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We present and study a new mechanism of interaction between solitons based on the exchange
interaction mediated by the localized fermion states. As particular examples, we consider solutions of
simple (1þ 1)-dimensional scalar field theories with self-interaction potentials, including the sine-Gordon
model and the polynomial ϕ4 and ϕ6 models, coupled to the Dirac fermions with a backreaction. We
discover that there is an additional fermion exchange interaction between the solitons, and it leads to the
formation of static multisoliton bound states. Furthermore, we argue that similar mechanisms of formation
of stable coupled multisoliton configurations can be observed for a wide class of physical systems.

DOI: 10.1103/PhysRevD.101.021701

I. INTRODUCTION

One of the most interesting features of the topological
solitons, like kinks, vortices, or monopoles (see, e.g., [1,2]),
is the remarkable relation between the topological charge of
the configuration and the number of fermionic zero modes
localized on a soliton. The fundamental Atiyah-Patodi-
Singer index theorem requires one normalizable fermionic
zero mode per unit topological charge [3]. Moreover, apart
from zero modes, most configurations support the existence
of a tower of localized fermionicmodeswith nonzero energy.
The fermion zero modes of solitons have been studied

for many decades; these states localized on the vortices
were discussed first in Ref. [4]. There has been substantial
interest in the study of these localized states in various
dimensions; examples are fermion modes of the kinks [5–8],
monopoles [9,10], sphalerons [11,12], and skyrmions
[13–16]. The existence of localized fermions leads to many
interesting and unusual phenomena such as fermion number
fractionization [6,17], monopole catalysis [9,10], and string
superconductivity in cosmology [18] or in chiral super-
conductors [19].
Fermion zero modes naturally appear in supersymmetric

theories; several simple examples are the N ¼ 1 chiral
scalar superfield in 1þ 1 dimensions [20] or supersym-
metric extensions of the O(3) nonlinear sigma model [21]
and baby-Skyrme model [22,23]. In such a case, the fermion

zero mode is generated via supersymmetry transformations
of the boson field of the static soliton. The breaking of
supersymmetry of the configurations, in agreement with the
index theorem, showsa spectral flowof the eigenvaluesof the
Dirac operator with some number of normalizable bounded
modes crossing zero.
The typical assumption inmost such considerations is that

the spinor field does not backreact on the soliton [5–7,24];
moreover, only the fermion zero modes were considered in
most cases. A completely different approach to the problem
was proposed in our previous works [25–27], where we
reconsidered this problem consistently. We found that the
backreaction of the localized fermions significantly modifies
both the spectral flow and the structure of the coupled
configurations. In particular, it results in deformations of
the solitons,which to a certain extent resemble the excitations
of the internal modes of the scalar configurations [27–29].
In contrast to previous studies, our focus here is not to

consider localized fermion states but rather to investigate
the pattern of interactions between the solitons in the
presence of the additional exchange interaction mediated
by localized fermions with finite energy. Our aim is to study
the collective fermion modes in the system of kinks in
(1þ 1)-dimensional scalar field theories, including the
sine-Gordon model and the polynomial ϕ4 and ϕ6 models,
coupled to the Dirac fermions with a backreaction. Notably,
solitons in all these models may support the fermion zero
mode, which does not affect the kink for any values of the
Yukawa coupling. Furthermore, a single ϕ4 kink or a kink
in the sine-Gordon model [30] may bound other localized
fermion modes with finite energy; the number of these
modes extracted from the positive and negative continuum
increases as the Yukawa coupling becomes stronger.
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The novel aspect is that an exponentially localized fermion
bound state may appear in the system of kinks, just in the
same way as the collective scalar bound states become
trapped by the kink-antikink potential in the ϕ6 model [31].
In this paper, we investigate multisoliton-fermion sys-

tems with a backreaction numerically and elucidate the
mechanism for the appearance of the collective fermionic
modes. Our computations reveal sequences of new
bounded collective fermion states in various systems of
solitons. Furthermore, we show that these localized modes
give rise to additional interaction between the solitons.

II. THE MODEL

The (1þ 1)-dimensional field theory we are interested in
is defined by the following Lagrangian:

L ¼ 1

2
∂μϕ∂μϕþ ψ̄ ½iγμ∂μ −m − gϕ�ψ −UðϕÞ; ð1Þ

where UðϕÞ is a potential of the self-interacting real scalar
field ϕ, ψ is a two-component Dirac spinor, andm and g are
the bare mass of the fermions and the Yukawa coupling
constant, respectively.1 The matrices γμ are γ0 ¼ σ1 and
γ1 ¼ iσ3, where σi are the Pauli matrices, and ψ̄ ¼ ψ†γ0.
The sine-Gordon (SG) model corresponds to the periodic
potential UðϕÞ ¼ 1 − cosϕ with an infinite number of
degenerate vacua ϕ0 ¼ 2πn, n ∈ Z, the ϕ4 model corre-
sponds to the quartic potential UðϕÞ ¼ 1

2
ð1 − ϕ2Þ2 with

two vacua ϕ0 ∈ f−1; 1g, and the ϕ6 theory is defined by
UðϕÞ ¼ 1

2
ϕ2ð1 − ϕ2Þ2 with triple degenerated vacuum

ϕ0 ∈ f−1; 0; 1g.
Using the standard parametrization for a two-component

spinor

ψ ¼ e−iϵt
�
uðxÞ
vðxÞ

�
;

we obtain the following coupled system of dynamical
equations:

ϕxx þ 2guv − U0 ¼ 0;

ux þ ðmþ gϕÞu ¼ ϵv;

−vx þ ðmþ gϕÞv ¼ ϵu: ð2Þ

This system is supplemented by the normalization conditionR∞
−∞ dxðu2 þ v2Þ ¼ 1, which we impose as a constraint on
the system (2).
For all previously mentioned potentials, in the decoupled

limit g ¼ 0, the model (1) supports spatially localized static
topological solitons, the kinks:

ΦSG ¼ 4 arctan ex; Φϕ4 ¼ tanhðxÞ;

Φϕ6 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanh x

2

r
: ð3Þ

The spectrum of linearized perturbations of the kinks
always includes a translational zero mode ΦðxÞ →
Φðx − x0Þ and the continuum modes (e.g., see [2,28]).
A peculiarity of theϕ4model is that, apart from thesemodes,
there is also an internal bosonic mode of the kink Φϕ4 .
The coupled pair of the first-order differential equations

in (2) over the background provided by the kinks (3) can be
transformed into two decoupled Schrödinger-type equa-
tions for the spinor components u and v [5]:

−uxx þ ððmþ gΦÞ2 − gΦxÞu ¼ ϵ2u;

−vxx þ ððmþ gΦÞ2 þ gΦxÞv ¼ ϵ2v: ð4Þ

We can easily see that the ϕ4 potential supports exponen-
tially localized fermion zero mode ϵ0 ¼ 0, up to some
modifications of the coupling term [30] or the potential;
such a mode exists for all types of the configurations above.
The zero eigenvalue does not depend on the Yukawa
coupling g, and there is no level crossing spectral flow
in one spatial dimension. In the special case of the N ¼ 1
supersymmetric generalization of the model (1) [20], this
mode is generated via supersymmetric transformation of
the translational mode of the static kink.
One of the essential features of the symmetric ϕ4 kink

is that, for large values of the Yukawa coupling, other
localized fermionic states with nonzero energy eigenvalues
jεj < jg −mj appear in the spectrum [5–8,27,30].
The consideration of the fermion modes bounded to a

soliton usually invokes a simplifying assumption that the
backreaction of the localized fermions is negligible [5–7,24].
However, coupling to the higher localized modes may
significantly distort the ϕ4 kink; its profile deforms as a
fermion occupies an energy level [27]. Furthermore, since
such exponentially localized fermion modes may occur in
multisoliton systems, localized fermions could mediate the
exchange interaction between the solitons. In particular, they
may appear as a collective state trapped by the kink-antikink
pair [7,30], in a way analogous to the appearance of the
collective bosonic modes in the ϕ6 model [31].

III. NUMERICAL RESULTS

To find a numerical solution of the complete system of
integral-differential equation (2) with the normalization
condition on the spinor field, we used the eighth-order
finite-difference method. The system of equations is dis-
cretized on a uniform grid with the usual size of 5000
points. For the sake of simplicity, we considered the
fermions with zero bare massm ¼ 0. The emerging system
of nonlinear algebraic equations is solved using a modified1Here we are using rescaled dimensionless variables.
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Newton method. The underlying linear system is solved
with the Intel MKL PARDISO sparse direct solver. The
errors are on the order of 10−9.
First, we consider a KK̄ pair in the ϕ4 model with

fermions, taking into account the backreaction of the
localized modes. Note that in the decoupled limit g ¼ 0

the KK̄ pair is not a solution of the field equations; there is
an attractive interaction between the kink and the antikink,
and the only solution of the ϕ4 model in the topologically
trivial sector is the vacuum ϕ0 ¼ 0. Numerical computa-
tions show that, as the Yukawa coupling increases slightly
above zero, a nontopological soliton emerges in the scalar
sector; this lump is linked to a localized fermionic mode
extracted from the positive continuum. As g increases
further, the lump becomes larger, and its top corresponds
to the maximum of the fermion density distribution.
Solutions of that type on the background of a well-
separated approximated kink-antikink pair were discussed
in Ref. [7]. We will refer to the modes of that type to as Lk
modes, where the index k corresponds to the minimal
number of nodes of the components.
Taking into account the backreaction of the fermions, we

found another, lower-energy branch of solutions. It also
emerges from the positive energy continuum, and corre-
sponding solutions represent a well-separated KK̄ pair with
two fermion modes bounded to each soliton. At finite
separation, the spinor field represents a symmetric linear
combination of two localized quasizero modes. A further
increase of the coupling yields a stronger attraction between
the constituents, and the fermion density distribution possess
two peaks along this branch.
Furthermore, we observe that in the range of values of

the coupling 0 < g < 1 there are only quasizero collective
modes. As we increased the Yukawa coupling further, we
found a sequence of higher collective states bounded by the
KK̄ pair; see Fig. 1. Similar to the modes localized on the
ϕ4 kink, the first such mode L1 appears at g > 1, the mode
L3 is extracted from the negative continuum at g > 3, etc.
Evidently, for strong coupling, the backreaction of the
fermions cannot be neglected.
Since fermion bound states exist on a single ϕ4 kink, all

collective modes localized on theKK̄ pair represent various
linear combinations of these states. On the contrary, the
model (1), for a given choice of the Yukawa coupling, does
not support fermion states bounded either to a single SG
kink or to a single ϕ6 kink. However, the situation can be
different in the presence of two or more solitons. Indeed,
we found collective fermions localized on various multi-
kink configurations.
The pattern we observed in the SG model is similar yet

different from the situation above. Again, a lump coupled
to a localized nodeless fermion state L0 emerges in the
topologically trivial scalar sector, as the Yukawa coupling
increases above zero; see Fig. 2. As the coupling
gradually increases, the profile of the scalar field becomes

more pronounced, and it approaches the shape of a
“frozen” SG breather. At some critical upper value of
the Yukawa coupling, this lower in energy branch
bifurcates with the second higher in energy branch, which
extends all the way backwards to the limit of zero
coupling, as seen in Fig. 2. The kinks separate along
this branch, while a single fermion mode L0 remains at
the center of the configuration; it dissolves as the kinks
become infinitely separated.
A novel feature of the SG system with backreacting

fermions is that a new type of solutions L1 emerges at the

FIG. 1. ϕ4 kink-antikink pair bounded by fermions. Profiles of
the scalar field and fermion density distribution of the collective
mode L1 at g ¼ 1 (upper left), normalized energy ϵ=g of the
localized fermionic states as a function of the Yukawa coupling g
for several modes (lower left), scalar field of the configuration
bounded to the mode L1 (upper right), and fermionic density
distribution of the mode L1 (bottom right) vs Yukawa coupling g.

FIG. 2. SG kink-antikink pair bounded by fermions. Profiles of
the scalar field and fermion density distribution of the collective
mode L0 at g ¼ 1 (upper left), normalized energy ϵ=g of the
localized fermionic states as a function of the Yukawa coupling g
for modes L0 and L1 (bottom left), scalar field of the configu-
ration bounded to the mode L0 (upper right), and fermionic
density distribution of the mode L0 (bottom right) vs Yukawa
coupling g.
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bifurcation point g > 8; see Fig. 2. The corresponding two
branches are not linked to the continuum, and a further
increase of the Yukawa coupling along both branches
yields a strong distortion of the profile of the KK̄
configuration which tends toward a deformed 2K − 2K̄
coupled system. Physically, the branch structure emerges
because of the existence of two linear combinations of the
fermion modes, localized on each component.
Indeed, a tower of localized fermion modes also exists

on double SG kinks in the sector of topological degree 2.
The attractive interaction mediated by the fermions couples
the solitons together, and the corresponding spectral flow is
not very different from the similar results for a single SG
kink in a model with shifted Yukawa interaction [30],
although the effects of backreactions become significant
for the strong coupling; cf. a similar observation for the ϕ4

model [27].
Now consider localized fermions in the ϕ6 model. For

different multikink configurations, we found a variety of
collective localized modes. First, by analogy with the
consideration above, we consider kink-antikink pairs in
the topologically trivial sector. Notably, there are two
distinct classes of vacua, and they correspond to the KK̄
or ð0; 1Þ þ ð1; 0Þ pair and K̄K pair ð1; 0Þ þ ð0; 1Þ [31].
Considering the latter configuration, we found two
branches of localized fermions linked to the positive
continuum; these modes closely resemble similar nodeless
collective modes L0 on the KK̄ pair in the SG model.
Higher modes, like L3, also appear in the spectrum at large
values of the coupling; see Fig. 3. Another analogy with the
collective modes L1 localized on the KK̄ pair in the SG
model is that in the ϕ6 theory this mode is also discon-
nected from the continuum. On the contrary, a collective
potential for the fermions in the presence of theKK̄ pair has

a raised central plateau; it does not support fermion bound
states.2

We found another family of solutionsKn, and it represents
two-kink configurations ð−1; 0Þ þ ð0; 1Þ bounded by col-
lective fermion modes with a minimal node number n.
Figure 4 shows examples of such states. More fermion
bound states do appear for g > 1; in particular, themodesK1

and K3 do not emerge from the continuum but appear at
some bifurcation point. On the contrary, the modes K2 and
K4 and others are linked to the negative energy continuum;
see Fig. 3.
A novel feature of the ϕ6 system with a backreaction is

that it supports an even more complicated bounded multi-
soliton configuration which represents kink-antikink chains
with localized fermion modes. As an example, Fig. 4
exhibits the chain of the kinks ð−1; 1Þ þ ð1;−1Þ þ ð−1; 1Þ
bounded to the mode K11.
The stability of the solutions can be tested by evaluation

of the binding energy of the configurations, which we
define as the difference between the energy of the scalar
components without fermions E0 together with the con-
tinuum threshold energy g and the total energy of the
system: Eint ¼ E0 þ g − jϵj − Eϕ. The results of our cal-
culations are displayed in Fig. 3, bottom row. Clearly, some
configurations may become unstable with an increase of the
coupling g.

IV. CONCLUSIONS

In summary, we have shown that localization of the
backreacting fermion modes on multisolitons gives rise

FIG. 4. ϕ6 multikink configurations bounded by fermions.
Profiles of the scalar field and fermion density distribution of
the collective mode K0 at g ¼ 1 (upper left) and the chain mode
K11 at g ¼ 7 (bottom left), the scalar field of the chain of the
kinks ð−1; 1Þ þ ð1;−1Þ þ ð−1; 1Þ bounded to the mode K11

(upper right), and fermionic density distribution of this configu-
ration (bottom right) as functions of the Yukawa coupling g.

FIG. 3. Fermion states bounded on the ϕ6 kink-antikink pairs:
normalized energy ϵ=g of the localized modes and the interaction
energy Eint as functions of the Yukawa coupling g.

2Interestingly, there is a certain similarity with the spectrum of
linear scalar perturbations in the ϕ6 model [31].
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to a new mechanism of interaction enabling bound
multisoliton solutions to occur. More generally, we
developed a new method of construction of self-
consistent solutions of the coupled system of integral-
differential equations for a multisoliton configuration
coupled to fermions with a backreaction. This method is
a powerful tool to study various systems in a wide class
of physical systems. There might be a plethora of other
applications including fermions on domain walls, cosmic
strings, or vortices in the Abelian Higgs model and

monopole catalysis. We hope to address these questions
in the near future.
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