the
correct amount of DM abundance. In contrast, in the massive reheating scenario, we
observe different hierarchies in the position of the solid curves. Finally, in both considered
scenarios, for DM particles with mass mX < Tmax, the maximal value of the source term
SXX→hh does not depend on mX . This, in turn, means that the relic abundance Ωhh

X h2

of DM species is proportional to the vector DM mass for mX < Tmax. Contrarily, for
mX > Tmax, the Boltzmann suppression of the source term causes a turnover of the curves
around mX ' Tmax. Consequently, a larger value of the Wilson parameter Ch

X is required
to produce heavy DM particles.
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Finally, we move on to the last DM production mechanism discussed in this work, i.e.,
the freeze-in production from massive SM particles mediated by a Higgs particle h0.8 The
spin-averaged cross-section for the XX → h0h0, XX → ψ̄ψ, XX → V V processes are
given by

σXX→h0h0 = 1
9
|Ch
X |2

128π
s

M4
Pl

(
1− 4m2

X

s
+ 12m4

X

s2

)√√√√s− 4m̄2
h0

s− 4m2
X

(s+ 2m̄2
h0

)2

(s− m̄h0)2 + m̄2
h0

Γ̄2
h0

, (5.45)

σXX→ψ̄ψ = 1
9N

ψ
c

|Ch
X |2

32π
s

M4
Pl

(
1− 4m2

X

s
+ 12m4

X

s2

)√√√√ s− 4m̄2
ψ

s− 4m2
X

m̄2
ψ(s− 4m̄2

ψ)
(s− m̄h0)2 + m̄2

h0
Γ̄2
h0

,

(5.46)

σXX→V V = 1
9
|Ch
X |2

64π δV
s

M4
Pl

(
1− 4m2

X

s
+ 12m4

X

s2

)(
1− 4m2

V

s
+ 12m4

V

s2

)
√
s− 4m̄2

V

s− 4m2
X

s2

(s− m̄h0)2 + m̄2
h0

Γ̄2
h0

, (5.47)

where V = W±, Z with δW = 1, δZ = 2 for the W± and Z bosons, respectively. The
time-averaged total Higgs decay width Γ̄h0 can be written as a sum of three contributions,

Γ̄h0 = Γ̄h0→ψ̄ψ + Γ̄h0→V V + Γ̄h0→XX , (5.48)

where Γ̄h0→XX is given in eq. (5.35), and

Γ̄h0→ψ̄ψ =
∑
ψ

Nψ
c

8π
(m̄ψ

v̄h

)2
m̄h0

(
1−

4m̄2
ψ

m̄2
h0

)3/2
, (5.49)

Γ̄h0→V V =
∑
V

1
16π δV

m̄3
h0

v̄2
h

(
1− 4m̄2

V

m2
h0

+ 12m̄4
V

m4
h0

)√√√√1− 4m̄2
V

m̄2
h0

. (5.50)

Note that σXX→h0h0 contains contributions from the contact interaction XX → h0h0,
the indirect interaction XX → h?0 → h0h0, as well as interference between these two
diagrams. Moreover, we should stress that we do not consider any RGE running effects in
our calculations and adopt the EW value for the Higgs quartic couplings, i.e., λh ' 0.13.
During the reheating phase, SM fermions and massive vector bosons acquire a non-zero
mass via a standard Higgs mechanism,

mSM = mEW
SM

vh
vEW

= mEW
SM

vEW


0, φ(t) > 0,√
|µ2
h

(φ)|
λh

, φ(t) < 0,
(5.51)

where vEW = 246 GeV, and mEW
SM denotes the electro-weak mass of the SM species. After

the end of reheating, when the inflaton field value reduces to a negligible amount, masses of
SM particles decrease very rapidly, and DM production through the SM SM→ h?0 → XX

channel is terminated.
8The unitary gauge is adopted here.
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Let us also emphasize that for the EW value of the Higgs quartic coupling, a mass
hierarchy in the SM sector is time-independent, and it turns out that for all considered
values of n, m̄V < m̄t < m̄h0 . The ratio of the masses is thus clearly different from that
observed today. At this point, we should notice that the mass of the SM Higgs particle is
somehow fixed by the inflaton dynamics and does not depend on λh. On the other hand,
masses of other SM species are sensitive both to the inflaton potential form and the value
of λh. Thus, the observed EW mass hierarchy for the SM particles can be recovered by
running the value of λh during reheating.

In figure 15 we compare the evolution of the scattering SXX→V V , SXX→ψ̄ψ, SXX→hh,
and decay Dh0→XX terms for two values of n, i.e., n = 2/3 (left panel) and 3/2 (right panel)
with fixed DM mass mX = 5 · 1014 GeV. At the beginning of reheating for n = 2/3, DM
particles are produced mainly by the Higgs decay and annihilation of SM vectors. When
the mass of the Higgs field drops below DM mass threshold, the total source term, S +D,
becomes dominated by the SXX→V V term. Slightly after that moment, m̄h0 equalizes with
mX and SXX→hh become of the same order as SXX→V V . Then, we restore the standard
evolution of the source term, i.e., S + D, peaks at a = amax when the temperature of the
thermal bath reaches its maximum value Tmax and then decreases exponentially. We also
should emphasize that the source term that accounts for the ψ̄ψ annihilations into DM
pairs is always subdominant since the cross-section is proportional to the fermion mass.
The total source term, S + D, and thus DM production is dominated by the hh → XX

and V V → XX annihilations, while the contribution from h0 → XX decays is negligible.
It turns out that this observation is also valid for lighter DM particles. For n = 3/2, the
total source term is dominated by the contribution from the SXX→V V term. The decay
term, Dh0→XX , is initially subdominant and becomes of the same order as SXX→V V near
the mass threshold. All source terms grow until the mass of SM particles that annihilate
into DM vectors drops below mX . After that, they receive exponential suppression.

The full scan of the Ch
X −mX plane for a given n and two values of the Higgs-inflaton

coupling is shown in figure 16. Each curve determines the value of Ch
X such that for a

given DM mass, the total relic abundance is consistent with the observed value Ωobs
X h2.

Note that here we consider only the massive reheating scenario and take into account all
interactions responsible for the DM production from the SM sector. Dashed curves present
the contribution of the decay term, Dh0→XX , to the total DM relic density. The gray
hatched region (top-right corner) CφX exceeds the perturbative limit, whereas the gray part
of the curves, is excluded by requiring Ch

X < (MPl/Tmax)2. Moreover, the faded colored
parts of the curves are constrained by the pure gravitational production of DM. To highlight
the result in these plots, let us focus on the n = 1 case with ghφ = 10−5 (left panel, purple
curve). For this case the allowed vector DM mass, which produced the observed DM relic,
is in the range mX ∈ (10−10, 103)GeV for the values Ch

X ∈ (109, 103). Note that a smaller
vector DM mass requires a larger value of Ch

X . We point out that large values of Ch
X are

consistent with the effective field theory since we parametrized the dim-6 effective operator
in eq. (2.8) with 1/M2

Pl. Therefore, the real cutoff scale of new physics (NP) should be
understood as ΛNP ∼MPl/

√
Ch
X .
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Figure 15. Evolution of the decay term, Dh0→XX , and various source terms, i.e., SXX→V V ,
SXX→ψ̄ψ and SXX→hh as a function of the scale factor a for n = 2/3 (left panel) and n = 3/2
(right panel). The Higgs boson decays are only allowed in the pale red, dashed region.

Figure 16. The Wilson coefficient Ch
X as a function of mX for ghφ = 10−5 (left panel) and

ghφ = 10−7 (right panel) consistent with the requirement of observed DM abundance (5.2). Dashed
lines show the contribution of the Higgs decay to the vector DM, h0 → XX, to the total DM relic
abundance. In the gray hatched region CφX exceeds the perturbative limit. In these plots the faded
colored parts of the curves are constrained by the pure gravitational production of DM, whereas
the gray part of the curves is excluded by the condition Ch

X < (MPl/Tmax)2.
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6 Summary

We have investigated reheating dynamics in a system of an inflaton field φ, the SM Higgs
doublet h and an Abelian vector DM Xµ. We have employed a cubic interaction of the
inflaton and the Higgs boson of the form ghφMPlφ|h|2 to facilitate the reheating process.
To specify inflation dynamics, the α-attractor T-model potential for the inflaton field has
been adopted, which provides a relatively flat potential for large field values suitable for
inflation and a monomial potential of the form φ2n during the reheating phase. Our analysis
is valid for generic values of n, however, for numerical illustrations we have considered
n = 2/3, 1, 3/2, 2.

One of the novel aspects discussed in this work is the inflaton-induced mass term
of the Higgs boson that generates a non-trivial phase-space suppression of the reheating
efficiency. As a result, the reheating period is extended, and the maximal temperature of
the SM thermal bath is reduced due to the non-trivial Higgs mass, which we have dubbed
as massive reheating scenario. The inflaton-Higgs coupling leads, due to oscillations of the
inflaton, to periodic transitions between phases of broken and unbroken electroweak gauge
symmetry. The consequences of the oscillations have been studied in detail. It turned out
that Higgs mass effects are, in general, substantial and must be taken into account while
investigating the reheating period in the presence of the inflaton-Higgs interactions.

As a dark matter candidate, a massive Abelian vector boson, Xµ, has been adopted.
Various production mechanisms of Xµ have been discussed; (i) gravitational production
from the inflaton background during the reheating phase, (ii) gravitational freeze-in from
the SM radiation, (iii) inflaton decay through dim-5 effective operators, and (iv) Higgs
portal SM freeze-in (and Higgs decays) utilizing dim-6 effective operator. First of all, the
gravitational production of DM is treated as a background/irreducible relic from (i) and
(ii) and has been adopted to exclude ranges of DM mass mX (for given values of other
parameters) corresponding to the pure gravitational overproduction of DM. Then each
DM production scenario had been separately discussed, and relevant coupling constants
(as a function of DM mass mX) required by the observed relic abundance were calculated.
For instance, for the inflaton decay (iii) or Higgs portal production mechanism (iv), the
abundance condition implies a constraint on the Wilson coefficients CφX or Ch

X , respectively.
Effects implied by the Higgs mass were illustrated by comparing the massless and mas-
sive Higgs cases. Then SM annihilations into DM have been considered, and parameters
consistent with the abundance have been determined.

It is worth emphasizing the result presented in figure 11 are generic for the gravitational
production of DM from the background inflaton field and SM freeze-in through graviton
exchange. In this figure the excluded conservative regions in the space (ghφ,mX) are shown
for various values of n. Note that the ghφ parameter controls the efficiency of reheating and
it is hence directly related to the SM bath temperature as well as the duration of reheating.
Such gravitational production of DM is present in any model where reheating is non-
instantaneous and, to a large extent, unavoidable. In our model, we consider the simplest
way to reheat, i.e., by the cubic interaction between the inflaton and SM Higgs fields,
ghφφ|h|2. Note, however, that even in the limit of vanishing inflaton-Higgs interaction, the
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figure is useful, then two-dimensional regions reduce to excluded ranges of DM masses.
Furthermore, it is straightforward to extend these results for gravitational production of
DM to other models of reheating.
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A Constraints on reheating from inflation

In this appendix, we outline the procedure for obtaining constraints on the model param-
eters from inflationary dynamics. For the α-attractor T-model of inflation, we have three
parameters of the model (2.4), namely n, α, and Λ. As mentioned above the inflation
scale Λ is uniquely constrained by tensor-to-scalar (power-spectrum) ratio r and amplitude
of the scalar power-spectrum As from the CMB measurements. Furthermore, as we see
below the parameter α is also constrained by the tensor-to-scalar ratio r, see also a recently
dedicated analysis [52].

We start with revising some of the necessary inflationary parameters and their corre-
sponding values from the CMB measurements. The tensor-to-scalar ratio is defined as

r ≡ ∆2
t (k)

∆2
s(k) , (A.1)

where ∆2
t (k) and ∆2

s(k) are the dimensionless tensor and scalar power spectra, respec-
tively [3]. In the following we use k? = 0.05 Mpc−1 as pivot scale for the CMB observations
by Planck [4]. The amplitude of scalar power-spectrum measured by Planck at k = k? is

∆2
s(k?) = 2.1× 10−9. (A.2)

whereas the upper-bound on tensor-to-scalar ratio r is,

r ≤ 0.032, (A.3)

at 95% C.L. by the Planck [4] and BICEP/Keck [53] combined analysis [54]. Hence, from
the above equations, the amplitude of the tensor power-spectrum is constrained to be,

∆2
t (k?) ≤ 6.7× 10−11. (A.4)

The explicit form of tensor power spectrum for k = k? is given by [3],

∆2
t (k?) = 2

π2
H2
?

M2
Pl
, (A.5)

where H? ≡ H(a?) and a? marks the moment of horizon crossing of the mode k? during
inflation. Therefore, from eq. (A.4) we set an upper-bound on the Hubble scale during
inflation as

H? ' HI ≤ 4.4× 1013 GeV. (A.6)

– 59 –



J
H
E
P
0
2
(
2
0
2
3
)
1
9
6

Since, the Hubble rate during inflation is given by,

H2
? '

V (φ?)
3M2

Pl
≈ Λ4

3M2
Pl
, (A.7)

where φ? ≡ φ(a?). In consequence, the upper-bound on the Hubble scale can be recast on
the scale of inflation Λ as

Λ . 1.4× 1016 GeV. (A.8)

Next, we calculate the number of e-folds during inflation N?, defined as

N? = 1
MPl

∫ φ?

φe

dφ√
2εV (φ)

, (A.9)

where εV (φ) is given in (3.6), and φe refers to the value of φ at the end of inflation as in
eq. (3.17), and φ? = φ(k?/H?). We obtain φ? from measurement of the spectral tilt ns (3.5)
by the Planck satellite for the modes k?, i.e.,

ns = 0.9649± 0.0042. (A.10)

Employing the above result for ns and using eq. (3.5), we can calculate the value of φ?,
which then can be used to get the corresponding value for the number of e-folds during
inflation N? from eq. (A.9). For example, employing 1 σ level constraint for ns leads to
range for the number of e-folds during inflation N? ∈ [50, 65].

In the following, we calculate constraint on the number e-fold during reheating Nrh
due to inflationary observables, in particular N?, and due to the BBN lower-bound on
the reheating temperature Trh & 1MeV [55]. Note that the comoving scale k? relates the
quantities during inflation at a?, when the modes exit the horizon, with the late universe
when they re-enter the horizon at the pivot scale. In particular, one can evolve the scale
factor starting from the mode crossing during inflation to the late time universe with
different epochs. For instance, we can write

k?
H?

= a?
ae

ae
arh

arh
aeq

aeq, (A.11)

where aeq is the scale factor at the matter-radiation equality. Taking the logarithm of the
above expression gives,

ln
(
k?
H?

)
= −N? −Nrh −Nrd + ln(aeq), (A.12)

where N? ≡ ln(ae/a?), Nrh ≡ ln(arh/ae), Nrd ≡ ln(aeq/arh) are the number of e-folds
during inflation, reheating, and radiation-dominated epochs. The above expression relates
different epochs in the history of the universe.

Assuming a generic equation of state during the reheating phase, one can calculate
the Nrh in terms of temperature at reheating and energy density at the end of inflation as
follows. From eq. (4.16) we get the energy density at the end of reheating as

ρrh = ρe

(
ae
arh

)3(1+w̄)
, (A.13)
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where averaged equation of state during reheating phase w̄ = (n− 1)/(n+ 1) is defined in
eq. (3.14), ρe ≡ 3V (φe)/2 is the inflaton energy density at the end of inflation, and ρrh is
the energy density at the end of reheating defined as

ρrh ≡ ρφ(arh) = ρSM(arh) = π2grh
?

30 T 4
rh, (A.14)

with grh
? ≡ g?(Trh) being the effective number of relativistic d.o.f. at the reheating temper-

ature Trh. Assuming no extra relativistic d.o.f. beyond the SM g?(T & 100GeV) ' 106.75
and g?(T ∼ 1MeV) ' 10.75, whereas in between, i.e., for 1MeV . T . 100GeV. the g?
varies depending of number of active relativistic d.o.f. . We can write the number of e-folds
during reheating phase from (A.13) and (A.14) as

Nrh ≡ ln
(
arh
ae

)
= 1

3 (1 + w̄) ln
( 45
π2grh

?

V (φe)
T 4

rh

)
, (A.15)

where the energy density at the end of inflation ρe = 3V (φe)/2 defined as εV = 1. Em-
ploying the entropy conservation during the radiation-dominated epoch, one can relate the
reheating temperature Trh with the temperature at the matter-radiation equality Teq as

Trh =
(
geq
?s

grh
?s

)1/3(aeq

arh

)
Teq, (A.16)

where gi?s is the effective number of relativistic d.o.f. contributing to entropy density at
temperature Ti. Now we can rewrite eq. (A.15) as

Nrh = 1
3 (1 + w̄) ln

( 45
π2grh

?

V (φe)
T 4

eq

(grh
?s

geq
?s

)4/3(arh

aeq

)4)
,

' 4
3 (1 + w̄)

[1
4 ln

( 45
π2grh

?

)
+ ln

( Λ
Teq

)
+ 1

3 ln
(grh

?s

geq
?s

)
−Nrd

]
, (A.17)

where in the last step we use V (φe) ≈ Λ4. We use eq. (A.12) to express Nrd in the above
equation, after solving for Nrh, we obtain,

Nrh '
−4

1− 3w̄

[1
4 ln

( 45
π2grh

?

)
+ 1

3 ln
(grh

?s

geq
?s

)
+ ln(aeq) + ln

( Λ
H?

)
+ ln

( k?
Teq

)
+N?

]
. (A.18)

Note this relation is only valid for an effective equation of state during reheating w̄ 6= 1/3
since for w̄ = 1/3 expansion rate of the Universe is the same as that of the radiation-
dominated universe. Assuming the reheating temperature Trh & 1MeV, we can approxi-
mate the above relation as

Nrh ≈
4

1− 3w̄

[
61.6− ln

( Λ
H?

)
−N?

]
, (A.19)

where we have used grh
? = grh

?s = 106.75, geq
? = 3.94, aeq ' 1/3400, Teq ' 0.8 eV and k? =

0.05 Mpc−1. For w̄ 6= 1/3 the above relation sets a constraint on the duration of reheating
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α n Nrh[ns : 1σ] Nrh[ns : 2σ]
1/6 2/3 13.8 26.1
1/6 1 22.0 41.7
1/6 3/2 48.0 47.8
1/6 3 38.4 38.4
1 2/3 15.2 27.5
1 1 23.4 43.1
1 3/2 47.8 47.7
1 3 38.2 38.0

Table 3. Constraints on Nrh for different values of α and n. For n = 2 the constraint is only from
the lower limit on reheating temperature from BBN, which is Nrh . 44.

from inflationary observables along with the constraint on the reheating temperature Trh &
1MeV from BBN as

Nrh .
4

3 (1 + w̄)

[
6.7 + ln

( Λ
1GeV

)]
. (A.20)

Using the upper-bound on Λ . 1.4 × 1016 GeV, we get the following upper-bound on
Nrh . 59/(1 + w̄). For w̄ = 1/3, i.e., n = 2, one finds Nrh . 44. We summarize the
constraints on Nrh in table 3.

B Inflaton induced gravitational production

In this appendix, we calculate the energy gain of the SM and DM sectors due to the inflaton
field. In particular, we calculate the collision terms that account for interactions between
these three sectors. We focus on cubic interactions of the inflaton with the SM Higgs
field and vector DM X as well as indirect interactions through gravity. This appendix is
supplementary to section 4 and section 5.

During the reheating phase, we assume the inflaton field as a classical, homogeneous
background that coherently oscillates in time. The character of these oscillations depends
on the form of the inflaton potential during the reheating phase. Following refs. [9, 13,
26, 42], we parametrize the evolution of the inflaton field φ(t) by a slowly time-varying
envelope ϕ(t) and a fast oscillating quasi-periodic function P(t), i.e., φ(t) = ϕ(t)P(t). The
envelope function ϕ(t) is given by eq. (3.16), whereas the fast oscillating function P(t) is
decomposed into Fourier modes with oscillation frequency ω.

The inflaton field is a given by (appropriate EoM) external time-dependent field which
enters the Lagrangian implying various interesting phenomena. In this framework, SM or
DM particles are produced in quantum processes from the vacuum in the classical inflaton
background. Thus, we consider the quantum transition from the vacuum, i.e., |α0〉 = |0〉
to two-particle final states. The S-matrix element is defined as

Sβα =
〈
β0
∣∣∣T [ exp

(
− i

∫
d4xLint

)]∣∣∣α0
〉
, (B.1)
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where the interaction Lagrangian relevant for the inflaton induced interactions is,

Lint = ghφMPlφ|h|2 + 1
2C

φ
X

m2
X

MPl
φXµX

µ + hµν

MPl

(
T φµν + T SM

µν + TDM
µν

)
. (B.2)

Above T φµν denotes the energy-momentum tensor for the inflaton field,

T φµν = ∂µφ∂νφ− ηµν
[1
2∂

αφ∂αφ− V (φ)
]
, (B.3)

while the energy-momentum tensor for real scalar (spin-0) and vector (spin-1) fields take
the forms

TSµν = ∂µS∂νS −
ηµν
2
[
∂αS∂αS −m2

SS
2
]
, (B.4)

T Vµν = −ηαβXµαXνβ +m2
VXµXν − ηµν

[
− 1

4η
ρσηαβXραXσβ + 1

2m
2
V η

ρσXρXσ

]
. (B.5)

The next step is to quantize the graviton hµν , vector DM X and scalar field S fields
in terms of creation and annihilation operators as

ĥµν(x) =
∑

λ=++,−−

∫
dΠp

(
ελµν(p)âλ(p)e−ipx + h.c.

)
, (B.6)

X̂(x) =
∑

σ=L,±

∫
dΠp

(
εσµ(p)âσ(p)e−ipx + h.c.

)
, (B.7)

Ŝ(x) =
∫
dΠp

(
â(p)e−ipx + h.c.

)
, (B.8)

where the phase-space is dΠp ≡ d3p
(2π)3√2p0

. The polarization vectors for the spin-2 massless
field satisfy the following relation:∑

λ=++,−−
ελµν(p)ελ∗αβ(p) = 1

2
[
ηµαηνβ + ηµβηνα − ηµνηαβ

]
≡ Pµναβ , (B.9)

whereas, for massive vector field we have∑
σ=L,±

εσµ(p)εσ∗ν (p) = −ηµν + pµpν
m2
X

. (B.10)

The annihilation and creation operators satisfy the following commutation relations:

[âυ(p), â†υ′(q)] = (2π)3δ(3)(p− q)δυ,υ′ . (B.11)

B.1 S-matrix for the SM and DM production

In this subsection, we derive the S-matrix for various processes in the presence of the
inflaton background field. At the leading order, we calculate the S-matrix for the Higgs
boson and vector DM production with single interaction of the interaction Lagrangian, i.e.,

S
(1)
β0α0

= −i
∫
d4x

〈
β0
∣∣∣T [Lint(x)

]∣∣∣α0
〉
, (B.12)
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These processes would mimic the “decay” of the inflaton to the SM Higgs boson and vector
DM. In the case of SM Higgs boson, the lowest-order non-zero element of the S-matrix is
given by

S
(1)
φ→hihi = − i2ghφMPl 〈β0|

∫
dt

∫
d3xφ(t)ĥiĥi |0〉 ,

= − i2ghφMPlϕ(t)
∞∑

k=−∞
Pk
∫

dt e−ikωt
∫

d3x

∫
dΠp∫

dΠq 〈0| a(p1)a(p2)a†(p)a†(q) |0〉
√

4p0
1p

0
2 e

ip·xeiq·x,

= −ighφMPlϕ(t)
∑
k

Pk(2π)4δ(kω − p0
1 − p0

2)δ(3)(~p1 + ~p2). (B.13)

Analogously, for the DM production channel, we find

S
σσ′(1)
φ→XX = −iCφX

m2
X

MPl
ϕ(t)gµνεσ′?µ (p1)εσ?ν (p2)

∑
k

Pk(2π)4δ(kω − p0
1 − p0

2)δ(3)(~p1 + ~p2).

(B.14)

Next, we calculate the S-matrix for the SM and DM production from the inflaton
background through the gravitational interactions. To take into account such processes
mediated by virtual gravitons, we have to expand the S matrix up to the second-order, i.e.,

S
(2)
β0α0

= (−i)2

2!

∫
d4x

∫
d4y

〈
β0
∣∣∣T [Lint(x)Lint(y)

]∣∣∣α0
〉
. (B.15)

Such processes mimic the “annihilation” of the inflaton field to a two-particle final state
mediated by a graviton. In this case, we can rewrite the above expression as

S
(2)
β0α0

= (−i)2

2!
1
M2

Pl

∫
d4x

∫
d4y

〈
β0
∣∣∣T [hµν(x)hαβ(y)

(
T φµν(x)TFαβ(y) + TFµν(x)T φαβ(y)

)]∣∣∣α0
〉
,

(B.16)

where TFµν denotes the energy-momentum tensor for a generic field F in the final state.
Let us first consider gravitational mediation from a quantum vacuum in the presence of

the inflaton background to a pair of scalar S particles. We obtain the following expression
for the hµν(x)hαβ(y)T φµν(x)TSαβ(y) term of the S-matrix:

S
(2)
φ→SS ⊃

(−i)2

2!
1
M2

Pl

∫
d4x

∫
d4y

√
4p0

1p
0
2

〈
0
∣∣∣â(p1)â(p2)T [hµν(x)hαβ(y)T φµν(x)TSαβ(y)]

∣∣∣0〉,
= (−i)2

2!
1
M2

Pl

∑
λ,λ′

∫
d4x

∫
d4y

∫
dΠp

∫
dΠq

∫
dΠk1

∫
dΠk2T

φ
µν(x)

〈
0
∣∣∣(εµν,λ(k1)âλ(k1)e−ik1x + h.c.

)
×
(
εαβ,λ

′(k2)âλ′(k2)e−ik2y + h.c.
)∣∣∣0〉〈

0
∣∣∣â(p1)â(p2)

[ (
ipαâ

†(p)eipy + h.c.
) (
iqβ â

†(q)eiqy + h.c.
)

− ηαβ
2
(
ipρâ†(p)eipy + h.c.

) (
iqρâ

†(q)eiqy + h.c.
)

+ ηαβ
m2
S

2
(
â(p)eipy + h.c.

) (
â(q)eiqy + h.c.

) ]∣∣∣0〉, (B.17)
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where p1, p2 are the final state momenta. Contraction of graviton operators leads to the
following propagator:

Dµναβ(x− y) =
∫

d4q̃

(2π)4
i

q̃2 + iε
e−i(x−y)q̃Pµναβ , (B.18)

such that

T φµνP
µναβ = ∂αφ∂βφ− ηαβV (φ). (B.19)

After some tedious but straightforward computations, we get

S
(2)
φ→SS ⊃

(−i)2

M2
Pl

∫
d4x

∫
d4y

∫
d4q̃

(2π)4
i

q̃2 + iε
e−i(x−y)q̃

×
(
−(∂αφ p1α)(∂βφ p2β)− V (φ)p1,αp

α
2 − 2m2

SV (φ) + 1
2∂

αφ∂αφ(p1 · p2 +m2
S)
)
.

(B.20)

Using the fact that the inflaton field is a homogeneous background, i.e., φ = φ(t), we can
write the kinematics as

p1 · p2 = s

2 −m
2
S , p0

1 = p0
2 =
√
s

2 , (B.21)

where s ≡ (p1 + p2)2 is the Mandelstam variable. Now, we can further simplify the above
result as

S
(2)
φ→SS ⊃ −

1
2

(−i)2

M2
Pl

∫
d4x

∫
d4y

∫
d4q̃

(2π)4
i

q̃2 + iε
V (φ)

(
s+ 2m2

S

)
e−i(x−y)q̃e+i(p1+p2)y.

(B.22)

It is convenient to Fourier transform the inflaton potential V (φ) instead of the inflaton
field φ, i.e.,

V (φ) ' Λ4
(
ϕ

M

)2n
P2n(t) = ρφ P2n(t) , P2n(t) =

∑
k

P2n
k e−ikωt. (B.23)

Therefore,

S
(2)
φ→SS ⊃

1
2
ρφ
M2

Pl

∑
k

P2n
k

(
1 + 2m2

S

s

)
δ(kω − p0

1 − p0
2)δ(3)(~p1 + ~p2). (B.24)

The same result emerges from the hµν(x)hαβ(y)TSµν(x)T φαβ term in the S-matrix eq. (B.16).
Therefore the final result for the S-matrix element describing the gravitational production
of massive scalars reads

S
(2)
φ→SS = ρφ

M2
Pl

∑
k

P2n
k

(
1 + 2m2

S

s

)
δ(kω − p0

1 − p0
2)δ(3)(~p1 + ~p2). (B.25)
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Similarly, for the final state vector V particles the hµν(x)hαβ(y)T φµν(x)T Vαβ(y) term of
the S-matrix takes the form

S
(2)
φ→V V ⊃

(−i)2

2!
2
M2

Pl

∫
d4x

∫
d4y

∫
d4q̃

(2π)4
i

q̃2+iεe
−i(x−y)q̃ei(p1+p2)y

×

−
√
s

2 φ̇2
(
(ε∗2 ·p1)(ε∗1)0+(ε∗1 ·p2)(ε∗2)0−

√
s(ε∗1)0(ε∗2)0

)
+ φ̇2

2 (ε∗2 ·p1)(ε∗1 ·p2)+V (φ)m2
V ε
∗
1 ·ε∗2︸ ︷︷ ︸

A(B.26)

 .
(B.26)

We choose the frame in which the spin-1 particles move along the z-direction, i.e.,

pµ1 =
(√

s

2 , 0, 0, pz
)
, pµ2 =

(√
s

2 , 0, 0,−pz
)
. (B.27)

In this case, polarization vectors can be written as

(εL1,(2))µ =
(
± pz
mV

, 0, 0,
√
s

2mV

)
, (ε±1,(2))

µ = 1√
2

(0, 1,±i, 0). (B.28)

For the transverse modes, the expression in the square bracket in eq. (B.26) reduces to

A±(B.26) = −V (φ)m2
V , (B.29)

whereas for the two longitudinally-polarized modes, we have

AL(B.26) = −V (φ)
(
s

2 −m
2
V

)
. (B.30)

Thus, the total S-matrix element accounting for the gravitational production of spin-1
particles is given by

S
(2)
φ→V V = ρφ

M2
Pl

∑
k

P2n
k MV (k)(2π)4δ(kω − p0

1 − p0
2)δ(3)(~p1 + ~p2), (B.31)

where the matrix elements for the longitudinal and transverse polarizations are

ML
V (k) ≡ 1− 2m2

V

(kω)2 , M±V (k) ≡ 2m2
V

(kω)2 . (B.32)

B.2 Production of the SM and DM from the inflaton

Next, we can calculate the probability P for the production of two particles with momenta
p1 and p2 in the presence of the inflaton background field

P (p1, p2) = |S|2

〈0|0〉 〈p1|p1〉 〈p2|p2〉
, (B.33)

where 〈0|0〉 = 1 and 〈pi|pi〉 = (2π)32p0
i δ

(3)(0) for i = 1, 2. Whereas S is the S-matrix for a
given process, which for our model can be:
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(1) direct production of final state pair of particles f ,

∣∣S(1)
φ→ff

∣∣2 = ϕ2M2
Pl
∑
k

|Pk|2 ·
∣∣M(1)

φ→ff (k)
∣∣2[(2π)4δ(kω − p0

1 − p0
2)δ(3)(~p1 + ~p2)

]2
,

(B.34)

(2) the gravitational production through the graviton mediated process,

∣∣S(2)
φ→ff

∣∣2 =
ρ2
φ

M4
Pl

∑
k

|P2n
k |2 ·

∣∣M(2)
φ→ff (k)

∣∣2[(2π)4δ(kω − p0
1 − p0

2)δ(3)(~p1 + ~p2)
]2
.

(B.35)

Above |M(k)|2 represents the spin-averaged amplitude square for a given process and it
depends on the Fourier mode number k of the background inflaton field. In our model, the
first-order amplitudes result from the direct production of the SM Higgs boson and vector
DM pairs, i.e.,

∣∣M(1)
φ→hihi

∣∣2 ≡ g2
hφ,

∣∣M(1)
φ→XX

∣∣2 ≡ |CφX |2 (kω)4

4M4
Pl

(
1− 4m2

X

(kω)2 + 12m4
X

(kω)4

)
. (B.36)

Whereas the second-order amplitudes in our work correspond to the gravitational pro-
duction of the SM and DM particles through the graviton exchange, and for a final state
massive scalar S or vector V particles are given by

∣∣M(2)
φ→SS

∣∣2 ≡ 1 + 4m2
S

(kω)2 + 4m4
S

(kω)4 ,
∣∣M(2)

φ→V V
∣∣2 ≡ 1− 4m2

V

(kω)2 + 12m4
V

(kω)4 . (B.37)

where we have summed over polarizations of final states.
In order to simplify (B.34) and (B.35) one has to square two delta functions. To that

end, we assume that the process of particle creation from the vacuum takes place in a box
of volume V with time duration T . At the very end of the computations, the regulators V
and T are removed by taking the limit V, T →∞. The square bracket in (B.34) and (B.35)
can be written as[

(2π)4δ(kω − p0
1 − p0

2)δ(3)(~p1 + ~p2)
]2

= (2π)4δ(kω − p0
1 − p0

2)δ(3)(~p1 + ~p2)× (2π)4δ(4)(0),
(B.38)

where the regulators V and T are defined as

(2π)4δ(4)(0) =
∫

d4xe−i0·x = V T, (2π)3δ(3)(0) =
∫

d3xe−i0·~x = V. (B.39)

This result allows us to rewrite (B.33) corresponding to (B.34)

P
(1)
φ→ff (p1, p2) = ϕ2M2

Pl
∑
k

|Pk|2 ·
∣∣M(1)

φ→ff (k)
∣∣2

2p0
1V 2p0

2V
(2π)4δ(kω − p0

1 − p0
2)δ(3)(~p1 + ~p2)V T,

(B.40)
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for the direct production through the inflaton interactions, and to (B.35)

P
(2)
φ→ff (p1, p2) =

ρ2
φ

M4
Pl

∑
k

|P2n
k |2 ·

∣∣M(2)
φ→ff (k)

∣∣2
2p0

1V 2p0
2V

(2π)4δ(kω − p0
1 − p0

2)δ(3)(~p1 + ~p2)V T,

(B.41)

for the indirect, gravitational production of final state particles f through the graviton
exchange, respectively.

To get the total probability one has to sum over each outgoing momenta. In the contin-
uum limit, this reduces to multiplying P (p1, p1)/T by a factor V d3~p1/(2π)3 V d3~p2/(2π)3.
Note that the energy gain of created particles in volume V and time dt can be calculated as

dE(i)(p1, p2) = (p0
1 + p0

2)V d3~p1
(2π)3

V d3~p2
(2π)3

P
(i)
φ→ff (p1, p1)

T
dt, (B.42)

where i = 1, 2 for the direct production and from the graviton mediation, respectively.
Thus, the total energy gain per volume and time for the φ → ff process for the direct
production through the inflaton field is given by

dE(1)

V dt = ϕ2M2
Pl
∑
k

|Pk|2 ·
∣∣M(1)

φ→ff (k)
∣∣2 ∫ d3~p1

(2π)32p0
1∫

d3~p2
(2π)32p0

2
(p0

1 + p0
2)(2π)4δ(kω − p0

1 − p0
2)δ(3)(~p1 + ~p2). (B.43)

Assuming the final particles have the same mass the resulting energy gain reads

dE(1)

V dt = ϕ2M2
Pl

8π

∞∑
k=1

kω|Pk|2 ·
∣∣M(1)

φ→ff (k)
∣∣2
√√√√1−

4m2
f

(kω)2 . (B.44)

For the graviton mediated production we get the following result:

dE(2)

V dt =
ρ2
φ

8πM4
Pl

∞∑
k=1

kω|P2n
k |2 ·

∣∣M(2)
φ→ff (k)

∣∣2
√√√√1−

4m2
f

(kω)2 . (B.45)

For the final state vector DM, the rate of production, or in other words, the collision term for
DM number density due to the direct production and through the graviton mediation are

D(1)
φ→XX = |C

φ
X |2

32π

(
ρφ
Λ4

)1/n ∞∑
k=1
|Pk|2(kω)4

(
1− 4m2

X

(kω)2 + 12m4
X

(kω)4

)√
1− 4m2

X

(kω)2 , (B.46)

D(2)
φ→XX =

ρ2
φ

8πM4
Pl

∞∑
k=1
|P2n
k |2

(
1− 4m2

X

(kω)2 + 12m4
X

(kω)4

)√
1− 4m2

X

(kω)2 . (B.47)

B.3 Inflaton decay rate

The continuity equation,

ρ̇φ + 3H(1 + w)ρφ = 0, (B.48)
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indicates that the energy density of the inflaton field decreases due to the Universe’s ex-
pansion. On the other hand, the inflaton loses its energy during reheating while the SM
radiation and DM sector are gaining energy. Due to the energy conservation, the total
energy density gained by the SM and DM particles must be equal to the energy loss of the
inflaton field. Therefore the following time-averaged Boltzmann equation for the inflaton
energy density could be written as

ρ̇φ + 3H(1 + w̄)ρφ = −〈Γφ〉ρφ, (B.49)

where 〈Γφ〉 and w̄ are the time average of the inflaton decay rate, Γφ, and the equation-of-
state parameter defined in (4.23) and (3.14), respectively. For the considered interactions,
the total decay rate for the inflaton field can be written as a sum of several contributions

Γφ = Γ(1)
φ→hh + Γ(1)

φ→XX + Γ(2)
φ→hh + Γ(2)

φ→ψ̄ψ + Γ(2)
φ→V V + Γ(2)

φ→XX , (B.50)

where the superscript (1) and (2) indicate the direct production through contact interac-
tion with the inflaton field and the indirect gravitational production through the graviton
exchange between the inflaton field and final state particles, respectively. Above ψ and V
denote the SM fermions and gauge bosons, respectively. The inflaton partial decay rates
through direct interactions in our model are

Γ(1)
φ→hh =

g2
hφ

8π
M4

Pl
ρφ

(
ρφ
Λ4

)1/n 3∑
i=0

∞∑
k=0

kω|Pk|2
√

1−
4m2

hi

(kω)2 , (B.51)

Γ(1)
φ→XX = |C

φ
X |2

32π
1
ρφ

(
ρφ
Λ4

)1/n ∞∑
k=1
|Pk|2(kω)5

(
1− 4m2

X

(kω)2 + 12m4
X

(kω)4

)√
1− 4m2

X

(kω)2 , (B.52)

whereas the inflaton partial decay rates through the graviton mediation are

Γ(2)
φ→hh = 1

8π
ρφ
M4

Pl

3∑
i=0

∞∑
k=0

kω|P2n
k |2

(
1 +

4m2
hi

(kω)2 +
4m4

hi

(kω)4

)√
1−

4m2
hi

(kω)2 , (B.53)

Γ(2)
φ→ψ̄ψ = 1

2π
ρφ
M4

Pl

∑
ψ

∞∑
k=0

kω|P2n
k |2

m2
ψ

(kω)2

(
1−

4m2
ψ

(kω)2

)3/2
, (B.54)

Γ(2)
φ→V V = 1

8π
ρφ
M4

Pl

∑
V

∞∑
k=0

kω|P2n
k |2

(
1− 4m2

V

(kω)2 + 12m4
V

(kω)4

)√
1− 4m2

V

(kω)2 , (B.55)

Γ(2)
φ→XX = 1

8π
ρφ
M4

Pl

∞∑
k=0

kω|P2n
k |2

(
1− 4m2

X

(kω)2 + 12m4
X

(kω)4

)√
1− 4m2

X

(kω)2 . (B.56)

The gravitational inflaton decay width to massive fermions was also calculated in [26].
Note that for the direct inflaton decay rates, the φ→ XX rate is strongly suppressed

relative to the SM Higgs boson decay channel. Thus, in the main text above neglecting
the Γ(1)

φ→XX term in the Boltzmann equation for the inflaton energy density is justified.
Moreover, the inflaton field cannot transfer its energy to massless vectors and fermions
through gravitational interactions. Furthermore, for the gravitational inflaton decay rates
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to the SM particles we note that Γ(2)
φ→ψ̄ψ � Γ(2)

φ→hh ∼ Γ(2)
φ→V V . From the above results, it is

straightforward to find the dominant source of reheating, i.e., whether it is due to the direct
interactions of the Higgs field with the inflaton through ghφ term or it is due to gravitational
interactions between the inflaton field and the SM. To obtain the condition on the inflaton-
Higgs direct coupling ghφ such that the direct interactions dominate the reheating process
to that of due to gravitational interactions we require Γ(1)

φ→hh & Γ(2)
φ→hh. This implies that

the reheating occurs dominantly due to φ→ hh channel if the inflaton-Higgs coupling, ghφ,
satisfy

ghφ &
ρφ
M4

Pl

(
Λ4

ρφ

) 1
2n

∼ ρφ
M4

Pl
, (B.57)

where we neglect corrections proportional to phase space factors and the last approximation
follows from the fact that ρφ ∼ Λ4 at the onset of reheating phase and it gradually decreases
during the reheating period. Note that the above inequality puts the strongest constraint
on the value of the ghφ coupling at the beginning of reheating when ρφ is the largest and
scales as ρφ ∼ Λ4. The efficiency of the gravitational interactions quickly decreases with the
Universe’s expansion. Consequently, such interactions can be relevant for the dynamics of
the radiation sector only at the highest possible energy scales, i.e., at the start of reheating
phase. Neglecting terms of order one and adopting our benchmark value of Λ, we find the
following limit ghφ & 10−11. Thus, we can conclude that for the inflaton-Higgs coupling
ghφ ∈ (10−5, 10−10) as adopted in this work, the inflaton decay to pairs of SM Higgs bosons
always dominates over graviton-mediated contributions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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