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Abstract

Supertwistors relevant to Ad S5 x §3 superbackground of IIB supergravity are studied in the framework of
the D = 10 massless superparticle model in the first-order formulation. Product structure of the background
suggests using D = 1 4 4 Lorentz-harmonic variables to express momentum components tangent to Ad S5
and D = 5 harmonics to express momentum components tangent to S S that yields eight-supertwistor formu-
lation of the superparticle’s Lagrangian. We find incidence relations of the supertwistors with the Ad S5 x § 3
superspace coordinates and the set of the quadratic constraints that supertwistors satisfy. It is shown how
using the constraints for the (Lorentz-)harmonic variables it is possible to reduce eight-supertwistor formu-
lation to the four-supertwistor one. Respective supertwistors agree with those introduced previously in other
models. Advantage of the four-supertwistor formulation is the presence only of the first-class constraints
that facilitates analysis of the superparticle model.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

To study AdS/CFT correspondence [1], [2], [3], the best explored instance of which is pro-
vided by the duality of the Type IIB superstring on AdSs x S° superbackground and N = 4
supersymmetric Yang-Mills theory on its 4-dimensional conformal boundary, it is commonly
used the (super)space setting. Both theories are invariant under the SU (2, 2|4) symmetry super-
group that was one of the primary arguments in favor of the duality. This symmetry supergroup is
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manifest and linearly realized in supertwistor space [4], [5]. D =4 N = 4 super-Yang-Mills the-
ory can also be described in supertwistor or superambitwistor space at the level of supermultiplet
[6], field equations [7] and Lagrangian [8], [9], [10], [11]. Thus it is natural to wonder whether
AdSs x S superstring also admits a formulation in terms of supertwistors, what are these super-
twistors and what implications such a formulation might have on the study of the AdSs/C FTy
correspondence. In the bosonic limit some of these issues were addressed recently in [12]." In
particular, there was given the definition of twistors for AdSs space based on its realization as
a projective manifold. Another definition of twistors [14], [15]> follows from considering point
particle mechanics on AdSs and is based on the on-shell momentum realization as the product
of two constrained spinors. Generalization of these twistors to the AdSs x S° superbackground
appears non-trivial since it is not superconformally flat [19].

Independently I. Bars in the framework of 2T approach [20] proposed superparticle and ten-
sionless superstring models [21], [22] extended local symmetries of which can be fixed in a
variety of ways. One of the gauges yields the first-order Lagrangian of the superparticle (tension-
less superstring) in AdSs x S° superspace. In another gauge dynamical variables of the model
are supertwistors transforming in the fundamental representation of the SU (2, 2|4) supergroup
and fundamental representation of its gauged subgroup. These models provide an interesting al-
ternative to the conventional way of introducing (super)twistors in particle (string, brane) models
[5], [6], [23—47]. However, it is unclear how the incidence relations that connect supertwistor
components and the superspace coordinates can be derived within this approach.

This motivated us to examine in Ref. [48] the traditional root of introducing supertwistors
starting with the first-order representation of the massless superparticle’ Lagrangian on AdSs X
$3 superbackground. Then we expressed momentum components tangent to AdSs and S° parts
of the background in terms of the SU (2)-Majorana spinors for Spin(1,4) and Spin(5) groups
so that the 10-momentum null condition was translated into the constraint on the sum of the
products of these spinors. Substituting the definition of the supervielbein bosonic components
as Cartan 1-forms of the PSU(2,2|4)/(SO(1,4) x SO(5)) supercoset allowed to transfer to
the supertwistor form of the superparticle’s Lagrangian. Respective SU (2, 2|4) supertwistors
were assembled into SU (2) doublets that differ from one another by the Grassmann parity of
their components and coincide with those found in [22]. The benefit of this approach is that it
allows to find the incidence relations that connect the supertwistor components and Ad S5 x §°
supercoordinates via the PSU (2,2|4)/(SO(1,4) x SO(5)) representative. Explicit form of the
incidence relations was derived for the particular example of the supercoset representative used
to study the AdSs5 x s3 superstring mechanics [49], [50], [51]. Besides that, in the case when
the superparticle’s momentum components tangent to 5-sphere vanish, we quantized the model
in terms of the superoscillators [52] and superambitwistors and showed how the supermultiplet
of D =5 N = 8 gauged supergravity [53] fits into its spectrum of states.

The geometric way of introducing spinors in the models of point-like and extended (super-
symmetric) relativistic objects is based on the formulations of their Lagrangians that involve
components of the local orthonormal repere [54]. The repere matrix can be naturally identified
with the element of the respective Lorentz group called vector Lorentz-harmonic matrix [55]. It
can be expressed as the square of the spinor Lorentz-harmonic matrix [56], [57], [58] in analogy
with the relation of the matrices of vector and spinor Lorentz transformations. In the case of

1 Earlier discussion of the role of supertwistors for AdSs/C F T, correspondence can be found, e.g. in [13].
2 See also subsequent results in [16], [17], [18].
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D =1+ 3 dimensions spinor Lorentz harmonics [59], [60] in the literature on twistors [61] were
known as the normalized dyad.

The product structure of the bosonic AdSs x S background suggests using D = 1 4 4
Lorentz harmonics [62], [63] to express momentum components in directions tangent to AdSs
and Spin(5) harmonics® for the momentum components in directions tangent to S°. So one of
the goals of the present paper is to derive eight-supertwistor formulation of the D = 10 massless
superparticle on the AdSs x S° superbackground starting with its first-order formulation that
involves D = 1 + 4 spinor Lorentz harmonics and D = 5 harmonics. This explains the origin
of the supertwistors that arise in the respective gauge for the 2T tensionless superstring model
of Ref. [21] and allows to find their incidence relations with the AdSs x S° superspace coordi-
nates. We find the set of quadratic constraints that these supertwistors satisfy and calculate their
classical algebra. It appears that some of the constraints are the second-class ones. This indicates
the presence of the redundant d.o.f. and complicates further steps of the Dirac analysis of the
model. Using the defining conditions for the spinor (Lorentz) harmonics we show that it is possi-
ble to exclude half of them from the expressions for the momentum components tangent to Ad Ss
and S° parts of the background. Reduced expressions for the momentum components coincide
with those proposed in [48] and allow to obtain four-supertwistor formulation of the superpar-
ticle. Since these supertwistors precisely coincide with those found in [22], we actually find the
relation between the eight- and four-supertwistor formulations of the massless superparticle on
AdSs x S° superbackground.

The organization of the paper is the following. In the next section as a warm up example
we consider the model of the bosonic particle of mass m on AdSs. We introduce vector and
spinor Lorentz harmonics that parametrize the SO (1,4)/S O (4) coset and express particle’s mo-
mentum in terms of them. Then we transfer to the four-twistor formulation and find the set of the
constraints that these twistors satisfy. It is shown that among them there are the second-class con-
straints. In section 3 using the harmonicity conditions we derive the reduced expression for the
particle’s momentum that depends just on the half of the spinor Lorentz harmonics. Correspond-
ing twistors and two-twistor particle’s Lagrangian are those of Ref. [14]. In [15] this model, that
is characterized only by the first-class constraints, was quantized in terms of the SU (2) x SU (2)
bosonic oscillators and was shown to describe SU (2, 2) irreducible representation with spin zero
and AdS energy E =2 + |m|. We give alternative description of this representation in terms of
the ambitwistors.

Section 4 is devoted to study of the massless superparticle on AdSs x S° superbackground.
Momentum components tangent to Ad S5 and S are expressed in terms of the Spin(1, 4) Lorentz
harmonics and Spin(5) harmonics. This allows to pass to the eight-supertwistor formulation of
the superparticle’s Lagrangian with the supertwistors being the elements of the (4|4) x (4|4)
supermatrix. We identify the set of the constraints for supertwistors and calculate their clas-
sical superalgebra to show that, similarly to the bosonic particle case, there are present the
second-class constraints. Then in section 5 it is shown how proposed in [48] four-supertwistor
formulation of the superparticle’s Lagrangian arises. We also consider the set of equations for
the quantized superparticle’s wave function in the superambitwistor space.

Necessary details of the spinor algebra and the algebra of the constraints for the eight-
supertwistor formulation for the massless superparticle are collected in the appendices.

3 Let us note that due to the local group isomorphism Spin(5) >~ USp(4), Spin(5) harmonics that we use coincide
with the U Sp(4) harmonics introduced in [64] and employed in [65], [66], [67], [68], [69] to study harmonic superspace
formulations for various supersymmetric field theories in D = 3, 4, 6 dimensions.
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2. Massive bosonic particle on AdSs

As the starting point we choose the first-order form of the action of D =5 massive bosonic
particle

/ g ’
Sadss =/df£Ads5, Laass = pm EY — E(mepm +m?), 2.1)

where E7 ' is the world-line pull-back of the AdSs vielbein 1-form. Particle’s 5-momentum can

be set proportional to the time-like unit-norm vector n( )

0
P (T) = mn ) (1) 2.2)
that can be chosen as the first column of the D = 5 vector Lorentz-harmonic matrix
@) =00 nNesoa,4 o a8yl =y, 2.3)

It is identified with the local orthonormal repere in the tangent space to the particle’s world line,
the indices in brackets labelling the repere components. Orthonormality of the vector Lorentz
harmonics implies that n(o) m'(0) = _1 5o that the particle’s mass-shell constraint is satisfied.
Vector Lorentz- harmomcs transform under left global and right local Lorentz rotations

n® S L% RO, Leso,4), ReSO, 4. (2.4)
Because n( ) is invariant only under the transformations from the subgroup SO (4)g C SO(1,4)r

that enters the set of the gauge symmetries of the massive particle’s action, vector Lorentz har-
monics parametrize the coset SO(1,4)/SO4).

To transfer to the twistor form of the particle’s Lagrangian it is necessary to introduce
Spin(1,4) Lorentz harmonics

b
vl"i = (—vg, v*”) (2.5)
that can be viewed as the ’square root’ of the vector Lorentz harmonics

/ 1
k
m = =3 v gl y €% (2.6)
We use letters from the beginning of the Greek alphabet to label Spin(1, 4) spinor indices, while
those from the middle part of the Greek alphabet to label Spin(1,4)g spinor indices. Dotted
and undotted letters from the beginning of the Latin alphabet label fundamental representation

indices of the two SU (2) g subgroups of Spin(1, 4)g. Details of the spinor algebrain D =1+4
(0)

dimensions are given in [48] and Appendix A of the present paper. In particular, for n,; we have
1
0
in,)z—‘—tvn ' 31}’3)/(0)” = (vaym ﬂvf—vaym ﬂvﬂ) 2.7
Spinor Lorentz harmonics satisfy the reality conditions
y Oh @y =0T 2.8)

that ensure reality of the vector Lorentz harmonics. For the 4 x 2 blocks of the spinor Lorentz-
harmonic matrix that carry fundamental representation indices of the two SU (2)r subgroups of
Spin(1,4)g Eq. (2.8) translates into the SU (2)-Majorana conditions
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WY e =0T @)y =0Ty 2.9)

Orthonormality of the vector Lorentz harmonics then follows from the harmonicity conditions
for the spinor Lorentz harmonics

v;‘iv; = 8,‘2 Dvpvy = =8, v“bv,,w' = 8?, Vp Ve =0 (2.10)
that state invariance of the charge conjugation matrices under the left and right Spin(1, 4) trans-
formations since v, = Ca,gC")‘vf and ensure that v;‘i € Spin(1,4). Eq. (2.7) is invariant under
local SU(2)g x SU(2)g C Spin(1,4)r symmetry so that spinor harmonics pertinent to the mas-
sive particle model parametrize the coset Spin(1,4)/(SU(2) x SU (2)). This SUR2)r x SU2)r
gauge symmetry will also be the symmetry in the (super)twistor formulation.

Using the definition of su(2, 2) left-invariant Cartan forms

_ i ’ 1t
G'%,dG? g = S E" Dy + E" ()Y p) € 5u(2,2), @2.11)

where G € SU (2, 2), 1-form, world-line pullback of which defines kinetic term of the particle’s
Lagrangian (2.1), can be written in terms of SU (2, 2) twistors®

P E™ (d) = =50y, 7 503y O3 E™ (1)

= ivT;G_lyadG“gvgy(O)“x

e - 0 (2.12)
= L(Zkdz?¥ —dZ}7%)y O,
= L(Z8dZ8 —dZ8ZY) + 5 (Zaad 2% — d Zua Z%%).
Incidence relations for the introduced twistors read
. P _ 7b
Z8 = (=2, ") = G%gvl, Zb= (Z“v ) =367, (2.13)
ab
and dual twistor matrix satisfies
H*(Z3) H®p = Z}. 2.14)

Matrices H*g and H A are the metrics connecting fundamental and antifundamental represen-
tations of SU (2,2)1 and SU (2, 2) g respectively. In Ref. [48] there was chosen such realization
of D =2+ 4 y-matrices that H*g equals D = 1 + 4 matrix y o g and is off-diagonal

0 Ik
HY = 2.15)
Ly O

as is common in the twistor theory. For y V# instead diagonal realization is used (see Appendix
A) so that

by O
2x2

In this realization conjugation rules (2.14) for 4 x 2 blocks of the twistor matrix read

4 In the first line spinor Lorentz harmonics were rescaled v — ./ %v to bring the twistor kinetic term to the canonical

form.
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(Z) HY =274, (2% H s = Zg, 2.17)

Using the incidence relations (2.13) and the harmonicity conditions (2.10) one derives the con-
straints that twistors obey

ZA 7% = yThy% = 553 (2.18)

so that ,/ %Zl‘j‘ € U (2, 2) modulo the gauge symmetries of the particle’s action in twistor formu-
lation

Sadss = /df<£4—twistorv
1 -5 . - - m
Lawwisor = 5(Z5 25 = ZL 2§y O+ A" (zizs - 553) . (2.19)

The structure of the kinetic term of this action is similar to that of the tensionless superstring of
Ref. [21] in the twistor gauge. It has manifest global SU (2, 2); symmetry, whereas SU (2, 2)g
symmetry, assumed in the definition of the dual twistor matrix (2.14), is broken by y @7y

It is possible to give another definition of the dual twistor matrix

OAr v _ _Zb B\i 7B
=Y Z > =(Z,)' Hy (2.20)
Zub

that differs from (2.14) by the multiplication by ¥ ©”y. Since y @y © = 1, the kinetic term of
the twistor Lagrangian (2.19) acquires the following form in terms of the dual twistor matrix
(2.20)

’E(Z;z'x ZAz%) = —(z“z“ 787%) + %(zmzm — 70a 794, 2.21)

It has manifest SU (2)g x SU(2)r gauge symmetry but actually is invariant under the SU (4) g
symmetry that is broken by the constraint term

~ m
v (zgzg _ 5;/(0)*,,) . (2.22)

To analyze the algebra of the constraints let us decompose them into the SU(2)g x SU (2)r
irreducible constituents

_ 1 _ : _ : 1 ;- R
Ly =237} = 58,27 ~0, My = Zoy 2% — Eagzac-z‘“ ~0,
e=Z07% 4+ Z0i 2% 20, c=Z87% — ZqaZ% +2m =0,
Z87% ~0,  ZyiZ¥ 0. (2.23)
Basic Dirac bracket (D.B.) relations for the twistor components that follow from (2.19) are
(Z3. Zg)p.p. = i8385, {Z*, Zg)p.p. = i8]55. (2.24)
Then non-trivial D.B. relations of the constraints acquire the form

(787 Zﬂaz \D.B. _z(SbL“b—l8"M + 25 8b(c 2m),

(L%, Zmzz‘}D.B.=’§6;;Zmzz‘ — 189 700 22,
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{L“b,Z;Z“E}D.B;—%SZZQZW+iangz“f’,
. i - -
(M, zaézz}n.3.=—§5ﬁ,?zac-zz‘ + 88 Z0i Z8,
(M. 247 p.p.= 58,22 — i8] Z4 2%,
(L%, L°a)p.g. =i(B5L g — 4L ), My’ McMpp =i(82Mz" — 8¢ M:P),
{c, 287 p p. =20 Z82%, (¢, ZaiZ¥)p.B. = —2iZaiZy. (2.25)

These are relations of the SU(4) g symmetry algebra broken by m. Thus the constraints Z; zeb
and Zy; Zj; are the second-class, while other eight constraints are the first-class ones. From the

viewpoint of the oscillator realization of the SU (4)r algebra Zg Z*> and Zﬂa Zf are raising
and lowering generators from the +1 and —1 eigenspaces w.r.t. to the three-grading structure
introduced by ¢ [70]. Having identified the first- and second-class constraints it is possible to
verify that the number of the physical degrees of freedom in the four-twistor formulation equals
eight matching that of the space-time formulation of the D =5 massive particle mechanics.

3. Reduction of four-twistor formulation to two-twistor formulation

The fact that in the four-twistor formulation there are eight second-class constraints quadratic
in twistors essentially complicates further analysis of the Hamiltonian mechanics of the bosonic
particle model and requires introduction of the D.B. for these constraints. It is, however, possible
to remove some of the redundant degrees of freedom that will simplify the algebra of the remain-
ing constraints without breaking the SU (2, 2);, invariance. The form of the incidence relations
(2.13) shows that reduction of the SO(1,4) Lorentz-harmonic variables underlies reduction of
twistors, hence we discuss it on the level of harmonics. To this end decompose spinor Lorentz
harmonics into SL(2, C), constituents

: g : v
v&:(l_)glyc), v&:(ﬁgé). 3.1

SU (2)-Majorana conditions that these harmonics satisfy

W) %P =", W)y ef =0'F, (32)
when expressed in terms of the SL(2, C), constituents read

W) =Tae, WD =—ac. (3.3)
Let us define

viv, =T e C\ {0}, v‘c?‘vgz’?e(C\{O}. 34
Then from the harmonicity conditions we obtain

Y+Y=Y+T=m (3.5)
and

Ve + 09046 = 0. (3.6)

Multiplying the latter relation by v/‘é we derive
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vge = ?Ug f}daﬁg. 3.7

Further multiplying by v#¢ gives YT = T and in view of (3.5)

T=T. (3.8)

Then using (3.7) and (3.8) it is possible to show that in the expression for the particle’s
5-momentum

1 g1

Pm = —EUZVm’aﬂvb + 3

ab —d | o ~ b
) Pm =V OmaaVy + V; OmaaV
vhym®gvf = et T (3.9)

ps="r =1y
contributions of the first and the second summands equal so that one can exclude spinor Lorentz
harmonics with dotted indices
1
b

Pm = _Evaym’aﬂv[lja (3.10)
where the factor of two has been absorbed in the definition of Lorentz harmonics with undotted
indices that now satisfy

vl = —2m. (3.11)
Let us remark that using (3.5) and (3.6) it is possible to exclude in a similar way spinor Lorentz
harmonics with undotted indices leaving only those with dotted indices. Also note that in the ex-
pressions for the space-like vector-columns of the Lorentz-harmonic matrix (2.3) it is impossible
to remove contributions of the spinor harmonics with either dotted or undotted indices.

Taking expression for the reduced 5-momentum (3.10) one can obtain two-twistor form of the

massive particle’s Lagrangian following the same steps as in (2.12)

i - . - -
Lo-wisior = 5 (2 26 — 24 Z5) + ALY, 4+ A(Z8Z% + 2m) (3.12)

that was proposed in [14] (see also [17], [18]). In [15], using the isomorphism of the algebras
of quantized twistors and su(2) @ su(2) bosonic oscillators that are employed in constructing
positive energy unitary irreps of SU (2, 2) and its superextensions [52], [53], it was shown that
this model describes SU (2, 2) unitary irrep with AdS energy E =2 + |m| and zero spin. One
needs at least two copies of su(2) @ su(2) bosonic oscillators to describe such irreps. Their
lowest-weight vectors are given by the antisymmetrized products of creation oscillators in the
fundamental representation of one of the su(2) algebras [70], [71].

In this section we construct particle’s wave function in the ambitwistor space corresponding
to such irrep. Let us introduce specific notation for each of the twistors

Z‘l"zz"‘, ZgEWa, Z‘}‘EZ,,, ZOZ‘EW‘!. (3.13)

It is readily shown that from (3.12) there follow conventional commutation relations of the quan-
tized twistors

(2%, Zgl =35, [W®, Wg]=255. (3.14)

Hermitian operators corresponding to four first-class constraints of the model can be brought to
the form

ZZ4+m—2~0, WW4H+m+2~0, ZW=0, WZ=0. (3.15)
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Let Z* and W, be coordinates of the ambitwistor space, then other two quantized twistors are
represented as the first-order differential operators

- 0 o 0
Zyg=——, W*¥=—. (3.16)
0Z* AWy,
Imposing a la Gupta-Bleuler three of the four constraints (3.15) that are given by the utmost
first-order differential operators on the particle’s wave function Fiym—2—m—2)(Z, W), we find

d - _
Zﬁ Fn—2/-m-2)(Z, W) = (m = 2) Fn—2/-m—-2)(Z, W),

_ 9 _ _
W—Fm-—2-m-—2)(Z, W) =—(m+2)Fm_2|-m—2)(Z, W),
aw

(WZ)Fm—2-m-2(Z, W) =0. (3.17)

These equations imply that particle’s wave function is homogeneous in each of its arguments as
indicated by the subscript and that its mass should be integer m € Z (cf. [15]). The last constraint
can be taken into account by writing

Fn-2-m-2)(Z, W) = 8(WZ) fan-11-m—1)(Z, W). (3.18)

When m is zero, it is known that the ambitwistor transform [72], [73] of f(—1/-1)(Z, W) as a
function of Penrose twistors, corresponding to the boundary limit [48] of AdSs twistors, gives
off-shell scalar field on D = 4 Minkowski space-time. This field can be identified as the D =4
shadow field [74] that serves as the boundary value of the non-normalizable solution of the
Dirichlet problem for AdSs scalar field. As discussed in [75], [48] associated SU (2, 2) lowest-
weight vector is given by the oscillator vacuum |0). If m > 0O, then the respective SU(2,2)
lowest-weight vector is

a (1)a®21(2) - - - al2m-1(1)q%m1 (2))0), (3.19)

as was found in [15]. In ambitwistor description each of the antisymmetrized products of
a-oscillators maps to the first-order differential operator [48]
o a
Z%lyg———, (3.20)
oWpg

so that massive particle’s wave function in ambitwistor space is

_ 3 \" _
fm-11-m-1)(Z, W) = (Zla—_> fe-n(Z, W), m=>0. (3.21)
w

Respectively for m < 0 associated SU (2, 2) lowest-weight vector is

bio; (D)bay)(2) -+ - bla_pyy (Dba_y,,1(2)10). (3.22)

Antisymmetrized products of b-oscillators map to the operator

- 0
af
Wel —8 B (3.23)

and particle’s wave function equals

_ _ 9\ _
fan—1-m-1)(Z, W)=<W18—Z> fey-pZ,w), m=<0. (3.24)
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Note that differential operators (Z 1 ai_) and (WI %) are used in twistor theory to describe

massive fields in four-dimensional Minkowski space [76].

4. Eight-supertwistor formulation of massless superparticle on AdSs x §°
superbackground

To derive eight-supertwistor formulation of the D = 10 massless superparticle on the Ad S5 x
S superbackground let us introduce diagonal supermatrix

vy 0 L
0 & 0 0 ¢4 e

Its upper-diagonal block constitutes 4 x 4 matrix with Spin(1, 4) indices

vy = (—vy, vab), 4.2)
while in the lower-diagonal block there is 4 x 4 matrix with Spin(5) ~USp(4) indices’

oy =, 047y, (4.3)

Reality conditions for Spin(1, 4) variables coincide with those in (2.8) and for Spin(5) variables
are

t T N
e =% wht=04 @=r}, (4.4)
In the supermatrix form we have
UTz 0
HEN VAN T HA = VTE = ( " ) : (4.5)
0 ('L
where
H% 0 H* 0
HAR = ( ) . HEw = ( (4.6)
A
0 &5 0 sk

with H"‘,g and H*, given (2.15) and (2.16). Introduce also the PSU (2,2]|4)/(SO(1,4) x SO(5))
representative

" Gaﬂ otB
G = Gh. A e PSU2,214)/(SO(1,4) x SO(5)) 4.7
B B
that satisfies
G =HPeGg U 4. 8

Define twistor supermatrix

o
i

of freedom compared to the Spin(l,4) Lorentz harmonics and ZQ has more independent degrees of freedom than the
U Sp(4) harmonics [64].

5 We slightly abuse the notation in this section since, as will be seen below, vj; contains some additional degrees
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24 =GV = (2 ) = (-2 2wyt wt?)

=<—ZZ‘ z gp 5“’5) (4.9)

_n}l’A 7]Ab L? LAp

and its dual by
- 7b =b
zy Zg Mg
: : _ Z} Zy; Zgi, gy
Zrg=HENEAN HAE = VG = B ) = | B[ =T
7 7} %-(1 L‘i
B oB 8 B
V5 Es; Lsg
(4.10)

For individual rows of the dual twistor supermatrix this definition translates into the relations

Zp=EH s Zg=EN) A,

V= (WHHA, Uy = (WA)HAR. A.11)
Supertwistors Z,;“, ZAb and their duals are conventional ones and were named c-type in [48].
Their SU (2, 2); components Z, 7% are even and SU (4) components ng‘, nAb are odd. On the
contrary supertwistors WA WA and their duals are a-type since their SU(2,2); components

§). & @D are odd but SU (4); components LA, LA? are even. Appearance of such unconventional

supertwistors for superparticle model on AdSs x S° superbackground was discussed in [21] and
[22]. Note that the definition of the twistor supermatrix (4.9) assumes that it transforms under
left and right SU (2, 2|4) transformations

zZAy o £AgZBLRMy, (4.12)

where supermatrices LA and RM N have SU(2, 2) upper-diagonal blocks and SU (4) lower-
diagonal blocks.

Consider now the first-order form of the massless superparticle action on the AdSs x S°
superbackground

SAdssxSS =/dT£Adssxs5»
/ / g / /
L pdssxss = P EY + prEL = S (0™ + prp"). (4.13)

E’T"/ and E{/ are the world-line pullbacks of the D = 10 supervielbein bosonic components tan-
gent to AdSs and $°. In analogy with the discussion of section 2, momentum components tangent
to AdSs can be expressed as

1 1 ;
P = =50 4™ gb vy "1 = 2 (Vv gf — Vv 0], (4.14)

where Spin(1,4) spinors vl‘;‘ and v"‘l; satisfy SU (2)-Majorana conditions (2.9) and also
V¥l =0 (4.15)

so that
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/ 1 .
" = =7 (050, + vZvd)?. (4.16)
Similarly momentum components tangent to S° can be expressed
1 1 ;
pr =5y sy OV L= S @y ] 4y ped) 4.17)
in terms of the Spin(5) spinor variables (4.3) constrained by the relations
el =0 (4.18)
necessary to obtain the following expression for the square of momentum components tangent to
S5
1 .
prpr= Z(ZZ}EZ — e’ (4.19)
As a result the null-momentum condition in 10 dimensions translates into

(g + o) = (e — ej;ef;)z. (4.20)

a o
Let us note that null 10-momentum (p,,, p;’) has 9 independent components, whereas at this
point spinors (v5, v¥) and (Z;;‘, ¢4) have 6+6 — 1 = 11 independent components. Two additional
constraints for the spinor variables will be set below. Now 1-form that enters kinetic term of the
superparticle’s Lagrangian (4.13) can be expressed in the supertwistor form
puE™ (@) + prE" (@) = iVTEpGTIP 4dGAVENTN
= L(ZEpdZ2AN —dZE 422 ) TV ¢
= 5(Z29d 2 —dZ9 20 + L(Zacd 24 — d 2. 279)
i 4 A ! wA i Aqg V1 Aqg
+ %(WAd\Ilq —dV, V) — (W pqdW — dW g5 W4T
4.21)

with the diagonal supermatrix

_53 0 0

O 0 0 &
N [V _ b
0 -3

In its upper-diagonal block there is ¥ (?”; matrix that enters kinetic term of the twistor La-
grangian for the bosonic particle (2.19). As discussed in section 2 it not merely breaks SU (2, 2) g
symmetry but actually ‘switches’ it to SU (4) g symmetry. In the case of superparticle supermatrix
I interchanges SU(2,2)g- and SU (4) g-invariant blocks. So the supertwistor 1-form (4.21) is
invariant under ‘twisted’” SU (2, 2|4) g symmetry with SU (4) g parameters in the upper-diagonal
block and SU (2, 2) g parameters in the lower-diagonal block. It can be made explicit by adopting
another definition of the dual twistor supermatrix

EN =N 28 = HN (2B )T HB 4, (4.23)

where

SN 8 0 >
H = 4.24
L ( 0 —yON, (4.24)
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resulting in the following expression for the 1-form (4.21)
’5 (EN 4dZA N —dZN 4 zA N) . (4.25)

This ‘twisted” SU (2, 2|14)gr symmetry, however, will be broken by the supertwistor constraints,
that we discuss below, similarly to breaking of the SU (4)g symmetry in the case of massive
particle model in section 2. So let us write kinetic term of the superparticle’s Lagrangian in the
eight-supertwistor formulation in the form with manifest (SU (2) r)* invariance
Liin = (2924 — 292 + LB 2N — 2424
P . = PR . . - . (426)
+ SO A — W W) — LW UAT — Dy 0 A,
To write down complete superparticle’s Lagrangian in the supertwistor form we need to
identify the set of constraints for supertwistors. To this end consider SU (2, 2|4) -invariant su-
permatrix quadratic in supertwistors

ZAzA  ZA gl
> A AFN
ZE 2y = ( B (4.27)
whzA uhuy
Using the incidence relations (4.9) and (4.10) it is easy to see that
Zhwg =1Lz ~ 0 (4.28)

constitute 32 odd constraints. From the relations for spinors (4.15) and (4.18) one finds that
diagonal blocks of the supermatrix (4.27) equal

c qd.pA
AL 8¢ (v 0 gl RGN 0
A ; . ) A - ProA
2 0 sl 2 0 —8 (e

(4.29)
This allows to identify 28 bosonic constraints
_ 1 _ : _ : 1 ; - R
LY =292 — Eagz;‘zj‘ ~0, M?=24,2" - Eagz 12~ 0, (4.30)
2924 %0, Z,;2ZA~0, 4.31)
_ 1 .- . _ R .
A A A P A WA A
quzllJi‘\IJp —Eagxpgxpr ~0, SiP =W,V P—Eag’pr,w "0, (4.32)
VWA 20, Wy, \y;‘ ~ 0. (4.33)

To identify other bosonic constraints consider D.B. relations of the odd constraints. The form of
the kinetic term (4.26) allows to find basic D.B. relations of the supertwistors

(21 28 p.p. = i85, (24 Zglp.s =808,
(W Whip g =is)sg, (W9, Upplp s = —i8985. (4.34)
With these in mind we obtain necessary D.B. relations of the odd constraints

_ _ i _ _
(2wt WEzByy g = i8] L +is) R + 58”3’;(2“26 +07y,),

{2450, Wp, 2P0y . = —iéj’:,M};"‘ +i8789 + = (Sq(S“( Z:ZC 4+ U0 (4.35)
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and
_ . . . _ .
(25w Qg 2By p p = —i83LP 48,857 + 55;52(—;5626 + 00,
- - : ) S iy =
(240 W52P g =is) My +i80RP, + RRACZEAR A O (4.36)

There are two equivalent options to choose 16 odd first-class constraints of the model: those
on the Lh.s. of (4.35) or (4.36). For definiteness let us consider odd constraints in (4.35) as the
first-class ones. The consequence of such choice is that

ZZ 4V, ~0, —Z:Z°4+ U0 ~0, (4.37)

while —Z¢Z, + U; W and Z:Z¢ + U'¥, are non-zero since the constraints on the Lh.s. of
(4.36) constitute 16 odd second-class constraints. Summing up constraints (4.37) and using the
incidence relations (4.9), (4.10) gives

ZOZ, — ZZC U, 4 U = 008 4020l + 04, — 02 ~ 0. (4.38)

The constraint on the r.h.s. is the square root of the mass-shell constraint (4.20). This fixes the
sign ambiguity in the definition of the square root of the mass-shell constraint. The difference of
the constraints (4.37) is also the constraint

(B2 AV W,) — (—ZeZ°+ W) = (Ze2°+ VW) — (=22, 4+ 9 0) ~ 0, (4.39)
and equals the difference of 2525 + U, and —Z;CZC + W W 50 one can set
ZiZC4 W, =—ZZ. + ;¥ = Q eR\ {0}. (4.40)

As a result the products of supertwistors invariant under four different SU(2)g subgroups of
SU(2,2|4)r can be parametrized as

éczcz—%—i—q, @fw,:%—q, Zézézxixr-wf:%Jrq (4.41)
with an arbitrary real ¢q. It is then easy to find another Q-independent linear combination of the
supertwistor products

ZOZo 4 ZZC— W, + WU =4g. (4.42)

Requiring g = O turns it into the 31st bosonic constraint. Constraints (4.39) and (4.42) provide ex-
tra two conditions that being expressed in terms of the Spin(1,4) and Spin(5) variables balance
the number of their independent components and those of 10d null momentum (see discussion
after Eq. (4.20)).

One can take another look at the above constraints viewing elements of the supermatrix (4.27)
as the generators of the ‘twisted’ u(2, 2|4) g superalgebra. Then four SU (2, 2|4) -invariant prod-
ucts of the SU (2) g doublets of supertwistors on the r.h.s. of the D.B. relations (4.35) and (4.36)
can be parametrized as

- . 1
ZEZ AV = (CHEFT)™O,
|

22 -V =~ (C+E-T)~0,

_ 1
22~ = (C-E+T),
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- 1

224 VW = (C—E~T). (4.43)
where

CHE=Z2°2.— Z:Z°+ V', + U, ¥ ~0 (4.44)

is the sum of the Ad S energy (conf(_)rmal dil}lension) generator £ = U, 4+ b, W and its coun-
terpart in the su(4)g algebra C = Z°Z, — Z: Z¢. Generator T € su(2,2|4)g is

T=ZZ. 4 Z:Z°+ VW, — ;¥ ~0 (4.45)

and the constraint (4.42) equals the generator U € u(2,2|4)g.
After taking into account all of the constraints, the supermatrix (4.27) is found to be propor-
tional to the unit supermatrix

> Q
ZE 2z~ Zaff. (4.46)

Thus ZA A/ is an element of U(2,2]|4) x R modulo the gauge symmetries generated by the
first-class constraints that we have to identify.

The choice of the first- and second-class fermionic constraints was made after Eq. (4.36).
There remains to consider D.B. relations of the bosonic constraints (4.30)-(4.33), (4.42), (4.44)
and (4.45) in order to find which of them are the first-class. 7 ~ 0 D.B. commutes with all
the constraints, whereas U = 0 has non-zero D.B. relations only with odd constraints given in
Appendix B and so they are the first-class constraints. Four copies of the su(2) generators (4.30)
and (4.32) are also the first-class constraints, their D.B. relations with other constraints are given
in Appendix B. Constraints (4.31) and (4.33) are the second-class ones as is seen from the D.B.
relations

(Zaa 2 28250 p p = isE Mb —ishLe, + %3;55@

— — . . . l .
(W W, VLB g =is)8,7 + iS)RY, + Eagagg. (4.47)

E + C ~ 0 D.B. commutes with the first-class constraints. Its D.B. relations with the second-class
constraints can be schematically presented as

{E+C,G1}==2iG4, (4.48)
where

G+ — {%ﬂzu‘\b’ \?214\1,./4]7’ ?i\pAq’ \iiilz.Aa'}’

G_ = (22 W g W U g 28, 2000 (4.49)
Therefore we conclude that there are 15 bosonic first-class constraints that together with 16

fermionic first-class constraints generate su(2|2) @ su(2]|2) @ u(1) superalgebra of the gauge
symmetry of the superparticle model in the eight-supertwistor formulation and

ZAN eU(2,214) xR/(SU2|12) x SU2|2) x U(1)) (4.50)

having 18 bosonic and 16 fermionic independent components equal the number of physical de-
grees of freedom in the superspace formulation.

To conclude this section we present complete Lagrangian in the eight-supertwistor formula-
tion



16 D.V. Uvarov / Nuclear Physics B 950 (2020) 114830

L8 —stwistor = Lkin + Leconstr 4.51)

where the kinetic term is given in (4.26) and the second summand is the linear combination of
the constraints with Lagrange multipliers

Leonst =ALaL + Ny Ma" + AP R, + ApdS;P + Apyc(E +C) + ArT + AyU
HAGWP Z, +iNJ 20, + iAW, + i[\j'.,éd\yﬁ
FA 220 4 AP 2, 4 Ay BIWP 4 RIPT 0,
Fihap VP2 +iAPOZ, W, + i APV 2, + iy ZOWP. (4.52)

Analysis of the conservation conditions of the constraints yields that the Lagrange multipliers
for the second-class constraints in the two last lines in (4.52) turn to zero, while those for the
first-class constraints in the first and second lines remain unfixed.

5. Four-supertwistor formulation of massless superparticle on AdSs x S°
superbackground

Reduction of the Lorentz-harmonic variables was discussed in section 3 and the results ob-
tained there also apply to the D = 10 superparticle model. Superparticle’s 10-momentum com-
ponents tangent to Ad S5 can be brought to the form

1
pm/=—§v2y,‘,’f/ﬁvf (5.1)
with

Vil =-0. (5.2)
Reduction of the Spin(5) variables proceeds in the similar way. Resulting expression for the
momentum components tangent to S is

1

prr ==Ly aty, (5.3)
where

(gl =0. (5.4)

Expressions for the momentum components (5.1) and (5.3) were the starting point to derive the
four-supertwistor formulation of the massless superparticle on Ad S5 x S° superbackground from
the first-order form of the superspace formulation [48]. Resulting four-supertwistor representa-
tion of the superparticle’s Lagrangian

£4—stwist0r = t§ (2514224 - 2?4254) + ti(qlfél\p;]‘l - q}il‘l\y;l)
+ AP LY + AP RY, + A(ZY 21+ U (5.5
+ iAW ZA i AL 2wt

coincides with that obtained in Ref. [22] by partial gauge fixing 2T superparticle model in 2+ 10
dimensions. There are seven bosonic
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- 1 - _ 1 ,-
A A —_ ol gA q A~

LY =Z%Z7 — EcSZZ;‘ZC ~0, RY,= vy, - 58,, A0,

za zA | 349 @A A

ZYZ5+ Vit~ 0 (5.6)
and eight fermionic

9 zA A Za A

VW25 ~0, Z9W~0 (5.7)
first-class constraints quadratic in supertwistors. These are the generators of the su(2|2) gauge
superalgebra named color superalgebra in [21].

In our previous work [48] massless superparticle model in the four-supertwistor formulation
was quantized in the simplest case when it propagates only within the AdSs5 subspace of the
AdSs x S superspace, i.e. momentum components in directions tangent to S> vanish. In su-
pertwistor formulation this amounts to vanishing of \I/;;l and \11214 supertwistors so that only the
c-type supertwistors Zg“ and ZZ‘ are dynamical variables. It was demonstrated that the states of
quantized superparticle coincide with the D =5 N = 8§ gauged supergravity multiplet [53] both

in the supertwistor and superoscillator approaches.
In general all four supertwistors contribute. Their (anti)commutation relations are found to be

(2], 20y =obsf,  (wt Uh) =olsg. (5.8)

To set up the stage for superambitwistor quantization let us introduce individual notation for the
components of c- and a-type supertwistors

VA S s > -
zﬁEzA=<nA>, 2Y = Za=Za, ila),

59
A_ppd_ (W° Y Vo, T "
and
\I/‘IAE\I/’A:<§A), ‘1/145\1’,4:(505, La),
(5.10)

it

A () W =2, =y M
87 = a2 ) Yu=Ea=(a, My).

Let us further realize components of quantized supertwistors as the multiplication and differen-
tiation operators

2% > 2% Za— =g ot i gh
_ _ = _ _ (5.11)
Wa%a%a, Wa—>Wa, ;Aﬁ%, fA—> CaA
and
g% B qgle LA LA Ly oL
3 B i 5 _ - (5.12)
QN%E, Oa — Oa> MA_)M’ Mp— My,

where odd derivatives are defined to act from the left. Then the constraints (5.6) and (5.7) become
differential operators acting in superambitwistor space. Let us a la Gupta-Bleuler quantization
approach assume that the superparticle’s wave function is annihilated by the diagonal elements of
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the bosonic constraint matrices L' = —L%; ~ 0 and R!; = —R%, ~ 0, as well as off-diagonal
elements L?; ~ 0 and R?| ~ 0 that are given by the differential operators of utmost the first-
order. As a result the superparticle’s wave function satisfies the following equations
(Hy + Hz)Fiz. hyzylhy. hz)(Z, W, W, B) =0
WaAZAF o, hyplhe. hz) (2, W, W, B) = EAVAF, hyplhe. hz) (2, W, W, ) =0
(5.13)

_ 9
=7 — 5= _ +ia— (5.14)
9ZA VA anA W4 * O We 9¢a

and

d 0 0 - -0

A A =

Hy =WV —+L , Hz=EBjp4—= +Mp—— 5.15
L xS R T2 Aves " %, M, O
are dilatation operators in each of the ambitwistor variables. Their eigenvalues — homogeneity
degrees in respective arguments % z, hy;), hy and hz are indicated in the subscript of the super-
particle’s wave function. Extra equation

(Hz — Hyy + Hy — H3) Fiz, byl hg) (2, W, W, E) =0 (5.16)
comes from the last constraint in (5.6). Thus there are three equations for four homogeneit}_f de-
grees so we can introduce one arbitrary parameter 4 and write ¥, -, hyylhw, hé)(Z WU E) =
Fh, —h—n, ) (Z, W, W, E). Besides that impose on the superparticle’s wave function the equa-
tions that stem from the odd constraints and are given by the utmost first-order differential

operators. In the realization (5.11), (5.12) two odd constraints W A\IJA ~0and E AZA ~0
translate into algebraic equations

WAYAF G, —h ) (2, W, W, B) = BAZAFG, —hjon (20,0, 8) =0 (5.17)
that together with two algebraic equations in (5.13) can be taken into account by introducing the
delta-function factors

Fn, —ni—n. ) (Z, W, U, B) = S§OWZ)§(EW)S WS (EZ) Fi, —hj—n. 1) (Z, W, W, E).

(5.18)

Addltlonally two pairs of the conjugate constraints ¥ AZA 0, Z A\I/A 0and E AWA

W Au ~ 0 yield first-order differential equations. Assuming that in each pair of the equatlons
associated with these constraints one equation is imposed on the superparticle’s wave function
and another on its conjugate gives four possible sets of equations that will be analyzed elsewhere.
As an example we present one set of such equations

d - _
(—)AzA — Fh, —hj—n, 0y (Z, W, W, B) = HAW?(h,fh\fh,h)(Z, W, ¥, 8)=0

(5.19)

where in the first equation it is assumed that SU (2, 2);, index has parity zero and SU (4) index
has parity one. Since the differential operators in (5.19) annihilate delta-function factors intro-
duced in (5.18) we obtain

awA
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0 - _ _ 0 - _
(—)AZAW—AF(h, —h—h, ) (Z, W, ¥V, B) = EAWF@, —h—h,n)(Z, W, ¥, B) =0.

(5.20)

Analysis of these and other equations and of the Penrose transform of the function
Fin, —h—n, ny(Z, W, W, E) is postponed for future study.

6. Conclusion

In the present paper we addressed the issue of deriving supertwistor formulation for D = 10
massless superparticle on AdSs x > superbackground starting with the first-order representation
of the superspace Lagrangian, in which momentum components tangent to AdSs and S° are
expressed via the Spin(1,4) and Spin(5) variables. Resulting supertwistors coincide with those
found in [21] so that we not only established their origin but also derived the incidence relations
with the AdSs x S° superspace coordinates viathe PSU (2, 2]4)/(SO(1,4) x SO (5)) supercoset
representative. Using the incidence relations we have identified the set of bosonic and fermionic
constraints that these supertwistors satisfy and calculated their classical algebra. It appears that
among the constraints there are the second-class ones that complicates canonical analysis of the
model. We have shown that using the constraints for the spinor variables it is possible to exclude
half of them from the expressions for the momentum components reducing the eight-supertwistor
form of the superparticle’s Lagrangian to the four-supertwistor form. Respective supertwistors
were proposed in [22] and the incidence relations with the Ad S5 x S> coordinates were obtained
in [48]. This not only explains the origin of both kinds of supertwistors pertinent to the AdSs x
S superparticle model but also establishes the relation between them. The advantage of the
four-supertwistor formulation is the presence of only the first-class constraints. As a result we
have obtained the set of equations for the superparticle’s wave function in the superambitwistor
space that generalize those of Ref. [48].

In general the distinctive feature of the twistor formulations is that the Lagrangian of the su-
perparticle models is quadratic in supertwistors as well as the constraints. This is of particular
importance for curved superbackgrounds such as AdSs x S° one, for which, depending on the
parametrization, supervielbein components may be highly non-linear in the superspace coordi-
nates. The difficulty with the supertwistor formulation is to provide a space-time interpretation
of the states of quantized model. In the case when the superparticle moves within the AdSs sub-
space of the AdSs x S° superspace we succeeded in [48] to map its quantum states to those of
the supermultiplet of D =5 N = 8 gauged supergravity [53] both in the superoscillator and su-
pertwistor approaches. Next task is to extend these results to the generic case and find a relation
between the components of the superparticle’s wave function and the towers of Kaluza-Klein
states of the IIB supergravity compactified on AdSs x S° superbackground.

We also plan to examine the spectrum of quantized tensionless supertwistor string on
AdSs x S sketched in [48] and its relation to the higher-spin supermultiplets emerging on both
sides of AdSs5/C F T4 duality in the limit of vanishing ’t Hooft coupling [77], [78]. Supertwistor
formulation of the tensile AdSs x > superstring is another direction of the generalization of the
results reported here. Such a formulation could be an interesting alternative to the superspace
formulation based on the PSU (2, 24)/(SO(1,4) x SO(5)) supercoset sigma-model [79], [80].

Finally in [22] there were considered twistor gauges for superparticle models relevant to other
maximally supersymmetric backgrounds. It is of interest to obtain incidence relations for these
supertwistors starting with the superspace formulations of conventional superparticle models on
such superbackgrounds and study their quantization.
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Appendix A. Details of the spinor algebra

In Appendix A of Ref. [48] there were collected the details of the spinor algebrain D =2+4
and D = 1 + 4 dimensions alongside with the realization of the D = 1 + 4 y-matrices with
manifest SL(2,C) symmetry that was used for the supermatrix realization of the generators
of psu(2,2|4) superalgebra as D =4 N = 4 superconformal algebra. In order to spell out
the relations between the D = 1 4 4 spinor and vector Lorentz harmonics parametrizing the
SO(1,4)/S0O(4) coset space another realization of the D = 1 + 4 y-matrices is used that mani-
fests SO (4) ~ SU(2) x SU(2) symmetry

sb 0 ) 7 0 o‘i. ~
y ’ V [ ’ 9 Ly Ty T ( -)
: (0 —5 * (5“17 0

D =1+ 4 y-matrix algebra

v Py v Py gt =2 eE, m =0, 1 (A2)
in this realization is fulfilled due to relations that obey a and Glab — ghegid CI g
I ~Jbhe J ~Tbhe _ IJe
0,0 to ;077" = —28""46,. (A.3)
Matrices o >3 coincide with the Pauli matrices and o* = =i I. Charge conjugation matrices is

this realization are chosen as

_ [ —€ab 0. af _ -0

where g5, £90: £,4pe" = §¢ and &, £ be = §¢ are used to change the positions of the
fundamental representation indices of the two SU (2) factors of SO (4). y-matrix realization
(A.1) and that used in Ref. [48] are related by the similarity transformation analogous to that
connecting D = 1 4+ 3 y-matrices in canonical and Weyl bases (see, e.g. [81]).

To write expressions for the D = 5 vector and spinor harmonics we use the following realiza-
tion of D =5 y-matrices with manifest SO (4) covariance

N 0 ol . P 0
1 N: N qap ,= 5 N: q 5 .
v (_ﬂ,qp ’ ) I'=1,2,3,4, y°, (o _(SZ>, (A.5)

where qu and 6147 satisfy the same relations as in (A.3). Spin(5) >~ U Sp(4) charge conjuga-
tion matrices in this realization equal

_ Sq D 0 ) LN _ [ ¢ qp 0
CLN—< 0 s‘“’)’ C —< 0 ) (A.6)
Appendix B. Algebra of the constraints for eight-supertwistor formulation

For completeness we present here those D.B. relations of the constraints in the eight-
supertwistor formulation of the superparticle that have not been given in the main text.
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D.B. relations of the fermionic constraints apart from those in Egs. (4.35) and (4.36) are
p q
(Z4WA gy 2Py p g = isf U0, ~0, (Z4WA W5 280, o —isl 292 ~0,
(290 WL 2P p p =i WPWi ~0, (2404 Vg, 250, 5 = —i812°2P ~0,
(ZaaV V2P p s =i8) 202, ~0, (249, U250 p p. = 1850, W, ~0,

(2 Ups 2P p.p. = ~i1812:2, 20, (2408, WR2BY) g = 0807w ~0.
(B.1)

D.B. relations of U with the fermionic constraints can be schematically written as

{U, Q+}p.p. =+2iQx, (B.2)

where
Q4 = (29U, 24,0, 24,04, 294 wAT),
0_ ={¥) ZA W 249, W0 240 By, 24, (B.3)

D.B. relations of the constraints (4.30) and (4.31) are
(L% Zaa 2 p.p. = —6,,2Aaz — i8¢ 204 23,
(L9, 25,24 p p. = —55,‘;2;12“4’5 +isg 2 24,
M, 2.4:2 5. = —%aﬁzAc-z;“ +islZ a2,
(M, 2424 5. = %5’32;2“4& — g2z,
(L. L4)p.s. = iG5L% — 85L%),  (Ma" McYyp.p. = i(80M: —8iM:P). (B

Similarly D.B. relations of the constraints (4.32) and (4.33) read

{R7,, V4,9 Mpp = an\pAq\y — i8] W 40,
(R4, W, WA} = —%8?,\1{4\11“44 87 W WAL
(847, 497D 5. 55”\1/,4,\1#‘ i87W 4w,
(837, W wAy ) = —%ag\ifgwf“ i AP

{RY,. R*}p.p. =i(65RY, — 6] R* ). (8", 5 }p.p. = i(6 ;7 —80'8;"). (B.5)

Finally we present D.B. relations for bosonic and fermionic constraints. D.B. relations that
involve fermionic first-class constraints are
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(Zac28t, 2895 p g = 160 240,

(L%, 2997 p.g. = —Eagz';w;;‘ isgZow,

(W AP Z8wBy ) p = —ish Z4 WA,
{R’,,,zj;\qf;;‘}D,B,_—arzAwA 180 24wk
(Z42M V2B p p = —isc WY, 24P,

(L, V2N pp = %5;’\1/342;4 LA
(U, 2By 5 = ish U 420,

(R, V24 p = 25;\114 ZA 4800, 2N
(Z924, 25,980 p . = 1802604,

(M, Z4a00)p g = L8 2000 48 2 400
(Va2 WP p g = i8] 24407

(517, 20} p g, = — 580 Za g0l 4id 240
(22 Wp 2B p g = —isdW 4, 21,

(M4 270 g, = 2500 4 240 — 1500492,
(U AP g, 284y, p = —ish W, 2 A

($;P, W 4,22 p g = %(Sf\iJAqZA“” - i85\1‘AfZAd.

D.B. relations involving fermionic second-class constraints are

(292, 2,8 p . = 180 25wt

(M, 209N 5. = —55?ZA5¢ WA 4 ishZ 40wt
(W AP 22, WBY g = —i8) 24,047
{R',,,éAawA}D.B.——s 2, =8, Z 007
(Zac 2, V2B p 5 = —i68 0, 21,

(M, W 244, = Es’g\iﬂzv‘“‘ —isd W, 24,
(W W, W 2By, g = i8]y 249,

(RYp, 1,270 5 = = L3034 1 i, 24,

{Z_.Ac'Zi,A, Z_g\qu}D‘B‘ = i5ZZ__AC~\IJAq,

(B.6)
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(L, 2994 p = —%352;\11*4‘? +isiZ6wAd,
(D, 25050y g = i8] 29w,

(S:7, Z4wAdy p = —%aijlwA‘? + i8] 29 WA,
(2922 U 2By p g = —iso 0 4527,

(L, V4, ZMpop. = %3;%,;2;4 — i8SV 4, 2,
(VWA g, 28)p g = —is) W 21

I i - -
(837 0y 2 D5 = 500 Vg 2 — i) Uar 271 (B.7)
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