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A positive parity sequence of Δ𝐼 = 2 𝛾 transitions has been identified above 𝐼𝜋 = 9∕2+ state (𝐸𝑥 = 2019 keV) 
in 115Sb through in-beam 𝛾 ray spectroscopic technique. Rotational features of this sequence are found similar 
to a low-K decoupled band. Observation of this newly identified low-K decoupled band, along with the earlier 
reported strongly coupled high-K band in this nucleus, provides the first experimental evidence for prolate-oblate 
shape coexistence associated with 𝑔9∕2 proton-hole configuration around 𝑍 = 50 shell closure. Experimental 
results are reproduced reasonably well in the frameworks of the projected shell model and the total Routhian 
surface calculations.
As a many-body quantal system, atomic nuclei are excellent labora-

tories for testing various quantum mechanical phenomena. The shape 
coexistence in the realm of atomic nuclei has long been a topic of in-

terest as its exploration across the Segrè chart can provide insight into 
the underlying nucleonic shell structures. The phenomenon of nuclear 
shape coexistence was started with the observation of the deformed 
𝐼𝜋 = 0+2 state in the doubly magic 16O nucleus along with the spherical 
𝐼𝜋 = 0+1 ground state [1–3]. Thereafter, such coexistence of spherical 
and deformed shapes were also identified near different shell closures 
across the nuclear landscape [4–6]. The best evidence to date for a co-

existence of the states corresponding to prolate, oblate and spherical 
shapes at low excitation energy was found in 186Pb [7].
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The nuclei in 𝐴 ≈ 110 − 120 region mainly exhibit weak deforma-

tion at lower angular momentum with the observation of non-collective 
single-particle excitations. Of special interest in this region of the Segrè 
chart, lying close to the 𝑍 = 50 shell closure, is the observation of rota-

tional bands associated with the shape-driving high-j orbitals. Most of 
these deformed rotational bands have elongated cigar-like prolate de-

formation. The particle-hole excitations across the 𝑍 = 50 closed shell 
play a dominant role to develop the deformation in these nuclei. Conse-

quently, coexistence of the collective and non-collective structures was 
reported in several even-even, odd-A and odd-odd nuclei in this mass 
region [8–18]. In addition, shape transition from collective prolate to 
non-collective oblate over a range of angular momentum and excita-
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tion energy was also reported in a few nuclei, such as, odd-A 115−121I 
[19–23] and 121,122Xe [24,25]. However, the coexistence of two or more 
distinctive deformed shapes in a narrow range of energy and angu-

lar momentum is not found to occur very often. Limited observations 
of collective prolate-oblate shape coexistence were reported in odd-A
119−121I [22,26] and 119Cs [27] nuclei associated with the unique parity 
𝜋ℎ11∕2 configuration. In this context, it may be noted that, the Anti-

mony isotopes (𝑍 = 51), with an odd quasi-proton above the 𝑍 = 50
shell closure, have two shape driving high-j orbitals, viz, 𝑔9∕2 and ℎ11∕2, 
near the proton Fermi surface. The general tendency that these orbitals 
can induce prolate and oblate shapes is also evident from the Nilsson 
diagrams. Consequently, a prolate deformed strongly coupled Δ𝐼 = 1
rotational band based on a 𝜋[404] 92 high-K configuration was observed 
systematically in the odd-A Sb isotopes [11,13]. Despite the fact that, 
competition between the prolate and oblate shapes is likely at the top 
of the 𝑔9∕2 orbital, the rotational band based on the same orbital with 
oblate deformation has not yet been observed in this mass region. In 
nature oblate shapes occur rarely as compared to more frequent prolate 
shapes. The explanation to this tendency of strong dominance of pro-

late shapes over the oblate has not been resolved fully and needs more 
experimental investigations. This letter reports the first observation of 
oblate deformed decoupled Δ𝐼 = 2 rotational band associated with a 
𝜋[440] 12 low-K configuration, along with the known high-K prolate de-

formed band in 115Sb. This is so far the only instance where coexisting 
prolate and oblate deformed bands, based on 𝜋𝑔−19∕2 orbital, are observed 
in any of the 𝑍 > 50 nuclei.

The excited states in 115Sb were populated via 115In(4He, 4𝑛𝛾) 
fusion-evaporation reaction at a beam energy of E𝛼 = 52 MeV, ob-

tained from the K-130 Cyclotron at Variable Energy Cyclotron Cen-

tre (VECC), Kolkata, India. A 20 mg/cm2 thick self-supporting foil of 
natural Indium was used as the target. Eleven Compton suppressed 
Clover HPGe detectors, mounted in the modified support structure 
of the Indian National Gamma Array (INGA), were used to detect 
the de-exciting 𝛾 -rays. Six of these detectors were placed at 𝜃 = 90◦
(𝜙 = 0◦, 36◦, 72◦, 108◦, 144◦, 180◦), three at 𝜃 = 125◦ (𝜙 = 0◦, 90◦, 180◦) 
and two at 𝜃 = 40◦ (𝜙 = 0◦, 90◦) with respect to the beam direction. 
A Pixie-16 digitizer based pulse processing and data acquisition system 
was employed to record the valid 𝛾 events in singles and coincidence 
mode [28]. Standard 152Eu and 133Ba radioactive 𝛾 sources were utilised 
for energy and efficiency calibrations.

The offline sorting of gain-matched raw data was carried out using 
BiNDAS [29] and IUCPIX [28] software packages. A symmetric E𝛾 -E𝛾
matrix and E𝛾 -E𝛾 -E𝛾 cube were formed from the add-backs of all the 
clover detectors to establish the coincidence relations between the de-

exciting 𝛾 rays. An asymmetric matrix with events recorded at 𝜃 = 90◦
along one axis and those at 𝜃 = 125◦ along the other was used to deduce 
the multipolarities of the de-exciting 𝛾 rays using the method of Direc-

tional Correlation from Oriented states (DCO) [30]. Two other matrices 
formed from the detectors at 𝜃 = 90◦ were used to determine the electric 
or magnetic character (𝐸∕𝑀) of the 𝛾 rays by Polarization Directional 
Correlation from Oriented states (PDCO) method [31–33]. These ma-

trices correspond to the events recorded in the segments of the clover 
detector, which are perpendicular and parallel to the emission plane, 
in coincidence with events recorded in all the other detectors of the 
setup. These measurements were subsequently used to build the level 
scheme and also to assign the spin and parity of the excited energy lev-

els. The offline data analysis was carried out using the Radware suite of 
packages [34]. Details of the data analysis procedures are available in 
Ref. [35].

The partial level scheme of 115Sb, as shown in the Fig. 1, is devel-

oped in the present work on the basis of 𝛾 ray coincidence and intensity 
relationships. The excited levels are grouped mainly into two bands: 1 
and 2. The band 1, with 𝐼𝜋 = 9∕2+ at Elevel = 1380 keV as the band-

head, was reported earlier upto 𝐼𝜋 = 37∕2+ [36]. In this work, all the 
𝛾 rays and excited states of band 1 upto 𝐼𝜋 = 35∕2+ were observed 
2

and found unaltered. A new cascade of four 𝛾 transitions, marked as 2 
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Fig. 1. The 𝜋𝑔−19∕2 bands in 115Sb. New experimental information are marked in 
the red colour.

in Fig. 1, was identified in the present work. Fig. 2 represents double-

gated coincidence spectra with gates on: (a) 1380 & 374 keV and (b) 
1098 & 921 keV transitions corresponding to the bands 1 and 2, respec-

tively, whereas, (c) 602 & 729 keV corresponding to their connection 
via 1114 keV transition. The inset in the spectrum of Fig. 2 (a) shows 
the crossover E2 transitions corresponding to band 1. Observation of all 
the four 𝛾 rays, viz, 476, 602, 729 and 819 keV, in the 1098 and 921 
keV double-gated spectrum (Fig. 2 (b)) provide support in favour of 
their placements in band 2. The band 2 is found to decay to the ground 
state mainly via a cascade of 921 and 1098 keV 𝛾 rays and also through 
the newly observed 2019 keV and 1114 keV 𝛾 transitions. Spins and 
parities of all the states were assigned unambiguously from the present 
spectroscopic results, as summarised in Table 1.

In the 𝐴 ≈ 110 − 120 region, the proton Fermi surface lies near the 
prolate driving low-K ℎ11∕2 and high-K 𝑔9∕2 high-j orbitals [37]. Accord-

ingly, a decoupled (strongly coupled) band associated with the 𝜋ℎ11∕2
(𝜋𝑔−19∕2) configuration was reported systematically in odd-A Sb, I and 
Cs isotopes in this region [13,20,27,36,38–41]. On the other hand, the 
high-K ℎ11∕2 and low-K 𝑔9∕2 orbitals are also available near the proton 
Fermi surface with oblate deformation. As a consequence, a strongly 
coupled negative parity band was reported in 119,121I [22,26] and 119Cs 
[27]. This provides an evidence of prolate-oblate shape coexistence 
based on 𝜋ℎ11∕2 orbitals. However, the band based on an oblate de-

formed low-K 𝜋𝑔−19∕2 orbital is hitherto unreported in this mass region. 
The newly observed band 2 in 115Sb is found to exhibit a decoupled na-

ture. Thus, it may serve as the first observation of the collective oblate 
band based on the low-K 𝜋𝑔−19∕2 orbital in this region.

The aligned angular momentum (𝑖𝑥) is plotted as a function of ro-

tational frequency (ℏ𝜔) in Fig. 3. It depicts larger values for band 2 
compared to band 1 in 115Sb at low rotational frequencies. Also, it is 

noted from the figure that the plots look very similar for the two iso-
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Fig. 2. Coincidence spectra corresponding to the double gates of: (a) 1380 &
374 keV (band 1), (b) 1098 & 921 keV (band 2) and (c) 602 & 729 keV tran-

sitions from E𝛾 -E𝛾 -E𝛾 cube. The insets of spectra (a) and (c) correspond to
crossover E2 transitions of band 1 and the decay of 9/2+ state of band 2 to 
5/2+ ground state via 2019 keV transition, respectively. The red marked tran-

sitions in the spectrum (b) and (c) are newly observed in the present work, 
whereas, the # marked transitions in the spectra are the transitions not shown 
in the partial level scheme of 115Sb.

Table 1

The table contains the energies (E𝛾 ), relative intensities (I𝛾 ), experimental DCO 
ratios (R𝐷𝐶𝑂) obtained in stretched quadrupole gate and linear polarization 
asymmetry (Δ𝑃𝐷𝐶𝑂) of the newly observed 𝛾 transitions in 115Sb along with the 
spin and parity of the initial and final states. The relative intensities are nor-

malized to the known 1300 keV transition (I𝛾 (1300 keV) = 100) in 115Sb, not 
shown in the partial level scheme. The quoted uncertainties are purely statisti-

cal, however, the additional uncertainty of 3 – 5% due to efficiency of the setup 
may be considered, depending upon the intensity of the gamma rays.

𝐸𝛾 𝐽𝜋
𝑖
→ 𝐽𝜋

𝑓
𝐼𝛾 𝑅𝐷𝐶𝑂 Δ𝑃𝐷𝐶𝑂

(keV) (Err) (Err) (Err)

475.5(1) 13∕2+ → 9∕2+ 1.94(1) 1.03(2) 0.13(1)

602.2(1) 17∕2+ → 13∕2+ 1.61(2) 1.07(6) 0.09(2)

729.0(1) 21∕2+ → 17∕2+ 1.13(1) 1.02(6) 0.05(2)

818.6(2) 25∕2+ → 21∕2+ 0.57(3) 1.06(4) 0.19(5)

1114.4(3) 13∕2+ → 9∕2+ 0.35(1) 0.94(8) 0.05(7)

2019.0(2) 9∕2+ → 5∕2+ 0.7(1) 0.94(6) 0.06(3)

topes 115,117Sb in the configuration of a 𝑔7∕2 proton coupled to the 2p-2h 
states in the neighbouring even-even nuclei. However, both are differ-

ent from that of band 2 in 115Sb, which has slightly a higher alignment. 
This indicates that the band 2 in 115Sb is based on a configuration of 
an odd proton in low-K orbital. Together with the positive parity of this 
band, it suggests that the band 2 in 115Sb is based on a 𝑔9∕2 orbital with 
an oblate deformation.

Further, theoretical calculations have been carried out under the 
frameworks of the total routhian surface (TRS) and the projected shell 
model (PSM) to explore the microscopic structure of these bands in 
3

115Sb and are discussed in the following.
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Fig. 3. Plot of aligned angular momentum (ix) as a function of rotational fre-

quency (ℏ𝜔) for different bands of 115Sb and 117Sb. The Harris parameters used 
are 𝐽0 = 17 ℏ2 MeV−1 and 𝐽1 = 12 ℏ4 MeV−3. Data for 𝑔7∕2 bands are taken 
from ref. [39] for 117Sb and ref. [42] for 115Sb.

Total routhian surface calculation

The TRS calculations have been performed for the 3-quasiparticle 
(qp) positive parity configuration of 115Sb with (𝛽2, 𝛾, 𝛽4) mesh points 
(where 𝛽2 and 𝛽4 are quadrupole and hexadecapole deformation param-

eters and 𝛾 = 0◦(±60◦) corresponds to prolate (oblate) shape in the Lund 
convention) using Nilsson-Strutinsky formalism with Woods-Saxon po-

tential [43,44]. The TRSs are plotted in the (𝛽2, 𝛾) contours after mini-

mization on 𝛽4. The calculations are performed at different frequencies 
(ℏ𝜔) and the (𝛽2, 𝛾) values corresponding to the minimum of the TRSs 
are considered as the shape of the nucleus for that frequency, as out-

lined in Ref. [45]. The TRS calculations have been successfully used to 
understand the structure of nuclei in diffferent mass regions [46–48] of 
the periodic table.

The TRS plots calculated for ℏ𝜔 = 0.1 MeV and 0.35 MeV for the 
positive parity bands in 115Sb are shown in Fig. 4. Two minima with 
one close to the prolate and another to oblate shape are obtained at 
higher frequency. The fact that the energy of the oblate minimum is 
about a MeV higher, corroborates well with the observation in Fig. 1

that the band 2 lies at about 640 keV above the band 1.

Projected shell model analysis

The theoretical study using PSM approach [49,50] has also been em-

ployed to discern the microscopic structures of bands observed in 115Sb 
nucleus. It is known that PSM provides an excellent and unified descrip-

tion of low- as well as high-spin properties of deformed nuclei [49–54]. 
PSM is essentially a shell-model truncation scheme with deformed basis 
and angular momentum projected deformed basis is employed to diag-

onalize the shell model Hamiltonian [55,56]. The Hamiltonian consists 
of a sum of schematic (i.e. quadrupole-quadrupole (𝑄𝑄) + monopole 
pairing + quadrupole pairing) forces, which takes the form

�̂� = �̂�0 −
1
2
𝜒
∑
𝜇

�̂�†
𝜇
�̂�
𝜇
−𝐺𝑀𝑃 †𝑃 −𝐺𝑄

∑
𝜇

𝑃 †
𝜇
𝑃
𝜇
, (1)

�̂�0 in the above equation is the spherical single-particle potential [57]. 
The quadrupole �̂�𝜇 , the monopole-pairing 𝑃 , and the quadrupole-

pairing 𝑃𝜇 operators are given by

�̂� =
∑

(�̂� ) 𝑐
†
𝑐 ,𝑃 = 1 ∑

𝑐 𝑐 ,𝑃 = 1 ∑
(𝑄 ) 𝑐 𝑐 ,
𝜇

𝑘,𝑙

𝜇 𝑘,𝑙 𝑘 𝑙 2
𝑘

𝑘 �̄� 𝜇 2
𝑘,𝑙

𝜇 𝑘𝑙 𝑘 𝑙
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Fig. 4. TRS plot for 115Sb at two rotational frequencies (ℏ𝜔), calculated for the 
positive parity configuration. The contours are 400 keV apart.

with �̂�𝜇 = 𝑟2𝑌2𝜇 . The strength of the quadrupole force 𝜒 is adjusted 
such that the known quadrupole deformation parameters 𝜖 are obtained 
[58] as a result of the Hartree-Fock-Bogoliubov self-consistent proce-

dure. The monopole-pairing-force constants 𝐺𝑀 are chosen such that 
the overall observed odd-even mass differences are reproduced in the 
given mass region and are of the standard form

𝐺𝑀 =
𝐺1 −𝐺2

𝑁−𝑍
𝐴

𝐴
for neutrons, 𝐺𝑀 =

𝐺1
𝐴

for protons. (2)

In the present calculation, we take 𝐺1 = 20.12 and 𝐺2 = 13.13. This 
choice of 𝐺𝑀 is appropriate for the single-particle space employed in 
the model, where three major shells are used for each type of nucleons 
N=(3, 4, 5) for both neutrons and protons. The strength parameter 𝐺𝑄
for quadrupole pairing is simply taken to be proportional to 𝐺𝑀 . The 
proportionality constant varies slightly from nucleus to nucleus as to re-

produce the band crossing at the right place; in the present calculation, 
on the average, it turns out to be around 0.18.

In the present study of 115Sb nucleus (odd-proton system), PSM 
model space is composed of (angular-momentum-projected) of one- and 
three-qp basis, i.e.,

{ |Φ>} = {𝑎†
𝜋
|Φ> ; 𝑎†

𝜋
𝑎†
𝜈1
𝑎†
𝜈2
|Φ>}, (3)

where the three-dimensional angular-momentum operator is [59]

𝑃 𝐼
𝑀𝐾

= 2𝐼 + 1
8𝜋2 ∫ 𝑑Ω𝐷𝐼

𝑀𝐾
(Ω) �̂�(Ω), (4)

with
4

�̂�(Ω) = 𝑒−𝚤𝛼𝐽𝑧 𝑒−𝚤𝛽𝐽𝑦 𝑒−𝚤𝛾𝐽𝑧 , (5)
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Fig. 5. Projected energies are shown before diagonalization of the shell model 
Hamiltonian for 115Sb. Only the lowest few bands are labelled by three quanti-

ties : K-quantum number, group structure and energy of the quasiparticle state. 
For instance, (9/2,1𝜋,0.63) designates one-quasiproton state having intrinsic 
energy of 0.63 MeV and K= 9∕2.

and | Φ > represents the qp vacuum state. To investigate the possibility 
that two band structures observed in 115Sb corresponding to prolate 
and oblate shapes, we have performed two sets of PSM calculations -
one with the prolate deformation of 𝛽 = +0.18 and the other with the 
oblate deformation of 𝛽 = −0.19. For each of these sets, several intrinsic 
states in the vicinity of the Fermi surface are chosen and are projected to 
good angular-momentum states. The energy verses angular-momentum 
plot, what is referred to as the band diagram, is depicted in Fig. 5. The 
ground-state band for the prolate shape corresponds to the projected 
band from the intrinsic one quasiproton configuration with 𝐾 = 9∕2. 
This band is then crossed by three quasiparticle configuration with 𝐾 =
11∕2. For the oblate shape, it is evident from the band diagram that the 
lowest band structure originates from low- K values.

The projected bands depicted in Fig. 5 and many other projected 
states from the quasiparticle configurations close to the Fermi surface 
are used to diagonalize the shell model Hamiltonian (Eqn. (1)) sepa-

rately for prolate and oblate shapes. The lowest energies obtained after 
configuration mixing for both prolate and oblate deformations are com-

pared with the corresponding experimental energies, after subtracting 
the core contribution, in Fig. 6. It is quite clear from this figure that 
band 1 is reproduced by considering the prolate deformation, and for 
band 2 the oblate deformation reproduces the experimental energies. 
We also examined the alignment features of the observed band struc-

tures and the results of 𝐼 verses rotational frequency, ℏ𝜔 are presented 
in Fig. 7. It is evident from this figure that bands 1 and 2 are consistent 
with the characterisation of these as prolate and oblate band structures, 

respectively.
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Fig. 6. PSM energies for the lowest two bands after configuration mixing are 
plotted along with the experimental data for 115Sb.

To conclude, in this letter we presented an evidence of collec-

tive prolate-oblate shape coexistence in 115Sb associated with the 𝑔9∕2
proton-hole configuration for the first time above 𝑍 = 50 shell clo-

sure. A new decoupled cascade of 𝐸2 transitions has been established 
above the 𝐼𝜋 = 9∕2+ state at Elevel = 2019 keV, based on the low-K

𝑔9∕2 orbital with oblate deformation. The experimental findings are 
found to be in good agreement with theoretical estimates from the 
PSM approach. Along with the previously reported high-K 𝑔9∕2 pro-

late deformed band, the present observation suggests that, in addition 
to its prolate driving nature, the 𝑔9∕2 orbital can also drive the nucleus 
towards an oblate shape. It has been also demonstrated that TRS cal-

culations predict shape coexistence between prolate and oblate shapes 
at higher rotational frequency with prolate minimum being lower than 
the oblate one. For future studies, It would be interesting to search 
for such oblate deformed bands in odd-Z Iodine (𝑍 = 53) and Cesium 
(𝑍 = 55) isotopes (in which 𝑔9∕2 prolate structures are already known) 
to investigate such prolate-oblate shape driving effect of the 𝑔9∕2 orbital 
systematically in this region.
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Fig. 7. The experimental and PSM angular frequencies versus the angular mo-

mentum for the 115Sb nucleus.
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