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1 Introduction

Studying chiral effects in quantum many body systems has attracted much interest during

recent years. It has in fact opened a window to macroscopically observe the anomalies

of the microscopic quantum field theory. In the hydrodynamic limit, such macroscopic

manifestation occurs through the anomalous transport [1]. Although the main idea comes

from the gauge/gravity computations, specifically form the fluid/gravity correspondence [2,

3], the anomalous transport has also been directly studied in the field theory [4].

Since the anomalous transport is basically non-dissipative [5], another way to explore

it is to study the thermodynamic equilibrium in the system. In [6, 7] the dependence of the

anomalous transport coefficients on the triangle anomaly has been found via constructing

the equilibrium partition function. As shown in [8], the mixed gauge-gravitational anomaly

coefficient may contribute to the anomalous transport, too, even in flat space-time. In

fact, the mixed gauge-gravitational anomaly contributes to the coefficients at two orders of
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derivatives lower than what expected from the equations of motion. Such contribution had

been observed in free field theory of fermions [9, 10] as well as in gauge/gravity duality [11].1

In an ideal Weyl gas, the anomalous transport has been related to the continuous in-

jection of chiral states and their subsequent adiabatic flow driven by vorticity [10]. This

injection of states is shown to be corresponded with the flux of the Berry curvature through

the Fermi surface in a Fermi liquid [17]. Putting a Berry monopole in the origin of momen-

tum space, then a non-equilibrium kinetic equation can be derived for the classical massless

Weyl particles [18]. Using this so-called chiral kinetic theory, the anomalous transport can

be studied beyond the hydrodynamic limit, specifically, one shows that the Berry cur-

vature leads directly to the chiral magnetic effect. The effect of Berry curvature on the

dissipative transport has been also studied. In [19], it is shown that how the Berry flux

through the Fermi surface in a Weyl metal gives rise to a large negative magnetoresistance,

quadratically depending on the magnetic field.

On the other hand, it has been shown that in the presence of magnetic field, the

Lorentz invariance dictates the energy dispersion of Weyl fermions gets a spin-magnetic

correction [21, 22]. This correction is actually a quantum correction and is necessary for

showing the Lorentz invariance of the action of the massless spin-12 particles. The latter is

realized by a modification of the Lorentz transformations; imposing a shift orthogonal to

the boost vector and the particle momentum (side-jump effect). This ensures the angular

momentum conservation in particle collisions.

In the computation of the magneto resistance in the non-relativistic Weyl fluid in [19],

the quantum correction to the energy dispersion has not been considered. As the first part

in the current paper, we will compute the magneto-conductivities (including the magneto-

resistance) in a relativistic Weyl fluid. To this end, we argue that one must take into

account the second order correction to the energy dispersion. The reason is that this effect

itself quadratically depend on the magnetic field, so the second order correction which is

itself quadratic in the magnetic field unavoidably contributes to it. However, due to the

form of the correction, some infrared divergences appear in the computations. By proposing

a scheme for regulating the divergences, we will analytically perform the computations in

the limit µ ≫ T . While to first order in corrections, the thermodynamics of the system

is not influenced, the second order correction turns out to have non-trivial effects on it.

Specifically, we will discuss how one can compute the magnetoresistance in the system just

by knowing the enthalpy density in equilibrium.

Recently, the observation of a positive longitudinal magnetothermoelectric conduc-

tance in the Weyl semimetal NbP has been realized as the sign for the presence of the

mixed gauge-gravitational anomaly in the condensed matter [23]. Following this obser-

vation and to explore the effect through the chiral kinetic theory, we couple our system

to a background temperature gradient and compute the thermoelectric coefficient as well.

Using the linear response method, we then read the conductivities in the system under the

relaxation time approximation. We consider that the dissipation effectively occurs at time

1The mixed gauge gravitational anomaly has been realized as the origin for some interesting transport

phenomena both in high energy and condensed matter physics [12–16].
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scale τ .2 Analogous to what was found in Weyl semimetal, we observe the positive lon-

gitudinal conductivity in the relativistic Weyl fluid. Then by computing the heat current

we confirm the validity of the Onsager reciprocal relation. We also compute the thermal

conductivity coefficient.

The interesting point with our results in the kinetic theory is that the value of each

conductivity, e.g. the electric conductivity, turns out to be 6.25% less than its value in

the absence of quantum correction of the energy dispersion. Since the energy correction

is related to the side-jump, this simply shows that due to the side-jump effect, the time

between the successive scatterings in the system may decrease on average.

On the other hand, the same decrease in the value of all conductivities suggests that

there might be some linear relations between them. In a 2 + 1 dimensional (non-chiral)

system, it has been shown that the latter actually happens. Using the Ward identities, the

authors of [24, 25] find a set of relations between the electrical conductivity σ, thermoelec-

tric α and thermal conductivity κ coefficients.

In order to find the probable relations between conductivities in the anomalous system

we do as the following. Considering the standard inflow mechanism [8, 27], we first specify a

generating functional which generates the stress tensor and charge current, in the presence

of the anomalies. In a system which is covariant under gauge and diffeomorphism variations,

the charge current and stress tensor are uniquely defined from the covariant generating

functional of the system. In our case, however, due to presence of the anomalies, one

can choose whether to work with “consistent” or “covariant” currents [28]. By coupling

the system to an external weak electric field and a weak background thermal gradient, we

identify the “covariant current” as the one which responds to the electric field3 and specify

the form of the heat current as well. We then derive a set of Ward identities between

one- and two-point functions of the covariant current and covariant stress tensor at zero

momentum limit k → 0. Using them, we would find two constraint equations between

the transport coefficients like those of [24, 25]. As a check of our computations in kinetic

theory, we will show that the associated conductivities obey the constraints obtained from

the Ward identities.

This consistency check shows more clearly the importance of the second order correc-

tions coming from the chiral kinetic theory. It is not hard to show that without considering

them, the constraints between conductivities will no longer be satisfied.

Finally, as the last evidence in favor of our results in this paper we compare them with

those obtained from the covariant hydrodynamic model of Weyl semimetals developed

in [26]. While the model developed in [26] is suitable for more general cases, in one special

case, its authors have applied their results to a system of weakly interacting Weyl gas

2The DC transport in this case is like that of a Weyl semimetal. In a Weyl semimetal, in the regime that

intervalley scattering time τinter is much larger than the intravalley scattering time τintra (τinter ≫ τintra),

the dissipation of momentum, energy and charge all are characterized with τinter. This is due to the fact

that the electron mean free path τmfp is essentially of the order of τintra and in the intervals of the order

t ∼ τinter ≫ τmfp the system is locally thermamilzed and therefore the transport occurs just through the

anomaly effects [19].
3Let us denote that in contrast to this rigorous statement, most of the computations in the ccontext of

the transport are performed by using the “consistent” current and stress tensor.
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with weak intervalley scattering. They have then found two constraint equations between

magneto-conductivities. We show that our conductivities obey the constraints obtained in

the mentioned paper. This consistency suggests another approach to derive the magneto

electrical resistivity in our system. To this end, by comparing the constraints obtained from

Ward identities with those obtained in [26], we will be able to find the electrical resistivity

from a first order differential equation, once the charge density in equilibrium is given.

In the rest of the paper we do as it follows. In next section (section 2), we first derive

the second order correction imposed by the side-jump effect in the kinetic theory. Using

that, we then compute the stress tensor components as well as the charge density. We

compute the magneto-conductivities in the µ ≫ T limit. We end the section by comparing

the results with those of a Weyl semimetal. In section 3 we first introduce the generating

functional which generates the stress tensor and charge current in the presence of both

chiral and mixed guage-gravitational anomalies. Then by deriving the associated Ward

identities in the limit k → 0, we find two constraints between the magneto-conductivities

coefficients. We end in section 4 with concluding and giving some future directions.

2 Transport in chiral kinetic theory

In what follows we consider an ensemble of right-handed chiral fermions. Due to charge

conjugation, we have to consider the anti particles as well. The latter are the left-handed

chiral fermions with opposite charge. The kinetic equation for the above two species of

particles is given by

∂n
(e)
p

∂t
+ ẋ · ∂n

(e)
p

∂x
+ ṗ · ∂n

(e)
p

∂p
= Icoll{n(e)

p }, (2.1)

where from chiral kinetic theory we may write [18]

√
Gẋ =

∂ǫp
∂p

+ eE×Ωp + eB

(

∂ǫp
∂p

· Ωp

)

, (2.2)

√
Gṗ = eE+ e

∂ǫp
∂p

×B+ e2 Ωp (E · B) , (2.3)

with G = (1 + eB ·Ωp)
2 and

ǫ(p) = p− λ e
B · p
p2

, Ωp = sgn(e)λ
p̂

p2
. (2.4)

In the expressions given above λ = ±1/2 is the helicity associated with the right- and

left-handed particles. In the following we will be interested in the case in which the system

is coupled to an external magnetic field in equilibrium. In the subsequent subsections, we

would like to study the magneto-transport in the framework of chiral kinetic theory.

2.1 Relativistic corrections to energy dispersion of Weyl particles

Relativistic invariance in a physical system forces the energy-momentum tensor of the

system to be symmetric in every arbitrary Lorentz frame. Let us consider the rest frame
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of the system which is in our present case is the laboratory frame as well. The above

statement then says that the energy flux density T i0 must be equal to the momentum

density T 0i in this frame. In what follows we first derive the corresponding expression for

these two objects. Let us rewrite the energy density as

T 00 ≡ ǫ =

∫

d3p

(2π)3

√
G ǫ(p)np. (2.5)

Then we multiply equation (2.1) by
√
Gǫ(p) and afterwards, integrate over p. Since

√
Gǫ(p)

is a collision-invariant object, the integral of the right-hand-side of the kinetic equation van-

ishes, when summing over particles and anti-particle contributions [29]. Considering (2.5),

the integrated equation then takes the form ∂tT
00 + ∂iT

i0 = Eiji with the following ex-

pression for the energy flux density

T i0 = −
∫

d3p

(2π)3

[

(δij + eBiΩj)
ǫ2
p

2

∂np

∂pj
+ ǫijk

ǫ2
p

2
Ωj ∂np

∂xk

]

. (2.6)

On the other hand, analogous to what is defined in the classical kinetic theory, the mo-

mentum density can be simply defined as

T 0i ≡ πi =

∫

d3p

(2π)3

√
G p̃i np. (2.7)

Here p̃i = pi − sgn(e) λ
2 ǫijkpj∂k is the modified momentum in phase space [30]. In our

case however, the system is non-rotational and so in both the formula of p̃ and (2.6) the

spacial partial derivative, namely ∂k, vanishes in the equilibrium. Now by equating (2.6)

with (2.7) and integrating by part in (2.6), we arrive at

T 0i = T i0 → (δij + eBiΩj
p
)ǫ(p)

∂ǫ(p)

∂pj
= (1 + eB ·Ωp)p

i. (2.8)

As shown in [21], the above Lorentz invariance condition implies that the energy dispersion

of particles in phase space gets correction due to spin-magnetic coupling. In the men-

tioned paper, the corresponding correction has been found to first order in the magnetic

field. According to our discussion in the introduction, in order to compute the magneto-

conductivities, we have to find the second order correction to the energy dispersion as well.

To this end, we take the following ansatz

ǫ(p) = p + γ1(p)B · p+ γ2(p) (B · p)2. (2.9)

To find the two unknown functions γ1(p) and γ2(p), we insert the above ansatz in the

equation (2.8) which leads to the two following equation

F (p) (B · p)2p̂i + G(p) (B · p) Bi = 0 (2.10)

with F and G being as the following

F (p) = pγ′2(p) + γ2(p) + γ1(p)γ
′
1(p) (2.11)

G(p) = 2γ2(p) +
1

p2
γ1(p) +

1

2p
γ′1(p) + γ1(p)

2. (2.12)
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Since B is independent of p, for (2.10) to be held, it is needed both F and G functions

vanish identically. Solving the coupled differential equations, we obtain4

γ1(p) = − e

2p2
, γ2(p) = − e2

8p5
. (2.13)

While γ1(p) was already found in [21], the γ2(p) is our first new result in the current

paper. We will make clear the importance of such corrections in the next subsections,

when computing the conductivities in a Weyl fluid.

2.2 The effect of the quantum corrections on thermodynamics

In this subsection, using the modified energy dispersion of Weyl particles, we compute some

thermodynamic quantities in a thermal system of such particles, in the presence of a weak

background magnetic field. The equilibrium distribution function for fermionic particles

and anti-particles is simply given by

ñ
(e)
p =

1

eβ(ǫ(p)− êµ) + 1
, (2.14)

where ê denotes sgn(e) = ±1 corresponding to particles and anti-particles, respectively.

As we found in previous subsection, the energy dispersion, ǫ(p), to second order in the

quantum corrections is given by

ǫ(p) = p− e
B · p
2p2

− e2
(B · p)2
8p5

. (2.15)

To perturbativley perform the computations, we expanded the equilibrium distribution

function to the same order

ñ
(e)
p = ñ

(e)
p

∣

∣

ǫ(p)=p
−
(

e
B · p
2p2

+ e2
(B · p)2
8p5

)

∂ñ
(e)
p

∂ǫ

∣

∣

∣

∣

∣

ǫ(p)=p

+ e2
(B · p)2
4p4

∂2ñ
(e)
p

∂ǫ2

∣

∣

∣

∣

∣

ǫ(p)=p

.

(2.16)

We use the above distribution function to compute the thermodynamic quantities.

Let us start by computing the anomalous currents equilibrium. It is well-known that in

a chiral fluid, there are energy and charge currents in the equilibrium. These current are

purely anomalous and in a fermionic system, they will no longer flow if the Dirac equation

has no zero modes [31]. Taking (2.16), we can simply compute the energy and charge

currents in the direction of magnetic field in a fermionic system with massless fermions.

The coefficients, as one expects, are the anomalous transport coefficients in the Laboratory

frame [32], namely

J =
∑

e

∫

p

e
√
G ẋ ñ

(e)
p → σB =

J‖

eB
=

eµ

4π2
, (2.17)

T 0i =
∑

e

∫

p

√
G pi n

(e)
p → σǫ

B =
T 0‖

eB
=

(

1

3
+

2

3

)(

µ2

8π2
+

T 2

24

)

. (2.18)

4We work in the relativistic system of units with ~ = c = 1.
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Here sum is over particle and anti-particle contributions. The integral
∫

p
= d3p

(2π)3
is per-

formed over the allowed regions in the momentum space (see below). The splitting of the

fractional factors in front of σǫ
B has been made for the following clarification. If one took

the energy dispersion simply as ǫ(p) = p, he would obtain just 1/3 of the total energy

current. The additional 2/3 contribution comes from the first order correction in (2.15).

The same situation was found for the coefficient of the chiral vortical effect in a rotating

system of chiral fermions [22]. Let us denote that up the third order in the magnetic field,

the second order correction in (2.15) does not contribute either to σB or to σǫ
B.

One important place wherein the second order correction of the energy dispersion

(given in (2.15)) makes a non-trivial role is the diagonal components of the energy momen-

tum tensor Tµν . Let us follow the issue by computing the T 00 component. The energy

density in equilibrium is given by

T 00 ≡ ǫ =
∑

e

∫

p

√
G ǫ(p) ñ

(e)
p (2.19)

=

∫ +∞

0

dp

2π2

1

1 + eβ(p−µ)

[

p3 − e2B2

8p
+

e2B2

24T 2

eβ(p−µ)(T + p) + e2β(p−µ)(T − p)

(1 + eβ(p−µ))2

]

.

Due to presence of the 1/p5 term in (2.16), the integral in (2.19) is obviously IR divergent.

(See the second term in the brackets.) In fact, what may remove the divergence is that

the magnitude of the momentum in the phase space has to be bounded from below. Let

us recall that in order to put the chiral fermions in the framework of the kinetic theory,

we have already assumed that the value of the background magnetic field to be such small

that the particles move on classical trajectories [18]. For the latter to be acquired, the

necessary condition is
√
eB ≪ p which simply states that the momentum integrals have

to be regularized by considering an IR cut-off ∆B . p. Let us recall that according to

expansion given by (2.16), we perform the computations perturbatively, in powers of B.

Our scheme is to treat with the non-magnetic parts of the integrals differently compared

to the magnetic parts which come from the interaction of the Berry flux with fermions.

For the former in µ ≫ T limit, we consider the quasi-particles with all momenta inside

the Fermi sphere while for the latter, we restrict the computations to be performed for the

quasi-particles with momenta higher than the cut-off inside the sphere. (See figure 1.) The

scheme is basically originated from the derivation of the chiral kinetic theory in [18]. It

turns out that this scheme leads to physical results.

Since the cut-off arises due to the magnetic field, in T ≪ µ limit then it is reasonable

to take the cut-off as being of the order
√
eB ≪ ∆B ≪ T . Therefore, the order of scales

may be written as √
eB ≪ ∆B ≪ T ≪ µ. (2.20)

This is also in complete correspondence with the hydrodynamic limit, which we arrive at

later on. Under the above considerations we find

T 00 ≡ ǫ = T 4

(

µ4

8π2T 4
+

µ2

4T 2
+

7π2

120

)

+
e2B2

24π2
−
(

log
µ

∆B
− π2

6

T 2

µ2
+ O

(

T 4

µ4

))

e2B2

16π2

(2.21)

– 7 –



J
H
E
P
0
3
(
2
0
1
9
)
0
5
1

py

pz

px

∆B ≪ T
CKT

QM

pF ∼ µ

Figure 1. In the low temperature limit T ≪ µ, the quasi-particles occupy the states inside the

Fermi sphere. When considering the interaction with Berry monopole located at the origin, the

states within the inner sphere with radius |p| = ∆B are excluded. In this region, the quantum

mechanical effects are dominant. The outer sphere shows the Fermi surface in the limit µ ≫ T .

While the kinetic theory works for |p| . µ, chiral kinetic theory is a valid picture in the range

∆B . |p| . µ.

where the term including ∆B appears to cancel out the contribution of the excluded region

in figure 1. (See appendix A for details.) However, the log term is comparable with the

leading correction. We will see in the following that this dependence on the cut-off will

vanish in the enthalpy density and so do happen in all the conductivities.

Before proceeding to compute the other diagonal components of the stress tensor, let

us first consider the thermodynamic pressure. From the equilibrium partition function and

by using the method developed in appendix A we find

p = T
∑

e

∫

p

√
G log

(

1+ e−β(ǫ(p)− µ)
)

(2.22)

=

∫ +∞

0

dp

2π2
p2T log(1+e−β(p−µ))+

∫ +∞

∆

dp

2π2

[

e2B2

8p

1

1+eβ(p−µ)
+
e2B2

24T

eβ(p−µ)

(1+eβ(p−µ))2

]

= T 4

(

µ4

24π2T 4
+

µ2

12T 2
+
7π2

360

)

+
e2B2

48π2
+

(

log
µ

∆B
−π2

6

T 2

µ2
+O

(

T 2

µ2

))

e2B2

16π2
.

Interestingly, while both energy density and pressure get logarithmic correction in the

presence of the magnetic field, the sum of them, namely the enthalpy density, reads

w = ǫ+ p = T 4

(

µ4

6π2T 4
+

µ2

3T 2
+

7π2

90

)

+
e2B2

16π2

(

1 +O

(

T 5

µ5

))

. (2.23)

Note that in all expressions given above (and also those that come below in the current

subsection), we give each quantity, like the energy density, pressure and. . . , as the sum of

two parts; the first part is the exact form of the quantity in the absence of the magnetic

field; the second part reads the quadratic quantum correction of the magnetic field to the

– 8 –
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quantity in the limit T ≪ µ. This is the regime in which the computations are analytically

performed. Interestingly, (2.20) insures that all terms in the first part of each quantity are

leading compared to the second part terms. So, we keep all the first part contributions

without truncating them in the T
µ
expansion.

Let us now turn back to the computation of the spacial diagonal components of the

stress tensor. In a magnetic system, one naturally expects to see difference between the

value of the diagonal components of the stress tensor in the direction of the magnetic

field compared to those of the transverse directions. To make the difference clear, we now

compute the diagonal components of the stress tensor. In a non-rotating equilibrium state,

like the one under study in the current paper, we may write [21]

T ij = −
∑

e

∫

p

pi

(

ǫ(p)(δjk + eBjΩk)
∂ñ

(e)
p

∂pk
+ eǫjkl ΩkEl ñ

(e)
p

)

− δijǫ.

Considering the magnetic field being in the 3-direction, T 33 turns out to be exactly equal

to the thermodynamic pressure obtained from the partition function (2.22) and T 22 = T 11

reads

T 22 = T 11 =
1

3T

∫ +∞

0

dp

2π2

p4 eβ(p−µ)

(1+eβ(p−µ))2
(2.24)

+
e2B2

120T 3

∫ +∞

∆

dp

2π2

p eβ(p−µ)

(1+eβ(p−µ))3

[

p
(eβ(p−µ)−1)2−2eβ(p−µ)

1+eβ(p−µ)
+3T (eβ(p−µ)−1)

]

.

Performing the above integrals one finds

T 11 = T 22 = T 33 − e2B2

24π2
= p− e2B2

24π2
. (2.25)

Another thermodynamic quantity which is influenced by the second order correction

of energy dispersion is the charge density

n =
∑

e

∫

p

e ñ
(e)
p =

∫ ∞

0

1

2π2

p2

1+eβ(p−µ)
+

e2B2

24T 2

∫ ∞

∆

1

2π2

[

3T

p

eβ(p−µ)

(1+eβ(p−µ))2
+
eβ(p−µ)(eβ(p−µ)−1)

(1+eβ(p−µ))3

]

= T 3

(

µ3

6π2T 3
+

µ

6T

)

+
e2B2

16π2µ

(

1+
π2T 2

3µ2
+O

(

T 4

µ4

))

.

(2.26)

As before, the last term can be drooped. One can also simply check that this relation might

be obtained via n =
(

∂p/∂µ
)

T
by using (2.22). The appearance of the B2 contributions in

the thermodynamic quantities associated with Weyl fermions, although observed as a new

result in the current paper, is not surprising. The quasi-particles in the system are weakly

interacting with the magnetic field and consequently the system becomes magnetized. The

situation is similar to what is studied in the magnetohydrodynamics [33]. We come back

to this point in the next subsection.
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Before ending this subsection, let us make a point about the entropy density in equi-

librium. Considering the thermodynamic relation ǫ + p = Ts + µn and by using the

thermodynamic quantities found above, we arrive at

s = T 3

(

7π2

90
+

µ2

6T 2

)

− e2B2T

24π2µ2

(

1 +O

(

T 2

µ2

))

(2.27)

which simply shows that the presence of magnetic field has decreased the entropy density in

the system. The same situation was observed in a strongly coupled system before. In [34],

it has been shown that in a N = 4 SYM gauge theory, the presence of magnetic field

reduces the entropy density. It suggests that the decrease in the entropy density due to

the magnetic effects might be a universal behavior in chiral systems.

2.3 More about the thermodynamics of the system: a physical prediction

In the previous subsection in the framework of kinetic theory, we computed the thermody-

namic quantities of the system of free massless fermions with considering the second order

quantum corrections. In order for the chiral kinetic theory be applicable, we demanded the

magnetic field be sufficiently weak, eB ≪ T 2. In the language of magneto-thermodynamics

developed in [33] our system is described by the following free energy density

F = p(T, µ,B2) + O(∂3). (2.28)

While in [33] with the assumption B ∼ O(1) the free energy p(T, µ,B2) would be a zero

derivative object, in our construction it is in fact as a corrected quantity to second order in

derivatives. Interestingly as we showed, this is exactly the order to which we have to keep

terms to study the magneto-transport. The stress tensor and charge current in equilibrium

are given by

Tµν = (ǫ+ Π)uµuν +Π ηµν + αBB

(

BµBν − 1

3
∆µνB2

)

, Jµ = nuµ (2.29)

with Π = p − 2
3αBBB

2. Here ǫ, p, αBB and n are functions of (T, µ,B2) in general.

αBB(T, µ,B
2) is the magnetic susceptibility. In the above expressions, uµ is the velocity

of the rest frame of the equilibrium state and Bµ is the magnetic field in the rest frame.

Using the definition ∆µν = ηµν + uµuν , equation (2.29) is rewritten as

Tµν =
(

ǫ+ p− αBBB
2
)

uµuν +
(

p− αBBB
2
)

ηµν + αBBB
µBν . (2.30)

Then by taking uµ = (1, 0, 0, 0) and Bµ = (0, 0, 0,B), one obtains T 00 = ǫ and T 33 = p.

The energy and pressure satisfy the following relations

ǫ+ p = T (∂p/∂T )µ + µ(∂p/∂µ)T (2.31)

and n = (∂p/∂µ)T . Now as an example we consider the thermodynamics of the free

fermionic system studied in the previous subsection. The mentioned system could be re-

garded as the magneto-thermodynamic state given above, however, with a special equation

of state and consequently with a specific αBB. In the following we discuss on two points in

– 10 –
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this system. First, we physically motivate that the B2 dependence of the enthalpy density

is in relation with the longitudinal magneto-conductivity. Then by constructing a covariant

formula for αBB, we find its value for our system.

Taking ǫ and p as given by (2.19) and (2.22), one can simply check that the rela-

tion (2.31) identically holds. This can be regarded as a check for our thermodynamic

computations. There is another point, however, with the B2-dependent in (2.23). This

term has a nice relation with the electrical conductivity. We follow the interesting discus-

sion on “chiral battery” in [35] and explain the relation in the following.

Let us consider the system in the magnetic field B and at a chiral chemical potential

µ. As shown in (2.17), the magnetic field induces an electric current in the chiral system

J‖ = e2µB/4π2. This is in fact the statement of chiral magnetic effect. On the other hand

if the conductivity of system is finite,5 say σ = ρ−1 with ρ being the resistivity, according

to the Ohm’s law this current induces potential difference between the points, V ‖ = ρ J‖.

Since existence of potential difference is equivalent to having an electric field E, one expects

this field together with B, turn on the axial anomaly and decrease the density of chiral

charges. Due to this anomalous non-conservation of chiral charges, the corresponding

chemical potential, namely µ, will no longer be constant. Let us take the time scale over

which the chiral chemical potential approaches zero as τ . If τ is much larger than all

microscopic time scales,6 then the rate of change of µ can be taken as constant being equal

µ/τ (up to corrections of order 1/τ2). This is nothing but the electric field E discussed

above, so we can write eE = µ/τ .7 Considering the electrical conductivity as σL, the mean

heat power produced in the system then would be J · E = (σLE)E = σLµ
2/e2τ2.8 Thus

the amount of heat produced in the time τ , is (J · E)τ = σL µ2/e2τ . When the pressure is

constant, this heat is equivalent to the enthalpy density and gives rise to the B2-dependent

term in it. Considering (2.23), one writes

σL
µ2

e2τ
=

e2B2

16π2
→ σL =

τe4B2

16π2µ2
. (2.32)

This is an interesting result about the magneto-conductivity, or inversely about the negative

magnetoresistivity, which we obtained from thermodynamic arguments. In next subsec-

tions, we confirm this physical discussion via studying the linear response of the system to

an external electric field.

Let us now compute the magnetic susceptibility αBB. We can take the longitudinal and

transverse pressure, respectively as p‖ = p and p⊥ = p−MBwhere the magnetization vector

is defined by M = αBBB [36]. It is obvious that the magnetic susceptibility represents the

relative difference between p‖ and p⊥. To find a covariant formula for αBB one can find

5A finite conductivity is always the sign for the presence of a microscopic scattering mechanism in the

system. In the case of WSM, the latter may be related to inter-valley scattering in the momentum space [19].
6This is our basic assumption in the whole of this paper.
7Let us recall that the electric field induced due to the change in temperature and chemical potential is

given by eE = T∇(µ/T ) [26]. When temperature is constants, it simplifies to eE = ∇µ.
8The chiral magnetic effect current gradually decreases due to non-conversation of chiral chemical po-

tential µ. Its mean value, namely J , is the response to the constant electric field E as J = σLE.
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two operators acting on (2.30) that project out the transverse and longitudinal pressures

p = p‖ = bµbν T
µν (2.33)

p−MB = p⊥ =
1

2
(bµbν −∆µν)T

µν (2.34)

where bµ = Bµ/B.9 As a result we find

αBB B2 =
1

2
(3 bµbν −∆µν)T

µν . (2.35)

Applying the above formula to the equilibrium state given below (2.30) and by using (2.22)

and (2.25), the susceptibility in the system of free massless fermions turns out to be as the

following

αBB =
e2

24π2
. (2.36)

In summary, in this subsection we explained how to describe the thermodynamics of the

system of free massless fermions in the framework of magneto-thermodynamics developed

in [33]. As an example to general arguments of the latter reference we showed that in our

fermionic system, the B2-dependent of the enthalpy density is related to the longitudinal

electrical conductivity (2.32). We also explicitly computed the magnetic susceptibility in

the system (2.36).

2.4 Dynamics towards equilibrium

Let us suppose in a system of non-interacting Weyl fermions, the dissipating dynamics

towards equilibrium is governed by a relaxation time approximation with parameter τ

∂n
(e)
p

∂t
+ ẋ · ∂n

(e)
p

∂x
+ ṗ · ∂n

(e)
p

∂p
= −n

(e)
p − ñ

(e)
p

τ
. (2.37)

We are interested in a steady state case, i.e. ω = 0, wherein, the system is homogeneous as

well. Under such considerations and in the presence of a weak magnetic field B ≪ T 2,10

we use linear response theory to study the response of the system a probe electric field.

So (2.37) can be written in the following linearized form

1√
G

(

eE+ e2Ωp (E ·B)
)

· ∂ñ
(e)
p

∂p
= −n

(e)
p − ñ

(e)
p

τ
≡ −δn

(ǫ)
p

τ
. (2.38)

Let us denote that ñ
(e)
p is the equilibrium distribution function, while n

(e)
p is the linear

response of the system to the electric field fluctuation E.

In the present case where the system is assumed to be uniform and time independent,

δn
(e)
p = n

(e)
p − ñ

(e)
p in the r.h.s. of (2.38) can be written in terms of the hydrodynamic

variables. In the simple case with just one single chirality in the system, the hydrodynamical

9It should be noted that BµBµ = B2 and B = |B|.
10In this paper, we consider a low temperature system of chiral fermions, i.e. T ≪ µ.
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variables are the three components of fluid velocity uµ, temperature T and the chiral

chemical potential µ. One may write

∂n
(e)
p

∂T
δT +

∂n
(e)
p

∂µ
δµ+

∂n
(e)
p

∂u
· δu = − τ√

G

(

eE+ e2Ωp (E ·B)
)

· ∂ñ
(e)
p

∂p
. (2.39)

By computing the moments of this equation then one finds the conservation equations for

energy, momentum and charge in the hydrodynamic regime.

What we are going to do in the following is a little different from this point of view. We

get δn
(ǫ)
p from (2.38) without entering any hydrodynamic variable. Using this, we compute

the thermal and electrical conductivities in the system.

2.5 Transport from chiral kinetic theory

In the presence of a background magnetic field we couple the system to weak electric field

together with a weak temperature gradient. Then we compute the electric current as well

as heat current. They take the following form:

Je = σE+ Tα1

(

−∇T

T

)

, (2.40)

J th = Tα2E+ Tκ

(

−∇T

T

)

. (2.41)

In the relation above, σ is the electrical conductivity and κ is the thermal conductivity

coefficient. The other coefficient, namely α1 = α2, is the thermoelectric effect coefficient

which is related to induction of an electric (or thermal) current as the response to the

presence of a temperature gradient (or electric field) in the system. In what follows for

simplicity we get ζ ≡ −∇T/T .

Since the temperature is being assumed to have a gradient in the system, it has to

be well-defined as well in the whole of the system. This means that its variation should

be such long-wavelength that one can locally define the temperature at each point in the

system. This is simply acquired in the hydrodynamic limit. So in order to enter the

background temperature gradient, we limit the following discussion to a special case in

which the equilibrium configuration of the system is a zero order hydrodynamic profile.

The out of equilibrium distribution function is then given by

n
(e)
p = ñ

(e)
p (x) + δn

(e)
p =

1

eβ(x)(ǫ(p)−êµ) + 1
+ δn

(e)
p . (2.42)

Let us recall that we would like to study the response of the system with respect to the

two external sources; first the external electric field which appears in δn
(e)
p in the equation

above. Second, a source of temperature gradient which comes with the gradient of ñ
(e)
p (x).

Let us elaborate on the latter. One may expand ñ
(e)
p around equilibrium state whose

temperature is constant T = 1/β. We obtain

ñ
(e)
p (x) = ñ

(e)
p +

∂ñ
(e)
p

∂T
x ·∇T = ñ

(e)
p +

(

ǫ(p)− êµ
)∂ñ

(e)
p

∂p
x · ζ . (2.43)
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The explicit dependence on x will vanish once one finds
∂n

(e)
p

∂x
in (2.37). In order to use the

linear response theory in the presence of the above-mentioned sources, it is required that

∇β ñ
(e)
p ∼ β2 E ñ

(e)
p ∼ δn

(e)
p ≪ n

(e)
p . (2.44)

Now, substituting (2.42) (with (2.43)) into (2.37), we get new contributions from the second

term of (2.37) in the l.h.s., even in the steady and uniform case. One writes

δn
(e)
p = − τ√

G

[(

eE·vp+e2(Ωp·vp)E·B
)

+(ǫ(p)−êµ)
(

ζ·vp+e(Ωp·vp) ζ·B
)] ∂ñ

(e)
p

∂p
(2.45)

with the group velocity of the quasi particles being as vp = ∂ǫ
∂p

. Having found the deviation

from the equilibrium, in the two following parts in this section, we compute the electric

and thermoelectric conductivities.

We first neglect the temperature gradient in the system and consider only the response

of the system to the external electric source. According to (2.38), the deviation from

equilibrium has two parts; first the Ohm contribution δn
(e)
O , which is simply due to work

done on the charged particles in the system by the electric field. The second, δn
(e)
A is due

to the anomaly. One may write

δn
(e)
p = δn

(e)
O + δn

(e)
A = − τe√

G
E · vp

∂ñ
(e)
p

∂p
− τe2√

G
(Ωp · vp)E ·B ∂ñ

(e)
p

∂p
. (2.46)

Considering (2.17), we multiply (2.46) with e
√
Gẋ and then integrate over the momentum

space. To proceed, it is also needed to use (2.2). For clarifying, in the following, we bring

the detailed computations in this case. The electric current parallel to the magnetic field,

linearized in E is given by

J‖
e = −

∑

e

∫

p

τ e2 ẋ‖

(

E · vp + e (Ωp · vp)E ·B
) ∂ñ

(e)
p

∂p

=
τe2

3T

∫ ∞

0

dp

2π2
p2

eβ(p−µ)

(1 + eβ(p−µ))2
E +

τe2

10T

∫ ∞

∆

dp

2π2

1

p2
eβ(p−µ)

(1 + eβ(p−µ))2
e2B2E

+
τe2

40T 3

∫ ∞

∆

dp

2π2

e4β(p−µ) − 4e3β(p−µ) + e2β(p−µ)

(1 + eβ(p−µ))4
e2B2E

+
τe2

6T

∫ ∞

∆

dp

2π2

1

p2
eβ(p−µ)

(1 + eβ(p−µ))2
e2B2E +

τe2

12T 2

∫ ∞

∆

dp

2π2

1

p

e2β(p−µ) − eβ(p−µ)

(1 + eβ(p−µ))3
e2B2E

=
τe2

3

(

µ2

2π2
+

T 2

6
+

e2B2

16π2µ2
+

e2B2 T 2

16µ4

)

E +
τe2

3

(

e2B2

8π2µ2
+

e2B2 T 2

8µ4

)

E. (2.47)

Let us briefly explain the nature of the different contributions appearing above. In the

first line, the first term in parentheses is due the work done on the charged particles by

the electric field (∼ E · vp) to move them along an effective trajectory with velocity vp.

The integrals in the second and third lines correspond to this term. The second term in

the parentheses of the first line, which corresponds to the integrals in the fourth line, is
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purely originated from the anomaly (∼ E · B). Finally in the fourth line we have split

the contributions of Ohm and anomaly transport, receptively. (See appendix B for more

details.) Let us also denote that in writing the lower band of integrals we have considered

the scheme introduced below (2.19).

Collecting all contributions together, the longitudinal electrical conductivity σL in the

low temperature limit is given by:

σL =
J
‖
e

E
=

e2τ

3

(

µ2

2π2
+

T 2

6

)

+ e2τ
e2B2

16π2µ2

(

1 +
π2T 2

µ2
+O

(

T 4

µ4

))

. (2.48)

The first parentheses in this formula is basically the ordinary electrical conductivity in a

system of massless spin-12 particles in the absence of magnetic field [37]. In a kinetic system

of such particles with ǫ(p) = p and under the RTA approximation, the conductivity is given

by [38]

σ =
τ

3
χ =

τ

3

∂n

∂µ
. (2.49)

In the system under the consideration in this paper, the above formula can simply be

evaluated via using (2.26). While by neglecting the anomaly corrections in (2.26) we

obtain exactly the first parentheses in (2.48), the magnetic corrections of σL cannot be

found by the formula (2.49). This simply shows that our system, when is coupled to the

magnetic field, will no longer behave conformally.11 It would be interesting to investigate

more on this issue in the framework of the quantum kinetic theory [39, 40].

Another important point with (2.48) is the positive sign of the correction term. This

is sometimes referred to as the Negative Magneto Resistivity, NMR, (or positive magneto

conductivity) [19, 20]. The quadratic dependence of the NMR on the magnetic field was

first found in the context of chiral kinetic theory in [19] for the Weyl semimetal. Compared

to [19], here, we have not only considered the necessary corrections of the energy dispersion

coming from the Lorentz invariance, but also we have taken into account all the sources

contributing to the current, either the Ohm contribution and the anomaly one. Due to the

generalizations were made here, the numerical factor in front of the B2 differs from that

of found in [19]. In section 2.7, we will carefully compare the conductivities in our case to

those of a Weyl semimetal.

Now let us consider a system in a uniform and steady state in the presence of a

background temperature gradient. According to the well-known Seebeck effect, if the

matter in equilibrium is electrically charged, i.e. n 6= 0, the charged particles flow from the

higher temperature region to the lower one, simply due to the heat current driven by the

temperature gradient.

As mentioned earlier, the temperature gradient in the present case makes a role like

what the electric field made in the previous subsection. So considering the second part

in (2.45) and multiplying it with
√
Gẋ, we compute the thermoelectric current as the

11We Thank N. Yamamoto for discussing on this point.
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following

J‖
e =

∑

e

∫

p

τ e ẋ‖
ǫ(p)− êµ

T

(

∇T · vp + e (Ωp · vp)∇T ·B
) ∂ñ

(e)
p

∂p
(2.50)

=
τe

3T

∫ ∞

0

dp

2π2
p2(p− µ)

eβ(p−µ)

(1 + eβ(p−µ))2
ζ − τe

8T

∫ ∞

∆

dp

2π2

(p− µ)

p2
eβ(p−µ)

(1 + eβ(p−µ))2
e2B2ζ .

Collecting all terms in (2.50), the longitudinal thermoelectric conductivity in the presence

of the magnetic field reads

T αL =
J
‖
e

ζ
=

eτ

9
µT 2 − eτ

e2B2T 2

24µ3

(

1 +O

(

T 2

µ2

))

. (2.51)

Again, like the conductivity formula (2.48), the first term in (2.51) is related to the non-

anomalous conformal matter [37]. The correction term with the negative sign is the

so-called positive magneto thermoelectric resistivity. Similar to what happens in a Weyl

semimetal [23], this simply shows that the anomalous effects in a Weyl fluid decrease the

thermoelectric transport.12

When energy is pumped into the system by the external sources, in addition to the elec-

tric current, a current of heat does flow in the system as well. The electric field participates

in the flowing of the heat through the Peltier effect, while the gradient of the temperature

contributes to the thermal current via ordinary thermal conduction [37]. Clearly, due to the

Onsager reciprocal relations, the coefficient of Peltier effect is equal to that of the Seebeck

effect, s. So in this subsection, in addition to the coefficient of thermal conductivity, i.e. κ,

we reproduce the previously found Seebeck coefficient as a check of the Onsager reciprocal

relation in our system.

In the kinetic theory, the thermal current is formally given by [37]:

J th =
∑

e

∫

p

√
G ẋ (ǫ(p)− êµ) δn

(e)
p . (2.52)

To evaluate it in our system, it is sufficient to multiply (2.45) with
√
Gẋ(ǫ(p) − êµ) and

then perform
∑

e

∫

p
. Let us start firstly by computing the thermal current induced by the

external electric source. One writes

J
‖
th = −

∑

e

∫

p

eτ ẋ‖ (ǫ(p)− êµ)
(

E · vp + e (Ωp · vp)E ·B
) ∂ñ

(e)
p

∂p
(2.53)

which is nothing but (2.50) by replacing the −∇T/T with E. This simply means that

α1L = α2L which is the manifestation of the Onsager reciprocal relation. The second

contribution to the heat current comes from the thermal conduction effect. One writes

J
‖
th =

∑

e

∫

p

τ ẋ‖
(ǫ(p)−êµ)2

T

(

∇T ·vp+ e (Ωp·vp)∇T ·B
) ∂ñ

(e)
p

∂p
(2.54)

=
τ

3T

∫ ∞

0

dp

2π2
p2(p−µ)2

eβ(p−µ)

(1+eβ(p−µ))2
ζ +

τ

8T

∫ ∞

∆

dp

2π2

(p−µ)2

p2
eβ(p−µ)

(1+eβ(p−µ))2
e2B2ζ .

12Compared to the coefficient GT = j
‖
e

∇T
defined in [23], our thermoelectric coefficient is given

by α1L = −GT .
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So the thermal conduction coefficient in the system may be then given as the following

T κL =
J
‖
th

ζ
=

τ(πT )2

9

(

µ2

2π2
+

7T 2

10

)

+ τT 2 e
2B2

48µ2

(

1 + O

(

T 2

µ2

))

. (2.55)

As before the first part of this relation is the thermal conductivity in the system of non-

interacting massless fermions in the absence of the magnetic field [37]. The anomalous

part, however, indicates that the chiral anomaly intensifies the thermal conduction in the

system. In analogy with NMR, This might be called as the positive thermal conductivity.

2.6 Revisiting the Wiedemann-Franz law

According to the Wiedemann-Franz law, at the low temperature limit, the Lorenz ratio

of the thermal conductivity, κ, and the electrical conductivity, σ, is constant in a Fermi

liquid [41]:

L =
κ

Tσ
=

π2

3e2
. (2.56)

To investigate whether the above relation holds in our present system, let us recall that

the regime of applicability of the kinetic theory setup in our system was given by (2.20).

On the other hand, as mentioned earlier, we are interested in the low temperature regime,

i.e. T ≪ µ, in the whole of the paper. Combining the two constraints specifies the regime

of validity of our results, i.e.
√
eB ≪ T ≪ µ. Now to check the Wiedemann-Franz law

in this regime, let us ignore about the non-anomalous parts of the conductivities and just

consider the B dependence of them:

κBL = τT 2 e
2B2

48µ2

(

1 + O

(

T 4

µ4

))

, σB
L = e2τ

e2B2

16π2µ2

(

1 +O

(

T 4

µ4

))

. (2.57)

Obviously

L =
κBL

T 2σB
L

=
π2

3e2
. (2.58)

which shows that the Wiedemann-Frans law does hold in our present regime of study for

the anomalous conductivities. Physically it means that the quasi-particles in our system

in the mentioned regime, scatter from the impurities in the fluid, elastically. We give more

comments on this point in the summary of section 4.

2.7 Side-jump and comparison with Weyl semimetals

The negative magneto resistant in a Weyl fluid was firstly computed in [19] and then more

accurately in [42]. However in both of these works the system under the study was a Weyl

semimetal without having the Lorentz symmetry on the Lattice. Due to this reason, the

authors of [19, 42] ignored the corrections of the energy dispersion given in (2.9) when

computing the electrical conductivity. In this subsection and under the same assumptions

considered in [19, 42], we find the other conductivity coefficients, namely s and κ. (See

appendix C for detailed computations.) Then by comparing them with those obtained in

section 2.5, we discuss about the physical consequence of ignoring the corrections.
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Longitudinal

Conductivity

relativistic without

quantum correction
WSM

relativistic with

quantum corrections

to second order

Electrical: σL σ = e2τ
3

e2B2

5π2µ2 v3σ 15
16σ

Thermoelectric: α1L α = − eτ
9

2e2B2T 2

5µ3 v3α 15
16α

Thermal: κL κ = π2τ
9

e2B2T
5µ2 v2κ 15

16κ

Table 1. Longitudinal conductivities in the presence of magnetic field in the limit µ ≫ T . v is the

Fermi velocity in the unit of the light velocity. We are working in the relativistic system of units

with ~ = c = 1.

In table 1 we have written the value of the magnetic-conductivities either with consid-

ering the corrections to the energy dispersion and without that in the context of relativistic

kinetic theory. We have also given the value of the same quantities for a non-relativistic

case, the Weyl semimetal case. The value of the electrical conductivity σL for a Weyl

semimetal, namely
(

v
c

)3
σ, has been previously found in [42].13 All other coefficients are

our results in the current papers.

An interesting point with the results reported in the table is that, by considering

the corrections to the energy dispersion, the value of each coefficient (given in the fourth

column) turns out to be less than its counterpart which is computed with ǫ = p dispersion

(given in the second column). More interestingly, the energy corrections leads to the

same decrease in the value of all three conductivities; each of them is 6.25% less than its

value without energy correction. This common behavior among all conductivities might

be physically explained as it follows.

As it has been shown in [22], in a system of spin-12 particles with definite helicity,

the Lorentz invariance implies a non-trivial modification in the Lorentz transformations.

The modification is so that not only ensures the conservation of the angular momentum in

the collisions, but also implies a non-locality in the collision term in the Lorentz invariant

kinetic theory, due to the side jump. Although it is always possible to find a Lorentz frame

in which the side jump in one collision does not happen,14 it is hard to think about a frame,

e.g. the laboratory frame, in which the side jump does happen in none of the collisions in the

system. Consequently, the decrease in the value of conductivities might be related to the

side-jump effect. One may conclude that side-jump in collisions has effectively decreased

the scattering time τ by 6.25%. As a result, the scatterings are happening on average in

shorter intervals than what the classical description predicts.

In the case of Weyl semimetals, the Fermi velocity is much smaller than the velocity

of light v ≪ 1; so one simply accepts that transport is weaker than that of a relativistic

Weyl fluid, either without considering the relativistic corrections or with taking them into

account.
13In this Reference, the authors have scaled the Fermi velocity to unity and so what exactly they have

written as the electrical conductivity is σ.
14Such frame is called the no-jump frame [43].
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3 Ward identities: relations between conductivities

In this section we are going to derive the set of Ward identities between one- and two-

point functions in a four dimensional theory with anomalous gauge and diffeomorphism

transformations. The Ward identities in a covariant theory can be simply derived by taking

the derivative of the generating functional of the theory with respect to the background

gauge and metric fields. Similarly, in an anomalous theory, it is convenient to consider

the desired theory as a theory living on the boundary of a one higher dimensional space

time (M5) within which, a topological theory, invariant under gauge and diffeomorphism

transformations, lives. The covariant generating functional of such theory may be written as

Wcov = W [∂M5] +

∫

M5

ICS
5 . (3.1)

where ICS
5 is the five-form Chern-Simons associated with the gauge field, metric and a

probable combination of them in five-dimensions:

ICS
5 = A ∧

[

c F ∧ F + (1− α) cmtr(R ∧R)
]

+ α cm F ∧ tr

[

Γ ∧ dΓ +
2

3
Γ ∧ Γ ∧ Γ

]

. (3.2)

Here c is the coefficient of triangle U(1)3 anomaly and cm is the mixed U(1)-gravitational

anomaly coefficient. For a four dimensional system of chiral fermions, these two coefficients

are well known [7]. α is a coefficient coming through a local gauge and diffeomorphism

non-invariant contact term; it determines how the mixed anomaly is shared between U(1)

and the gravitational transformations and clearly does not appear in non-conservation

equations of covariant energy and momentum currents (see equations (3.14) and (3.15) in

the following).

The so-called consistent stress tensor and consistent charge current in the four dimen-

sional theory (living on ∂M5) are defined by varying the generating functional W with

respect to the metric and gauge field on ∂M5, respectively

Jµ
cons =

1√−g

δW

δAµ
, Tµν

cons =
2√−g

δW

δgµν
. (3.3)

One can also define a pair of stress tensor and charge current by varying the Wcov (associ-

ated with M5) with respect to the metric and gauge field variation on ∂M5. To proceed let

us consider an arbitrary gauge and diff transformation on the four dimensional boundary

theory denoted by δλ:

δλAµ = ∂µΛ +Aν ∂µξ
ν + (∂νAµ)ξ

ν (3.4)

δλgµν = ∇µξν +∇νξµ. (3.5)

Under such transformations, the covariant generating function formally transforms as

δλWcov = δλW+ δλ

∫

M5

ICS
5

= δλW +

∫

∂M5

d4x
√−g

{

Pµ
BZ δλAµ+

1

2
Pµν
BZ δλgµν

}

+

∫

M5

(· · · ) (3.6)

=

∫

∂M5

d4x
√−g

{

(

Jµ
cons+Pµ

BZ

)

δλAµ+
1

2

(

Tµν
cons+Pµν

BZ

)

δλgµν

}

+ inflow contribution.
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In above, Pµ
BZ and Pµν

BZ are the Bardeen-Zumino polynomials constructed out of the Chern-

Simons generating functional [28]. These terms appear in the variation of the Chern-Simons

five-form on the boundary. Note that the bulk variation of the Chern-Simons term, namely

the last term in the second line, vanishes in the bulk but induces an anomaly inflow ; a flow

of conserved currents from bulk to the boundary. The inflow contribution is given by [10]
∫

M5

d5x
√−g5

(

JaδAa +∇cL
abcδgab

)

(3.7)

where Latin indices run over four dimensional boundary theory coordinates as well as ⊥,

the fifth coordinate of M5. Let us note that while all terms in the last line of (3.6) depend

explicitly on either ∂µΛ or ∂µξν , the inflow contribution includes terms just depending

explicitly on the parameters Λ and ξµ, and not on their derivatives. So in order to factorize

Λ and ξµ from the integrand, just the non-inflow contributions in (3.6) need to be integrated

by part. As a result, keeping the inflow contribution aside, one may define the following

so-called covariant stress tensor and covariant charge current (given in (3.3))

Jµ
cov =

1√−g

δWcov

δAµ
= Jµ

cons + Pµ
BZ

Tµν
cov =

2√−g

δWcov

δgµν
= Tµν

cons + Pµν
BZ.

(3.8)

These currents covariantly transform under gauge and diff transformations. Using the

explicit expressions of the inflow contribution given in [7], the variation of the generating

functional (3.6) can be simply rewritten in terms of the covrainat objects

δλWcov =

∫

∂M5

d4x
√−g

{

Jµ
cov δλAµ +

1

2
Tµν
cov δλgµν + ΛJ⊥ + ξµ∇νL

⊥µν

}

(3.9)

where [10]15

J⊥ =
1

4
ǫµναβ

(

3cFµνFαβ + cmRλ
καβR

κ
λαβ

)

, (3.10)

L⊥µν =
1

2
cm ǫκσαβFκσR

µν
αβ . (3.11)

Since the five dimensional theory is by construction invariant under any gauge and diff

transformations, including those just acting on its four dimensional boundary theory, one

can derive the anomaly equations as the following [7]. In order to obtain the Ward identities

between the two-point functions we would rather working with the following two modified

currents:

〈J µ(x)〉 = √−g 〈Jµ
cov(x)〉 =

δW [A, g]

δAµ(x)
(3.12)

〈T µν(x)〉 = √−g 〈T µν
cov(x)〉 = 2

δW [A, g]

δgµν(x)
. (3.13)

15The superscript ⊥ points out to the direction of the fifth dimension which is perpendicular to the field

theory coordinates.
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After performing computations, we find that the anomaly equations can be rewritten in

terms of the modified currents as the following

∂µJ µ =
1

4

√−g ǫαβρλ
[

3c FαβFρλ + cmRν
καβR

κ
νρλ

]

(3.14)

∂µT µν + Γν
µρJ µρ = Fµ

νJ ν
cov + 2

√−g cm∇ν

[

1

4
ǫαβρλFαβR

µν
ρλ

]

(3.15)

with Γµ
νρ being the Christoffel symbol. Let us denote that Jµ and Tµν are tensorial objects

while J µ and T µν are densities. However, once fixing the background to be Mankowski

space-time, the two descriptions coincide identically.

The above anomaly equations are basically the Ward identities for the one-point func-

tions 〈Jµ
cov〉 and 〈Tµν

cov〉 which we write them for brevity as Jµ
cov and Tµν

cov, respectively. It is

clear that the anomaly terms in the right hand side of the above two equations are coming

from the anomaly inflow explained earlier.

3.1 System coupled to the external sources

We would like to compute the electric end heat currents in our system in the linear response

regime. So we need to turn on the corresponding weak source fields, namely an electric

field which induces the charge current together with a temperature gradient generating the

heat current. We wish the electric field and temperature gradient vary with time as e−iωτ

in the Euclidean coordinates. To proceed, one can consider the thermodynamic state of

the system in the presence of following background metric and gauge field:

ds2 = gττ (x, τ) dτ
2 + δij dx

idxj (3.16)

A = µE dτ +Ai(x, τ) dx
i. (3.17)

It is necessary for the functions gττ (x, τ) and Ai(x, τ) to be such slowly varying in the space

that the system is in equilibrium in every patch-wise region. The temporal component of

the background gauge field, µ, is the chemical potential in grand canonical ensemble.

Considering Ai(x, τ) = δAi(x)e
−iωEτ is equivalent to turning on the background elec-

tric field Ei = −iωEδAi. We assume ωE ≪ T0 with T0 being the equilibrium temperature

at static flat region. The condition ωE ≪ T0 ensures that V = ∂τ is a Killing vector in every

patch whose size is comparable with the inverse temperature of the system T−1
0 . The ττ

component of the metric then induces a local temperature in the system T = T0/
√

gττ (x).

Consequently, a small temperature gradient is related to a small gradient of the gττ com-

ponent of background metric. Considering T → T + xi∇iT implies

gττ (x, τ) = 1 + δgττ = 1− 2xi∇iT

T
e−iωEτ . (3.18)

At this point let us recall that the variation of the metric may be regarded as the source for

the energy momentum tensor. The associated link between them is the retarded Green’s

function

Tµν ∼ Gµν,αβ
R δgαβ . (3.19)
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Following our earlier requirements, a constant temperature gradient is needed (or a con-

stant back ground electric field) to turn on the stress tensor (or charge current) components.

However, it would not be the case with the variation of the ττ component given in (3.18).

In order to remove the x-dependence of gττ (x), one may demand an appropriate diffeo-

morphism act on (3.16) and (3.17). It is readily shown that the transformations (3.4)

and (3.5) with

ξµ =
(

i xi∇iT/ωET,0
)

e−iωEτ , Λ = 0 (3.20)

give rise to the following changes in the background metric and gauge field (denoted by δ′)

δ′gττ =
2xi∇iT

T
e−iωEτ , δ′gτi = − ∇iT

iωET
e−iωEτ (3.21)

δ′Aτ = µE
xi∇iT

T
e−iωEτ , δ′Ai = −µE

∇iT

iωET
e−iωEτ . (3.22)

Obviously, δgττ + δ′gττ = 0. So the variation of the generating functional (given by (3.9))

simplifies to

δWcov =

∫

d3xdτ
√−gE

{

(T τi
cov + µEJ

i
cov)

−∇iT

iωET
− J i

cov

Ei

iωE

}

. (3.23)

By replacing τ = it, ωE = −iω, µE = −iµ and Ei → −iEi we can go back to the Minkowski

space-time

δWcov = −i

∫

d3xdt
√−g

{

(T ti
cov − µJ i

cov)
−∇iT

iωT
+ J i

cov

Ei

iω

}

. (3.24)

It should be noted that we have dropped the terms explicitly depending on x from the

integrand, since they do not contribute to the integral. One can also simply show that for

the same reason, ξµ∇νL
⊥µν hes been ignored to be written in the integrand.16

The above computation has an important outcome. It is well-known that in a non-

anomalous system, the heat and electric currents coupled to the background temperature

gradient and the electric field are Qi = T ti − µJ i and J i, respectively [24, 25]. We have

shown that in an anomalous system, the same expression can be used for the heat and

electric current, however, we have to be careful to write such currents for the covariant

stress tensor and covariant current.

3.2 Conductivities and Ward identities

Since we consider the theory at a finite chemical potential, the finite charge density then

mixes the heat and electric currents. So the Ohm’s law must be generalized to

(

Ji

Qi

)

=





σij Tαij

Tαij Tκij









Ej

−∇jT/T



 . (3.25)

16The time dependent factor e−iωτ has been absorbed in the background fields and the imaginary time

has been transformed back to the real one.
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From now on we omit the subscript “cov” from Jµ
cov and Tµν

cov and simply refer to them

as Jµ and Tµν . Inserting Ei = −iω(δAi + µδgti) and −∇iT/T = iωδgti in (3.25) and

considering17

G
JiJj
R = − δJi

δAj
, G

QiJj
R = −δQi

δAj
, G

QiQj

R = −δQi

δgtj
(3.26)

with J i =
√−gJ i and Qi =

√−gQi, one simply reads the conductivities as

σij(ω) =
e2G

JiJj
R (ω)

iω
, Tαij(ω) =

eG
QiJj
R (ω)

iω
, Tκij(ω) =

G
QiQj

R (ω)

iω
. (3.27)

In the following we will show that the longitudinal conductivities σ33 ≡ σL, α33 ≡ αL and

κ33 ≡ κL are not fully independent; once specifying one of them, the Ward identities ensure

that the other two are immediately specified.

Since we are interested in relations between the longitudinal conductivities, we assume

the system to be in the presence of a constant magnetic field B directed in the 3-direction

and find Ward identities for the two-point functions. Before proceeding, let us recall that in

the equilibrium of our system, the only non-vanishing components of the energy-momentum

and charge one-point functions are as the following18

〈J 0〉 = n, 〈J 3〉 = σBB, 〈T 00〉 = ǫ+ p, 〈T 03〉 = σǫ
BB. (3.28)

In order to evaluate (3.26), let us couple the system to background fields δAz and δgtz.

Varying equation (3.15) with respect to δAz and δgtz we find the two following identities

at k = 0

GT03J3
R + 〈J 0〉 = 0 (3.29)

GT03T03
R + 〈T 00〉 = 0. (3.30)

Now we are able to show how the coefficients αL and κL depend on σL. From the Kubo

formulas (3.27) and by using (3.29) and (3.30) we arrive at

T αL =
e

iω

{

GT03Jz
R − eµ GJ3J3

R

}

= −e n

iω
− µ

e
σL (3.31)

T κL =
1

iω

{

GT03T03
R − 2µGT03J3

R + µ2 GJ3J3
R

}

= −ǫ+ p− 2µn

iω
+

µ2

e2
σL. (3.32)

In [24, 25], similar relations were found in a 2+ 1 dimensional non-anomalous system. We

have however shown that in an anomalous system while two new equilibrium currents are

induced, namely J 0 and T 03, the relation between longitudinal conductivities will not get

change compared to the non-anomalous case studied in [24, 25].

17Here by δAi and δgti, we mean the total variation of Ai and gti, including both δ and δ′ variations

mentioned in previous subsection.
18The anomalous transport coefficients σB and σǫ

B will be introduced in the next section.
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3.3 Ward identities and consistency with the chiral kinetic theory results

Let us recall that in section 2 we computed the longitudinal conductivities in a system

of right-handed Weyl fermions coupled to an external weak magnetic field. On the other

hand, the constraint relations obtained in the previous subsection have to be satisfied by

the longitudinal conductivities in every arbitrary anomalous system, including the system

of free massless fermions earlier studied in the current paper. To investigate the latter, let

us start by considering the right hand side of (3.31). Using (2.26) and (2.48) and replacing

i/ω with τ , we may write

τ e n− µ

e
σL = τ e

(

µ3

6π2
+

µT 2

6

)

+ τ e
e2B2

16π2µ

(

1 +
π2T 2

3µ2
+ O

(

T 4

µ4

))

− µ

e

e2τ

3

(

µ2

2π2
+

T 2

6

)

− µ

e
e2τ

e2B2

16π2µ2

(

1 +
π2T 2

µ2
+O

(

T 4

µ4

))

=
eτ

9
µT 2 − eτ

e2B2T 2

24µ3

(

1 +O

(

T 2

µ2

))

≡ TαL (3.33)

which coincides with (2.51). Analogously, one can show that (3.32) holds for the results

obtained in section 2. The consistency between our kinetic results with the Ward identities

in the limit k → 0 simply shows that the computations performed in section 2 are all valid

in the hydrodynamic limit by replacing the relaxation time parameter τ with i/ω.

One central point in section 2 was that the quantum corrections had to be taken into

account to second order to observe the phenomena like the negative magneto-resistivity.

In the above we saw that such corrections are indeed important for the conductivities

to obey the Ward identities as well. This means that the conductivities found in Weyl

semimetals without quatum corrections, like what computed in [21, 42, 44] and developed

in appendix C, do not satisfy the constraint relations (3.31) and (3.32).

3.4 Comparison with Lucas et al. [26]

In [26], a “covariant” theory of thermoelectric transport in weakly disordered Weyl

semimetals has been presented. Their hydrodynamic theory consists of relativistic fluids at

each Weyl node which are coupled together by small inter-valley scattering, and long-range

Coulomb interactions. They enter the dissipation via adding the relaxation terms to the

right hand side of the hydrodynamic equations. The mentioned terms characterize the

rate of the intervalley transfer of charge, energy and momentum due to relative imbalances

of the temperature or chemical potential between the nodes. While their conductivities

contain quadratic contributions of the magnetic field, the authors ignore the second order

corrections of hydrodynamics. It is apparently due to the regime of parameters assumed

in that paper.19

Demanding physical requirements in a simple case of a Weyl semimetal with 2 valley

fluids, the authors of [26] reduce all the unknown coefficients in their model just to three

ones. The latter can be analytically computed in a weakly intercating Weyl gas with weak

19We thank R. Davison for pointing this out to us.
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intervalley scattering; a case similar to what studied in the current paper.20 Finally, in the

limit µ ≫ T , the leading order magneto-conductivities are reported to satisfy the following

relations in [26]

αL =
π2T

3e

∂σL(µ, T = 0)

∂µ
(3.34)

κL =
π2T

3e2
σL . (3.35)

At this point we would like to investigate whether the magneto-conductivities found in our

paper satisfy the above relations. From eq. (2.48), the longitudinal electrical conductivity

may at T = 0 is written as

σL(µ, T = 0) =
e2τ

3

µ2

2π2
+ e2τ

e2B2

16π2µ2
(3.36)

whose derivative with respect to µ (multiplies with π2/3e) is given by

π2T

3e

∂σL(µ, T = 0)

∂µ
=

eτ

9
µT − eτ

e2B2T

24µ3
≡ αL found in (2.51).

This simply shows that our results obey the equation (3.34). The second relation,

namely (3.35), was already verified when we was studying the validity of Wiedemann-

Franz law in section 2.6.

Now we may be tempted to conclude that the constraints (3.34) and (3.35) are related

to the general constraints (3.31) and (3.32), obtained from Ward identities. Let us recall

that the latter were obtained for a general system in the presence of anomalies. To show the

existence of such relation, by comparing (3.31) with (3.34) in the system of free massless

fermions, we interestingly find σL just by knowing the expression of the charge density in

equilibrium. To proceed, let us equate (3.31) with (3.34) at T = 0 by considering (2.26)

and replacing −iω with 1/τ . We find the following differential equation

e

(

µ3

6π2
+

e2B2

16π2µ

)

τ − µ

e
σL(µ, T = 0) =

π2T 2

3e

∂σL(µ, T = 0)

∂µ
. (3.37)

Solving this equation we find in general

σsol
L = e2

µ2τ

6π2

(

1− 2π2T 2

3µ2

)

+ e−
3µ2

2π2T2

(

C + e2τ
3e2B2

32π4T 2
ExpIntegralEi

(

3µ2

2π2T 2

))

(3.38)

with C being a constant. Since the equation (3.37) is valid in the limit T → 0, we take the

same limit from the above solution

σL(µ, T = 0) = e2τ
µ2

6π2
+ e2τ

e2B2

16π2µ2
. (3.39)

This is obviously nothing but the expression (2.48) at T = 0.

20In fact, like τ in our kinetic computations, the time scale set by the relaxation coefficients of [26] is the

longest one in the problem.
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In summary, in this subsection we showed that our results about magneto-transport in

a Weyl fluid are consistent with the hydrodynamic model of [26] in the same limit. That

the comparison between the constraint equation of [26] in the special system of free Weyl

fermions, i.e. (3.34), with our general ones, i.e. (3.31), gives precisely the previously found

σL in (2.48) shows the importance of the general relations found in previous subsection.

In other words, once the charge density of the fermionic system is given, we can find

the longitudinal conductivity just by considering the Ward identities together with the

constraint equations of [26].

4 Summary, conclusion and outlook

Let us firstly review what we found in this paper. The main idea for starting this work was

to study the magneto-transport in a “relativistic” Weyl fluid in the framework of (chiral)

kinetic theory. Compared to the analogous study in a non-relativistic Weyl semimetal [19],

we needed to compute the appropriate quantum corrections to the dispersion of Weyl par-

ticles in the phase space. Since the magneto-conductivities were expected to quadratically

depend on the magnetic field, we were to find the second order correction to the energy

dispersion as well. Doing so, in section 2.1 we arrived at our central result in (2.13). Let

us denote that such corrections were originally coming from the Berry flux of a Berry

monopole located at the origin of the momentum space.

Then we argued that such correction would affect on the thermodynamic quantities

of the system. To show the latter rigorously, we computed the energy-momentum tensor

and the charge current components (2.21), (2.22), (2.24) and (2.26). The main problem

which we encountered with throughout the computations, was the emergence of some IR

divergences in the phase space integrals. To overcome this, we divided each integral into two

parts; 1. a no B-dependent part and 2. a magnetic part. While the first part had nothing to

do with the Berry monopole, the second part was actually a quantum mechanical correction

caused by its Berry flux. Then in accordance with the chiral kinetic theory requirements,

we gave a scheme to regulate the divergences and compute the integrals.

Our scheme is simply that to the first part of the integrals, namely the no-B dependent

part discussed in previous paragraph, all the states in the momentum space contribute.

(See the lower bound of the integral (A.2) for instance.) For computing the second part of

integrals, however, our scheme is that, not only it would be needed to exclude the states

with momenta less than ∼
√
eB [18], but it would be necessary to get an IR cut-off ∆B

in the momentum space so that
√
eB ≪ ∆B. Only states with ∆B . p contribute to the

second part of the integrals. (See the lower bound of the integrals in (A.3) and (A.4).) It

can be also seen that this scheme works truly when B → 0.

As an application of the thermodynamic quantities obtained by the above scheme,

specifically the enthalpy density, we then computed the magneto-electrical conductivity in

the system. Our computation was based on the fact that in the presence of the magnetic

field, due to the chiral magnetic effect (CME) current, the density of chiral charges could

not remain conserved. We computed the heat density produced by the CME current during
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the annihilation of the chiral charges. Then by relating the produced heat to the enthalpy

density (2.23), we read the magneto electrical conductivity (2.32).

The main part of our computations about the magneto-transport has been done in

section 2.5. In this section by use of the linear response theory and under the relaxation

time approximation we computed not only the electrical conductivity (2.48), but also the

thermo-electric (2.51) and the thermal (2.55) conductivities as well. All of the computations

were done analytically in the limit µ ≫ T . Interestingly, the magnetic part of the electrical

conductivity (2.48) was turned out to be in complete agreement with the one obtained

from the enthalpy density in (2.32).

Our results show that in the limit µ ≫ T the Wiedemann-Franz law identically holds.21

Consequently the relativistic Weyl fluid at low temperature limit behaves like a Fermi liq-

uid. In fact the main reason behind this behavior is the special type of the relaxation

time approximation we assumed in the system. In the language of the Weyl semimet-

als, this corresponds to weak intervalley scattering in system of weakly interacting Weyl

fermions [26].

By repeating the computations of section 2.5 for a system of Weyl fermions without

energy corrections, namely by taking ǫ(p) = p, we arrived at an interesting result. Let

us refer to such conductivities by a superscript “nc” denoting that they are non-corrected.

We found that (see appendix C and table 1)

σL
σnc
L

=
αL

αnc
L

=
κL
κncL

=
15

16
.

This observation is in agreement with the side-jump picture. Due to the side-jump in

scatterings of particles, the scattering time τ decreases on average. Since the side-jump

comes from the quantum corrections, one expects the scattering time and consequently the

conductivity decrease

Quantitatively, the above common ratio, 15/16, for all the conductivities suggests that

they might be linearly dependent to each other. To confirm the idea we found anomalous

Ward identities at infinite long wave length limit and thereby, obtained the expected linear

constraint relations between conductivities (3.31) and (3.32). To our knowledge, such

relations had not been obtained for a 3+1 dimensional anomalous system before.

As a first consistency check, we showed the conductivities found in (2.48), (2.51)

and (2.55) obey the constraint relations (3.31) and (3.32). This confirms the necessity

of the second order correction of the energy dispersion as well as the scheme we developed

to regulate the integrals in the kinetic theory. We also checked that the conductivities com-

puted without the quantum corrections, namely those corresponded to a non-relativistic

WSM, would not obey the constraints mentioned above (see appendix C).

As another consistency check, we compared our results with those of the “covariant”

model of [26]. Their system is a WSM that becomes the same as our system if considered

21In [44] the general structure of the magneto-conductivities have been found in Weyl metal, although,

no explicit result has been reported. With no considering the quantum correctins It has been also argued

that the Wiedemann-Franz law breaks down in general in the Weyl metal.
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with weakly intervalley scattering. In this limit, the general magneto-conductivities ob-

tained from their model, are constrained by two relations. These relations differ from the

constraints obtained from Ward identities in our paper. We showed that once the charge

density in equilibrium is found (2.26), the comparison between two latter sets of relations

gives rise to a differential equation for the electrical conductivity. Its solution at µ ≫ T

is exactly the expression for the electrical conductivity we obtained previously in (2.48)

and (2.32).

In summary, while we computed the magneto-conductivities, σL, αL and κL, via the

linear response method, the electrical conductivity σL was computed, additionally, via two

another approaches as well. First, from the enthalpy density of the equilibrium and second,

from the comparison of the constraints of Ward identities with the relations of [26].

In addition to its necessity for studying the chiral transport, the second order correction

found in this paper might be important for further developments of chiral kinetic theory.

Recently the chiral kinetic theory of Weyl fermions has been derived from quantum filed

theory in [39]. In the mentioned paper, the first order quantum correction of the energy

of Weyl particles has been found via finding the following modified on-shell condition

for them22

p2 − ǫ(p)2 + ~ eB · p̂ = O(~2 e2B2) . (4.1)

Interestingly, when ǫ(p) in this formula is replaced with the second order corrected one,

namely (2.15), the equality does still hold! It means that the right hand side of the above

equation vanishes at least to O(~3 e3B3). Two questions arise immediately; first, does it

mean that no side-jump term is needed in the perturbative solution of Wigner function at

second order in [39]? Second, how about the higher orders? Does the above equation hold

to all orders in quantum corrections? If yes, could that be related to non-renormalization of

chiral anomaly [45]? Answering to each of these questions may help to better understanding

of the relation between chiral kinetic theory and quantum field theory anomalies.

As discussed around (2.39), the regime of study in this paper is nothing other than

the hydrodynamics. Let us recall that in the standard hydrodynamic derivative expansion,

the magnetic field is counted as a one derivative object. So in order to study the magneto-

transport in the universal framework of the hydrodynamics,23 it is needed to keep the

derivatives to second order in the constitutive relations.24 Once having found the magneto-

conductivities from the second order hydrodynamics, then one can simply apply them

to well-known physical systems. An interesting example in the weak coupling regime is

the system of free fermions studied in the current paper. At strong coupling, there are

certain holographic systems dual to an anomalous system in the presence of the magnetic

field [34].25 We leave more investigation on the magneto-transport from hydrodynamics to

a future work [40].

22For the sake of concreteness, we have restored the factor ~ and its powers.
23In [46] such study has been done, however, just for the case of electrical conductivity and just by

considering the first order hydrodynamics. See also [47–50] for similar studies.
24The first and second order hydrodynamic corrections and constraints on their corresponding transport

coefficients have been widely studied in the literature [1, 5, 32, 33, 51–56].
25The thermo-electric transport in strong coupling has been studied in a lot of papers including [57–60].
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Finally, it would be also interesting to repeat the computations of the current paper

in a more realistic case in which the Weyl fluid contains two types of chiral fermions with

opposite chiralities at different chemical potentials. This might be more relevant to quark

gluon plasma physics in the heavy ion collision experiments.
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A Regularizing the integrals

We first split the integral of energy density to the three parts.

T 00 =

∫ +∞

∆B

dp

2π2

1

1 + eβ(p−µ)

[

p3 − B2

8p
+

B2

24T 2

eβ(p−µ)(T + p) + e2β(p−µ)(T − p)

(1 + eβ(p−µ))2

]

= I1 + I2 + I3 . (A.1)

The first part is in fact the non-magnetic contribution to the energy in the region between

two spheres in figure 1. In the µ ≫ T limit the anti-particle states do not contribute and

we find

I1 =

∫ +∞

0

dp

2π2

p3

1+eβ(p−µ)
= −3T 4

π2
PolyLog[4, e−βµ] =

µ4

8π2
+
µ2T 2

4
+
7π2T 4

120
+O(T 4e−βµ).

(A.2)

The second part in (A.1) is the divergent one and needs more explanation. To perform

this integral, we first make an integration by part to change the distribution function to a

symmetric function around p = µ. We may write

I2 = − B2

16π2

(

log p

1 + eβ(p−eµ)

)∣

∣

∣

∣

+∞

∆B

− B2

8T

∫ +∞

∆B

dp

2π2
log p

eβ(p−eµ)

(1 + eβ(p−eµ))2

=
B2

16π2
log∆B − B2

8T

∫ +∞

−∞

Tdx

2π2
log(µ+ Tx)

ex

(1 + ex)2
+O(B2e−βµ)

=
B2

16π2
log∆B − B2

8

∫ +∞

−∞

dx

2π2

(

logµ+
Tx

µ
− T 2x2

2µ2
+

T 3x3

3µ3
− T 4x4

µ4
+ · · ·

)

ex

(1 + ex)2

= − B2

16π2

(

log
µ

∆B
− π2

6

T 2

µ2
− 7π4

60

T 4

µ4
+ O

(

T 5

µ5

))

. (A.3)
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In the second line we have changed the integrand variable as x = β(p− eµ). It is obvious

that in the limit µ ≫ T , the lower bound of x goes to −∞. Similar to what often used in

condensed matter physics, we have exploited the Sommerfeld expansion [41] and expanded

log(µ+ Tx) in powers of x in the integrand (third line above).

Finally we compute the third part of (A.1) as the following

I3 =
B2

24T 2

∫ +∞

∆B

dp

2π2

T eβ(p−µ)

(1 + eβ(p−µ))2
+

B2

24T 2

∫ +∞

∆B

dp

2π2

p (eβ(p−µ) − e2β(p−µ))

(1 + eβ(p−µ))3

=
B2

24T 2

∫ +∞

0

dp

2π2

T eβ(p−µ)

(1 + eβ(p−µ))2
+

B2

24T 2

∫ +∞

0

dp

2π2

p (eβ(p−µ) − e2β(p−µ))

(1 + eβ(p−µ))3
+O(B2e−βµ)

=
B2

24T 2

∫ +∞

−∞

Tdx

2π2

T ex

(1 + ex)2
+

B2

24T 2

∫ +∞

−∞

Tdx

2π2

(µ+ Tx) (ex − e2x)

(1 + ex)3
+O(B2e−βµ)

=
B2

24π2
+O(B2e−βµ) . (A.4)

Collecting (A.2), (A.3) and (A.4), T 00 turns out to be as given in (2.21).

It should be noted that the expressions of pressure (2.22), T 11 and T 22 in (2.25) and

also the charge density (2.26) have all been found through the above procedure in this

paper.

In summary, what forced us to treat with I2 differently in comparison with I1 and I3
is that the Sommerfeld expansion just works well whenever the phase space integral takes

the following form

∫ +∞

∆B

dp

2π2
g(p)

enβ(p−µ)

(1 + eβ(p−µ))m
, m > n > 0. (A.5)

In the limit µ ≫ T , by changing the variable as x = (p− µ)/T , the above integral can be

written as
∫ +∞

−∞

Tdx

2π2

(

g(µ) + Tx g′(µ) +
T 2x2

2!
g′′(µ) + · · ·

)

enx

(1 + ex)m
(A.6)

and can be performed analytically.

B Longitudinal conductivities in Weyl fluid

In this subsection we will compute the longitudinal electrical conductivity in detail. The

main steps of the computations of the other conductivities would be then the same. As

it can be seen, all the integrals in (2.47) are in the form of (A.5). So by considering

x = (p− µ)/T , we may write

J‖
e =

τe2

3T

∫ +∞

−∞

Tdx

2π2
(T 2x2+µ2)

ex

(1+ex)2
E+

τe2

10T

∫ +∞

−∞

Tdx

2π2

1

µ2

(

1+
3T 2x2

µ2

)

ex

(1+ex)2
e2B2E

+
τe2

40T 3

∫ +∞

−∞

Tdx

2π2

e4x−4e3x+e2x

(1+ex)4
e2B2E
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+
τe2

6T

∫ ∞

−∞

Tdx

2π2

1

µ2

(

1+
3T 2x2

µ2

)

ex

(1+ex)2
e2B2E

+
τe2

12T 2

∫ ∞

−∞

Tdx

2π2

1

µ

(

−2Tx

µ
−4T 3x3

µ3

)

e2x− ex

(1+ex)3
e2B2E (B.1)

where we have kept contributing terms to the power of four in the expansion over 1/µ.

After evaluating the integrals, one arrives at the last line of (2.47).

It is worth-mentioning that while in the above computation we find the result with

corrections that correct σL(B = 0) to the order of B2T 2/µ6, for the other conductivities

like (2.51) and (2.55), we keep just terms that correct the non-magnetic part to the order

of B2/µ4. The reason for this is that we need to have the expressions to the orders which

consistently satisfy the constraints (3.31) and (3.32).

C Conductivities in WSM

In the absence of the quantum corrections to the energy dispersion (ǫ(p) = p), the electric

current in (2.47) turns out to be as the following

σWSM
L =

τe2

3T

∫ +∞

∆B

dp

2π2
p2

eβ(p−µ)

(1 + eβ(p−µ))2
+ τe2

2e2B2

15T

∫ +∞

∆B

dp

2π2

1

p2
eβ(p−µ)

(1 + eβ(p−µ))2

=
τe2

3T

∫ +∞

−∞

Tdx

2π2
(Tx+ µ)2

ex

(1 + ex)2

+ τe2
2e2B2

15T

∫ +∞

−∞

Tdx

2π2

1

µ2

(

1− 2Tx

µ
+

3T 2x2

µ2
+ · · ·

)

ex

(1 + ex)2

=
τe2

3

(

µ2

2π2
+

T 2

6

)

+ τe2
e2B2

15π2µ2

(

1 +O

(

T 2

µ2

))

.

(C.1)

Again as before the contribution of the cut-off is negligible. So the lower bound of integrals

goes to zero. In performing the second integral above in the limit µ ≫ T , it was only

sufficient to get the leading term in the Sommerfeld expansion. This is equivalent with the

following replacement

µ ≫ T :
eβ(p−µ)

(1 + eβ(p−µ))2
→ δ(p− µ). (C.2)

Similarly the thermoelectric coefficient reads

T αWSM
L =

eτ

3T 2

∫ +∞

∆B

dp

2π2
p2(p−µ)

eβ(p−µ)

(1+eβ(p−µ))2
+ eτ

2e2B2

15T 2

∫ +∞

∆B

dp

2π2

p−µ

p2
eβ(p−µ)

(1+eβ(p−µ))2

=
eτ

9
µT 2+eτ

2 e2B2T 2

45π2µ3

(

1+O

(

T 2

µ2

))

(C.3)
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and finally the thermal conductivity reads

T κWSM
L =

τ

3T 2

∫ +∞

∆B

dp

2π2
p2(p− µ)2

eβ(p−µ)

(1 + eβ(p−µ))2
+ τ

2e2B2

15T 2

∫ +∞

∆B

dp

2π2

(p− µ)2

p2
eβ(p−µ)

(1 + eβ(p−µ))2

=
τ(πT )2

9

(

µ2

2π2
+

7T 2

10

)

+ τT 2 e2B2

45π2µ2

(

1 +O

(

T 2

µ2

))

.

(C.4)

At this point, it is worth-mentioning that the above conductivities do not satisfy the con-

straints obtained from the Ward identities, namely (3.31) and (3.32). This shows the

importance of the above computations, since the three different conductivities are inde-

pendent in this case. Although the Onsager reciprocity does still hold and Seebeck and

Peltier coefficients coincide identically.
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