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1 Introduction

An important problem in cosmology is the question “what provided the initial seeds for
structure formation?”. The theory of cosmological perturbations (for a thorough reference,
see [1]) aims to describe the evolution of the universe given some collection of structures, but
it does not account for the cause of the primordial density fluctuations. Inflation, coupled
with quantum fluctuations (see [2]), is currently the most promising candidate. Inflation is
attractive for its simplicity — we only need to add in a scalar field — and its ability to directly
solve open theoretical issues with the big bang model. A scalar field is not the only possibility
as the dynamical object driving inflation. Given that the empirical status of inflation is at
present inconclusive (see [3] for an overview of the observational status and prospects), several
possible models are discussed in the literature and have not yet been ruled out. Scalars are
favoured for their simplicity, but there are no experimental reasons to dismiss alternatives.

In recent years, one such alternative is three-forms (for a subset of work on three-form
inflation, see [4–11]). Moreover, three-forms have been considered as dark energy candidates,
similarly to scalar fields [6, 12]. Three-forms have also been studied in other contexts,
namely spherical objects (black holes, stars, and wormholes [13–17]), singularities in general
relativity [18, 19], for use in screened cosmologies [20], and for studies on alternatives to
FLRW spacetimes [21]. More infomation about the general three-form formalism can be
found in [22–24].
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A three-form is a three-indexed tensor field, AABC . Their inclusion as an alternative field
is not without precedent, as they occur naturally in supersymmetry and string theory models
(an overview can be found in [25]). They produce distinct signatures for all the aforementioned
effects (inflation, dark energy, etc.). Although various inflationary mechanisms have been
considered (for example, vector inflation [26]), we choose to pay three-forms particular
attention because vectors and other two-form fields (e.g. Kalb-Ramond field) have been more
considerably studied than three-forms (although not as thoroughly as scalars). Additionally,
forms of four or higher can be shown to be equivalent to scalar fields [27]. Given their
origin in string theoretic models, it is natural to study their dynamics in dimensions higher
than 4. We could perform the analysis in the full string theoretic 11 dimensions, but it
is useful to have some means of comparison to scalars. For that reason, we will study
three-forms in branes (i.e. 5D).

Several studies have been done in branes, typically involving additional degrees of freedom
in the gravitational theory (like scalar fields) [28–30] or some modification of the theory
itself (f(R), conformal gravity, see [31] and references in their introduction). An overview
of scalars and thick brane solutions can be found in [32]. Few studies, however, have been
done on three-forms in branes. There is an analysis of three-form cosmological solutions
in the Randall-Sundrum II braneworld scenario [4]. This is an example of a thin-brane
model [32]. To the authors’ knowledge, there is no study of three-forms in thick braneworlds.
This paper aims to address this knowledge gap.

We construct a model of a three-form in a warped flat thick brane, find the three-form
analogue of the Klein-Gordon (3KG) equation of motion, the Einstein field equations (EFEs),
analyse their solutions and their stability against metric perturbations, and do so for the cases
with a matter source and without. Our analysis reveals crucial differences between three-forms
and scalars in thick branes: we discuss extra terms in the equations of motion, degeneracy
in the EFEs, and most saliently, instabilities. The classical thick brane background is not
stable against linear perturbations when three-forms inhabit the bulk — this is in contrast
to most scalar field models. Unlike the scalar field case, the overall system of equations
governing three-form dynamics are not under-determined. They must be solved subject only
to a choice of three-form dual parameterisation — there is no freedom to fix the warp factor.
We find that the solutions reflect the instabilities found in the perturbative analysis. It
appears as though, without some other modification or high degree of fine-tuning, three-forms
are not stable in thick braneworlds. One caveat to the question of three-form stability is
the choice of dual parameterisation.

We elaborate on the above and the possible implications thereof in the remainder of the
paper. In section 2 we construct the model, section 3 contains the analysis of the background
stability via perturbations and we solve the dynamical system in section 4. Results are
discussed in section 5. Supplemental discussion of stability is included in the appendix, via
an application of the formalism developed in [30] for a general q-form.

2 Thick brane model for three-forms

Throughout this work we use notation where (capital) Latin indices run through 5D, i.e.
B ∈ {0, 1, 2, 3, 4} and Greek indices run the standard 4D coordinates, i.e. µ ∈ {0, 1, 2, 3}. The
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square of a tensor denotes contraction of all the indices, i.e. A2 = AABCA
ABC , and a circle

denotes contraction of all but the first index, i.e. (A ◦A)AB = AA
CDABCD. We work in units

such that c = 1. Additionally, we use W to denote the warp function, and the three-form
potential is denoted by A. Boldface quantities refer to 5D vectors.

2.1 Three-form action

We consider the following action for a three-form field AABC minimally coupled to Einstein
gravity in a 5D spacetime

S =
∫
d4xdy

√
−g

[ 1
2κ2R− 1

48F
2 − V (A2)

]
, (2.1)

where y identifies the coordinate of the fifth dimension (or ‘bulk’), g = det gAB is the de-
terminant of the metric, R is the standard curvature scalar, κ2 = 8πG5 with G5 being the
5D Newton’s constant, V (A2) is the three-form self interacting potential and F = dA is the
strength tensor of the three-form, with components,

FABCD = 4∇[AABCD] . (2.2)

In a torsion-free spacetime the covariant derivatives in the above equation can be replaced
with ordinary partial ones, due to the symmetric nature of the connection [33]. In this case,
the strength tensor plays the same role for the three-form theory as the kinetic field strength
∂µϕ does for standard scalar field theory or as Fµν for classical Maxwell’s electromagnetism,
corresponding to a zero (ϕ) and one-form (Aµ) respectively. This three-form will naturally
equip the field AABC with dynamics, depending on the choice of metric gAB.

2.2 Metric and equations of motion

In this paper we will consider a conformally flat [34] 5D brane spacetime, with line element,

ds2 = e2W(y)ηµνdx
µdxν + dy2 , (2.3)

where ηµν is the Minkowski 4D metric, with signature (−,+,+,+), and the prefactor e2W(y)

is the so-called “warp factor” with W(y) being the “warp function”.
In 5D the three-form dual, ⋆AABC = BAB, is a two-form, BAB, with components

BAB = (⋆A)AB = 1
3!

1√
−g

ϵABCDEACDE , (2.4)

where here ϵ denotes the 5D Levi-Civita symbol [4]. We may now introduce a scalar function
χ(y) that parametrizes BAB and depends only on the fifth dimension, y. Using eq. (2.3),
the dual (2.4) has the following non-vanishing components:

B0y = −By0 = eW(y)χ(y) . (2.5)

This is a fixed, free choice. This antisymmetric ansatz for the dual vector greatly
simplifies the equations and allows the three-form components to be completely determined
by the field χ(y). Inverting (2.4) gives

AABC =
√
−g ϵABCDEBDE , (2.6)
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which has the non-zero components:

A123 = A231 = A312 = −A132 = −A321 = −A213 = 2e3Wχ . (2.7)

Finally, we can calculate the invariants:

A2 = 24χ2 , (2.8)
F 2 = 96

(
χ′ + 3W ′χ

)2
, (2.9)

where a prime denotes a derivative with respect to y, i.e. χ′ = dχ/dy.
With the three-form invariants (2.8) and the brane metric (2.3) we are now ready to

calculate the equations of motion using eq. (2.1). Varying the total action (2.1) with respect
to the three-form yields the following equations of motion,

∇AF
A
BCD = 12 dV

dA2ABCD . (2.10)

Due to the antisymmetric nature of the A field, F is a closed differential form, i.e. dF = 0.
Substituting the metric (2.3) into eq. (2.10) one can express the equations of motion

in terms of the χ field as

χ′′ + 4W ′χ′ + 3χ
(
W ′′ + W ′2

)
− 1

4
dV

dχ
= 0 , (2.11)

where Vχ = dV/dχ. This is, in essence, the equation of motion for the three-form, via the
parameterisation BAB viz. its dual, AABC . The Einstein field equations are computed through
the variation of eq. (2.1) with respect to the metric gAB. They are

GAB = κ2TAB , (2.12)

where GAB is the standard Einstein tensor and the stress-energy tensor is sourced entirely
by the three-form,

TAB = 1
6 (F ◦ F )AB + 6 dV

dA2 (A ◦A)AB + gABL3f , (2.13)

where from eq. (2.1) we identify the three-form Lagrangian density as,

L3f = − 1
48F

2 − V (A2) . (2.14)

With our brane metric (2.3) the components of TAB are:

T 0
0 = −V − 1

48F
2 , (2.15)

T 1
1 = T 2

2 = T 3
3 = −T 0

0 − 2V + χVχ , (2.16)

T yy = −T 0
0 − 2V , (2.17)

with trace:

T = gABTAB = 6
(
χ′ + 3W ′χ

)2 + 3χVχ − 5V , (2.18)
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and the components of the Einstein tensor:

G0
0 = 3

(
W ′′ + 2W ′2

)
, (2.19)

G1
1 = G2

2 = G3
3 = G0

0 , (2.20)
Gyy = 6W ′2. (2.21)

We will now set κ2 = 1 (cf. [31] or [29], who set it to 2). Our full system of equations,
determining the dynamics of both the metric and three-form, is

χ′′ + 4W ′χ′ + 3χ
(
W ′′ + W ′2

)
− 1

4
dV

dχ
= 0 , (2.22)

3
(
W ′′ + 2W ′2

)
= −V − 1

48F
2 ,

3
(
W ′′ + 2W ′2

)
= 1

48F
2 − V + χVχ ,

6W ′2 = 1
48F

2 − V.

(2.23)

2.3 Comparison with the scalar field case

It is interesting to compare this system of equations (2.22), (2.23) to the scalar field case.
For a minimally coupled scalar field φ in our metric, the full system reads [29, 35]

3W ′′ + 6W ′2 = −
[1

2φ
′2 + V (φ)

]
,

6W ′2 =
[1

2φ
′2 − V (φ)

]
,

φ′′ + 4W ′φ′ = dV (φ)
dφ

.

(2.24)

The Einstein tensor is the same, but the stress-energy tensor of the scalar field has
better degrees of symmetry: its 4D components are identical, so there is only one EFE. The
00 stress-energy component is the same as the three-form and is simply the Lagrangian
of the field in question.

The differences between the three-form and scalar occur at the spatial (3D) level: the
three-form’s stress-energy tensor is different to the scalar field one, containing not only an
opposite kinetic sign but a potential derivative. Finally, the yy component is the same
as the three-form case. The true EFE difference manifests in the spatial 3D behaviour,
not in the bulk. This is reflective of the nonzero components for the three-form in our
parameterisation, eq. (2.7).

The equation of motion is also different: there’s an additional 3χ
(
W ′′ + W ′2) term

and some scaling of the potential derivative for the three-form. This however is not only
generically expected for a tensor field as compared to a scalar, but additionally the form
that the three-form “Klein-Gordon” equation takes is highly dependant on the choice of
parameterisation. This is not the case for the EFEs. This is crucial since the total system for
the three-form, unlike the scalar field, is not overdetermined. Therefore, one cannot derive
one equation in the system (2.22), (2.23) from the other three, one does have this liberty in
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eq. (2.24), however. This fact is exploited in typical scalar field studies to fix a known warp
function and obtain closed solutions ([32]; see, for example, [31]). We can reduce our system
to three independent equations in three unknown variables: χ, V , W. Thus the system is
not underdetermined and we are not free to impose any further choices.

3 Stability of the graviton through perturbations

In braneworld models, one must examine the stability of the zero-order modes against
perturbations. That is to say, for a metric perturbation hµν , obeying a Schrodinger-like
equation of motion, does the Sturm-Liouville operator admit negative energy states? If so,
the classical background is not stable [36]. We follow [36, 37]. The perturbed metric is only
in 4D, the bulk remains unchanged. The metric is therefore

ds2 = e2W(y) [ηµν + hµν(x, y)] dxµdxν + dy2. (3.1)

The perturbed EFEs will therefore be

δRAB = δTAB − 1
3δgABδT

C
C . (3.2)

The perturbed Ricci tensor is the same for any minimally coupled braneworld model
(here, we need only the 4D component, since it is this that enables us to analyse stability):

δRµν = e2W
(1

2∂
2
y + 2W ′∂y + W ′′ + 4W ′2

)
hµν + 1

2ηµνe
2WW ′∂y

(
ηαβhαβ

)
− 1

2□hµν

− 1
2η

αβ (∂µ∂νhαβ − ∂µ∂αhνβ − ∂ν∂αhµβ)
(3.3)

where □ is w.r.t. to gµν , not gAB. The transverse-traceless gauge [38] eliminates the second
and fourth term, leaving

e2W
(1

2∂
2
y + 2W ′∂y + W ′′ + 4W ′2

)
hµν −

1
2□hµν = δTµν −

1
3ηµνδT

C
C , (3.4)

where the trace is with respect to all indices. The key calculation is the r.h.s.
For the scalar field case, we use the following change of variables

dz = e−W(y)dy; hµν = e−ip·xe−3W(z)/2h̄µν(z). (3.5)

we are able to eliminate W ′′ + 4W ′, giving us the following wave equation for hµν [31][
− d2

dz2 + u(z)
]
h̄µν(z) = p2h̄µν(z) (3.6)

where the potential is

u(z) = 9
4W

′(z)2 + 3
2W

′′(z) (3.7)

where W is a function of z. This operator −∂2
z + u(z) is bounded from below, and the

lowest mode p2 = 0 is normalisable. The crucial step is being able to eliminate W ′′ + 4W ′ in
eq. (3.3). If this is not possible, the differential operator changes.
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We now return to the r.h.s. for our three-form Sµν = δTµν − 1
3ηµνδT

C
C ,

Sµν = 1
6δ (F ◦ F )µν + 6δ dV

dA2 (A ◦A)µν + 6 dV
dA2 δ (A ◦A)µν + ηµνδL3f

+ e2WhµνδL0
3f −

1
3 + e2WhµνT.

(3.8)

Explicitly, the nonzero terms are given by

(A ◦A)µν = (A ◦A)ii = 8e2Wχ2. (3.9)

(F ◦ F )µν = (F ◦ F )ii = (F ◦ F )yy = 24e2W (
3χW ′ + χ′)2 (3.10)

where i = {1, 2, 3}. The three-form field has vector and scalar perturbations. But in our
case we only have (cf. eq. (2.7)) perturbations [12]

Aijk = ϵijk (χ0 + δχ) . (3.11)

As such, the terms δ (F ◦ F )µν and δ (A ◦A)µν will contain several perturbed terms, but
none proportional to hµν . To linear order then,

δ (A ◦A)µν = 8e2W(2χ0δχ)

δ (F ◦ F )µν = 48e2W (
3δχW ′ + δχ′)2 . (3.12)

This is similarly true for ηµνδL3f , since L3f contains only F 2 and V terms. The terms
of concern are therefore the last two in the source term (3.8),

Sµν ∝ e2Whµν

(
− 1

48F
2 − V (A2)

)(0)
− 1

3e
2WhµνT

(0). (3.13)

The term we require, in order to cancel out the term we want, is from eq. (2.23)

W ′′ + 4W ′ = 1
144F

2 − V

3 . (3.14)

Thus we have,

Sµν ∝ 2
3e

2WhµνV. (3.15)

This does not equal the ideal term, and as such does not cancel. The equation of
motion for hµν is therefore

e2W
(1

2∂
2
y + 2W ′∂y + W ′′ + 4W ′2 − 2

3V
)
hµν −

1
2□hµν = δT̃µν , (3.16)

where
δT̃µν = 1

6δ (F ◦ F )µν + 6δ dV
dA2 (A ◦A)µν + 6 dV

dA2 δ (A ◦A)µν + ηµνδL3f (3.17)

rearrangement yields(
∂2
y + 4W ′∂y + 2W ′′ + 8W ′2 − 4

3V − e−2W□
)
hµν = 2e−2WδT̃µν . (3.18)
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This a sourced wave equation. Pertinent to our analysis is the form of the differential
operator after the change of variable, dz = e−W(y)dy and

hµν = e−ip·xe−3W(z)/2h̄µν(z). (3.19)

We can perform this variable transformation step-by-step. Firstly, the d’Alembertian
only acts on e−ip·x and, with our metric signature, gives −p2. So,

□hµν = −p2e−ip·xe−3W(z)/2h̄µν(z) . (3.20)

Next, our derivatives become [36]

d

dy
= e−2W (z) 3

4
d

dz
,

d2

dy2 = e−2W (z) d
2

dz2 (3.21)

where now W is a function of z, and a prime is a now a derivative w.r.t. to z (the change
from W(y) → W (z) is given by integrating the above equation). The exponential can be
moved from the r.h.s., leaving(

∂2
z + 3W ′∂y + e2W

[
2W ′′ + 8W ′2 − 4

3V
]

+ p2
)
hµν = 2δT̃µν . (3.22)

Applying the l.h.s. to eq. (3.19)

3W ′∂z
(
e−ip·xe−3W (z)/2h̄µν(z)

)
= e−ip·x3W ′e−3W (z)/2h̄′µν − e−ip·x

9
2W

′2e−3W (z)/2h̄µν ; (3.23)

∂2
z

(
e−ip·xe−3W (z)/2h̄µν(z)

)
= e−ip·xe−3W (z)/2h̄′′µν − e−ip·x3W ′e−3W (z)/2h̄′µν

+ e−ip·x
9
4W

′2e−3W (z)/2h̄µν − e−ip·x
3
2W

′′e−3W (z)/2h̄µν .

(3.24)

We see the h′µν terms cancel, leaving us to divide through by e−ip·xe−3W (z)/2:(
d2

dz2 + u(z) + p2
)
h̄µν = S̄µν ;

u(z) =
[
8e2W − 9

4

]
W ′2 +

[
2e2W − 3

2

]
W ′′ − e2W 4

3V ;

S̄µν = eip·xe3W (z)/22δT̃µν .

(3.25)

This is now a Schrodinger-type equation. As a sanity-check, when there is no three-form
the r.h.s. vanishes, and the effective potential u(z) would match the scalar field case since
the extra e2W terms would not appear in earlier steps in the derivation. The three-form
has changed the differential operator to, for p > 0,

D2 = − d2

dz2 − u(z). (3.26)

This operator is not factorisable, so the gravity sector on the brane is not linearly
stable [31, 34, 36, 37]. Even with a source term this conclusion holds: the term p2 corresponds

– 8 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
1

to the energy eigenvalue, and this term is not necessarily bounded from below. There may be
regions where this is the case, but the background metric is unstable against perturbations,
and so the energy can become unbounded at certain points. With the introduction of the
three-form field, the gravity sector of the braneworld is linearly unstable. We expect high
sensitivity in the dynamics of the three-form away from stable fixed points, and study this
in the following section.

4 Three-form solutions

We now turn to obtaining solutions for the three-form and explicit analysis. The complex
nature of our system of equations requires the use of numerical methods. A dynamicla
system is constructed to reduce the derivative order from second to first. We will do so
for both the model we have considered thus far as well as with an additional scalar field
acting as a matter source.

4.1 Solutions without matter

Using the dynamical variables:

x = χ z = χ′ + 3W ′χ f = W ′ (4.1)

our system of equations (2.23) and (2.22) can be expressed as the following dynamical system:

x′ = z − 3fx , (4.2)

z′ = −z
(
z

x
+ f

)
, (4.3)

f ′ = −4
3z

2 . (4.4)

It should be noted that this choice of variables does not impact the form of the dynamical
system and thus does not affect the results.

We begin the analysis by first considering cases with analytical solutions. This system
has one line of finite fixed points PL at (x, z, f) = (x, 0, 0) corresponding to a 5D Minkowski
solution (with no brane). The three-form field is constant in this case, χ = χ0.1 Additionally,
just z = 0 is an invariant submanifold. On this submanifold, assuming W ′ ̸= 0 and χ′ ̸= 0,
we find solutions which are analytic:

W(y) = by + W0, (4.5)
χ(y) = χ0e

−3by, (4.6)
V = −6b2, (4.7)

where b is a constant. These are plotted in figure 1. At the level of the action, this submanifold
corresponds to F 2 = 0 and a (negative) constant three-form potential in 5D. The means
our potential plays the role of an effective cosmological constant and our action is no more
than a de Sitter-like action in 5D.

1Here we are not looking at perturbations, χ0 is not the zeroth order field. Hereafter, subscript 0 denotes
the value of a variable at y = 0, i.e. χ(0) = χ0.
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b=0.3
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e2 (y)

Figure 1. Analytic solutions on the invariant submanifold z = 0 for the warp factor e2W(y), the
three-form field χ(y) and its associated potential V for different values of the constant b. For all
solutions, the values W0 = 1 and χ0 = −1 are fixed. All the parameters we have fixed are free to fix,
and their actual choice has no bearing on the general behaviour.
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For z ̸= 0, the system must be solved numerically. To do this, we need to impose
boundary conditions. In the case of f(R, T ) scalar fields [31] boundary conditions at the
origin are set to guarantee symmetric solutions, i.e. W ′(0) = 0, χ′(0) = 0. Z2 symmetry
is not required but it is assumed unless there is an explicit reason this assumption cannot
hold [32]. In our case, these conditions correspond directly to the fixed points PL, admitting
only the trivial solution χ = χ0, W = W0, V = 0.

Therefore the only case admitting symmetric solutions for both χ and W is the Minkowski
solution with no brane. Nontrivial solutions exist which satisfy either condition χ′(0) = 0 or
W ′(0) = 0 separately. This alone, however, does not produce symmetry and instead both
conditions to be satisfied. As such, we cannot assume Z2 symmetry for our initial conditions
and must solve the system with a different set of conditions.

There is no reason to favour one set of initial conditions over another, so for now we
choose those initial conditions generating solutions as close to symmetric as possible. We
impose only the condition W ′(0) ≡ W ′

0 = 0 and examine solutions for small values of χ′
0 and

varying values of χ0. Solutions are shown in figures 2 and 3. Figure 2 shows the solutions
for a range of initial three-form values and figure 3 shows the solutions for a range of initial
three-form derivative values.

The solution for χ is asymmetric. As mentioned earlier, despite imposing W ′(0) = 0,
this condition is not sufficient to ensure symmetry. The solution for the warp factor will
be influenced by the asymmetric nature of χ. This would imply differential behaviour on
different sides of the brane, depending on position in the bulk.

It is also noted that χ grows rapidly further from the centre of the brane, regardless of the
value of either χ′

0 or χ0. The three-form field exhibits pathological behaviour at some point
in its evolution. The precise value of y is initial condition dependent, but the overall result is
not. This implies the three-form is unstable off the brane. The instability corresponds to a
runaway three-form potential: there are finite minima on the brane, in which the three-form
is itself finite, but as the potential grows for large (positive and negative) values of y in the
bulk it becomes infinite. The warp factor solution obtained is a thick brane solution in the
sense that the maxima is reached on the brane itself, y = 0, but it is not a regular function.

This corroborates the perturbation analysis. The energy spectrum is not bounded from
below and the background spacetime is unstable against perturbations. This would explain
why the field grows rapidly for y values too far from the initial configuration, and why the
other behavioural properties are so sensitive to initial values. We can further see this through
the plot for u(y). The graviton potential has a minimum, and despite the apparent trend
to flatten out away from the brane, it also diverges (we have kept the y range smaller to
keep it consistent with the other plots). This is expected, as we have shown analytically
that the metric perturbation does not have a stable energy spectrum.

4.2 Introducing a matter source

We now introduce an additional matter source to our model,

S =
∫
d4xdy

√
−g

[ 1
2κ2R− L3f

]
+ Sm(gAB, ψ) , (4.8)
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where Sm is the matter action and ψ denotes the matter fields. We will consider matter
described by a single dynamical scalar field ψ(y), dependent only on the extra dimension,
with an interaction potential U(ψ). Hence the matter action is

Sm = −
∫
d4xdy

√
−g

[1
2∂

Cψ∂Cψ + U(ψ)
]
. (4.9)

Taking the variation of eq. (4.9) with respect to the scalar field ψ, we obtain the
stress-energy tensor for the matter field

T (m)
AB = −gAB

[1
2∂

Cψ∂Cψ + U(ψ)
]

+ ∂Aψ∂Bψ. (4.10)

The total stress-energy tensor is the sum of the stress-energy tensor for the three-form
T (3f)

AB defined in (2.13) and that of the scalar field ψ,

T (tot)
AB = T (3f)

AB + T (m)
AB. (4.11)

Varying eq. (4.8) with respect to ψ, we obtain the standard Klein-Gordon equation
for the matter field,

ψ′′ + 4W ′ψ′ − Uψ = 0, (4.12)

where the prime denotes differentiation with respect to y and the subscript ψ denotes
differentiation with respect to ψ.

The full set of field equations now read

3
(
W ′′ + 2W ′2

)
= − V − 1

48F
2 − 1

2ψ
′2 − U, (4.13)

3
(
W ′′ + 2W ′2

)
= − V + 1

48F
2 + χVχ −

1
2ψ

′2 − U, (4.14)

6W ′2 = − V + 1
48F

2 + 1
2ψ

′2 − U. (4.15)

There is freedom to fix the warp function, since between the three EFFs (4.13), (4.14),
(4.15) and two KG equations (2.11), (4.12), we only have four independent equations and
five unknowns:

ψ′′ + 4W ′ψ′ − Uψ = 0, (4.16)

χ′′ + 4W ′χ′ + 3χ
(
W ′′ + W ′2

)
− 1

4
dV

dχ
= 0, (4.17)

3W ′′ = χVχ − ψ′2, (4.18)

3
(
W ′′ + 2W ′2

)
= −V − 2(χ′ + 3W ′χ)2 − 1

2ψ
′2 − U. (4.19)

With this new freedom, we choose the standard form of the warp factor,

W(y) = W0 log[sech(ky)], (4.20)
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where k, W0 are constants. With this choice, the resulting set of equations are for χ, V ,
ψ and U are

ψ′2 = 3k2W0 sech2(ky) − 4(χ′ − 3kW0χ tanh(ky))2 (4.21)

χ′′ = 3k2W0χ sech2(ky)(−2W0 cosh(2ky) + 2W0 + 1) + 10kW0χ
′ tanh(ky) − χ′2

χ
(4.22)

V ′ = χ′

χ
(−3k2W0 sech2(ky) + ψ′2) (4.23)

U ′ = ψ′(ψ′′ − 4kW0 tanh(ky)ψ′). (4.24)

As in the matter-free case, we use dynamical systems methods to solve this by introducing
the dynamical variables

x = χ, z = χ′ − 3kW0 tanh(ky)χ,
ϕ = ψ, Φ = ψ′.

(4.25)

The resulting dynamical system is

x′ = z + 3kW0 tanh(ky)x (4.26)

z′ = kW0 tanh(ky)z − z2

2x (4.27)

ϕ′ = Φ (4.28)

Φ′ = 4kW0 tanh(ky)Φ + 1
Φ

[
2z3

x
+ 6kW0 tanh(ky)z2

− 3k2W0 sech2(ky) tanh(ky)(1 + 2W0)
]
. (4.29)

This system has many features in common with the matter-free case. z = 0 is an invariant
submanifold on which an analytical solution can be found:

χ(y) = b cosh3W0(ky) (4.30)

ψ(y) = b±
2
√

6
√
W0 cosh(ky) tan−1

(
tanh

(
ky
2

))
√

cosh(2ky) + 1
(4.31)

V (y) = b− 3k2W3/2
0

± √
3

k
√

cosh2(ky)
− 3

2
√
W0 sech2(ky)

 (4.32)

U(y) = b+ 6k2W2
0 sech2(ky) + 3

2k
2W0 sech2(ky), (4.33)

where W0, k and b are constants. These are plotted in figures 4 and 5. The inclusion of
matter has fundamentally changed the dynamics. The potential now evolves, and we can
see that the negative solution V− should be discounted as “unphysical”, since its behaviour
does not correspond with the three-form’s. The positive solution does correspond, however,
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Figure 4. Analytic solutions for the matter case on the invariant submanifold z = 0 for the three-form
field χ(y) and its associated potentials V+ and V− for different values of the constant b. For all
solutions, the values W0 = 1 and k = 1 are fixed.

– 16 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
1

b=0.1

b=0.2

b=0.3

-2 -1 1 2
y

-2

-1

1

2

ψ+(y)

b=0.1

b=0.2

b=0.3

-2 -1 1 2
y

-2

-1

1

2

ψ-(y)

b=0.1

b=0.2

b=0.3

-2 -1 1 2
y

1

2

3

4

5

6

7

8

U(y)

Figure 5. Analytic solutions for the matter case on the invariant submanifold z = 0 for the matter
field ψ+(y) and ψ−(y) and the associated potential U(y) for different values of the constant b. For all
solutions, the values W0 = 1 and k = 1 are fixed.
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and similarly exhibits instability at larger values of y. The matter fields inherit the apparent
instability due to their dependence on the three-form. Despite the matter potential being
well-behaved, the matter field dynamics are not.

Assuming z ̸= 0, solutions must be found numerically. Again, z ̸= 0 implies that
χ′(0) ̸= 0 so numerical, symmetric solutions for χ are not possible. Additionally, it is not
possible to obtain symmetric solutions for ψ since eq. (4.29) is singular at Φ = 0. Therefore,
similar to the case for ψ = 0, initial conditions are imposed on χ(0) = χ0 and χ′(0) = χ′

0
to achieve near-symmetric solutions which remain finite near the brane. As is the case for
χ0 and χ′

0, the system is highly sensitive to values of ϕ0 and ϕ′0. Solutions for a range of
χ0 and ϕ0 values are shown in figure 6 and we plot the two potentials for a range of χ′

0
values; these are shown in figure 7.

Much like the analytical sub-case, the inclusion of matter and an additional degree
of freedom does not change the fact that the three-form field increases unboundedly at
sufficiently high values off the center of the brane. It does, however, keep the three-form
stable for a larger range of y. The three-form potential is unable to maintain symmetry when
χ′

0 is too high. For smaller values, as seen in figure 7, the three-form potential maintains
some degree of symmetry and does not grow as quickly compared to the matter-free scenario.
However, in general, for both, the initial ‘kick’ must not be too large. This sensitivity provides
further evidence that three-forms are unstable. Our brane now is symmetric by construction,
and yet the instabilities in the dynamics of the three-form continue to manifest themselves.

The scalar field, acting as matter, produces a more stable potential and dynamical
behaviour (figure 7). But since the dynamics are connected to the three-form, they similarly
rapidly grow.

5 Discussions and conclusions

In this work, we have studied thick braneworld solutions in general relativity, in a 5D bulk,
with the inclusion of a three-form field. This has extended the work done by [4], who considered
three-form inflation in Randall-Sundrum II braneworlds. We have constructed novel solutions
for the three-form field in the extra dimension in a warped Minkowski spacetime. We first
developed the general formalism required to investigate the problem, and found that we could
not study specific solutions to the problem without matter, due to the exactly determined set
of governing equations. We have also studied three-forms in branes with matter, expanding
our model to include a scalar field as a matter source. This allowed us to fix the warp function
specifically and study that particular configuration.

Section 3 contains novel results of interest. The three-form radically changes the study
of the stability of the gravity sector of the model. Following procedure from [36], we have
derived a differential equation describing the stability of the graviton. The potential, normally
a stability potential for scalar-tensor theories, is not stable in the three-form case. The
gravity zero mode is therefore not normalisable. This indicates the background is not stable
against perturbations, and that the brane cannot support internal structure (i.e. thick branes
specifically are unstable).

This finding is further supported by the new results in section 4. We have found new
numerical solutions for the three-form field, its potential, and the warp function. We can see
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Figure 7. Solutions for different values of χ′
0 for the three-form potential V (y) and the matter

potential U(y) with fixed conditions corresponding to χ(0) = 3, ψ(0) = 1 and ψ′(0) = 3.

from the solutions that the three-form is unstable, diverging off the center of the brane (the
center being the initial starting point for our evolution). As expected from section 3, the
system is highly sensitive to initial conditions. The system also admits no degree of symmetry,
displaying differential behaviour for the same point but on the other side of the brane, further
enforcing the notion that the dynamics are unstable. The addition of matter does not remedy
this situation. Despite affording the freedom to fix a symmetric and well-behaved warp
function, the system’s evolution still diverges and shows a varying degree of symmetry in the
three-form and the scalar, depending on the conditions. In either case, however, there is no
means to obtain regular behaviour past a certain point in the system’s evolution.

There is a substantial caveat to the analysis performed in this paper. The one true free
choice available is the freedom to choose eq. (2.5). This ansantz is arbitrary, and has great
impact on both the three-form equation of motion and the stress-energy tensor in the EFEs.
If the three-form were to be parameterised differently, the system of equations would be
different and possibly well-behaved. The perturbations would potentially be stable too. This
paper represents a first step in studying three-forms in thick branes, in conjunction with
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their scalar field counterparts. The indication from this work is that there exist properties
of thick braneworlds that render three-forms unstable. A comprehensive proof of this — by
showing this to be the case for a general three-form parameterisation — is still needed, as
is a more thorough theoretical analysis of the properties of thick branes which render them
incompatible with three-forms. This remains to be done as future work.
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A Stability analysis through localisation

There is an alternative way to study stability of tensor forms in branes that will further
lend support to our conclusions. We employ the methods of [39]: in this work they use the
conformal coupling of a scalar to localise a vector field on the brane. However, their method
is applicable to any q-form and for any sort of matter coupling, including minimal coupling.

We can glean some insight from their condition for stability, which we quote here. The
general condition is, for a minimally coupled q-form,∫ +∞

−∞

(
e2W(y)

)3−2q
<∞. (A.1)

In our case, we can’t fix any warp factor; ours is determined solely by the three-form
parameterisation choice. In any event, even without some analytical expression to use here,
we can numerically use the result for W(y) in figure 2 and find that the integral diverges.
Visually, our warp factor diverges after certain values of y, which means the integral above
won’t converge everywhere. Hence, we can conclude once more, via this method, that
three-forms aren’t stable in thick branes.

B Scalar “mimicing”?

Is the under-determined set of equations the missing ingredient to finding consistent and
stable solutions? To answer this, a naive approach is to ‘force’ the three-form equations to
look like their scalar field counterparts (cf. (2.24)). This means we want the components of
the T ii to match T 0

0 in eq. (2.23), which means 2T 0
0 = −2V + χVχ, and so

χ′′ + 4W ′χ′ + 3χ
(
W ′′ + W ′2

)
− 1

4
dV

dχ
= 0

3
(
W ′′ + 2W ′2

)
= −V − 1

48F
2

6W ′2 = 1
48F

2 − V.

(B.1)
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Eliminating the V term, we have

χ′′ + 4W ′χ′ + 3χ
(
W ′′ + W ′2

)
− 1

4
dV

dχ
= 0

3
(
W ′′ + 4W ′2

)
= −4

(
χ′ + 3W ′χ

)2
.

(B.2)

We use the chain rule an to rewrite the potential derivative, dV/dχ = dV/dydy/dχ =
V ′/χ′. We therefore have

χ′′ + 4W ′χ′ + 3χ
(
W ′′ + W ′2

)
− 1

4
V ′

χ′ = 0

3
(
W ′′ + 4W ′2

)
= −4

(
χ′ + 3W ′χ

)2
.

(B.3)

In principle we should be able to pick one unknown; for example, we can pick W =
log(sech y) like [31] and solve. However, due to the ‘forcing’ there is a constraint equation
that can be written as

4
(
χ′ + 3W ′χ

)2 + χ

χ′V
′ = 0. (B.4)

This exactly determines our system again. Indeed, picking W = log(sech y) solves some
of the equations here but not all. This alone is a sufficient counterexample to illustrate that
there’s no simple forcing the system to be under-determined.

C Graviton potential redefinition

Our graviton potential plots in figures 2 and 3 plot them as a function of y. We quote them
as a function of z in eq. (3.25). The potential in terms of y is

u(y) = e2W(y)

4

[
W ′(y)2

(
9eW(y) − 21

4

)
+ W ′′(y)

(
3eW(y) − 3

)]
− eW(y)V. (C.1)

For prosterity, we quote here the full backwards-transformation from W (z) → W(y):

W (z) = 1
2 (− ln(4/3) + W(y)) (C.2)

W ′(z) = 1
2e

W(y)W ′(y) (C.3)

W ′′(z) = 1
2e

2W(y)
(
W ′(y)2 + W ′′(y)

)
(C.4)

where a prime denotes differentiation w.r.t. the function argument.
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