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Abstract In this paper, we use the latest observations of
quasars covering the redshift range of 0.04 < z < 5.1 to
investigate a series of Chaplygin gas models as candidates
for unified dark matter and dark energy. Based on different
combinations of available standard candle and standard ruler
data, we put constraints on the generalized Chaplygin gas
(GCG), modified Chaplygin gas (MCG), new generalized
Chaplygin gas (NGCG) and viscous generalized Chaplygin
gas (VGCG) models. Moreover, we apply Jensen–Shannon
divergence (JSD), statefinder diagnostics, and the deviance
information criterion (DIC) to distinguish these CG models,
based on the statistical results derived from Markov chain
Monte Carlo method. The results show that (1) The stan-
dard ruler data could provide more stringent constraints on
the cosmological parameters of different CG models consid-
ered in this analysis. Interestingly, the matter density param-
eter Ωm and Hubble constant H0 derived from the available
data are well consistent with those from the Planck 2018
results; (2) Based on the statistical criteria JSD, our find-
ings demonstrate the well consistency between Chaplygin
gas and the concordance ΛCDM model. However, in the
framework of statefinder diagnostics, the GCG and NGCG
models cannot be distinguished from ΛCDM, while MCG
and VGCG models show significant deviation from ΛCDM
in the present epoch; (3) According to the the statistical cri-
teria DIC, we show that the MCG and VGCG models have
substantial observational support from high-redshift quasars,
whereas the GCG and NGCG models miss out on the less
observational support category but can not be ruled out.

a e-mail: caoshuo@bnu.edu.cn (corresponding author)
b e-mail: zhuzh@bnu.edu.cn

1 Introduction

The analysis of various observational data, including Type
Ia supernovae (SNe Ia) [1,2], baryon acoustic oscillation
(BAO) [3], and cosmic microwave background (CMB) [4]
suggest that the present universe is undergoing an acceler-
ated phase of expansion [5]. Different suggestions have been
put forward to understand this phenomenon, with the inclu-
sion of exotic dark energy (DE) with negative pressure on
the right-hand side of the Einstein equation. The earliest and
simplest model for DE is the cosmological standard ΛCDM
model, which is in good agreement with recent observations
but embarrassed by the well known coincidence problem and
the fine-tuning problem [6,7]. Meanwhile, the existence of
dark matter (DM), which constitutes the major component
of the matter density in our Universe, is the other primary
indicator for the limitation of our knowledge of physics laws
[8,9]. In recent times, scholars proposed that a fluid called
Chaplygin gas could provide a possible solution to unify two
uncharted territories, mimicing the effects of DM in the early
times and DE in the late times [10]. Specially, the Chaplygin
gas obeys the exotic equations of state:

p = − A

ρ
, (1)

where p andρ denote the pressure and energy density, respec-
tively. A is a positive constant. Unlike quintessence, which
describes the transition from the quasi-exponential expansion
of the early universe to a power law expansion to explain the
present acceleration of the universe but fails to avoid fine-
tuning in explaining the cosmic coincidence problem, the
Chaplygin gas (CG) model provided an alternative way to
account for the accelerating universe by describing a transi-
tion from an epoch filled with dust-like matter to an acceler-
ating universe. Additionally, they predicted that the cosmo-
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logical constant was variable. In particular, the Chaplygin
gas behaves as a pressureless fluid at higher redshifts and as
a cosmological constant at lower redshifts, which tends to
promote expansion. In addition, the equation of state of CG
shows a well-defined connection with string and brane the-
ories [10,11]. However, several fatal drawbacks appeared in
CG models. There is unexpected blowup in the DM power
spectrum [12,13] in the framework of the CG model, and the
CG model is in disagreement with the observations, such as
Type Ia supernovae [14–16], X-ray gas mass fraction of clus-
ters [17], Hubble parameter-redshift data[18] and gamma-
ray bursts [19]. Therefore, generalized Chaplygin gas (GCG)
model was proposed [11,20], which is capable of explaining
the background dynamics of the early and late universe and
is in good agreement with recent observations. The effec-
tive equation of state of GCG, given by p = αρ, proves
the evolution of a universe evolving from a phase dominated
by non-relativistic matter to a phase dominated by a cos-
mological constant through an intermediate period. There
are some undesirable features of the GCG power spectrum
caused by adiabatic pressure perturbation, which is produced
from a nonzero α [20,21]. As a result, [22,23] proposed the
“modified” Chaplygin gas (MCG) model, which considered
an interpolation between standard fluids at high energy den-
sities and Chaplygin gas fluids at lower energy densities.
Another generalization is dubbed new generalized Chaply-
gin gas model (NGCG), which was proposed by [24]. Since
the equation of state of dark energy still cannot be determined
exactly, they argued that the GCG model could be accommo-
dated to any possible X-type dark energy with constant ω,
dual to an interacting XCDM parametrization scenario. In
the framework of the NGCG model, it is not only described
by Chaplygin gas fluid but also exhibits dust-like matter in
the early universe and X-type dark energy in the late uni-
verse. Up to now, the nature of dark energy and dark matter
is still unknown. It is reasonable to consider other forms of
dark energy models or further generalize the GCG model.
For instance, [25] considered a phenomenological model that
consists of viscous effects and the features of GCG, dubbed
viscous generalized Chaplygin gas (VGCG), which is able to
eliminate the problems raised by only dissipative fluids and
explain the dynamics of the universe.

With so many GG cosmologies proposed in the literature,
it is rewarding to determine which model is strongly sup-
ported by the currently available astrophysical probes. There
are two general types of distance indicators at present: stan-
dard candles (SNe Ia and quasars), which are related to the
luminosity distance DL(z) and standard rulers (BAO and
CMB) that usually provide information on the large scale of
the Universe. In this work, we adopt two different catalogs
of data, standard candles and standard rulers, to determine
how different samples affect the estimation of cosmological
parameters. Here, we turn to a new standard candle compila-

tion of 1598 quasars from X-ray and UV flux measurements
with a redshift range 0.036 ≤ z ≤ 5.1003 [26], which has
become an effective probe to investigate different cosmolog-
ical parameters [27–30] especially the cosmic curvature Ωk

[31,32], and the cosmic distance duality relation [33,34] in
the early universe (z ∼ 5). Besides, the newest SNe Ia sam-
ple “ Pantheon” consists of 1048 points spanning a redshift
range 0.01 ≤ z ≤ 2.3 [35], is also adopted in our work as
a standard candle. For standard rulers, the angular size from
120 compact radio quasars obtained by very-long baseline
interferometry (VLBI) from [36–38] is taken into considera-
tion covering the redshift range 0.46 ≤ z ≤ 2.76, which has
also been widely used in many cosmological analyses, such
as the observational constraints on the interaction between
cosmic dark sectors [39–41], General Relatively and mod-
ified gravity theories [37,42–44], the Hubble constant and
cosmic curvature [45,46]. Additionally, we also adopt 11
BAO data points from BOSS DR12 at zeff = 0.38, 0.51, 0.61
[47], 6dFGs and SDSS MGS at zeff = 0.122 [48], DES Y1
results at zeff = 0.81 [49], eBOSS DR14 at zeff = 1.52 [50]
and zeff = 2.34 [51]. Specially, introducing quasar measure-
ments to constrain cosmological parameters is beneficial for
studying the evolution of cosmological models at higher red-
shifts [28,52,53].

In this paper, we focus on standard candles and rulers to
constrain four Chaplygin gas cosmological models with the
goal of investigating the difference between standard can-
dles and standard rulers and distinguishing these Chaply-
gin gas models by statistical analysis. This paper is orga-
nized as follows. In Sect. 2, we briefly introduce the basic
equations of cosmological models, including GCG, MCG,
NGCG, and VGCG. In Sect. 3, we describe the observa-
tional data adopted in this work and perform a Markov chain
Monte Carlo (MCMC) analysis using different data sets. The
results from observational constraints and the corresponding
analysis are displayed in Sect. 4, as well as some statistical
techniques of model comparison presented in Sect. 5. Finally,
our conclusions are summarized in Sect. 6.

2 Chaplygin gas cosmologies

In this section, we give a description of four types of Chap-
lygin gas models in a spatially flat universe, including GCG,
MCG, NGCG, and VGCG models. Moreover, to obtain strin-
gent constraints on key cosmological parameters, we use the
prior on the baryon density parameter Ωb and radiation den-
sity parameter Ωr from [54].

2.1 GCG model

The GCG model, which is extended from the CG model, has
been generally studied to explain the accelerating universe
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[11,17,28,39,55–57]. In this model, the dark energy and dark
matter could be unified with an exotic equation, which is
introduced as

pgcg = − A

ρα
gcg

, (2)

where pgcg and ρgcg = ρde + ρdm present the pressure and
density of Chaplygin gas, respectively. A is a positive con-
stant and 0 ≤ α ≤ 1. When α = 1, the GCG model reduces
to the CG model, and when α = 0, the GCG model reduces
to the ΛCDM model. The energy density of the GCG model
is expressed as

ρgcg(a) = ρgcg0

(
As + 1 − As

a3(1+α)

) 1
1+α

, (3)

where a is a scale factor, which is related to the observ-
able redshift as a = 1

1+z , As ≡ A/ρ1+α
gcg0 is a dimensionless

parameter, and ρgcg0 is the present energy value of the GCG
density. As can be written by the effective total matter density
Ωm and α as

As = 1 −
(

Ωm − Ωb

1 − Ωb

)1+α

. (4)

Therefore, we can derive the normalized Hubble parameter
E(z) for this model as

E2(z) = Ωb(1 + z)3 + Ωr(1 + z)4 +
× (1 − Ωb − Ωr)

(
As + (1 − As) (1 + z)3(1+β)

) 1
1+β

.

(5)

where E(z) = H2(z)/H2
0 and the parameter set is p ≡

(Ωm, As, α, H0).

2.2 MCG model

The MCG model is also a unified dark matter and dark energy
model, which is a modification of the GCG model. It has been
widely discussed in many perspectives [58–63]. This class of
equation of state is expressed as,

pmcg = Bρmcg − A

ρα
mcg

, (6)

where ρgcg = ρDE + ρDM , A is a positive constant, B is a
free parameter, and 0 ≤ α ≤ 1. When B = 0, this model
corresponds to the GCG model, whereas when A = 0, it
reduces to the standard equation of state of a perfect fluid.
Especially, it turns to ΛCDM model with B = 0 and α =
0 and it reduces to CG model with B = 0 and α = 1.

Considering energy conservation, we can obtain the energy
density as

ρmcg = ρmcg0

[
As + (1 − As) a

−3(1+B)(1+α)
] 1

1+α
, (7)

where As = A/(1 + B)ρ1+α
mcg0, B �= −1 and ρmcg0 is the

present energy value of the MCG density. Therefore, we can
rewrite the normalized Hubble parameter E(z) = H(z)/H0

for the MCG model as

E2(z) = Ωb(1 + z)3 + Ωr (1 + z)4 + (1 − Ωb − Ωr )

×[As + (1 − As)(1 + z)3(1+B)(1+α)] 1
1+α . (8)

For MCG, the parameter set is p ≡ (Ωm, As, B, α, H0).

2.3 NGCG model

The NGCG model has been studied in previous work, such as
[24,64–67]. In the NGCG model, it assumes that the exotic
background fluid interpolates between a dust-dominated
epoch ρ ∼ a−3 and a cosmological constant-dominated
epoch ρ ∼ a−3(1+ω), which is portrayed as a unification
of X-type dark energy and dark matter. Specifically, when
ω = −1, the NGCG model reduces to the GCG model, while
ω = −1 and α = 0, it reduces to the XCDM model. The
equation of state of NGCG is given by,

pngcg = − Ã(a)

ρα
ngcg

, (9)

where Ã(a) = −wAa−3(1+w)(1+α) is a function of the scale
factor, and α is a free parameter spanning 0 to 1. The energy
density of the NGCG fluid is

ρngcg = ρngcg0a
−3

[
1 − As + Asa

−3wde(1+α)
] 1

1+a
, (10)

where As = 1−Ωm
1−Ωb

. Finally, we can get the form of E(z) =
H(z)/H0 of the NGCG model,

E2(z) = Ωb(1 + z)3 + Ωr(1 + z)4 + (1 − Ωb − Ωr)(1 + z)3

×[1 − 1 − Ωm

1 − Ωb − Ωr
(1 − (1 + z)3w(1+α))] 1

1+α . (11)

Hence, for the NGCG model, the parameter set that we adopt
is p ≡ (Ωm, ω, α, H0).

2.4 VGCG model

To tackle the late accelerated expansion of the universe, a
hybrid model that consists of a fusion of viscous effects and
the features of Chaplygin gas, the VGCG model was studied
in [25,68–70]. This model is able to avoid causality problems
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that arise when only dissipative fluid is considered and alle-
viate the blowup in the DM power spectrum for GCG models
[70]. The equation of state of the VGCG model is given by

pvgcg = −A/ρα
vgcg − √

3ζρvgcg. (12)

One can obtain the standard ΛCDM model when α = 0 and
ζ = 0, and this model reduces to the GCG model with ζ = 0.
Then, we can deduce its energy density as,

ρvgcg = ρvgcg0[ Bs

1 − √
3ζ

+
(

1 − Bs

1 − √
3ζ

)

×a−3(1+α)(1−√
3ζ )] 1

1+α , (13)

where Bs = A/ρ1+α
vgcg0, 0 ≤ Bs ≤ 1 and ζ < 1√

3
. The dimen-

sionless Hubble parameter E(z) = H(z)/H0 is expressed
as

E2(z) = Ωb(1 + z)3 + Ωr (1 + z)4

+(1 − Ωb − Ωr ) ×
[

Bs

1 − √
3ζ

+
(

1 − Bs

1 − √
3ζ

)
(1 + z)3(1+α)(1−√

3ζ )

] 1
1+α

.

(14)

It is straightforward that the parameter set of the VGCG
model is p ≡ (Ωm, Bs, α, ζ, H0).

3 Cosmological observations

In this section, we use three catalogs to constrain cosmolog-
ical models: (1) a standard candle combination of quasars
from X-ray and UV flux measurements and SNe Ia sam-
ples; (2) a standard ruler set of intermediate-luminosity radio
quasars and BAO data listed in Table 1; and (3) a combina-
tion of standard candles and rulers. Additionally, in Fig. 1,
we display the redshift distributions of standard candles and
rulers.

3.1 QSO [X-ray and UV flux]

The latest compilation of quasar (QSO[XUV]) from X-ray
and UV flux measurements is recognized via the X-ray lumi-
nosity and UV luminosity (LX − LUV ) relation [71] and
used to constrain cosmological model parameters [26,28].
The LX − LUV relation is given by,

log(LX ) = γ log(LUV ) + β, (15)

where the slopes γ and β are free parameters that can be
measured from the dataset. When we express luminosities in

Table 1 The newest observations of BAO used in this analysis

z Measurement Value References

0.38 DM
(
rs,fid/rs

)
1512.39 [47]

0.38 H(z)
(
rs/rs, fid

)
81.2087 [47]

0.51 DM
(
rs,fid/rs

)
1975.22 [47]

0.51 H(z)
(
rs/rs, fid

)
90.9029 [47]

0.61 DM
(
rs,fid/rs

)
2306.08 [47]

0.61 H(z)
(
rs/rs, fid

)
98.9647 [47]

0.122 DV
(
rs, fid /rs

)
539 ± 17 [48]

0.81 DA/rs 10.75 ± 0.43 [49]

1.52 DV
(
rs,fid/rs

)
3843 ± 147 [50]

2.34 DH /rs 8.86 [51]

2.34 DM/rs 37.41 [51]

Fig. 1 The redshift distribution of the SNe Ia, quasars, and BAO mea-
surements

terms of fluxes, F = L/4πDL(z)2, Eq. (15) becomes

log (FX ) = γ log (FUV ) + 2(γ − 1) log (DL)

+(γ − 1) log(4π) + β, (16)

where FX and FUV are the quasar X-ray and UV fluxes,
respectively, and DL is the luminosity distance, which is
determined via

DL(z, p̂) = c(1 + z)

H0

∫ z

0

dz′

E (z′)
, (17)

where E(z) depends on different cosmological models.
To obtain the likelihood function, we use Eqs. (16) and

(17) in a specific model as

LFX = −1

2

N∑
i=1

⎡
⎢⎣

[
log

(
Fobs
X,i

)
− log

(
F th
X,i

)]2

s2
i

+ ln
(

2πs2
i

)⎤
⎥⎦ ,

(18)
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where ln = loge, s
2
i = σ 2

i + δ2, and where σi and δ are
the data error on the observed flux and the global intrinsic
dispersion, respectively. In addition, according to [30,71], we
employ the QSO from X-ray and UV fluxes in the analysis
with the chi-square statistic

χ2
Fx ,min = −2 ln(LF)min −

1598∑
i=1

ln
(

2π
(
σ 2
i + δ2

best− f i t

))
.

(19)

3.2 SNe Ia

To use the Pantheon sample, first, we should determine the
corresponding observable value and its theoretical value. The
observable value given in the Pantheon sample is a corrected
magnitude; see Table A17 of [35] for more details, expressed
by

Yobs = mB + K = μ + M, (20)

where μ is the distance modulus, mB is the apparent B-
band magnitude, and M is the absolute B-band magni-
tude of fiducial SNe Ia. There is a correction term K =
αx1 − βc + �M + �B that includes the corrections related
to four different sources (for more details, see [35]). The
theoretical value is given by,

Y th = 5 log(DL) + 25 + M

= 5 log[(1 + z)D(z)] + Y0, (21)

where the constant term Y0 = M + 5log(
cH−1

0
Mpc ) + 25, which

should be marginalized by the methodology presented in
[72]. The chi-square for the Pantheon sample can be given
by

χ2
SNe = �

−→
Y

T · C−1 · �
−→
Y , (22)

where �
−→
Y i = [Yobs

i − Y th(zi ; Y0,p)] and the covariance
matrix C of the sample includes the contributions from both
the statistical and systematic errors [35].

3.3 QSO [AS]

Reference [37] extracted 120 compact radio quasars
(QSO[AS]) based on a 2.29 GHz VLBI all-sky survey of
613 milliarcsecond ultracompact radio sources, covering a
redshift range from 0.46 to 2.76. The observable value angu-
lar sizes θobs(z) is related to the intrinsic length �m and the
angular diameter distance DA(z) [38,73]. The corresponding
theoretical angular size is defined by

θth(z) = �m

DA(z)
, (23)

where �m is the intrinsic metric linear size, which is calibrated
to 11.03 ± 0.25 pc by an independent method introduced in
[36], and DA(z) is the angular diameter distance

DA(z) = DL(z)

(1 + z)2 , (24)

where DL(z) is defined by Eq. (17). Therefore, we calculate
the chi-square function by

χ2
QSO =

120∑
i

(
θ (zi ;p) − θobsi

)2

σ 2
i

. (25)

where θ(zi ; p̂) is the theoretical value of the angular size and
the total uncertainty can be expressed as σ 2

i = σ 2
stat,i+σ 2

sys,i .

3.4 BAO

The BAO data is also a powerful cosmological probe [3,74],
which is extracted from galaxy redshift surveys. Here, we
use 11 BAO measurements summarized in Table 1. The
observable quantities used in the measurements are expressed
in terms of the transverse co-moving distance DM (z), the
volume-average angular diameter distance DV (z), the Hub-
ble rate H(z) ≡ H0E(z), the Hubble distance DH ≡
c/H(z), the sound horizon at the drag epoch rs , and its fidu-
cial value rs,fid. In a flat universe, the transverse co-moving
distance DM (z) equals the line-of-sight co-moving distance
DC (z), which is expressed as

DC = c

H0

∫ z

0

dz′

E (z′)
, (26)

where c is the velocity of light. The volume-average angular
diameter distance is

DV (z) =
[
cz

H0

D2
M (z)

E(z)

]1/3

. (27)

Following [75], we use the fitting formula of [74] to compute
rs and calculate rs, f id by using the fiducial cosmological
model.

Most of data we used are correlated; however, those from
[48–50]) are uncorrelated. For the uncorrelated data points,
the chi-square statistic is expressed as

χ2
BAO(p) =

N∑
i=1

[Ath (p, zi ) − Aobs (zi )]2

σ 2
i

, (28)

where Ath(p, zi ) denotes the model predictions at the effec-
tive redshift, Aobs(zi ) is the observational value and σi is the
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error bar of the measurements. For the correlated data points
from [47,51], it requires

χ2
BAO(p) = [Ath(p) − Aobs]

T C−1 [Ath(p) − Aobs] , (29)

where C−1 is the inverse of the covariance matrix. The cor-
responding covariance matrix of [47] is available from the
SDSS website,1 and that of [51] is presented in [76].

In the cosmological analysis, the probability distribu-
tions of model parameters are obtained with an affine invari-
ant Markov chain Monte Carlo (MCMC) ensemble sampler
(emcee) [77], where the statistic can be determined with

L(p) = e− χ(p)2

2 , (30)

where p is the set of model parameters from different cos-
mological models.

4 Results and discussion

In this section, we display and discuss the constraint results
of the cosmological parameters by using the standard can-
dles and rulers data. It shows that how the different types of
observational data could inflect the constraints of cosmolog-
ical parameter estimation.

4.1 GCG model

We present the 1D probability distributions and 2D con-
tours with 1σ and 2σ confidence levels (CLs) for the GCG
model in Fig. 2 and list the best-fit parameters at the 1σ

confidence level in Table 2. The standard candle data gives
Ωm = 0.53+0.53

−0.29, As = 0.78±0.06,α = 0.46+0.57
−0.42 and H0 =

68.27+6.98
−4.76 km/s/Mpc, while the standard ruler data obtains

Ωm = 0.33 ± 0.02, As = 0.60 ± 0.10, α = −0.33+0.27
−0.24 and

H0 = 65.81+2.26
−2.28 km/s/Mpc. First, it is clear that the value of

Ωm obtained from standard candles shows a deviation from
the Planck collaboration (Ωm = 0.3103±0.0057) [54]. This
is because a larger value of the matter density parameter is
favored by the recent QSO[XUV] compilation in most cos-
mological models at higher redshifts (2.5 < z < 5), which
has been discussed in previous work [26,78]. In addition,
α is an important parameter 0 ≤ α ≤ 1, where α = 0
denotes the ΛCDM model and α = 1 denotes the CG model.
Although previous studies showed that the CG model is ruled
out by observations, we find that the CG model is accepted by
QSO[XUV]+SNe Ia at a 68% CL. In addition, the standard
ruler data favor the ΛCDM model at a 95% CL, as well as the
combination sample. For the Hubble constant, our constraint

1 https://sdss3.org/science/boss_publications.php.

Fig. 2 The 1D and 2D probability distributions of model parame-
ters in the GCG model, based on the QSO[XUV]+SNe Ia(green),
QSO[AS]+BAO (blue), and a joint sample (red). The contours cor-
respond to 68% and 95% confidence levels. The grey line indicates the
values of the model parameters that can be recovered to the Λ CDM
scenario, with the fiducial value of Ωm = 0.30, ω = −1, α = 0 and
H0 = 70 km/s/Mpc

results are in good agreement with the Planck collaboration
(H0 = 67.66 ± 0.42 km/s/Mpc) [54], although the values
obtained from standard rulers are lower than that from other
probes. In addition, the standard ruler data could bring down
the error bars of Ωm , α and H0 compared with the stan-
dard candles. This indicates that QSO[AS]+BAO could give
a more restrictive constraint on cosmological parameters.
Moreover, it is necessary to refer to the previous results, such
as As = 0.70+0.16

−0.17 and α = −0.09+0.54
−0.33 constrained from the

X-ray gas mass fraction, Type Ia supernovae and Type IIb
radio galaxies in [17] and α = −0.14+0.30

−0.19 obtained by SNe
Ia+H(z)+CMB in [79], which are consistent with our results
from combination data and favor the standard ΛCDM model.
It is worth mentioning that [28] gave Ωm = 0.416+0.088

−0.068,

α = 2.360+1.803
−1.793 and H0 = 69.254+4.427

−4.970 km/s/Mpc from the
QSO[XUV]+QSO[AS], which is in good agreement with our
results from QSO[XUV]+SNe Ia and includes the CG model
at a 68% CL. This suggests that the latest QSO compilation
from X-ray and UV flux measurements slightly favors the
CG model and prefers a larger value of Ωm .

4.2 MCG model

In the case of the MCG model, the results are presented
in Fig. 3 and Table 2. The standard candle data generates
Ωm = 0.47+0.36

−0.27, As = 0.81+0.06
−0.09, B = 0.12+0.26

−0.21, α =
0.20+0.58

−0.39 and H0 = 68.28+7.23
−3.48 km/s/Mpc, while the stan-
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Table 2 The best-fit values and 68% confidence limits for the CG cosmological parameters in each model (GCG, MCG, NGCG, and VGCG) and
data set (QSO[XUV]+SNe Ia, QSO[AS]+BAO, and QSO[XUV]+SNe Ia+QSO[AS]+BAO)

Model Data Ωm As α H0 (km/s/Mpc)

GCG QSO[XUV]+SNe Ia 0.53+0.53
−0.29 0.78 ± 0.06 0.46+0.57

−0.42 68.27+6.98
−4.76

QSO[AS]+BAO 0.33 ± 0.02 0.60 ± 0.10 −0.33+0.27
−0.24 65.81+2.26

−2.28

Combination 0.31 ± 0.01 0.73 ± 0.04 0.03+0.17
−0.14 68.26+1.18

−1.08

Model Data Ωm As B α H0 (km/s/Mpc)

MCG QSO[XUV]+SNe Ia 0.47+0.36
−0.27 0.81+0.06

−0.09 0.12+0.26
−0.21 0.20+0.58

−0.39 68.28+7.23
−3.48

QSO[AS]+BAO 0.33 ± 0.02 0.61+0.10
−0.14 −0.12+0.18

−0.09 0.05+0.87
−0.52 66.27+2.01

−2.30

Combination 0.31 ± 0.01 0.73+0.04
−0.06 −0.14+0.13

−0.06 0.71+0.78
−0.71 68.09+1.11

−1.06

Model Data Ωm ω α H0 (km/s/Mpc)

NGCG QSO[XUV]+SNe Ia 0.30+0.16
−0.14 −1.10+0.24

−0.39 0.23+0.89
−0.53 68.50+7.19

−5.21

QSO[AS]+BAO 0.34 ± 0.02 −0.79+0.13
−0.14 −0.12+0.12

−0.17 65.16+2.38
−2.18

Combination 0.31 ± 0.01 −1.01+0.05
−0.06 0.01+0.09

−0.08 68.34+1.19
−1.09

Model Data Ωm Bs α ζ H0 (km/s/Mpc)

VGCG QSO[XUV]+SNe Ia 0.47+0.36
−0.31 0.82+0.13

−0.19 0.41+0.74
−0.49 −0.02+0.10

−0.08 68.58+6.82
−5.16

QSO[AS]+BAO 0.33 ± 0.02 0.55+0.17
−0.16 0.08+0.99

−0.57 0.07+0.06
−0.12 66.32+2.16

−2.42

Combination 0.31 ± 0.01 0.64+0.10
−0.07 0.61+0.82

−0.66 0.07+0.04
−0.08 68.21+1.19

−1.04

dard ruler data provides Ωm = 0.33±0.02, As = 0.61+0.10
−0.14,

B = −0.12+0.18
−0.09, α = 0.05+0.87

−0.52 and H0 = 66.27+2.01
−2.30

km/s/Mpc. The value of Ωm obtained from QSO[XUV]+SNe
Ia is still higher than that from other probes, which is the same
as the case of the GCG model and still consistent with that
from [54] at a 68.3% CL. In the framework of the MCG
model, considering the fact that the parameter B reflects the
deviation from the GCG model (the MCG model reduces to
the GCG model when B = 0), the GCG model is accepted
by current observations at a 95% CL in all cases. However,
the MCG model shows a tiny deviation from the GCG model
by the combination sample at a 68% CL. For the key param-
eter α that quantifies the deviation from the CG model and
ΛCDM model, it is clear that the ΛCDM model, B = 0 and
α = 0, is accepted by standard candles and standard rulers
at 68% CLs, while the CG model, B = 0 and α = 1, is
favored by the combination sample at a 95% CL. However,
in the case of the combination sample, both the ΛCDM and
CG models are favored within a 68% CL. In other words,
this suggests that the ΛCDM model is more favored by
standard candles and standard rulers, respectively, but the
CG model is slightly preferred by the combination. Focus-
ing on the Hubble constant, the constraint results agree well
with Planck collaboration [54]. Moreover, our results from
combination samples are consistent with the results obtained
from SNe Ia+BAO+CMB [61] with α = 0.000727+0.00142

−0.00140,

Bs = 0.782+0.0163
−0.0162 and B = 0.000777+0.000201

−0.000302 and from

H(z)+BAO+CMB+SNe Ia [21] with Ωm = 0.284+0.013
−0.014,

Fig. 3 The 1D and 2D probability distributions of model parameters
in the MCG model

α = 0.046+0.107
−0.102 and B = 0.0026 ± 0.005 at the 1σ confi-

dence level. This proves that most cosmological probes favor
the ΛCDM model; however, the inclusion of the QSO sam-
ple from X-ray and UV flux measurements [26] at higher
redshifts changes to slightly favor the CG model.
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4.3 NGCG model

In Fig. 4 and Table 2, we show the constraint results of the
NGCG model. Compared with the standard candle dataset
with Ωm = 0.30+0.16

−0.14, ω = −1.10+0.24
−0.39, α = 0.23+0.89

−0.53 and

H0 = 68.50+7.19
−5.21 km/s/Mpc, the standard ruler data obtains

Ωm = 0.34 ± 0.02, ω = −0.79+0.13
−0.14, α = −0.12+0.12

−0.17

and H0 = 65.16+2.38
−2.18 km/s/Mpc. The most notable thing

is that Ωm = 0.30+0.16
−0.14 from standard candles is consis-

tent with Planck collaboration (Ω = 0.3103 ± 0.0057)
[54], however this is contrary in the scenarios of the GCG,
MCG and VGCG models. [78] constrained Ωm ∼ 0.3 in
the XCDM model from only compiled X-ray and UV flux
measurements of 1598 quasars, while Ωm ∼ 0.5 − 0.6
in the ΛCDM and φCDM models. There are similarities
between the NGCG and XCDM models because the param-
eter ω in the NGCG model is proposed by a similar idea
to that in the XCDM model. Hence, we obtain a normal
value of Ωm in the framework of NGCG, which indicates
that X-ray and UV flux measurements of 1598 quasar com-
pilations could help to determine the dark energy and dark
matter. It should be noted that ω is a free constant and
[24] proposed the probability that dark energy behaves in
a quintessence-like form with ω > −1 and phantom-like
form with ω < −1. The 1σ range ω ∈ (−1.05,−0.95)

from the combination sample implies that there is an equal
chance that dark energy behaves as a quintessence-like form
or phantom-like form. In all cases, it suggests that the GCG
model (i.e., ω = −1) and XCDM model (i.e., ω = −1 and

Fig. 4 The 1D and 2D probability distributions of model parameters
in the NGCG model

α = 0) are still supported by the observational data at a
95% CL. In addition, it is remarkable that the CG model,
ω = −1 and α = 1, is accepted by the standard can-
dle data at a 68% CL. The Hubble constant obtained in
our analysis is more consistent with the results of [54] at
a 68% CL. Furthermore, we make a comparison with the
previous findings in the literature. For instance, [64] derived
Ωde = 0.7297+0.0229

−0.0276, ω = −1.0510+0.1563
−0.1685 and η = 1+α =

1.0117+0.0469
−0.0502 with SNe Ia+BAO+WMAP+H(z) data; [65]

obtained Ωde = 0.6879 ± 0.0078, ω = −1.02 ± 0.045, α =
−0.0029 ± 0.0097 and H0 = 67.78 ± 0.87 km/s/Mpc with a
joint sample of SNe Ia+BAO+CMB; and [66] stated Ωm =
0.2508+0.0081

−0.0097, ω = −1.041 ± 0.045, As = 0.7371+0.0097
−0.0086,

η = 1 + α = 0.9443 ± 0.0097 and H0 = 70.15 ± 0.84
km/s/Mpc with SNe Ia+BAO+CMB+BBN+H(z) data. This
indicates that the value of Ωm from current observations,
i.e., SNe Ia, BAO, CMB and H(z), is generally smaller than
Ωm = 0.3103 ± 0.057 from [54]; however, the inclusion of
QSO[XUV] and QSO[AS] changes the value of Ωm to 0.3-
0.34 in our work. It indicates that the inclusion of quasar data
could help us to study dark matter and dark energy.

4.4 VGCG model

The best-fit values for the VGCG model from different
observations are shown in Fig. 5 and Table 2. The stan-
dard candle data obtains Ωm = 0.47+0.36

−0.31, Bs = 0.82+0.13
−0.19,

α = 0.41+0.74
−0.49, ζ = −0.0017+0.10

−0.08 and H0 = 68.58+6.82
−5.16

km/s/Mpc, while the standard ruler data shows Ωm = 0.33±

Fig. 5 The 1D and 2D probability distributions of model parameters
in the VGCG model
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0.02, Bs = 0.55+0.17
−0.16, α = −0.08+0.99

−0.57, ζ = 0.07+0.06
−0.12 and

H0 = 66.32+2.16
−2.42 km/s/Mpc. It indicates that the value of

Ωm is still larger than that of [54], since the QSO[XUV] data
favors higher Ωm in most dark energy models [26,78]. ζ is
the viscosity term that affects the CMB power spectrum about
the matter density on the height of the acoustic peaks. From
the results shown in Table 2, it implies that ζ is very small,
which could alleviate the oscillations causing the blowup in
the DM power spectrum in the GCG models. Moreover, the
GCG model (i.e., ζ = 0) is still favored by the available
observations. On the other hand, α is an important parame-
ter that reflects the deviation from the CG model and ΛCDM
model. In all cases, the CG model cannot be ruled out by cur-
rent observations at a 68% CL, while ΛCDM is still accepted
by the observations at a 68% CL. In other words, it indicates
that QSO[XUV], SNe Ia, QSO[AS] and BAO data could not
give accurate constraints on α. In addition, our results on
the Hubble constant approve the value of Planck collabora-
tion (H0 = 67.66 ± 0.42 km/s/Mpc) [54] at a 68% CL. It
is reasonable to compare to previous studies, such as [80]
declared ζ = 0.000708+0.00151

−0.00155 from SNe Ia+BAO+WMAP

and [68] announced ζ = 0.0000138+0.00000614
−0.0000105 from SNLS3

+BAO+HST. In a recent work, [70] used a joint sample
of SLS+SNe Ia +BAO+OHD+HIIG and obtained Bs =
0.50+0.05

−0.06, α = 0.99+0.61
−0.58, ζ = 0.13+0.02

−0.03 and h = 0.69 ±
0.01. They concluded that the GCG model, ζ = 0, is dis-
favored by SLS+SNe Ia+BAO+OHD+HIIG at a 68% CL,
which is different from our results with ζ = 0.07+0.04

−0.08. More-
over, we find that the inclusion of cosmic microwave back-
ground data could give a more precise constraint on ζ .

From our constraint results on the matter density param-
eter Ωm in different CG models, it is clear that the stan-
dard candle data combining QSO[XUV] with SNe Ia prefers
larger values of Ωm ranging from 0.47 − 0.53 except the
NGCG model. In [78], it states that the QSO[XUV] data at
z ∼ 2 − 5 prefers larger values of Ωm ∼ 0.5 − 0.6. Other
studies have concentrated on exploring the tension between
high redshift quasar measurements and other observations,
such as BAO measurements in [26,81–83]. It implies that
there is an unknown systematic error in the high redshift
observations or a stimulus of the new physics and astronomy.
Therefore, more accurate cosmological probes are required
to solve the problem of the Ωm inconsistency from high
and low redshift observations. On the other hand, it is also
rewarding to comment on the possible alleviation of the
H0 tension by the VGCG and MCG model. Based on our
results presented in Table 2, the constraint on the Hubble
constant lies in the range of H0 = 68.28+7.23

−3.48 km/s/Mpc

to H0 = 68.58+6.82
−5.16 km/s/Mpc for the standard candles, as

well as H0 = 68.09+1.11
−1.06 km/s/Mpc to H0 = 68.21+1.19

−1.04
km/s/Mpc for the combined sample. It is noteworthy that
these two Chaplygin gas models suggest a central value of

the Hubble constant between the Planck experiment [54],
H0 = 67.4±0.5 km/s/Mpc and the SH0ES experiment [84],
H0 = 74.03 ± 1.42 km/s/Mpc.

5 Statistical analysis

The statistical analysis is essential to diagnose the different
models. Hence, we apply the Jensen–Shannon Divergence,
statefinder diagnostic and the deviance information criterion.
In this section, we compare these models and discuss how
strongly are they favored by the observational data sets.

5.1 Jensen–Shannon divergence

This new class of information-theoretic divergence measures
based on Jensen’s inequality and the Shannon entropy, called
“Jensen–Shannon Divergence”, could assign the similarity
between two probability distributions [28,85,86]. It should
be mentioned that JSD is used to assess two different cosmo-
logical models by the common parameters; here, we choose
the matter density Ωm and the Hubble constant H0 to distin-
guish the four CG models as well as the ΛCDM model. In
general, the JSD is symmetric and ranges from 0 to 1, which
can be written as

DJS(p | q) = 1

2
[DKL(p(x) | s) + DKL(q(x) | s)] , (31)

where s = 1/2(p + q). p(x) and q(x) are two probability
distributions of two different models and DKL denotes the
Kulback-Leibler divergence (KLD), which can be expressed
as

DKL(p | q) =
∫

p(x) log2

(
p(x)

q(x)

)
dx . (32)

It is clear that a smaller value of JSD indicates that the two
models are similar. Figures 6 and 7 display the posterior dis-
tributions of Ωm and H0. Table 3 presents the JSD values
between the ΛCDM model and four nonstandard models by
using different observations with respect to Ωm and H0. For
standard candle data, the posterior distributions of Ωm and
H0 in the NGCG model agree more with the ΛCDM model
in terms of the JSD values, while the MCG model shows a
larger distance from the ΛCDM model. In the scenario of
standard ruler data, the value of JSD concerning Ωm shows
that the GCG model agrees more with the ΛCDM model;
however, concerning H0, all four nonstandard models are
distant from the ΛCDM model, where the VGCG model is
closest to the ΛCDM model. In the case of the combination
sample, for Ωm , the GCG model and NGCG model are more
closer to the ΛCDM model due to the smaller values of JSD,
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Fig. 6 The posterior distributions of Ωm for the GCG, MCG, NGCG,
VGCG and ΛCDM models, with the standard candles, standard rulers
and combination data from the top to the bottom. We adopt the posterior
distributions of Ωm from Table 2

while for H0, the MCG model and VGCG model are closest
to the ΛCDM model.

5.2 Statefinder diagnostic

In the framework of a specific cosmological model, the Hub-
ble parameter H(z) and the deceleration parameter q(z) can

Fig. 7 The posterior distributions of H0 for the GCG, MCG, NGCG,
VGCG and ΛCDM models, with the standard candles, standard rulers
and combination data from the top to the bottom. We adopt the posterior
distributions of H0 from Table 2

be expressed,

H = ȧ

a
, q = − ä

aH2 = −aä

ȧ2 , (33)

where a is the scale factor a = 1/1 + z. As H(z) and q(z)
cannot effectively distinguish different cosmological models,
it requires a higher order of time derivatives of a. To investi-
gate more dark energy models, except for the cosmological
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Table 3 The values of DIC and
their differences for CG and
ΛCDM cosmologies. The
Jensen–Shannon divergence
between ΛCDM and other
cosmological models is also
calculated with respect to Ωm
and H0

Data Model DIC �DIC DJS(Ωm) DJS(H0)

QSO[XUV]+SNe Ia ΛCDM 2632.34 0 0 0

GCG 2635.10 2.76 0.721 0.124

MCG 2625.76 − 6.58 0.722 0.510

NGCG 2636.31 3.97 0.681 0.083

VGCG 2638.69 6.36 0.727 0.092

QSO[AS]+BAO ΛCDM 616.42 0 0 0

GCG 618.29 1.87 0.296 0.710

MCG 608.04 − 8.38 0.300 0.662

NGCG 617.97 1.55 0.468 0.927

VGCG 605.54 − 10.88 0.319 0.655

Combination ΛCDM 3245.86 0 0 0

GCG 3252.10 6.24 0.074 0.286

MCG 3246.42 0.56 0.132 0.275

NGCG 3251.15 5.29 0.077 0.288

VGCG 3239.22 − 6.64 0.131 0.277

constant model, the author of [87] focused on a new geomet-
rical diagnostic pair (r, s) constructed from the a(t) and its
third time derivatives beyond, where r(z) is a natural next
step beyond H(z) and q(z), and s(z) is a linear combination
of r(z) and q(z). This approach has been widely adopted in
comparing different cosmological models [39,43,88,89].

The statefinder pair (r, s) is also related to the equation of
state of dark energy and its first time derivative, which can
be expressed as

r =
...
a

aH3 , s = r − 1

3(q − 1/2)
, (34)

For a given model, the statefinder diagnostic can be obtained
by

r(z) = 1−2
E ′(z)
E(z)

(1+z)+
[
E ′′(z)
E(z)

+
(
E ′(z)
E(z)

)2
]

(1+z)2,

(35)

and

s(z) = r(z) − 1

3(q(z) − 1/2)
, (36)

and

q(z) = E ′(z)
E(z)

(1 + z) − 1. (37)

Based on the best-fit model parameters derived from the com-
bined QSO[XUV]+SNe Ia+QSO[AS]+BAO data, we calcu-
late the statefinder pairs (r, s) for the ΛCDM model and four
CG models and present the results in Fig. 8. Specifically,

the parameter r is more effective in distinguishing different
cosmological models. It is noteworthy that although the cor-
responding values for the MCG model and VGCG model
significantly deviate from the ΛCDM model at the present
epoch, both of them eventually converge to the standard cos-
mological model. On the other hand, it is obvious that in
the framework of the GCG model and NGCG model, the
statefinder pairs (r, s) exhibit similar behaviors at present and
evolve along different trajectories; however, only the GCG
model ultimately converges on the point of (r, s) = (1, 0).

The evolutionary trajectories in the r − q plane are dis-
played in Fig. 9. Although the curves of each cosmological
model originate from different points, they finally converge to
the same point (r, q) = (1,−1) except for the NGCG model.
We clearly see that the GCG and NGCG models evolve along
similar trajectories with the ΛCDM model. In addition, we
find that the GCG model and NGCG model presume values
in the range r > 1 and q > 0 at early times and therefore rep-
resent as Chaplygin gas-type dark energy models. Moreover,
the MCG model and VGCG model start from the regions
r < 1 and q > 0 belonging to Quintessence dark energy
models, while the MCG model quickly reverts back into the
Chaplygin gas-type dark energy model at later times. There
are notable flips from positive to negative in the value of q,
which explains the recent phase transition of these models
and proves the accelerating universe exactly.

5.3 Model selection statistic

From Sects. 5.1 and 5.2, we cannot clearly determine these
four CG models with the ΛCDM model. When comparing
and distinguishing different competing models, certain infor-
mation criteria, such as the Akaike information criterion [90],
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Fig. 8 The evolution of the statefinder pair (r, s) for different cosmo-
logical models. The cyan diamond point at (r, s) = (1, 0) indicates the
ΛCDM model, and the other diamond point on each curve denotes the
present value of the statefinder pair (r, s) for the GCG, MCG, NGCG,
and VGCG models. The model parameters adopted in statefinder diag-
nostic are from the combination of QSO[XUV], SNe Ia, QSO[AS] and
BAO in Table 2

Fig. 9 The same as Fig. 8, but for the evolution of the pair (r, q)

the Bayes information criterion [91], and the deviance infor-
mation criterion [92], would be crucial.

The AIC is based on information theory, the BIC is based
on Bayesian inference, and the DIC combines heritage from
both Bayesian methods and information theory [92]. Com-
pared with DIC, the AIC and BIC are too simple to select

which model performs better by only requiring the maxi-
mum likelihood and the number of parameters within a given
model rather than the likelihood throughout the parameter
space [93,94]; therefore, we apply DIC to model selection
in this paper. Moreover, �DIC is an important value which
denotes the difference in values of DIC between cosmolog-
ical models. In our analysis, we calculate the values of DIC
and �DIC with respect to four Chaplygin gas models and
ΛCDM model for same observations. In particular, negative
values of �DIC indicates that the model fits the observations
better than ΛCDM model.

The DIC was introduced by [92] and defined as

DIC ≡ D(θ̄) + 2pD, (38)

where D(θ) = −2 lnL(θ) + C , pD = D(θ) − D(θ̄), C is
a ‘standardizing’ constant depending only on the data that
will vanish from any derived quantity and D is the deviance
of the likelihood. The definition of DIC (i.e., Eq. (38)) is
motivated by the form of the AIC, replacing the maximum
likelihood Lmax with the mean parameter likelihood L(θ̄ )

and replacing the number of parameters k with the effective
number of parameters pD , which represents the number of
parameters that can be usefully constrained by a particular
dataset. By using the effective number of parameters, the
DIC also overcomes the problem of the BIC that they do not
discount parameters that are unconstrained by the data [92].
In the DIC analysis, the favorite model is the one with the
minimum DIC value.

We introduce the DIC to evaluate which model is more
consistent with the observational data. As for standard candle
data, it suggests that the DIC criterion advocates on the MCG
model. From standard rulers and the combination sample, the
VGCG model seems to be preferred by the smallest values of
DIC. In addition, the GCG and NGCG model are seriously
punished by the DIC. In particular, we use the model selec-
tion DIC criterion to specify which model is preferred by
the currently available observations, rather than selecting the
single best-fit cosmological model. As shown in the recent
observational constraints on f (T ) gravity [95], the exponen-
tial f (T ) model presents a small deviation from Λ CDM
paradigm, based on the SNe Ia Pantheon sample, Hubble
constant measurements from cosmic chronometers, the CMB
shift parameter and redshift space distortion measurements.
Our findings demonstrate that the MCG model and VGCG
model behave better than the concordance Λ CDM model.
We remark here that the Λ CDM cosmological model, built
on the assumptions of a cosmological constant and cold dark
matter, shows a ∼ 4σ tension with the high-redshift Hubble
diagram of SNe Ia, QSO and gamma-ray bursts (GRB) [71].
Such irreconcilable tension between high-redshift QSOs and
flat Λ CDM, which has been recently traced and extensively
discussed [28,82] in the framework of log polynomial expan-
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sion and modified gravity theories, highlights the seriousness
of the conflict with dark energy within the flat Λ CDM model.
However, it is still interesting to see if future high-redshift
datasets show similar tension with flat Λ CDM cosmology,
given the limited sample size and current quality of the avail-
able observational data.

6 Conclusions

In this paper, we investigated the constraint ability of stan-
dard candles (QSO[XUV]+SNe Ia) and standard rulers
(QSO[AS]+BAO) on a series of Chaplygin gas models,
including the GCG model, MCG model, NGCG model and
VGCG model. These Chaplygin gas models are considered as
important candidate models that regard dark energy and dark
matter as a unification. The first part is devoted to perform-
ing MCMC statistical analysis to confront the models with
the most recent observations. The second part is dedicated
to comparing the agreement between the ΛCDM model and
the other four models using JSD, exploring the evolution of
cosmological and cosmographical parameters with the assis-
tance of statefinder diagnostic analysis and examining the
viability of four nonstandard models by information criteria
such as DIC. Here, we summarize our main conclusions in
more detail:

(i) It is intriguing that the value of Ωm is noticeably larger
from the standard candle data than that from other measure-
ments. Such discrepancy is caused by the QSO X-ray and UV
flux data, which favors the higher Ωm ∼ 0.5−0.6 discussed
in [26,78] at high redshifts z ∼ 2 − 5. Therefore, the quasar
data at high redshifts can cast a new light on investigating
the accelerating universe. Considering the Hubble constant,
it is noteworthy that the constraint results from standard can-
dles and the combination sample suggest central values on
H0 between the value measured by the Planck CMB mea-
surements and local H0 measurements, possibly alleviating
the tension between these measurements. In addition, it is
remarkable that although we are using data based on local
measurements, such as SNe Ia, which favors the local value
(SH0ES’s result), it does not play a role in constraining the
Hubble constant caused by the marginalization of the con-
stant term Y0 we adopted. Hence, the QSO data from X-ray
and UV flux measurement prefers the value of H0 from the
Planck 2018 results.

(ii) Most CG models include the concordance ΛCDM
model as a special case corresponding to certain values of
their parameters, such as the parameter α in the GCG model
and the parameters B and α in the MCG model. For standard
ruler data, the GCG model and NGCG model are generally
inconsistent with the cosmological constant case within a
68% CL, while the MCG model and NGCG model disagree
with the ΛCDM model by the combination sample at a 68%

CL. In the previous studies, they concluded that the CG model
is ruled out by recent observations. In our work, considering
standard candle data, the CG model is accepted in all cases.
The CG model is favored in the framework of the MCG and
VGCG models from standard ruler data as well as combined
sample. This is because that the inclusion of QSOs from
X-ray and UV measurements and QSOs from VLBI could
provide more information from the early universe. Hence, it
is expected that these selected quasars could be considered
additional probes in the future.

(iii) To evaluate the similarity between ΛCDM and other
CG models, we adopt the JSD in this paper. For standard
candle data, the posterior distributions of Ωm from four non-
standard models are distant from theΛCDM model, while the
NGCG model is in good agreement with the ΛCDM model
in terms of the JSD value of H0. For standard ruler data,
the NGCG model shows a larger distance from the ΛCDM
model according to the values of JSD from the posterior dis-
tribution of Ωm and H0. The posterior distributions of Ωm

and H0 from the MCG model and VGCG model are in good
agreement with the ΛCDM model from the combined stan-
dard candle and ruler data. Based on the best fits obtained
with the combination sample, we apply the statefinder diag-
nostic to discriminate the dynamic behaviors of the four CG
models. The GCG model and NGCG model evolve similarly
to the ΛCDM model, but the NGCG model could stray from
the ΛCDM model in the near future. Clearly, the MCG model
and VGCG model exhibit significantly different evolutionary
trajectories to the ΛCDM model; however, they approach to
ΛCDM in the future. According to the DIC criterion, VGCG
model is more favored by observations; on the other hand,
the GCG and NGCG models are punished by all catalogs of
data. In addition, the MCG model is slightly supported by
standard candles data.

In conclusion, we find that the VGCG model and MCG
model could be strong candidates for investigating the accel-
erating universe. Moreover, H0 tension will be alleviated with
VGCG model and MCG model and these models can satisfy
the combination of standard candle and standard ruler mea-
surements with �DIC = − 6.64 and �DIC = − 0.56 com-
pared with ΛCDM model. In addition, it is distinctive that
the CG model cannot be ruled out by high redshift obser-
vations, such as the compilation of 1598 QSO X-ray and
UV measurements. Therefore, extending the cosmological
analysis with high-redshift data should be critical in distin-
guishing between different CG models that are degenerate at
low redshifts. As a result, it is promising that future precise
high redshift data (i.e., gravitational wave data) will provide
stronger evidence to judge whether dark energy and dark
matter are unified and to understand the nature of the accel-
erating universe. There are several issues we do not consider
in this paper and which remain to be addressed in the future
analysis. One general concern is given by the fact that we
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have considered only the 0th order cosmology and Chaply-
gin gas models might have instabilities at the perturbation
level. Some work has also studied the behavior of the partic-
ular case of generalized Chaplygin gas models in the matter
power spectrum. As worked out in detail by [96], the oscil-
lations or exponential blowup of power spectrum, which are
inconsistent with the observations of the 2df galaxy redshift
survey, contribute to the ruling out of GCG models in 1st
order cosmology (the growth of linear perturbations). Now
precision data of redshift-space distortions (RSD) [97–99],
the rms mass fluctuation σ8 (z) inferred from galaxy and Ly-
α surveys [100–102], weak lensing statistics [103], baryon
acoustic oscillations [104,105], X-ray luminous galaxy clus-
ters [106], and Integrated Sachs-Wolfe (ISW) effect [107] are
gradually allowing us to determine the linear growth func-
tion that are related to perturbations. In the future analysis
we will take a further step in this direction, focusing on more
stringent constraints on the perturbative behaviors of a series
of Chaplygin gas models.
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