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Abstract

In the large-momentum expansion for parton distribution functions (PDFs), the natural physics scale is 
the longitudinal momentum (pz) of the quarks (or gluons) in a large-momentum hadron. We show how 
to expose this scale dependence through resumming logarithms of the type lnn pz/μ in the matching co-
efficient, where μ is a fixed renormalization scale. The result enhances the accuracy of the expansion at 
moderate pz > 1 GeV, and at the same time, clearly shows that the partons cannot be approximated from 
quarks with pz ∼ �QCD which are not predominantly collinear with the parent hadron momentum, consis-
tent with power counting of the large-momentum effective theory. The same physics mechanism constrains 
the coordinate space expansion at large distances z, the conjugate of pz , as illustrated in the example of 
fitting the moments of the PDFs.
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1. Introduction

Large-momentum effective theory (LaMET) is an approach to calculate parton physics 
through large-momentum expansion of Euclidean observables, such as momentum distributions 
and static correlations calculable in lattice quantum chromodynamics (QCD) [1,2]. It has a 
wide range of applications, including quark isovector distribution functions [3–20], generalized 
parton distributions [21–26], distribution amplitudes (DAs) [27–31], and transverse-momentum-
dependent distributions [32–35]. Recent reviews on LaMET can be found in Refs. [36,37].

For collinear PDFs, the LaMET expansion starts from a quasi-PDF matrix element, which is 
motivated from the spatial correlator defining the momentum distribution in a many-body system:

h̃lat(z, a,Pz) = 〈Pz|O�(z)|Pz〉, (1)

where |Pz〉 is the hadron state with a large momentum Pz along z direction. O�(z) is the quasi-
PDF operator:

O�(z) = ψ̄(z)�U(z,0)ψ(0), (2)

where ψ , ψ̄ denote the bare quark field, � is a Dirac structure, and U(z, 0) = P exp(−ig ×∫ z

0 dz′Az(z
′)) is the Wilson gauge-link along the direction z, where Aμ is the gluon gauge 

potential. Apart from the correlator above, there are other choices of Euclidean correlators that 
can be used to probe the same lightcone physics in the PDFs through large-momentum expan-
sion [37]. They form a universality class.

In the large momentum limit, the quasi-PDF or longitudinal momentum distribution can be 
converted to the standard PDF through a perturbative matching [37]. Such a matching involves 
logarithms associated with the hadron momentum Pz and the renormalization scale μ. Since Pz

and μ are independent scales, their ratio can be large, generating large logarithms that need to be 
resummed to obtain a more reliable result. It is the purpose of this work to study the effects of 
these potentially large logarithms and their resummation through standard renormalization group 
equation (renormalization group resummation or RGR). One may wonder whether resummation 
is necessary in present lattice calculations where Pz ∼ μ ∼ 2 GeV. However, as we will argue, 
the physical scale associated with the quasi-PDF is actually the quark or gluon longitudinal 
momentum, pz = xPz with x being the momentum fraction. It can be much smaller than μ if x
is small. After resummation, the intrinsic scale ∼ xPz appears in the running coupling constant 
αs(∼ xPz) and the perturbation series becomes a more physical expansion. But at small x, αs(∼
xPz) becomes very large and the perturbative matching breaks down. The physics is that if the 
quark/gluon longitudinal momentum pz is too small or comparable to the intrinsic transverse 
momentum, it is no longer collinear with the hadron momentum so the factorization to infinite-
momentum-frame parton physics breaks down. Thus, we expect a large discrepancy between 
RGR and fixed-order matching at small x. Moreover, we can compare resummations up to next-
to-leading order (NLO) or next-to-next-to-leading order (NNLO) to check the convergence of 
perturbative expansions.

The above resummation has a correspondence in the coordinate space expansion [38]. When 
the quasi-PDF correlator is expanded in terms of moments of PDFs at short distances [39–41], 
the natural scale is the correlator distance z. This physical scale is recovered in the Wilson coef-
ficients again through RGR. Operationally, ∼ 1/z shows up as an intrinsic scale for the running 
coupling constant αs(∼ 1/z). At large distances, αs(∼ 1/z) is too large, and the perturbation 
series breaks down. Only the correlation data at z � 1/�QCD can be used to extract the PDF 
2
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moments. Therefore, we expect a very different conclusion about the moments fitting from those 
done with fixed-order perturbation theory [42,43].

Through applying RGR to the LaMET matching, our goal is to improve the accuracy of the 
fixed-order matching at intermediate x, and at the same time, to exhibit the limitation of pertur-
bation theory at small x. We demonstrate the approach by using the lattice QCD matrix elements 
for pion valence PDF at lattice spacing a = 0.04 fm and a = 0.06 fm and momentum Pz = 0 
∼ 2.4 GeV calculated by BNL/ANL collaboration [19,43,44]. Through a similar resummation 
in coordinate space, we also exhibit the large perturbative errors of Wilson coefficients at large 
distances, causing a large uncertainty in fitting 〈x4〉 in the OPE approach.

The rest of this paper is organized as follows. In Sec. 2, we present the formalism of renor-
malization group resummation in LaMET matching. In Sec. 3, we apply the RGR matching to 
pion valence PDF and compare it with the fixed-order result. In Sec. 4, we study RGR effects in 
fitting the moments of PDFs in the OPE approach using the same data. We summarize our results 
in Sec. 5.

2. Resumming quark’s longitudinal momentum logarithms

In this section, we present the formalism for resumming quark’s longitudinal momentum log-
arithms through the renormalization group in LaMET matching.

We start by renormalizing the lattice QCD matrix element h̃lat(z, a, Pz) = 〈Pz|ψ̄(z)γ tU(z, 0)

ψ(0)|Pz〉 in the hybrid scheme [45]:

h̃(z,Pz) = h̃lat(z, a,Pz)

h̃lat(z, a,0)
θ(zs − |z|)

+ h̃lat(z, a,Pz)

ZR(z, a,μ)h̃MS(zs,μ,0)
θ(|z| − zs), (3)

where zs is the hybrid scheme parameter which satisfies a � zs � 1/�QCD to guarantee pertur-
bation theory works when z < zs . ZR(z, a, μ) is the phenomenological renormalization factor to 
eliminate linear and logarithmic divergences based on the self-renormalization method [46]. It 
also contains the mass renormalization counterterm and scheme conversion factor to convert the 
lattice QCD matrix element to the MS scheme. Therefore, we should have the following relation 
at short distances:

h̃lat(z, a,0)

ZR(z, a,μ)
= h̃MS(z,μ,0),

where z � 1/�QCD. h̃MS(z, μ, 0) is the zero momentum matrix element in the MS scheme, 
which is perturbatively calculated up to NNLO in the literature [47], see Eq. (A.7). We introduce 
h̃MS(zs, μ, 0) in the denominator at large distances in Eq. (3) to guarantee that h̃(z, Pz) is con-
tinuous, although the derivative needs not be. An important feature of the hybrid renormalization 
is that at short distances, the ratio of the lattice matrix elements has the proper normalization 
at z = 0 with some of the discretization effects being canceled. While at large distances, no 
undesired non-perturbative effects are introduced.

Fourier transforming the hybrid renormalized matrix element:

f̃ (x,Pz) = Pz

+∞∫
dz

2π
eixPzzh̃(z,Pz), (4)
−∞

3
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we obtain the quasi-PDF f̃ (x, Pz) in the hybrid scheme, whose factorization in momentum space 
is:

f̃ (x,Pz) =
1∫

−1

dy

|y|C
(

x

y
,

μ

|x|Pz

)
f (y,μ)

+O
[

�2
QCD

x2P 2
z

,
�2

QCD

(1 − x)2P 2
z

]
, (5)

where f (y, μ) is the light-cone PDF and C
(

x
y
,

μ
|x|Pz

)
is the perturbative matching kernel, which 

has been calculated up to NNLO in the MS scheme for the isovector combination [47,48]. 
Based on their calculations, we present the NLO and NNLO hybrid scheme matching kernels 
in Eqs. (A.14) and (A.18) in Appendix A. Note that we write one of the arguments as μ

|x|Pz
in-

stead of μ
|y|Pz

because we should have the momentum of the quasi parton |x|Pz in the matching 
kernel [41].

In the matching kernel Eq. (A.15), there is a logarithmic term ∼ ln
(

μ2

4x2P 2
z

)
. We group 2x with 

Pz because it appears that 2xPz is the “intrinsic” physical scale of the quasi-PDF. Apart from 
the natural combination appearing in the one-loop result, we can argue the case by an analogy 
with deep inelastic scattering (DIS), in which a virtual photon of momentum qμ scatters on a 
nucleon target of momentum P μ, producing final states of high virtuality. The standard QCD 
factorization formula for one of the unpolarized DIS structure functions F2 is as follows [49]:

F2(Q,xB) =
1+∫

xB−
dxĈ2

(
Q

μ
,
xB

x

)
f (x,μ)

+O
[

�2
QCD

Q2

]
, (6)

where the summation over quark flavor and gluon has been omitted for simplicity, Q2 = −q2 is 

the virtuality of the photon and xB = Q2

2P ·q is the Bjorken variable. f (x, μ) is the light-cone PDF 

and Ĉ2 (Q/μ,xB/x) is the coefficient function that matches the light cone PDF to the structure 
function, which was calculated up to NNLO [50,51] and N3LO [52] in literature. We present the 
NLO quark result here [49]:

Ĉ2(Q/μ, z) = δ(1 − z)

+αsCF

2π
z

[
1 + z2

1 − z

(
− ln

[
μ2

Q2

]
+ ln

[
1 − z

z

])

−3

2

1

1 − z
+ 3 + 2z

]
+

. (7)

There are logarithmic terms ∼ ln(
μ2

Q2 ) in the above formula and the higher-order coefficient 

functions. The scale μ dependence of these log terms in Ĉ2 cancels the scale μ dependence of 
the light cone PDF and the QCD running coupling so that the structure function F2 is scale μ

independent. For example, the leading log term αsCF z 1+z2
(
− ln

[
μ2

2

])
in the NLO result is 
2π 1−z Q

4
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Fig. 1. Kinematics of deep inelastic scattering in the parton model.

correspondent to the leading order Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evo-
lution. These log terms are large if μ differs from Q by orders of magnitude. To resolve this 
issue, it is natural to choose μ = Q in the quark coefficient function and extract PDFs at certain 
scales through DGLAP evolution.

The factorization formula Eq. (6) is Lorentz invariant and we consider a specific reference 
(Bjorken or Breit) frame for the purposes of understanding the physical scale. In this frame, the 
energy of virtual photon is zero and the momentum distribution of the partons is measured (see 
Fig. 1):

qμ = (0,0,0,−2xPz)

pμ = (xPz,0,0, xPz)

(p + q)μ = (xPz,0,0,−xPz). (8)

Here we have rewritten the photon momentum in terms of the momentum of the struck parton. 
It is now clear that the virtuality of the photon is Q2 = −q2 = (2xPz)

2. Although the above 
kinematics is for tree level scattering, Q2 = (2xBPz)

2 can be seen from the definition of the 

Bjorken variable xB = Q2

2P ·q in this frame where P μ = (Pz, 0, 0, Pz) and qμ = (0, 0, 0, −2xBPz).
In Bjorken frame, it is natural to calculate the structure function in terms of the quasi-PDF, 

rather than the light-cone PDF. One can then recover the above standard DIS QCD factorization 
by matching quasi-PDF further to light-cone one as in Eq. (5). This new approach of using quasi-
PDF may help us understand the origin of its physical scale,

F2(Q,xB) = ˆ̃
C2

(
Q

μ
,
xB

x

)
⊗ f̃ (x,Pz) (9)

where ˆ̃
C2

(
Q
μ

, xB

x

)
is the quasi DIS coefficient function that matches the quasi-PDF to the struc-

ture function. Note that the fraction Q
2xPz

is just xB

x
. ˆ̃
C2 doesn’t contain the DGLAP logs if the 

quasi-PDF is scale μ independent as in hybrid scheme [45]. For example, the NLO result for ˆ̃
C2

during the region 0 < xB/x < 1 is presented here

ˆ̃
C2

(
Q

μ
,z

)
= δ(1 − z) + αsCF

2π
z

[
− z2

1 − z

]
+

+ ... (10)

where ... denotes the counterterm corresponding to the renormalization scheme of the quasi-PDF. 
If we renormalize the quasi-PDF in the hybrid scheme [45], the counterterm doesn’t contain any 

new logs, and thus the NLO result doesn’t contain ∼ ln(
μ2

Q2 ). There is ∼ β0 ln(
μ2

Q2 ) at NNLO, 
which is the subleading log to cancel the scale μ dependence of the running coupling αs(μ).
5
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Through comparing Eqs. (5), (6) and (9), we obtain

Ĉ2

(
2xBPz

μ
,
xB

y

)
= ˆ̃

C2

(
2xBPz

μ
,
xB

x

)
⊗ C

(
x

y
,

μ

|x|Pz

)
. (11)

The DGLAP logs on both sides of this equation should match. On the left hand side, the 

DGLAP logs behave as ∼ ln
[

μ2

(2xBPz)2

]
. On the right hand side, since ˆ̃

C2 doesn’t contain the 
DGLAP logs, the DGLAP logs only come from the LaMET matching kernel C, which should 

behave as ∼ ln
[

μ2

(2xPz)2

]
. Convoluting ∼ ln

[
μ2

(2xPz)2

]
in C with ˆ̃

C2, we obtain the DGLAP logs 

∼ ln
[

μ2

(2xBPz)2

]
in Ĉ2. For example, convoluting the leading logs ∼ ln

[
μ2

(2xPz)2

]
in C with the 

δ(1 − xB/x) in LO ˆ̃
C2, we obtain the leading logs ∼ ln

[
μ2

(2xBPz)2

]
in Ĉ2.

Since the DGLAP logs in the LaMET matching kernel are ∼ ln
[

μ2

(2xPz)2

]
, the intrinsic phys-

ical scale of the quasi-PDF is 2xPz. Therefore, we introduce a notation Qeff = 2xPzc
′ for the 

quasi-PDF matching, with c′ ∼ 1. For a fixed Pz, the scale becomes small at small x, and the 
resulting logarithms in the matching kernel become large.

We need to resum this type of large logarithms ∼ ln
(

μ2

4x2P 2
z

)
to all orders in perturbation 

theory to recover the small-x behavior in the LaMET calculations. The main result is that the 
natural scale for the perturbative expansion is 2xPz, which appears in the coupling αs(2xPz). 
This indicates that perturbative matching is not valid for small x because the meaning of parton 
is lost for a quark with small longitudinal momentum at the order of �QCD. In fact, the same 
conclusion arises from the higher-twist power counting [37]. In the factorization formula Eq. (5), 

part of the higher twist effects behave like O
[

�2
QCD

x2P 2
z

]
, which is also large for small x.

The small-momentum large logarithms can be resummed using the standard renormalization 
group method. One can invert the matching kernel to obtain the light cone PDF:

f (x,μ) = C−1
(

x

y
,

μ

|x|Pz

)
⊗ f̃ (y,Pz)

+O
[

�2
QCD

x2P 2
z

,
�2

QCD

(1 − x)2P 2
z

]
, (12)

where the convolution is now performed with respect to y. The inverse matching kernel 

C−1
(

x
y
,

μ
|x|Pz

)
is now expanded in terms of αs(μ). After we invert the matching kernel, x in 

the logarithmic term ln
(

μ2

4x2P 2
z

)
and higher-twist effects becomes the momentum fraction of a 

light-cone parton, which is shown in Appendix C. Taking the derivative with respect to scale μ
on both sides of Eq. (12), and noticing that f̃ (y, Pz) is scale independent, we obtain the renor-

malization group equation for C−1
(

x
y
,

μ
|x|Pz

)
, which is the same as that for f (x, μ):

μ
dC−1

(
x
y
,

μ
|x|Pz

)
dμ

=
1∫

dw

w
P [w,αs(μ)]C−1

(
x/w

y
,

μ

|x/w|Pz

)
, (13)
x

6
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where P [w, αs(μ)] is the DGLAP evolution kernel of the light-cone PDF:

μ
df (x,μ)

dμ
=

1∫
x

dw

w
P [w,αs(μ)]f

( x

w
,μ
)

, (14)

which has been calculated up to three loops in literature [53].

To get the RGR matching kernel CRGR

(
x
y
,

μ
|x|Pz

)
, we can solve Eq. (13) and evolve to scale 

μ, where the initial condition at scale Qeff = 2xPzc
′ is the fixed order matching kernel C: 

C−1
RGR

(
x
y
,

Qeff|x|Pz

)
≈ C−1

(
x
y
,

Qeff|x|Pz

)
. We can vary c′ around 1 to test the stability of perturba-

tive matching. The resummation scale is an order-of-magnitude estimate based on the physical 
scale and can vary without having meaningful physics impact, hence the parameter c′. Different 
choices of resummation scale (c′) correspond to higher order effects in αs , which disappear when 
the perturbation series are computed to the infinite order. If the effect of varying c′ is small, the 
higher order effect is small and the perturbation series has a good convergence. So the variation 
of c′ can be used to test the stability (convergence) of perturbation series. However, this is nec-
essary but not sufficient as we have not actually calculated the higher-order terms. The variation 
limits of c′ are conventional. When people study the resummation effect near the Z boson mass 
mZ , people usually vary c′ = 0.5 ∼ 2, which leads to the variation of αs(c

′mZ) for about 10%. 
When we study the perturbation series near ∼ 2 GeV, to have the 10% variation of αs , we choose 
c′ = 0.8 ∼ 1.2.

In practical calculations, it is complicated to solve Eq. (13) directly because it contains plus 
functions in both the DGLAP kernel and the matching kernel. Here we present an equivalent 
approach. First of all, we can calculate PDF at its own intrinsic scale Qeff = 2xPzc

′:

f (x,Qeff) = C−1
(

x

y
,

Qeff

|x|Pz

)
⊗ f̃ (y,Pz), (15)

where C−1 is the inverse of the fixed order matching kernel (the scale of αs in C−1
(

x
y
,

Qeff|x|Pz

)
is Qeff). Then we just need to DGLAP evolve f (x, Qeff) to scale μ. Note that this is an unusual 
DGLAP evolution since the scales in the initial PDF f (x, 2xPzc

′) are different for different x. 
A method for such a DGLAP evolution is provided in Appendix D.

3. Resummation effect in pion PDF calculation

As an example, we study the effect of resumming the small-momentum large logarithms in 
the pion valence PDF calculation. The resummation improves the lattice QCD prediction in the 
2xPz range 0.7 GeV to 1.5 GeV, but generates a very large uncertainty in the smaller-x region.

3.1. Lattice data and renormalization

Lattice QCD matrix elements for the valence parton distribution of a pion at lattice spacing a
= 0.04 fm and a = 0.06 fm and momentum Pz = 0 ∼ 2.4 GeV are calculated by the BNL/ANL 
collaboration. These data have been analyzed in recent BNL/ANL papers [19,43,44]. A detailed 
explanation of their data can be found in Ref. [43]. Here is the definition of their lattice matrix 
elements:
7
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Table 1
The values of momenta Pz = 2π

La
nz at two lat-

tice spacings [43].

nz Pz (GeV)

a = 0.06 fm a = 0.04 fm

0 0 0
1 0.43 0.48
2 0.86 0.97
3 1.29 1.45
4 1.72 1.93
5 2.15 2.42

h̃lat(z, a,Pz) = (16)

〈π+(Pz)|ū(z)γ tU(z,0)u(0) − d̄(z)γ tU(z,0)d(0)|π+(Pz)〉,
where the values of momenta Pz at two lattice spacings are listed in Table 1. Notice that the 
isovector distribution u(x) − d(x) is the same as the valence distribution u(x) − ū(x) for pion 
because of the isospin symmetry.

The matrix elements are calculated on two different ensembles Lt × L3: One ensemble has 
lattice spacing a = 0.06 fm and lattice volume 48 × 643, and the other one has lattice spacing 
a = 0.04 fm and lattice volume 64 × 643. These ensembles were generated by HotQCD collabo-
ration [54] with 2+1 flavor Highly Improved Staggered Quarks (HISQ) in the sea [55]. One step 
of HYP smearing is applied on the gauge links, which are used in both quark propagators and 
Wilson links in the quasi-PDF operator. Wilson clover quark action is used during the calculation. 
They tune the quark mass so that the valence pion mass is 300 MeV.

When extracting the ground state pion matrix elements Eq. (16), they perform different fitting 
strategies, including fitting the ratio and fitting the summed ratio. They get consistent results 
among different fitting strategies.

We parametrize the renormalization factor as

ZR(z, a,μ) = exp [−δm(a)z − meff
0 z + b(a,μ)], (17)

where δm(a) is the linear divergence coefficient, which is extracted from static quark-antiquark 
potential in [19]: aδm(a = 0.06 fm) = 0.1586(8) and aδm(a = 0.04 fm) = 0.1508(12). We 
need to consider an effective renormalon ambiguity meff

0 because we cannot make sure that we 
regularize the lattice perturbation series and MS perturbation series in the same way, and we also 
include part of the non-perturbative contribution in meff

0 , which is to convert the lattice matrix 
element to MS scheme up to the linear z accuracy. We expect that meff

0 is independent of the 
fit range z. The term b(a, μ) is for logarithmic divergence, scheme conversion factor and scale 
dependence.

We fit meff
0 and b(a, μ) through requiring that the renormalized zero momentum matrix ele-

ment is equal to the perturbation series h̃MS(z, μ, 0) (Eq. (A.7)) at short distances:

h̃MS(z,μ,0) = h̃lat(z, a,0)

ZR(z, a,μ)
,

where z � 1/�QCD. For a = 0.04 fm, we fit in the range z ∈ [zmin, zmin + 0.08 fm] with NLO 
h̃MS(z, μ, 0) and the fitted meff with respect to zmin is shown in Fig. 2. In this figure, the fitted 
0

8
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Fig. 2. Fitted meff
0 with respect to zmin, based on NLO h̃MS(z,μ,0).

Fig. 3. Renormalized lattice matrix elements in the hybrid scheme (colorful points). a = 0.04 fm and zs = 0.16 fm.

meff
0 depends on zmin. However, for our demonstrative purpose, we just use the meff

0 from the 
fit range z ∈ [0.08, 0.16] fm, which is 0.080(17) GeV. And we will use the same ZR(z, a, μ)

extracted based on NLO h̃MS(z, μ, 0) for all the cases in this section.
Following Eq. (3), we renormalize the lattice QCD matrix element in the hybrid scheme, and 

the result is shown in Fig. 3. This is not too different from the renormalized data in Ref. [19]
because we use the same linear divergence factor δm, which has the largest influence during the 
renormalization process. The differences are just higher order power corrections such as O(z2

s )

which are small (less than 10%) if zs is a perturbative short distance.
We do extrapolation on the hybrid renormalized matrix element with the following form sug-

gested by Ref. [45]:

h̃(λ) =
[

c1

|λ|d1
cos

(
πd1

2

)
+ c2

|λ|d2
cos

(
|λ| − πd2

2

)]
e
− |λ|

λ0

where λ = zPz. Then we do a Fourier transformation on the hybrid renormalized matrix el-
ement based on Eq. (4), where we use the extrapolation after λ = 9. The above form comes 
from the asymptotic behavior of PDF near the end point region xa(1 − x)b . We Fourier 
transform it and obtain the coordinate space distribution. At large λ, we obtain the form 
9
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Fig. 4. Pion valence PDFs calculated with fixed-order matching kernel (dashed) and RGR matching (solid, blue and 
red). The black curve shows the absolute difference between NNLO+RGR and NLO+RGR PDFs. The lattice data is at 
Pz = 1.9 GeV and a = 0.04 fm. The bands show the uncertainty from varying c′ = 0.8 ∼ 1.2.[

c1
|λ|d1

cos
(

πd1
2

)
+ c2

|λ|d2
cos
(
|λ| − πd2

2

)]
. Since it is a form for quasi-PDF with finite Pz, there 

may be a mass gap so we can introduce an exponential decay e− |λ|
λ0 in the form.

3.2. LaMET result with RG-resummation to NLO and NNLO

In this section, we perform RGR matching based on the method in Appendix D.
The RGR matched PDFs for Pz = 1.9 GeV are shown in Fig. 4, in comparison with fixed-

order matched PDFs. In the large 2xPz region (e.g. 2xPz > 2.7 GeV), there are no qualitative 
differences between RGR and fixed order matched PDFs in this case. The reason is that the physi-
cal scale 2xPz for Pz = 1.9 GeV at large x region is close to the PDF scale μ = 2 GeV we choose 
in the matching, where the resummed logs are not very large. However, if we have much larger 
momenta (e.g. Pz = 10 GeV), we would expect to observe the resummation effects in the large x
region. In the moderate 2xPz region (e.g. 1.5 GeV < 2xPz < 2.7 GeV), RGR matched and fixed-
order matched PDFs are consistent with each other, which indicates that fixed-order perturbative 
matching works well. In the intermediate region (e.g. 0.7 GeV < 2xPz < 1.5 GeV), resummation 
effects start to become important and improve the accuracy of the theoretical prediction. At small 
2xPz (e.g. 2xPz < 0.7 GeV), the effective coupling αs(2xPz) becomes too large to be pertur-
bative, and there are large discrepancies between RGR matched and fixed-order matched PDFs. 
There is also a large discrepancy between the NLO+RGR PDF and the NNLO+RGR PDF, indi-
cating higher-order effects are not negligible. Therefore, the resummation of the large logarithms 
makes clear the breakdown of the perturbative matching at small 2xPz (e.g. 2xPz < 0.7 GeV), 
where higher-twist effects are also unmanageable.

The perturbative matching breaks down for x < 0.7 GeV
2Pz

in the consideration of perturbative 
convergence. So with the availability of larger Pz we will be able to reliably extract light-cone 
PDFs at smaller x. We further compare RGR matched PDFs for different Pz in Fig. 5. As ex-
pected, the discrepancy between the NNLO+RGR PDF and the NLO+RGR PDF in the small x
region (e.g. x < 0.16) is smaller for Pz = 2.4 GeV than that for Pz = 1.9 GeV. Obviously, the 
convergence of perturbative matching at small x can be improved systematically if we increase 
the hadron momentum.
10
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Fig. 5. Comparison between pion valence PDFs calculated with RGR matching at Pz = 1.9 GeV (blue and red) and 
2.4 GeV (orange and green). The black and purple curves show the absolute difference between NNLO+RGR and 
NLO+RGR PDFs for Pz = 1.9 GeV and Pz = 2.4 GeV respectively. The bands show the uncertainty from varying 
c′ = 0.8 ∼ 1.2. Better convergence is seen at larger momentum.

Fig. 6. The relative difference between RGR matched PDFs at c′ = 1 and c′ = 1.2. The lattice data is at Pz = 1.9 GeV 
and a = 0.04 fm. Convergence is observed at moderate x and divergence is observed at small x.

As shown in Fig. 6, the relative error caused by varying c′ for NNLO+RGR is smaller than 
that for NLO+RGR in the intermediate or moderate x region (e.g. 0.6 GeV < 2xPz < 2.8 GeV). 
Because the effect of varying c′ is a higher αs order effect and the αs(2xPz) is small in the 
intermediate- or moderate-x region, we expect to get a smaller truncation error as the order of the 
perturbation series increases. On the other hand, for 2xPz < 0.6 GeV, the error in NNLO+RGR 
is larger than that in NLO+RGR. Since αs(2xPz) is large at small x, a perturbative expansion 
becomes less convergent at this coupling and the NLO+RGR and NNLO+RGR results can differ 
considerably.

Our main conclusions above will not change if we use a different � matrix in the quasi-PDF 
operator. The intrinsic physical scale 2xPz follows directly from our analogy with DIS process, 

which is independent of � matrix. And for the unpolarized PDF cases, the log term ∼ ln
(

μ2

4x2P 2
z

)
in the matching kernel is independent of � matrix [41].
11
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4. Resummed coefficients in operator product expansion and moment fit

The connection between the Euclidean correlator in Eq. (1) and PDF has also been explored 
through coordinate-space operator product expansion (OPE) [38,39,41]. With a finite-range 
coordinate-space correlation calculated from lattice QCD, it has been proposed to extract mo-
ments of PDFs through fitting the truncated OPE expression [18,43,56]. To extract the moments 
reliably, one has to properly resum large logarithms of type αn(μ) lnn(zμ) in the Wilson coeffi-
cient [44]. Once this is done, it is expected that OPE works only at perturbatively-small distances 
z � 1/�QCD up to 0.2 ∼ 0.3 fm. This is conjugate to the momentum-space expansion condi-
tion 2xP z � �QCD. We will show that with a P z ∼ 2 − 3 GeV, the pion correlator used in the 
previous section can determine the first moment 〈x2〉 reliably, but 〈x4〉 marginally.

The BNL lattice group has already done extensive analysis to extract the pion PDF moments 
from lattice quasi-PDF correlators [20,43,44]. In Ref. [43], the lattice correlator has been used to 
extract moments based on fixed-order Wilson coefficients, and they seem to get stable results for 
〈x2〉, 〈x4〉 and 〈x6〉 when using lattice data up to z = 0.6 fm or 0.8 fm. In Ref. [44], they fit the 
data with the Wilson coefficients with NLO renormalization group resummation and threshold 
resummation, and they get good results for 〈x2〉 and 〈x4〉 when using data up to z = 0.48 fm. 
In Ref. [20], they use data at physical pion mass and NNLO Wilson coefficients up to z = 0.72 
fm with fixed-order Wilson coefficients. They have studied whether RG-improved Wilson coef-
ficients can describe lattice data in their Appendix B but they haven’t estimated the uncertainties 
for moment fit from the systematic errors of Wilson coefficients at large distance.

Here, we repeat their analysis using RG resummed Wilson coefficients up to NNLO. We will 
illustrate the systematic errors of Wilson coefficients at large distance through varying parameter 
c in the resummation scale c/z. Our results show that the perturbative Wilson coefficients are 
well-defined only up to about 0.3 fm, and as a consequence, the resulting 〈x4〉 has a significant 
error.

4.1. Resummed Wilson coefficients

Following Refs. [18,39,43,56–59], we consider a ratio of the lattice matrix element, which 
eliminates the linear divergence and logarithmic divergence:

h̃ratio(z,Pz,P
0
z ) = h̃lat(z, a,Pz)

h̃lat(z, a,P 0
z )

. (18)

We can relate h̃ratio(z, Pz, P 0
z ) with MS scheme. Since the UV divergence is eliminated in the 

ratio and the intrinsic z dependence should be the same between different schemes, we have

h̃lat(z, a,Pz)

h̃lat(z, a,P 0
z )

= h̃MS(z,μ,Pz)

h̃MS(z,μ,P 0
z )

, (19)

where h̃MS(z, μ, Pz) is the renormalized lattice matrix element in MS scheme.
According to OPE [38,39,41], the coordinate space correlator can be related to the moments 

of PDF at small z � 1/�QCD,

h̃MS(z,μ,Pz) =
∑
N=0

(−iλ)N

N ! CMS
N (αs, z

2μ2) 〈xN 〉(μ)

+O(z2�2 ), (20)
QCD

12



Y. Su, J. Holligan, X. Ji et al. Nuclear Physics B 991 (2023) 116201
Fig. 7. The fixed order and RGR Wilson coefficients C0 up to NNLO at μ = 3.2 GeV. The bands show the uncertainty 
from varying c = (0.8 ∼ 1.2) ∗ 2e−γE .

where the moment 〈xN 〉(μ) = ∫ 1
−1 dx xNf (x, μ). Note that CMS

0 (αs, z2μ2) is equal to h̃MS(z,

μ, 0) in Eq. (A.7) according to our definition. CMS
N (αs, z2μ2) is calculated up to NNLO in the 

literature [47]. We present it in Appendix B, see Eq. (B.3) and Eq. (B.5).
The renormalization scale μ is fixed, and usually chosen to be around 2 GeV. On the other 

hand, the correlation distance z varies considerably. As such, the perturbative Wilson coefficient 
CN contains large logarithms of lnn(zμ) which must be resummed to get reliable results. Fortu-
nately, this can be accomplished through solving the renormalization group equation for Wilson 
coefficient:

μ
dCMS

N (αs, z
2μ2)

dμ
= γ MS

N (αs)C
MS
N (αs, z

2μ2), (21)

where γ MS
N is the anomalous dimension for the N -th Wilson coefficient, see Eq. (B.7). The 

natural scale for the Wilson coefficient is the physical distance z, or in the momentum scale, 
c/z, with c an order 1 number. Thus we can sum over large logarithms by integrating the above 
equation from c/z to μ,

CMSRGR
N (αs(μ), z2μ2)

= CMS
N (αs(c/z), c

2) exp

⎡
⎢⎣

αs(μ)∫
αs(c/z)

γ MS
N (αs)

βMS(αs)
dαs

⎤
⎥⎦, (22)

where βMS is the QCD beta function [60], and c can be varied around 2e−γE to test the stability of 
Wilson coefficient. Thus, the natural moment scale for the perturbative expansion of the Wilson 
coefficient is also c/z, which is small for a large z. This indicates that Wilson coefficients have 
large perturbative errors at large distance. In Appendix B of Ref. [20], they find that RGR Wilson 
coefficients can describe some lattice data very well when they choose the starting scale c/z no 
less than two times 2e−γE/z. We think one should also consider the starting scale smaller than 
2e−γE/z to give a reasonable estimation of higher order effects.

To see the difference of the fixed-order and resummed Wilson coefficients, we compare CMS
0

and CMS RGR at NLO and NNLO at μ = 3.2 GeV in Fig. 7. Different types of perturbation 
0

13
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Fig. 8. The best fit parameter 〈x2〉 at each single z. NLO (blue) and NLO+RGR (red) Wilson coefficients are used at 
μ = 3.2 GeV. The red band shows the uncertainty from varying c = (0.8 ∼ 1.2) ∗ 2e−γE .

series are consistent near z = 0.02 ∼ 0.1 fm. The discrepancy becomes significant for z > 0.2 fm 
between resummed and fixed-order results, as well as between NNLO and NLO. Moreover, the 
small variation of c causes larger errors at large distance. For z > 0.4 fm, the running coupling 
constant is close to the Landau pole where the perturbation series breaks down, and the OPE 
analysis is no longer useful.

4.2. Fitting moments with resummed Wilson coefficients to NNLO

Combining Eqs. (18) (19) (20), we have [18,43]:

h̃ratio(z,Pz,P
0
z )

=
∑

N=0
(−izPz)

N

N ! CMS
N (αs, z

2μ2) 〈xN 〉(μ)∑
N=0

(−izP 0
z )N

N ! CMS
N (αs, z2μ2) 〈xN 〉(μ)

. (23)

One can use this equation to extract moments from lattice data.
Following previous work [43], we fit the Pz dependence at each single z separately. The pion 

valence PDF is symmetric with respect to x = 0 so it only has even moments. We adopt the 
following inequalities during the fit: 〈xN+2〉 < 〈xN 〉, 〈xN+2〉 + 〈xN−2〉 − 2〈xN 〉 > 0, and fit up 
to 〈x6〉. By using NLO coefficient function, the fit parameter 〈x2〉 with Pz = 0.86 ∼ 2.15 GeV 
at lattice spacing a = 0.06 fm is shown in Fig. 8. If we just focus on the fixed-order NLO, we 
see that 〈x2〉 tends to a stable result as z becomes larger, as observed in [43]. However, when 
we fit the data with NLO+RGR Wilson coefficients, the variation of c generates an error for 
〈x2〉 and the result at large distance becomes quite uncertain. The result beyond 0.3 fm suffers 
from large errors. Actually, at z = 0.3 fm, the starting scale of RGR is 0.59 ∼ 0.89 GeV, whose 
corresponding αNLO

s is 0.80 ∼ 0.49. αNLO
s = 0.80 is already too large for a perturbation series to 

converge. So we will only use z up to 0.3 fm in the following analysis in this section.
We perform a joint fit with NLO+RGR Wilson coefficient. The joint fit with Pz = 0.86 ∼ 2.15

GeV and z = 0.12 ∼ 0.3 fm at lattice spacing a = 0.06 fm at μ = 3.2 GeV is shown in Fig. 9. We 
vary c = (0.8 ∼ 1.2) ∗ 2e−γE to test the stability of Wilson coefficient and moment fit. The best 
fit 〈x2〉 = 0.1251(34)(221) and 〈x4〉 = 0.029(28)(40), where the second bracket after the center 
14
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Fig. 9. A joint fit based on NLO+RGR Wilson coefficients (Eq. (22)) at μ = 3.2 GeV. Open dots are data points and 
bands are fit curves. For c = 0.8 ∗ 2e−γE , the best fit 〈x2〉 = 0.1588(39) and 〈x4〉 = 0.106(03); For c = 2e−γE , the best 
fit 〈x2〉 = 0.1251(34) and 〈x4〉 = 0.029(28); For c = 1.2 ∗ 2e−γE , the best fit 〈x2〉 = 0.1172(32) and 〈x4〉 = 0.049(16).

value denotes the systematic error caused by varying c = (0.8 ∼ 1.2) ∗ 2e−γE . So 〈x4〉 suffers 
from large statistical and systematic errors. Note that in the plot of c = 0.8 ∗ 2e−γE , the best fit 
curve does not go through the data point at z = 0.3 fm.
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Table 2
The best fit parameters 〈x2〉 and 〈x4〉 based on NLO, NNLO, NLO+RGR and 
NNLO+RGR Wilson coefficients at μ = 3.2 GeV. The first bracket after the center 
value denotes the statistical error. The standard deviation from choosing different 
P 0

z , zmin, zmax and c is considered as the systematic error, which is shown in the 
second bracket after the center value.

NLO
〈
x2
〉 〈

x4
〉

a = 0.06 fm 0.1157(38)(55) 0.0369(126)(145)

a = 0.04 fm 0.1062(46)(26) 0.0468(129)(63)

a2 → 0 0.0986(91)(55) 0.0547(250)(145)

NNLO
〈
x2
〉 〈

x4
〉

a = 0.06 fm 0.1154(39)(56) 0.0388(127)(145)

a = 0.04 fm 0.1053(46)(22) 0.0456(130)(45)

a2 → 0 0.0972(91)(56) 0.0510(252)(145)

NLO+RGR
〈
x2
〉 〈

x4
〉

a = 0.06 fm 0.1273(45)(207) 0.0368(263)(383)

a = 0.04 fm 0.1147(51)(122) 0.0539(217)(164)

a2 → 0 0.1046(102)(207) 0.0677(441)(383)

NNLO+RGR
〈
x2
〉 〈

x4
〉

a = 0.06 fm 0.1073(34)(135) 0.0556(71)(133)

a = 0.04 fm 0.0998(43)(79) 0.0521(76)(48)

a2 → 0 0.0938(85)(135) 0.0494(147)(133)

Finally, we make systematic joint fits on dependence of Pz and z based on NLO, NNLO, 
NLO+RGR and NNLO+RGR Wilson coefficients at μ = 3.2 GeV. The best fit parameters 〈x2〉
and 〈x4〉 are shown in Table 2. We fit the data at lattice spacing a = 0.06 fm and a = 0.04 fm and 
do a continuum extrapolation a2 → 0. The momentum of the matrix element in the denominator 
is P 0

z = 2π
La

n0
z , where we choose n0

z = 1, 2. The fit range is Pz > P 0
z and z ∈ [zmin, zmax], where 

we choose zmin = 2a, 3a and zmax ∈ [0.24, 0.30] fm (zmax = 0.24, 0.30 fm for a = 0.06 fm 
and zmax = 0.24, 0.28 fm for a = 0.04 fm). We vary c = (0.8 ∼ 1.2) ∗ 2e−γE for NLO+RGR 
and NNLO+RGR. The mean value among choosing different n0

z , zmin and zmax is considered 
as the center value (each combination is equally weighted and we choose c = 2e−γE for center 
value). The standard deviation from choosing different n0

z , zmin, zmax and c is considered as the 
systematic error. After continuum extrapolation, 〈x2〉 are consistent within the error range among 
different Wilson coefficients. Both statistical and systematic errors are reasonable for 〈x2〉.

However, large systematic errors are observed in 〈x4〉, especially for NLO+RGR case, which 
come mostly from varying c. Our statistical errors for 〈x4〉 are larger than [20,43,44] because we 
can only legitimately use z up to 0.3 fm, whereas the previous works use z up to 0.5∼0.8 fm with 
fixed-order Wilson coefficients. Thus it appears that the determination of 〈x4〉 through fitting the 
lattice correlation function has a large uncertainty.

5. Summary and outlook

In this work, we study the effects of small-momentum large logarithm resummation in the 
perturbative matching of LaMET. The resummed matching improves the prediction accuracy 
at intermediate 2xPz, and at the same time, clearly indicates that the perturbative matching is 
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unreliable at small 2xPz (e.g. 2xPz < 0.7 GeV). This is consistent with power counting in the 
large-momentum expansion. Besides, we test the RGR effect in OPE approach and show that 
Wilson coefficients cannot be calculated in perturbation theory at large z (e.g. z > 0.3 fm). These 
observations are consistent with each other, as small x region in momentum space conjugates to 
large z region in coordinate space.

Thus, to calculate small-x parton physics, one has to go to larger hadron momentum than 
presently available. With increased computational power, it may be possible to reach Pz ∼ 5 GeV, 
if so one can calculate on lattice partons at x ∼ 0.1. To calculate, x ∼ 0.01, one has to reach Pz ∼
50 GeV, which cannot be done without a breakthrough in lattice technology or reformulation of 
the LaMET formalism.

A related question is about large-x PDFs. As x → 1, a new soft scale appears, (1 − x)Pz, 
which is the momentum of the hadron remnant. Here again, large-logarithms appear due to in-
complete cancellation of infrared physics. They can be re-summed to produce more reliable 
predictions in the large-x region. At the same time, however, it also exposes the breakdown of 
LaMET in the large x region, where the higher-twist corrections again become important. We 
hope to address this in a future publication.
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Appendix A. Hybrid scheme matching kernel in quasi-PDF approach

We relate the hybrid scheme matching kernel with the ratio scheme or MS scheme in coordi-
nate space, and double Fourier transform it to momentum space. The matching kernel here is for 
unpolarized, flavor non-singlet and γ t quasi-PDF matrix element.
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A.1. Notation and convention

The factorization in coordinate space in the hybrid scheme:

h̃(z,Pz) =
1∫

−1

dνZ(ν, |z|,μ)h(νλ,μ) +O(z2�2
QCD), (A.1)

where λ = zPz. The factorization in momentum space in hybrid scheme:

f̃ (x,Pz) =
1∫

−1

dy

|y|C
(

x

y
,

μ

|x|Pz

)
f (y,μ) +O

[
�2

QCD

x2P 2
z

,
�2

QCD

(1 − x)2P 2
z

]
, (A.2)

where O
[

�2
QCD

x2P 2
z

,
�2

QCD

(1−x)2P 2
z

]
denotes the power corrections. According to Ref. [37,45], the 

LaMET factorization requires both the active quark and spectator to be collinear, which means 
xPz � �QCD and (1 − x)Pz � �QCD. Therefore, by dimensional analysis, the power correc-

tions are controlled by small parameters �QCD
xPz

, �QCD
(1−x)Pz

. If quasi-PDF operators have no linear 
divergence or if they do but working in dimensional regularization, the power corrections start 
from square powers of these parameters due to symmetry reasons. The Fourier transformations:

f̃ (x,Pz) = Pz

+∞∫
−∞

dz

2π
eixPzzh̃(z,Pz), (A.3)

f (x,μ) =
+∞∫

−∞

dλ

2π
eixλh(λ,μ), (A.4)

where λ = zPz. So the double Fourier transformation is:

C

(
ξ,

μ

|x|Pz

)
=

∞∫
−∞

dν

2π
eiνξ

1∫
−1

due−iuνZ

(
u,

∣∣∣∣ ν

yPz

∣∣∣∣ ,μ
)

, (A.5)

where ξ = x/y. The relation between ratio scheme matching kernel Zratio and the MS scheme 
matching kernel ZMS in coordinate space is

Zratio
(
u, z2μ2

)
= ZMS

(
u, z2μ2

)
h̃MS(z,μ,0)

, (A.6)

where h̃MS(z, μ, 0) is the perturbative zero-momentum matrix element 〈Pz = 0|ψ̄(z)γ tU(z, 0)

ψ(0)|Pz = 0〉 in MS scheme. In principle, any finite-momentum matrix element can be used to 
cancel the linear divergence. However, the zero-momentum matrix element contains only non-
perturbative normalization factor, with infrared finite z-dependence calculable entirely in pertur-
bation theory. Diving by matrix elements at other momenta will change the infrared structure, 
thus the factorization may break down. h̃MS(z, μ, 0) is calculated up to NNLO in literature [47]:
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h̃MS(z,μ,0) = h̃MS(0)(z,μ,0) + h̃MS(1)(z,μ,0) + h̃MS(2)(z,μ,0)

= 1 + αsCF

2π

(
3

2
ln

(
z2μ2e2γE

4

)
+ 5

2

)

+
( αs

2π

)2
[(

11CACF

8
− CF nf TF

2
+ 9C2

F

8

)
ln2
(

z2μ2e2γE

4

)

+
((

53

8
− π2

6

)
CACF +

(
25

8
+ 2π2

3

)
C2

F − 5CF nf TF

2

)
ln

(
z2μ2e2γE

4

)

+2

(
−4ζ(3) + 223

192
+ π2

9

)
C2

F + 2

(
ζ(3) + 4877

576
− 5π2

24

)
CACF − 469CF nf TF

72

]
,

(A.7)

where we use the superscripts (0), (1), (2) to denote terms at O(1), O(αs) and O(α2
s ) separately. 

TF = 1
2 is a conventional normalization factor for SU(3) generators in the fundamental repre-

sentation. CF = 4
3 and CA = 3 are the quadratic Casimir operators for SU(3) in the fundamental 

and adjoint representation separately. nf is the number of quark flavors. Zratio
(
u, z2μ2

)
up to 

NLO [41,42,62] is

Zratio
(
u, z2μ2

)
= δ(1 − u) + αsCF

2π

[
−1 + u2

1 − u
ln

(
z2μ2e2γE

4

)

+1 − 4u + u2 − 4 ln(1 − u)

1 − u

][0,1]

+(1)

θ(u)θ(1 − u), (A.8)

and ZMS
(
u, z2μ2

)
up to NLO is:

ZMS(u, z2μ2) = Zratio(0)
(
u, z2μ2

)
+ Zratio(1)

(
u, z2μ2

)
+δ(1 − u)

αsCF

2π

(
3

2
ln

(
z2μ2e2γE

4

)
+ 5

2

)
, (A.9)

where we use the superscripts (0) and (1) to denote terms at O(1) and O(αs) separately.
The relation between hybrid scheme matching kernel Z and ratio scheme matching kernel 

Zratio in coordinate space is (it follows the same convention as how we renormalize the lattice 
matrix element in Eq. (3))

Z(u, |z|,μ) = Zratio(u, z2μ2)θ(zs − |z|) + ZMS(u, z2μ2)

h̃MS(zs,μ,0)
θ(|z| − zs)

= Zratio(u, z2μ2)

[
1 +

(
h̃MS(z,μ,0)

h̃MS(zs,μ,0)
− 1

)
θ(|z| − zs)

]
. (A.10)

We would like to expand Eq. (A.10) at O(1), O(αs) and O(α2
s ):

Z(u, |z|,μ) = Z(0)(u, |z|,μ) + Z(1)(u, |z|,μ) + Z(2)(u, |z|,μ), (A.11)

and get the hybrid scheme matching kernel in momentum space through double Fourier transfor-
mation Eq. (A.5) order by order:

C

(
ξ,

μ
)

= C(0)

(
ξ,

μ
)

+ C(1)

(
ξ,

μ
)

+ C(2)

(
ξ,

μ
)

. (A.12)
|x|Pz |x|Pz |x|Pz |x|Pz
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A.2. LO and NLO matching kernel

At LO, the hybrid scheme matching kernel in coordinate space is

Z(0)(u, |z|,μ) = δ(1 − u).

We double Fourier transform it based on Eq. (A.5) to get the hybrid scheme matching kernel in 
momentum space at LO,

C(0)

(
ξ,

μ

|x|Pz

)
= δ(1 − ξ).

At NLO, the hybrid scheme matching kernel in coordinate space is

Z(1)(u, |z|,μ) = Zratio(1)
(
u, z2μ2

)
+Zratio(0)

(
u, z2μ2

)
(h̃MS(1)(z,μ,0) − h̃MS(1)(zs,μ,0))θ(|z| − zs)

= Zratio(1)
(
u, z2μ2

)
+ δ(1 − u)

αsCF

2π

3

2
ln

(
z2

z2
s

)
θ(|z| − zs). (A.13)

We double Fourier transform it based on Eq. (A.5) and get the hybrid scheme matching kernel in 
momentum space at NLO [63]:

C(1)

(
ξ,

μ

|x|Pz

)
= Cratio(1)

(
ξ,

μ

|x|Pz

)

+αsCF

2π

3

2

[
− 1

|1 − ξ | + 2Si[(1 − ξ)|y|zsPz]
π(1 − ξ)

][−∞,∞]

+(1)

, (A.14)

where 2Si[(1 − ξ)|y|zsPz] is the sine integral function and Cratio(1)
(
ξ,

μ
|x|Pz

)
is the ratio scheme 

matching kernel in momentum space at NLO [41]:

Cratio(1)

(
ξ,

μ

|x|Pz

)

= αsCF

2π

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1+ξ2

1−ξ
ln ξ

ξ−1 + 1 − 3
2(1−ξ)

)[1,∞]
+(1)

ξ > 1(
1+ξ2

1−ξ

[
− ln μ2

4x2P 2
z

+ ln(
1−ξ
ξ

) − 1
]
+ 1 + 3

2(1−ξ)

)[0,1]
+(1)

0 < ξ < 1(
− 1+ξ2

1−ξ
ln −ξ

1−ξ
− 1 + 3

2(1−ξ)

)[−∞,0]
+(1)

ξ < 0

(A.15)

A.3. NNLO matching kernel

At NNLO, the hybrid scheme matching kernel in coordinate space is

Z(2)(u, |z|,μ) = Zratio(2)
(
u, z2μ2

)
+Zratio(1)

(
u, z2μ2

)
[h̃MS(1)(z,μ,0) − h̃MS(1)(zs,μ,0)]θ(|z| − zs)

+Zratio(0)
(
u, z2μ2

)
[h̃MS(2)(z,μ,0) − h̃MS(2)(zs,μ,0)

−h̃MS(1)(zs,μ,0)(h̃MS(1)(z,μ,0) − h̃MS(1)(zs,μ,0))]θ(|z| − zs) (A.16)
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Note that it is hard to find the analytical result of double Fourier transformation on

Zratio(1)
(
u, z2μ2

)
[h̃MS(1)(z,μ,0) − h̃MS(1)(zs,μ,0)]θ(|z| − zs)

and it is also hard to do it numerically since it contains a singularity for ξ → 1. However, one 
can make use of the following relations:

Zratio(2)
(
u, z2μ2

)
= ZMS(2)

(
u, z2μ2

)
− δ(1 − u)h̃MS(2)(z,μ,0)

−Zratio(1)
(
u, z2μ2

)
h̃MS(1)(z,μ,0),

and

Zratio(1)
(
u, z2μ2

)
[h̃MS(1)(z,μ,0) − h̃MS(1)(zs,μ,0)]θ(|z| − zs)

= Zratio(1)
(
u, z2μ2

)
[h̃MS(1)(z,μ,0) − h̃MS(1)(zs,μ,0)][1 − θ(zs − |z|)].

Substituting the above two relations into Eq. (A.16), we have

Z(2)(u, |z|,μ) = ZMS(2)
(
u, z2μ2

)
− δ(1 − u)h̃MS(2)(z,μ,0)

+δ(1 − u)[h̃MS(2)(z,μ,0) − h̃MS(2)(zs,μ,0) − h̃MS(1)(zs,μ,0)(h̃MS(1)(z,μ,0)

−h̃MS(1)(zs,μ,0))]θ(|z| − zs) − Zratio(1)
(
u, z2μ2

)
h̃MS(1)(zs,μ,0)

−Zratio(1)
(
u, z2μ2

)
[h̃MS(1)(z,μ,0) − h̃MS(1)(zs,μ,0)]θ(zs − |z|), (A.17)

where we can find analytical results of double Fourier transformation on all these terms except for 
the last one Zratio(1)

(
u, z2μ2

) [h̃MS(1)(z, μ, 0) − h̃MS(1)(zs, μ, 0)]θ(zs −|z|). The result of double 

Fourier transformation on Zratio(1)
(
u, z2μ2

) [h̃MS(1)(z, μ, 0) − h̃MS(1)(zs, μ, 0)]θ(zs − |z|) is a 
smooth function with respect to ξ and we can calculate it numerically.

We double Fourier transform Eq. (A.17) based on Eq. (A.5) and get the hybrid scheme match-
ing kernel in momentum space at NNLO:

C(2)

(
ξ,

μ

|x|Pz

)
=
{

CMS(2)

(
ξ,

μ

|x|Pz

)

−
( αs

2π

)2

⎡
⎢⎢⎣
(

11CACF

8
− CF nf TF

2
+ 9C2

F

8

) 2 ln

(
4x2P 2

z (1−ξ)2

μ2ξ2

)
|1 − ξ |

+
((

53

8
− π2

6

)
CACF +

(
25

8
+ 2π2

3

)
C2

F − 5CF nf TF

2

)(
− 1

|1 − ξ |
)]

+
( αs

2π

)2
(

11CACF

8
− CF nf TF

2
+ 9C2

F

8

)[
2

|1 − ξ | ln
(
y2P 2

z z2
s e

2γE (1 − ξ)2
)

−4|y|Pzzs

π
(3F3 (1,1,1;2,2,2; i (ξ − 1) |y|Pzzs)

+3F3 (1,1,1;2,2,2;−i (ξ − 1) |y|Pzzs))

+2

(
− 1 + 2Si[(1 − ξ)|y|zsPz]) ln

(
z2
sμ

2e2γE
)]
|1 − ξ | π(1 − ξ) 4
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+
( αs

2π

)2
((

53

8
− π2

6

)
CACF +

(
25

8
+ 2π2

3

)
C2

F − 5CF nf TF

2

)

×
(

− 1

|1 − ξ | + 2Si[(1 − ξ)|y|zsPz]
π(1 − ξ)

)

−
( αs

2π

)2
C2

F

(
3

2
ln

(
z2
sμ

2e2γE

4

)
+ 5

2

)
3

2

(
− 1

|1 − ξ | + 2Si[(1 − ξ)|y|zsPz]
π(1 − ξ)

)

−Cratio(1)

(
ξ,

μ

|x|Pz

)
αsCF

2π

(
3

2
ln

(
z2
sμ

2e2γE

4

)
+ 5

2

)

−
∞∫

−∞

dν

2π
eiνξ

1∫
−1

due−iuνZratio(1)

(
u,

(
ν

yPz

)2

μ2

)
αsCF

2π

×3

2
ln

[(
ν

yPzzs

)2
]

θ

(
zs −

∣∣∣∣ ν

yPz

∣∣∣∣
)}[−∞,+∞]

+(1)

, (A.18)

where CMS(2) is the two-loop matching kernel for flavor non-singlet case in MS scheme, which 
can be found in [47,48]. 3F3 is the hypergeometric function. Note that we drop away all the 
terms proportional to δ(1 − ξ) during the deduction and put an overall plus function in the end 
to guarantee the current conservation.

Appendix B. NNLO Wilson coefficient and anomalous dimension in OPE

The Wilson coefficient CMS
N (αs, z2μ2) is the moment of coordinate space matching kernel 

ZMS(ν, z2μ2):

CMS
N (αs, z

2μ2) =
1∫

−1

dν νNZMS(ν, z2μ2). (B.1)

We present Wilson coefficients order by order

CMS
N (αs, z

2μ2) = 1 + C
MS(1)
N (αs, z

2μ2) + C
MS(2)
N (αs, z

2μ2). (B.2)

At NLO, we have [44]:

C
MS(1)
N (αs, z

2μ2) = αsCF

2π

[(
3 + 2N

2 + 3N + N2 + 2HN

)
ln

(
z2μ2e2γE

4

)

+ 5 + 2N

2 + 3N + N2 + 2 (1 − HN)HN − 2H
(2)
N

]
(B.3)

where HN =∑N
i=1 1/i and H(2)

N =∑N
i=1 1/i2.

At NNLO, we get the Wilson coefficients for flavor non-singlet case (flavor non-singlet is the 
same as valence for pion) based on [47]. We use their supplemental material on prl page including 
a Mathematica package. We find an analytical form for general N for the term proportional to 

ln2
(

z2μ2e2γE
)

:
4
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C
MS(2)
N (αs, z

2μ2) =
( αs

2π

)2
[

11CACF

8
− CF nf TF

2
+ 9C2

F

8

+CACF

11

24

(
4HN + 2

N + 1
+ 2

N + 2
− 3

)

+C2
F

(
2(2N + 3)HN+1

N2 + 3N + 2
+ 2 (HN)2 − N(N(9N(N + 6) + 133) + 172) + 96

8
(
N2 + 3N + 2

)2
)

+CF nf TF

1

6

(
N(3N + 5)

(N + 1)(N + 2)
− 4HN

)]
ln2
(

z2μ2e2γE

4

)
+ ... (B.4)

We present the numerical results for Wilson coefficients at NNLO up to N = 12:

C
MS(2)
0 (αs, z

2μ2) =
( αs

2π

)2 [L2 (7.5 − 0.333333nf

)
+L

(
37.1731 − 1.66667nf

)− 4.34259nf + 51.836]
C

MS(2)
1 (αs, z

2μ2) =
( αs

2π

)2 [L2 (17.5247 − 0.62963nf

)
+L

(
13.9468 − 0.975309nf

)− 6.56481nf + 63.8866]
C

MS(2)
2 (αs, z

2μ2) =
( αs

2π

)2 [L2 (24.5525 − 0.796296nf

)
+L

(−0.391975nf − 14.6427
)− 8.33835nf + 95.0155]

C
MS(2)
3 (αs, z

2μ2) =
( αs

2π

)2 [L2 (30.1584 − 0.914815nf

)
+L

(
0.129506nf − 42.8518

)− 9.89856nf + 132.071]
C

MS(2)
4 (αs, z

2μ2) =
( αs

2π

)2 [L2 (34.8899 − 1.00741nf

)
+L

(
0.601728nf − 69.9135

)− 11.3178nf + 171.79]
C

MS(2)
5 (αs, z

2μ2) =
( αs

2π

)2 [L2 (39.0147 − 1.0836nf

)
+L

(
1.03408nf − 95.7303

)− 12.6327nf + 212.735]
C

MS(2)
6 (αs, z

2μ2) =
( αs

2π

)2 [L2 (42.6881 − 1.14841nf

)
+L

(
1.43362nf − 120.364

)− 13.8654nf + 254.226]
C

MS(2)
7 (αs, z

2μ2) =
( αs

2π

)2 [L2 (46.01 − 1.20485nf

)
+L

(
1.80568nf − 143.912

)− 15.0307nf + 295.852]
C

MS(2)
8 (αs, z

2μ2) =
( αs

2π

)2 [L2 (49.0487 − 1.25485nf

)
+L

(
2.15437nf − 166.474

)− 16.1389nf + 337.394]
C

MS(2)
9 (αs, z

2μ2) =
( αs

2π

)2 [L2 (51.8538 − 1.29974nf

)
+L

(
2.48291nf − 188.142

)− 17.1981nf + 378.698]
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C
MS(2)
10 (αs, z

2μ2) =
( αs

2π

)2 [L2 (54.4622 − 1.34048nf

)
+L

(
2.79386nf − 208.996

)− 18.2144nf + 419.684]
C

MS(2)
11 (αs, z

2μ2) =
( αs

2π

)2 [L2 (56.9024 − 1.37778nf

)
+L

(
3.08931nf − 229.108

)− 19.1925nf + 460.29]
C

MS(2)
12 (αs, z

2μ2) =
( αs

2π

)2 [L2 (59.197 − 1.41217nf

)
+L

(
3.37098nf − 248.541

)− 20.1365nf + 500.487], (B.5)

where L = ln
(

z2μ2e2γE

4

)
.

The anomalous dimension γ MS
N describes the scale μ dependence of Wilson coefficients:

μ
dCMS

N (αs, z
2μ2)

dμ
= γ MS

N (αs)C
MS
N (αs, z

2μ2). (B.6)

Doing the derivative with respect to μ on both sides of Eq. (20), we achieve the following iden-
tity:

γ MS
N = γ MS + γ ratio

N , (B.7)

where γ MS is the heavy-light quark current anomalous dimension, which satisfies:

μ
dh̃MS(z,μ,Pz)

dμ
= γ MS(αs)h̃

MS(z,μ,Pz), (B.8)

and is calculated up to NNLO in literature [64–66]:

γ MS = αs

2π
3CF +

( αs

2π

)2
((

49

12
− π2

3

)
CACF − 5

3
CF nf TF −

(
5

4
− 4π2

3

)
C2

F

)

+
( αs

2π

)3
(

−35n2
f

81
+
(

−332ζ(3)

27
− 172

81
− 196π2

243

)
nf

−178ζ(3)

9
− 61

12
+ 686π2

81
+ 380π4

243

)
. (B.9)

γ ratio
N is the anomalous dimension for DGLAP evolution (we use the non-singlet and valence 

case) which satisfies:

μ
d〈xN 〉(μ)

dμ
= −γ ratio

N (αs)〈xN 〉(μ). (B.10)

Analytical forms of γ ratio
N up to NNLO are presented in [53]. Useful numerical results can be 

found here [67].

Appendix C. Inverse LaMET matching

In this section, we derive a series expansion formalism to invert the matching kernel. Although 
we don’t use this formalism in our numerical calculation (we invert discrete matrix instead), it 
can help us understand the log term.
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We rewrite the matching kernel as

C

(
x

y
,

μ

|x|Pz

)
= δ

(
1 − x

y

)
+ δC

(
x

y
,

μ

|x|Pz

)
,

and put it into Eq. (5),

f̃ (x,Pz) = f (x,μ) +
1∫

−1

dy

|y|δC
(

x

y
,

μ

|x|Pz

)
f (y,μ) +O

[
�2

QCD

x2P 2
z

,
�2

QCD

(1 − x)2P 2
z

]
. (C.1)

Rewrite this equation as

f (x,μ) = f̃ (x,Pz) −
1∫

−1

dy

|y|δC
(

x

y
,

μ

|x|Pz

)
f (y,μ) +O

[
�2

QCD

x2P 2
z

,
�2

QCD

(1 − x)2P 2
z

]
. (C.2)

The f (y, μ) on the right hand side of Eq. (C.2) can be substituted by Eq. (C.2) itself iteratively 
to arrive at Eq. (C.3):

f (x,μ) = f̃ (x,Pz) −
1∫

−1

dy

|y|δC
(

x

y
,

μ

|x|Pz

)
f̃ (y,Pz)

+
1∫

−1

dy

|y|δC
(

x

y
,

μ

|x|Pz

) 1∫
−1

dw

|w|δC
(

y

w
,

μ

|y|Pz

)
f (w,Pz)

= f̃ (x,Pz) −
1∫

−1

dy

|y|δC
(

x

y
,

μ

|x|Pz

)
f̃ (y,Pz)

+
1∫

−1

dy

|y|δC
(

x

y
,

μ

|x|Pz

) 1∫
−1

dw

|w|δC
(

y

w
,

μ

|y|Pz

)
f̃ (w,Pz)

−
1∫

−1

dy

|y|δC
(

x

y
,

μ

|x|Pz

) 1∫
−1

dw

|w|δC
(

y

w
,

μ

|y|Pz

) 1∫
−1

dv

|v|δC
(

w

v
,

μ

|w|Pz

)
f̃ (v,Pz)

+... +O
[

�2
QCD

x2P 2
z

,
�2

QCD

(1 − x)2P 2
z

]
(C.3)

Let’s keep the series up to NLO, which works for the first non-trivial αs order of δC:

f (x,μ) = f̃ (x,Pz) −
1∫

−1

dy

|y|δC
(

x

y
,

μ

|x|Pz

)
f̃ (y,Pz) +O

[
�2

QCD

x2P 2
z

,
�2

QCD

(1 − x)2P 2
z

]
, (C.4)

where there is a log term ∼ ln
(

μ2

4x2P 2
z

)
in δC

(
x
y
,

μ
|x|Pz

)
and x is the momentum fraction of light 

cone parton.
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Appendix D. A method solving RG equation

We provide an exact method to DGLAP evolve f (x, 2xPzc
′) to scale μ. The exact method 

makes use of one property of DGLAP: only higher momentum partons can split into lower mo-
mentum partons so we only need partons with momentum fraction no less than x to evaluate the 
DGLAP evolution results for the parton at momentum fraction x. Imagine we have each par-
ton evaluated at its own intrinsic scale at the beginning. Note that the largest momentum parton 
(x = 1) can evolve with itself. So one can start from the largest momentum parton and evolve it 
to the intrinsic scale of the second largest momentum parton. Now these two partons are at the 
same scale so we can evolve them together to the intrinsic scale of the third largest momentum 
parton. With the same strategy, a recursive operation will finally evolve all the partons to the 
same scale.

The numerical implementation is the following:
1) We discretize the momentum region x ∈ [0, 1] into Nx slices, xi = i

Nx
, i = 1, .., Nx ;

2) We start from xNx = 1. We match the quasi-PDF with fixed order matching kernel (Eq. (5)) to 
scale 2xNx Pzc

′ on the light cone (the scale in the αs is also 2xNx Pzc
′):

f (x,2xNx Pzc
′) = C−1

(
x

y
,

2xNx Pzc
′

|x|Pz

)
⊗ f̃ (y,Pz). (D.1)

Then we evolve f (x, 2xNx Pzc
′) to scale μ and 2xNx−1Pzc

′ separately based on DGLAP equa-
tion (14):

fNx (x,μ) = M
{
e

∫ μ

2xNx
Pzc′

dμ′
μ′ P [w,αs(μ

′)]}⊗ f
( x

w
,2xNx Pzc

′)

gNx (x,2xNx−1Pzc
′) = M

{
e

∫ 2xNx−1Pzc′
2xNx

Pzc′
dμ′
μ′ P [w,αs(μ

′)]}⊗ f
( x

w
,2xNx Pzc

′) , (D.2)

where M is the scale ordering operator. There is no scale mismatch effect near x = 1;
3) For xi < xNx , we match the quasi-PDF with fixed order matching kernel to scale 2xiPzc

′ on 
the light cone (the scale in the αs is also 2xiPzc

′):

f (x,2xiPzc
′) = C−1

(
x

y
,

2xiPzc
′

|x|Pz

)
⊗ f̃ (y,Pz). (D.3)

Then we reconstruct a PDF as

fr(x,2xiPzc
′) =

{
f (x,2xiPzc

′) x < xi + 1
2Nx

gi+1(x,2xiPzc
′) x > xi + 1

2Nx

, (D.4)

where each point at x > xi − 1
2Nx

is evaluated at its intrinsic physical scale or evolved from its 
intrinsic physical scale. Then we evolve fr(x, 2xiPzc

′) to scale μ and 2xi−1Pzc
′ separately:

fi(x,μ) = M
{
e

∫ μ

2xiPzc′
dμ′
μ′ P [w,αs(μ

′)]}⊗ fr

( x

w
,2xiPzc

′)

gi(x,2xi−1Pzc
′) = M

{
e

∫ 2xi−1Pzc′
2xiPzc′

dμ′
μ′ P [w,αs(μ

′)]}⊗ fr

( x

w
,2xiPzc

′) . (D.5)

So one can solve from i = Nx − 1, Nx − 2... to i = 1;
4) Our final PDF is f (xi, μ) = fi(xi, μ), i = 1, .., Nx .
26
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