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Abstract Based on the Cornwall–Jackiw–Tomboulis effec-
tive potential and the truncated Dyson–Schwinger equations,
the nature of phase transition of thermal QED3 at finite vol-
ume is investigated. We show that, with the rise of temper-
ature, the system undergoes a second-order transition in the
chiral limit, and remains exhibiting the second-order with
small fermion mass, while it switches to a crossover when
the fermion mass exceeds a critical value about mc, which
diminishes with the increasing volume size and tends to zero
in infinite volume.

1 introduction

Quantum electrodynamics in 2+1 dimensions(QED3) has
been studied as a theoretical laboratory for many years. Due
to its similarities to quantum chromodynamics(QCD) such
as chiral symmetry breaking(CSB) and confinement [1–4],
QED3 is considered to be a simple model that has a great
significance in understanding fundamental characteristics of
QCD, which is hard to be investigated for its non-Abelian
nature. On the other hand, QED3 has been found applications
in condensed matter physics, and it could serve as an effec-
tive model for high-Tc superconductors [5–8] and graphene
[9]. For these reasons, there should be great interest in the
study of features of QED3.

The earliest significant progress in chiral phase transition
(CPT) of QED3 is conducted by Appelquist et al. [10] who
found a critical number Nc of fermion flavors when the sys-
tem undergoes CPT at zero temperature. But their techni-
cal approach was questioned by Pennington and co-workers
because of their neglect of wave function renormalization of
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the fermion propagator. Further investigation was conducted
by other groups using improved methods, and the results are
qualitatively similar which are between 3 and 4 [2,11–13],
and also the critical flavor number depend on the infrared
cutoff [14]. As the research of QED3 at zero temperature has
achieved a wealth of results, a natural thought is extending
the theory to finite temperatures. The N-flavor thermal QED3

was first studied by Dorey and Mavromatos [15] who found
a non-zero critical temperature above which chiral symmetry
gets restored at all numbers of flavors. Later on, more con-
ditions that may have an effect on CPT of QED3 were taken
into account, such as chemical potential [16–18], and find
that, at high temperature, the system demonstrates a second-
order phase transition characteristic in the chiral limit and
illustrates a crossover beyond the chiral limit, while in the
high density region it exhibits a first-order transition when
the fermion mass is small but always reveals a crossover when
the fermion mass exceeds a critical value mc [19].

The above conclusions are obtained from the infinite vol-
ume and will be changed when the volume becomes finite.
A breakthrough in the study of CPT in QED3 at finite vol-
ume was achieved in the paper of [20], which shows that
the critical value depends apparently on the size of system,
where Nc decreases with the reduction of the system size
and exhibits an abnormal feature of phase transition [14].
The conclusion is arrived by numerically solving the trun-
cated Dyson-Schwinger equation (DSE) for the propagators.
Based on the same spirit and the temperature field technique,
it is found a similar result in thermal QED3: the critical tem-
perature Tc apparently decreases with the reduction of the
system size [21]. Then, an interesting question will be risen:
what is the nature of thermal QED3 with finite volume at Tc?
Since the analysis of effective pressure is an suitable frame-
work to study the feature of phase transition [22], in this
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paper, we shall adopt CJT effective potential to indicate the
nature of thermal QED3 at finite volume.

In QED3, the previous works illustrated that QED3 at
N = 1 undergoes CPT into a chiral symmetric phase when
the temperature reaches a critical value Tc. Later, the authors
of Ref. [23] studied an improved truncated scheme for DSE
to study the CPT and reveal that the correctional contribution
to the factor only slightly changes the value of Tc. These con-
clusions suggest that the lowest-order DSE for the fermion
propagator is a suitable approximation to investigate CPT of
thermal QED3. In the rainbow approximation, the Cornwall-
Jackiw-Tomboulis (CJT) effective potential provides us with
a useful tool to analyze the phase structure of QED3. So in
this paper, we shall try to answer the question by employing
the effective potential model [24] to explore the characteris-
tic of the phase transition of thermal QED3 both in the chiral
limit and beyond chiral limit.

2 Model of chiral phase transition

2.1 CJT’s framework

In Euclidean space, the Lagrangian of massive QED3 with a
general covariant gauge is given by

L = ψ̄( � ∂ + ie �A − m)ψ + 1

4
F2

σν + 1

2ξ
(∂σ Aσ )2, (1)

where the 4-component spinor ψ is the fermion field, ξ is
the gauge parameter. In infinite volume, the order parameter
with chiral limit for CPT is defined as the vacuum expectation
value of the fermion chiral condensate

〈ψ̄ψ〉 = Tr[S(x ≡ 0)] =
∫

d3 p

(2π)3

4B
(
p2

)
A2

(
p2

)
p2 + B2

(
p2

) .

The two functions A(p2) and B(p2) are related to the inverse
fermion propagator

S−1(p) = iγ · pA
(
p2

)
+ B

(
p2

)
, (2)

which reduces to the free form in high energy region

S−1
0 (p) = iγ · p + m. (3)

The unknown function A(p2) and B(p2) can be obtained by
the DSE for the fermion propagator

S−1(p) = S−1
0 (p) +

∫
d3k

(2π)3 γμS(k)	ν(p, k)Dμν(q). (4)

with q = p − k and the nature unit e2 = 1 are used. Beyond
the chiral limit, the order parameter is not well-defined. Since

the condensate is the phenomenon in low energy region, one
can remove the free part to give an renormalized value

〈ψ̄ψ〉 = Tr[S(x ≡ 0) − S0(x ≡ 0)]

=
∫

d3 p

(2π)3

[
4B

(
p2

)
A2

(
p2

)
p2 + B2

(
p2

) − 4m

p2 + m2

]
.

(5)

As we all know, the parameter can not reveal the nature of
phase transition. To answer our question, we first write the
expression of effective pressure, which is the negative value
of the CJT effective potential:

P ′ = −Tr

[
ln(SS−1

0 ) + 1

2
(1 − SS−1

0 )

]

+1

2
Tr [ln(DD−1

0 ) + (1 − DD−1
0 )], (6)

where the D, D0 denote the full and free boson propagator,
respectively. Because of the divergent integral, the differen-
tial pressure between the chiral symmetry breaking phase (b)
and chiral symmetry phase (c) is often written as

P = 
P ′ = P ′
b − P ′

c. (7)

In the lowest-order approximation of DSE for the propaga-
tors, the propagator in chiral symmetry phase gives its free
form and the differential pressure reduces to

P = 2
∫

d3 p

(2π)3

[
ln

(
p2 + B2

p2 + m2

)
− B2

p2 + B2 + m

p2 + m2

]
.

(8)

Apart from zero temperature, the O(3) symmetry of
the system reduces to O(2), and the corresponding inverse
fermion propagator can be written as

S−1(T, P) = iγ · P + i�nγ0 + B
(
P2

)
, (9)

where �n = (2n + 1)πT . The effective pressure at finite
temperature can be written as

P(T ) = 1

V Tr

[
ln

(
1

T S

)
− 1

2
BS

]
. (10)

According to the discussion in Ref. [25], during the model
calculation, the integral of pressure is divergent. In order to
eliminate this problem, a little trick is used to deal with the
divergence, and the pressure is given as
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P(T ) = P(T ) − P0(T ) + P0(T )

= 2
∫

d2P

(2π)2

[
Ep − Ep0 + 2T ln

e−βEp + 1

e−βEp0 + 1

− B2

2Ep
tanh

Ep

2T
+ m2

2Ep0
tanh

Ep0

2T

]
+ P0(T ), (11)

where Ep = √
P2 + B2(P2), Ep0 = √

P2 + m2, P0(T ) is
the pressure for free fermion, and P0(T ) ≈ 0.573T 3 at small
mass. When T → 0, Eq. (11) will reduce to Eq. (8), and in the
high temperature limit, it will reduce to its free value, which
meet our expectations.

As we can see from Eq. (11), once the fermion self-energy
is known, we can obtain the effective pressure promptly.
In the lowest order approximation of DSE for the fermion
propagator, the fermion self-energy in infinite volume can be
obtained

B
(
P2

)

= m +
∑
n

∫
d2K

(2π)2

2T B
(
K 2

)
[
� 2

n + E2
(
K 2

)] [
Q2 + 

(
Q2

)]

= m +
∫

d2K

(2π)2

B
(
K 2

)
tanh

E(
K 2

)
2T

E (
K 2

) [
Q2 + 

(
Q2

)] , (12)

where Q = P − K , E (
K 2

) =
√
K 2 + B2

(
K 2

)
and the

Matsubara frequency summation is used analytically. The
corresponding photon polarization is given as

(Q2) = T

π

∫ 1

0
dx

{
ln

(
4 cosh2 X (x)

2T

)
− m2 tanh X (x)

2T
T X (x)

}
,

(13)

where X2(x) = m2+x(1−x)Q2. As the fermion self-energy
is obtained, we can adopt the pressure Eq. (11) to analyze the
natural of thermal QED3 at Tc.

2.2 Effect of finite volume

Taking the finite volume effect into account, we consider
a system with limited boundary, which is constrained in a
potential well in spatial directions, and the length of the well
is L1 = L2 = L . Based on the discussion in Refs. [21,24], we
adopt the antiperiodic boundary conditions for the fermion
fields and write the momentum integral as a sum of Matsubara
modes. Then we can obtain the fermion self-energy function
at finite volume

B
(
ω2
m1

, ω2
m2

)
= m + 1

L2

M∑
n1,n2=−M

× B
(
ω2
n1

, ω2
n2

)
tanh

E
(
ω2
n1

,ω2
n2

)
2T

E (
ω2
n1

, ω2
n2

) [
Q2

v + 
(
Q2

v

)] , (14)

where ωn = (2n + 1)π/L and Q2
v = (

ωm1 − ωn1

)2 +(
ωm2 − ωn2

)2. The expression of the dynamical fermion self-
energy shows a natural infrared cutoff π/L , which is a typical
finite size effect. This cutoff also implies that a system with
finite volume will reveal some anomalous properties which
is different from that in finite volume. In order to obtain the
self-energy through numerical iteration method, the behavior
of boson polarization should be investigated first.

Let us recall the one-loop order boson polarization tensor
in infinite volume

σν(q) = −
∫

d3k

(2π)3 Tr

[
γσ (m − i � k)γν(m − i � p)(

k2 + m2
) (

p2 + m2
)

]
,

(15)

where q = p − k. When the temperature and the volume
become finite, the zero frequency boson polarization with
massive fermion reduces to

(Q2
v) = (ω′2

m1
, ω′2

m2
)

= 2

L2

M∑
n1,n2=−M

∫ 1

0
dx

[
tanh

[ Y
2T

]
Y

− U 2 + m2

Y 2

×
(

tanh
[ Y

2T

]
Y

− sech2
[ Y

2T

]
2T

) ]
, (16)

where Q2
v = ω′2

m1
+ ω′2

m2
, U 2 = ω2

n1 + ω2
n2, and Y 2 =

U 2 +m2 + x(1− x)Q2
v . Unlike the fermion fields, the boson

fields is periodic at finite volume, and the Matsubara mode
gives ω′

n = 2πn/L .
In the chiral limit, the behavior of boson polarization and

fermion self-energy were illustrated in Ref. [21]. Beyond the
chiral limit, we make a extended investigation as demon-
strated in Fig. 1. The results are consistent with that in the
chiral limit, as we can find that lower system sizes fit the fixed
upper bound better, which means that, with the increasing of
system sizes, we should select a larger value of upper bounds.
On the other hand, we find that as the upper limit of the sum-
mation increases, (Q2

v) approaches the polarization value
of the infinite system. Therefore, we expect that the descrip-
tion of boson polarization can agree well with that in the case
of infinite volume, but the momentum here is not continuous,
while is discrete.

The next step is to investigate the fermion self-energy
beyond the chiral limit by numerical iteration method and
choose a size-related sum of the upper limit M = M1 = L

2π
,

which can be seen in Fig. 2.
It is shown that M1 is large enough to satisfy our upper

summation limit and the fermion self-energy shrinks with the
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Fig. 1 The behaviors of boson polarization with different summation
upper bounds (Left) and range of volume(with M = 300) at T =
0.01,m = 0.01 (Right), and the solid line Lin f illustrates the behavior
of Eq. (13)

Fig. 2 The behaviors of fermion self-energy with different summation
upper bounds and range of volume and temperature(with L = 300) at
T = 0.01,m = 0.01

decrease of the size. Apart from the discussion of massless
fermion in Ref. [21], when the mass of fermion increases, the
fermion self-energy increases disproportionately as plotted
in Fig. 3, which reveals a peculiar phenomenon and will be
confirmed in the next section.

3 Numerical results

3.1 Massless fermion

To distinguish the characteristics of chiral phase transition
in thermal QED3 at finite volume, we investigate the typical
order parameter entropy and specific heat, and the procedure
is conducted by numerical iteration method. In the actual cal-
culation, we choose a size-related sum of the upper limit M1,
which is large enough to ensure accuracy. Then, we obtain
the dependence of P on T and L , as well as the behavior
of fermion chiral condensate, which can be seen in Fig. 4.
With the increasing of temperature, the chiral fermion con-
densate diminishes gradually but does not suddenly jump to
zero at a critical temperature Tc, which increases with the

Fig. 3 The value of fermion self-energy with different mass of L =
300, T = 0.01

Fig. 4 The dependence of the fermion chiral condensate (left) and
pressure (right) on the temperature with several volume size

increasing of system size. Over the critical temperature, the
system switch from chiral symmetry breaking phase to chiral
symmetric phase, and the pressure tends to converge, in spite
of the fact that it behaves differently in different sizes under
the chiral symmetry breaking phase, but this result does not
reveal any information for the nature of CPT.

It has commonly been assumed that the discontinuous of
entropy indicates a first-order phase transition occur, whereas
its continuous may show a higher-order phase transition. We
can define the entropy as following trivially via the pressure

s(T ) = ∂P(T )

∂T
. (17)

We can calculate entropy directly through the pressure, and
as plotted in the Fig. 5, the entropy also tends to converge
in the symmetry phase and manifest an inflection point at Tc
where CPT happens.

To further study the nature, a typical order parameter to
indicate a second-order phase transition can be depicted by
specific heat, which is defined as

Cv = ∂s(T )

∂T
= ∂2P(T )

∂T 2 . (18)
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Fig. 5 The dependence of entropy on the temperature with several
volume size in the chiral limit

Derived from Eq. (11), we can obtain the specific heat as
plotted in Fig. 6.

The values in chiral symmetry phase and chiral symmetry
broken phase are continuous separately, but there is a skip
at critical temperature Tc, which exhibits a typical signal for
second-order phase transition.

3.2 Massive fermion

Beyond the chiral limit, the fermion has a small nonzero mass
m. In this section, we consider the system with different mass
and investigate the characteristic of CPT in thermal massive
QED3. For the purpose of comparison with massless fermion,
we choose the same parameters as selected in the previous
section, and the calculation process is similar, we plot the
figures in Fig. 7.

It is clearly illustrated that, with a small mass, the chi-
ral condensate with some size still vanishes at critical tem-
perature, which is apparently different from that in infinite
volume, which increases with the increasing of system size.
Additionally, the pressure and the entropy still tend to con-
verge in the chiral symmetry phase while they behave incon-
sistently in the chiral symmetry broken phase. The specific
heat in chiral symmetry phase and chiral symmetry broken
phase are continuous separately, and the leap at critical tem-
perature Tc still releases a signal for second-order phase tran-
sition.

Nevertheless, as the mass of fermion increases, this situ-
ation slowly but surely changes as we can see in Fig. 8. The
chiral condensate enlarge as the mass increases, and stay at a
small value but do not vanish, whereas the value of specific
heat switching from jumping to continuous changing, which
indicates a crossover. When the fermion mass surpass its crit-
ical value mc ≈ 5 × 10−4 at small volume, the specific heat
changes continuously and hence CPT disappears. Just as we
mentioned before, when the mass of fermion increases, the
fermion self-energy changes atypically, which leads to the
disappearance of CPT, this has not been discovered before.

Fig. 6 The behavior of special heat with several volume size in mass-
less QED3

The phase diagram with fermion mass can be found in
Fig. 9.
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Fig. 7 The values of thermal parameters with different volume while
m = 10−4

Fig. 8 The values of thermal parameters with different mass at L =
300

Fig. 9 The phase diagram of thermal QED3 with several fermion mass
(The solid line represents the phase boundary, and the undrawn part near
the temperature axis illustrates a crossover)

Fig. 10 The dependence of critical fermion mass and volume size

From Fig. 9, we find that, for a fixed fermion mass, the
system, with the increasing temperature, undergoes a phase
transition at critical size and reveals a crossover when the
size is larger than its critical value. It is clearly show that
the critical size depends on the fermion mass. Moreover, the
dependence of the critical fermion mass on the volume size
is shown in Fig. 10.

It is found that the value mc decreases with the increasing
volume size, and vanishes at 1/L → 0 which means the
system reveals a crossover with the increasing T for any
nonzero fermion mass. This conclusion is consistent with
that obtained in the previous analysis in the infinite volume
[19].

4 Conclusions

In this paper, we adopt the truncated Dyson-Schwinger equa-
tion to study chiral phase transition in thermal QED3 under
the influence of finite size effect. Our model study is based on
the CJT effective potential framework and shows that, as the
rise of temperature, the chiral condensate in chiral limit van-
ishes at a critical temperature Tc, around which the entropy
changes continuously, while the specific heat undergoes a
jump from chiral symmetry broken phase to chiral symmetry
phase, which exhibits a second-order phase transition. On the
other hand, in the case of massive fermion with finite volume,
the system also performs a second-order phase transition at
small fermion mass, while it switches to a crossover when
fermion mass exceeds its critical value mc, which reduces to
zero in the infinite volume. This result shows that the effect
of finite volume will cause the system to exhibit some abnor-
mal feature. Since QED3 has many features, similar to QCD,
we expect that the phase transition will occur in the thermal
QCD with a small quark mass at finite volume.

We note that the adopted model in the present work is of
course schematic and might be discrepant from reality (for
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example, we have neglected the effect of the wave function
renormalization factor A �= 1 and the nonzero frequency of
boson polarization). Nevertheless, this is the first time that
one observes crossover and critical fermion mass mc in ther-
mal QED3 at finite volume. In order to further confirm this
observation, we need to study this problem in more realistic
models [26].
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