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We formulate quantum electrodynamics on the basis of gauge (or BRST) covariant diffu-
sion equations of fields. This is a particular example of the gradient flow exact renormaliza-
tion group (GFERG). The resulting Wilson action fulfills a simple gauge Ward—Takahashi
identity. We solve the GFERG equation around the Gaussian fixed point to the second or-
der in gauge coupling and obtain the 1-loop beta function and anomalous dimensions. The
anomalous dimension of the electron field coincides with that of the fermion field diffused
by a gauge covariant flow equation of Liischer.

Subject Index BO05, B32

1. Introduction

A Wilson action is a functional of field variables with a finite momentum cutoff, say A [1].
If the underlying theory is a continuum limit, the theory is defined on all momentum scales.
We obtain the interaction vertices of the Wilson action S, by integrating out the fields with
momenta larger than A. It is then natural to expect that only the correlations of the fields with
momenta smaller than A are kept, but those with momenta larger than A are lost from S,. In
the exact renormalization group (ERG) formalism [1], in which a sharp momentum cutoff is
replaced by a smooth function of momentum, this is not the case: we can still reconstruct the
full correlation functions using the Wilson action. This makes gauge invariance compatible with
a momentum cutoff. This viewpoint was first adopted for QED in Ref. [2]. A general framework
for constructing non-Abelian gauge theories along this line was given in Ref. [3].

The realization of gauge invariance with a Wilson action has a long history starting in the
1980s. Early works in the 1990s such as Refs. [4-9] established the possibility of constructing
gauge theories in the ERG formalism. (Ref. [5] gives references to the earlier works from the
1980s.) What is common in the realization of gauge invariance in the ERG formalism is that
the gauge invariance is not what one expects naturally. For A > 0, the gauge transformation is
modified so that the Jacobian is non-vanishing, and the resulting expression of gauge invariance
is by no means manifest. This has been an obstacle for any calculation of the Wilson action
beyond perturbation theory, since it is difficult to truncate the action keeping the non-manifest
gauge invariance.

The original formulation of ERG is based on the diffusion of the fields [1]. Recently a pro-
posal was made that we may be able to construct a manifestly gauge invariant Wilson action by
replacing the diffusion equation by a gauge invariant diffusion equation [10]. This was inspired
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by the gauge invariant diffusion that generates a gradient flow of gauge fields, first discussed
for lattice gauge theory in Refs. [11-13] and then by Liischer and Weisz [14] for perturbative
non-Abelian gauge theory. We call this new type of ERG the gradient flow exact renormaliza-
tion group (GFERG). The present paper is a sequel to Ref. [15] where GFERG for fermions is
discussed.

The paper is organized as follows. In Sect. 2 we first review the relation between a diffusion
equation and the exact renormalization group transformation using a generic real scalar theory.
We follow the discussions given in Ref. [16]; see also Ref. [17]. We then introduce a particular
set of diffusion equations for QED that is consistent with the BRST invariance of the theory.
We base our construction of GFERG on these diffusion equations. In Sect. 3 we construct a
Wilson action S, of QED with momentum cutoff A that keeps its BRST invariance as we
lower A. We derive the cutoff dependence of S, as a differential equation, and also derive
an expression for the BRST invariance. The BRST transformation acts linearly on the action,
and it is far simpler than the BRST invariance of the Wilson action in the ERG formulation,
which is briefly reviewed in Appendix C. In Sect. 4 we introduce a dimensionless framework by
measuring dimensionful fields and parameters in units of appropriate powers of the cutoff. We
then construct the BRST invariant Wilson action perturbatively in Sect. 5. We only consider
the Wilson action for the continuum limit parametrized by the gauge coupling, gauge-fixing
parameter, and the electron mass parameter. Since the ghost fields are free, we can reduce the
BRST invariance to the Ward—Takahashi (WT) identity. This WT identity can be interpreted
as manifest gauge invariance even though the transformation of the gauge field is somewhat
modified.! We construct the Wilson action satisfying the WT identity to second order in the
gauge coupling. We conclude the paper in Sect. 6.

We work in the D-dimensional Euclidean space, where D =4 — €. We use shorthand notation

We also use the convention that the momentum cutoff decreases along the flow of the renor-
malization group, and the beta functions and anomalous dimensions may have opposite signs
to what the reader is familiar with.

2. Preparation
2.1 ERG
We would like to review the essence of the exact renormalization group (ERG for short). In one
formulation of ERG we construct the Wilson action of a theory in terms of a field satisfying
a simple diffusion equation. The flow of the Wilson action is generated by the diffusion of the
field. For gauge theories, we can replace the simple diffusion equation by a covariant diffu-
sion equation that is consistent with BRST invariance. The replacement results in the gradient
flow exact renormalization group (GFERG for short). We will introduce the BRST covariant
diffusion for QED in the next subsection.

Let ¢(x) be a real scalar field renormalized at momentum scale ., and let S[¢] be its action.
We introduce a diffused field ¢(z; x) as the solution of a simple diffusion equation

dp(t; x) = 3*¢(t; x) ()

'We ask the reader to bear with the overblown title of the paper.
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satisfying the initial condition

$(0; x) = ¢(x). 3
We would like to construct a Wilson action equivalent to S[¢] in terms of the diffused field ¢(z;
x) instead of ¢(x). Let A be a momentum scale smaller than u given by
1 1
= F — E >0 (4)
so that
2

9, = A? (—Ady). (5

We introduce the Wilson action S, [¢] for momentum cutoff A by
2

w0 = [0 exp |- [ 000~ 2000 [9-0) — 200, -] + 501 @
p

where the argument of S is the field ¢ (x) (or its Fourier transform ¢'(p)), and ¢\ (p) is the
Fourier transform of the diffused field

#ei0 = [ o0 ™)
satisfying the initial condition '
¢'(0; x) = ¢'(x). ®)
In momentum space it is trivial to solve the diffusion equation to obtain
oy () = ) g ). ©)

By construction, ¢(p) equals zo ¢/, (p) with a squared fluctuation of order 1/A2. It is not ex-
actly the same as z, ¢/, (p), but it corresponds to it. The choice of z, is not unique. For example,
we can determine z, to normalize the kinetic term of the Wilson action S, [¢].

The A-dependence of the Wilson action S, [¢] is given by the ERG differential equation:

P} 2p? h) 1 /2p? 52
oo (2o () o] )
p

oA A2 sp(p) A2\ A% 3¢(p)S¢(—p)
(10)
where y, is defined by
d
YA E—AHIHZA. (11)
For the correlation functions, we can give a precise relation between S, and S:
1 / 82 }
exp | — ¢(p1)---o( n)>
< P [ 287 ), Sp(pog(—py ) VTV
L (L
=2 a0 dapds = A [ [T g o) p(pa)s (12)

i=1
In constructing S, we have “scrambled” the field ¢(p) around z ¢4 (p). We need to unscramble
the field to get back the same correlation functions. This is the role played by the exponentiated
differential operator.
An alternative definition of the Wilson action is given by [10]

exp (Sal@]) = $a / [0 T (¢(p) — 2404 (1)) - exp (SI9]) (13)
V4
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where

. 1 8*
e [2A2 /p 8¢(p)8¢><—p)] 1

is what we call the scrambler. The scrambler is necessary to maintain the locality of the Wilson
action S, [¢]. The equality of the correlation functions can be written as

(55 [D(p1) -+ d(pa)l)g, = ZA (Da(P1) -+ Pa(pa))s (15)

using the unscrambler, i.e., the inverse of the scrambler.

2.2 Diffusion in QED

In constructing the Wilson action of a gauge theory, we can use the simple diffusion equa-
tion for gauge fields and matter as explained above for the scalar theory. The Wilson action,
thus constructed, retains gauge invariance (BRST invariance to be more precise), but its re-
alization is not as straightforward as we wish [3]. This is partially due to the use of a simple
diffusion of fields that does not respect the gauge invariance. In Ref. [10] we have introduced an
alternative Wilson action based upon a covariant diffusion of fields, consistent with the gauge
invariance of the theory.? In this subsection we would like to introduce such diffusion explicitly
for the simple case of QED.

Let us consider QED renormalized at momentum scale u in D = 4 — e-dimensional Eu-
clidean space. We denote the gauge field by 4,,(x), and the electron field by v (x) and v/ (x),
and the free Faddeev—Popov ghost fields by ¢(x) and ¢(x). The dimensionless gauge coupling
renormalized at p is e. The action S is invariant under the following BRST transformation of
the renormalized fields:

A, (x) = ndjc(x), (162)
Sc(x) =0, (16b)

8é(x) = néa CA(x), (16c)

8 (x) = iep*ne(x)yr(x), (16d)
89 (x) = —ien*ne(x)¥ (x), (16e)

where 7 is an arbitrary anticommuting number that keeps the statistics of the fields under the
transformation.’
We introduce the following diffusion equations:

& A, (t; X) = 02 A,(t; x), (17a)

dc(t; x) = 8%c(t; x), (17b)

d,e(t; x) = 9%e(t: x), (17¢)

W (t; x) = [9% — 2iepn > A, (t; x)3, — €A, (t; x) A, (t; )] ¥ (5 x), (17d)

2Preceding Ref. [10], other gauge invariant ERG formulations had been introduced in Refs. [18-24].
3We have chosen the mass dimension of ¢(x) as (D — 4)/2 = —e/2 and that of &(x) as D/2 so that the
mass dimension of 7 is zero.
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Y (t; x) = [82 + 2ie,u€/2AM(t; X)0, — ez,uéA,L(t; x)A,(t; x)] V(t; x), (17e)
where the fields match the renormalized fields at ¢ = O:
A0 %) = A (x), . (0: %) = (), (18)

Itis straightforward to check that the above diffusion equations are consistent with the BRST
transformation. Namely, the BRST transformation of the fields at # = 0 implies the same BRST
transformation of the diffused fields:

84,15 %) = 0 c(t; ), (192)

Se(t: x) = 0, (19b)

Se(t: x) = néa LA X), (19¢)

8y (t; x) = iep*ne(t; )Y (1; x), (19d)
8 (15 x) = —iep*ne(t; x)P (1: x). (19)

To show this, we need to check that § commutes with d,. Let us check only two here:
80, A,,(t; x) = 882 A,,(t; x) = 8?8A4,,(t; X) = nd*d,.c(t; x) (20)
is consistent with
3,84, (t; x) = dnd,c(t; X) = nd,dc(t; X) = nd,d°c(t; x). (21)
We also find that
80 (t; x) =24 [82 — Zie;f/ZAM(t; X)0, — ez,uGAM(t; X)A,(t; x)] ¥ (t; x)
= [82 — 2ie;f/2AM(t; X)0, — eZ,UfAM(Z; X)A,(t; x)] [nielf/zc(t; X))V (t; x)]
+ [—2ieu€/2naﬂc(l; X)0, — 262[L€AM(Z; x)na,c(t; x)] Y(t; x)
= niep?3%c(t; x) - Y (t; x) + niep%c(t; x)
X [82 — 2ie,u€/2A,L(t; X)d, — ez,uEAM(t; X)A,(t; x)] w(t; x) (22)

is consistent with
98y (1; x) = 3y [miep*c(t; )y (1; x)]

= niepn?0%c(t; X)W (t; x) + niep*c(t; x)
X [82 — 2ie;f/2Au(t; X)d, — eZ;fAM(Z; X)A,(t; x)] ¥(t; x). (23)

We have thus introduced diffusion of fields preserving the form of the BRST transformation.
Our aim is to construct a Wilson action of QED using the diffused fields as the elementary
fields.
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3. GFERG for QED
We introduce the Wilson action of QED as

Salduc &tV = / [dA,dcdédy'dy]

2
x exp[—%/dl)x (AM—ZAA/AM)z—AZ/dDX (c=2y) (c=¢y)

+iA f dPx (§ — zpay) (W — zraWh) + S[A4,. ¢, 8 v, xﬁ/]], (24)

where z, and zp, satisfy

—A—Inzx = s
9/ A YA

—A—1n =
V4 .
9 FA VFA

(25a)

(25b)

We do not introduce any factor of wave function renormalization for the ghosts since they

remain free fields (see below). The diffused fields satisfy

2 2
~AdrAry = 507 Any,

2 2
—AaACA = Fa CA,

. 2 5
—AaACA = pa CA,

2 .
—ABAwA = p (82 - 2le,bL6/2AAM8M - €2MEAAHAAM) wA’

i} 2 . i}
—AaAI//A = F (82 + 2zeu5/2AAM8M — €2M€AAMAAM) wA'

3.1 GFERG differential equation
We wish to obtain

_AaAeSA[A/uch’w’lﬂ]

(26a)

(26b)

(26¢)

(26d)

(26¢)

27

in terms of the functional derivatives with respect to the field variables. As a preparation, we

note the following correspondence:

T A~ ()
15
—pm > ¢(x) = (%),
15
_F(Sc(x) < &(x) — &) (),
i s ] _
W) > Y(x) = zra¥y (%),
i3
_ng/;(x) > Y(x) — zpay ().
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We need to be clear about what we mean by the above correspondence. Take Eq. (28a). The
correspondence means

1 8
A2 8A4,(x)

S = / [dA,dede dy' dy'] [Au(x) — zad), (9)]
x exp (quadratic terms + S [4),, ¢, &, ¥/, ¥']) . (29)

Differentiating this once more we obtain

13 | R
S5 e
A (SAM(Xz) A2 SAM(Xl)

(=)

_ f [dA,dcdedy'dy'] [Au(xi) — za A, 0] [Ap(x2) — 20 A}, (2)]
x exp (quadratic terms + S [4),, ¢, &, ¥/, ¥']) (30)

where we have chosen x, # x| so that the second differentiation with respect to 4,(x») acts only
on the exponential, but not on A4,(x) in the integrand. Taking the limit x, — xi, we obtain

518 o

1
m (=) 5o

li —_—
X21‘>xl A2 SAM(XQ)
= / [dA;de’dE’dw/dlﬁ/] [A,.(x1) — ZAA/AM(Xl)] [A,.(x1) — ZAA/AM(Xl)]
x exp (quadratic terms 4+ S|4, ¢, ¢, ¥/, v']). (31)
Similarly, we obtain

<~

8

Kt
m (= ) A2 8c(x)

SA
m ) 5m© )3z

/ [dA’ dedédy'dy’] [e(x) — ¢\ (x)] [é(x) — &, (x)]
x exp (quadratic terms + S [4,.¢. 7. ¥ ¥']).  (32)

where we take the limit x' — x after the differentiation.
We now calculate

_AaiAesA _ / [dA;dC/dg/dlﬁ/dlp/] pAuadratic terms+S[4),.¢'.&y' /]
x /de {A2 (A — z2ad)y,)’ +202 (2= ) (¢ = ¢y) — ih (F — zravry)
X (¥ — zra¥y) + A (Ay — 2p A}y ,) 24 ()/AA/AM + %BZA/AM>
+20%8) (¢ — ) +2(6—2y) 9°C}
— iAzp, [ym + % (0% + 2iep >4}y 0, — ezugAQwAQm)} v’
x (Y —zpa¥) — ihzpa (¥ — zpa¥’)
e+ 02 = 20, = Pt ) (33)
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Using the correspondence given above, we can rewrite the rhs as

1 5 2 i3 S
—A—e /dD — -, — — Tr ———e5
oA A2 8A,(x)8A4,,(x ) A288(x)  Se(x') A SY(x)  SY(X)
2 1 1) 8
A2 [ W)+ 13 A2 8A,L(x)i| 5Aﬂ(x)

— <~ — <~
2 3 5 2 o 5 ] 5
T s |+ A28 ) T A2 520 | € 3er)
— <~
8 si] 22, dea 18
Tr(sl/;(x/)e :Aza + e (AM+ A28AM) i
262 13 1% S
_F<A“+ﬁm){ WOt G )” [‘/’( )+ A(Sxp( )
2 dje 1 §
+ Tr{ﬁaz—A—zA <AM+FE) 3M
263\ 1 6 1 )
- (o) |2 e />”

5 S 1 s\ 8
Sa R DA N
{w( " Aawx)} ey <A“+ A2 aAM) 54,

—

° PRLR ]
50 A0

+ yra Tr [w(x)+xw‘s( )} o awix’)>

S (e

N 2 . 1 1 8? S,
— — J— —_— e
A2 T A2 SA,(x)5A,(x')

2 82- _8) Sa Sa (8_ 82
a2 | T T e W

+ vra Tr

— <~
5 g 0

1 2 72 2
+ [F (0" +0 )_l}ﬁaa(x)e 5e()
— <«
TrLS(zaJr ) e
P \AzT T A5y (x)

— <~
Tr(iaz—i- ) ¥(x )+ Y PO
+ e YFA A(Slﬁ( ) Sy (x')
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— <~
i ) S )

— —Tr——e*
A oP(x) ww)}

5 4i Iy
e
+ /deTr - Pl ZA Au+_2_ I
ST | A A?54,
262 15 I _ i s
A 4 = VA D)+ — -
A2 ( vt SAM>|: W)+ 5 5A,(x') VOt L
A2\ A284,) "
2¢% 1 s 13
_ Ay VA -
i (4 25 [0+ i)

i 5 | 8
X{‘”(XHKW@} aw(x’))’ Gy

where the limit x — x is implied, and we have defined the gauge coupling of mass dimension €/2
by

elue/Z
e =

(35)

ZA
Note that we have given Eq. (34) in two parts. The first part reproduces the ERG differential
equation. (See Appendix C for a quick review of ERG for QED.) The second part is unique to
GFERG; it comes from the BRST covariance of the electron diffusion equations (26).

3.2 BRST invariance
We next derive the expression of BRST invariance of S, inherited from the invariance
of S[A;L, A, c Y, 1}’] under the BRST transformation:

84, = nduc, (36a)

5¢ =0, (36b)

57 = néaﬂA;L, (36¢)
8v' = niepn* 'y, (36d)
8 = n(=i)ep . (36e)

As explained in Sect. 2.2, this induces the diffused fields to transform as

5Ay, = 1d,c), (37a)
5c, =0, (37b)
A
S D
5% = 0By (37¢)
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Sy = niep>c\ Y (37d)
89y = n(=Dep*c\ . (37¢)
Hence, we obtain
0= / [dA;ldC/dc_’/dlﬁ/dlﬁ/] equadratic terms—i—S[A;l,c’,E’,x/f’,l/?’]
D 2 ’ 1 2 1 1 ’
x | d°x|A ZAT]aMCA'(AM_ZAAAM)—i_A gnauAAM-(c—cA)
+ iAZFAnieM€/2c/1\ Iy (w — ZFAV/;\)
F 0 (T = 2ol (<nzenion ) | (38)
Dividing this by z,, and defining
En=£z3, (39)
we can rewrite this as
0= / [dA;LdC/dC_’/dw/dK&/] equadratic terms-‘,—S[AL,e’,E’,x/f’,l/;’]
X /de |:A28MC/A (A —zadly,) + AP —zp0, 4, - (c— )
+ iAzppiend Uy (U — zra¥y) + A (U — zpadry) ZFAl'eAC/AIM\], (40)

where we recall Eq. (35) defining e, . Using the differentials, we can rewrite this further as

It 5 L, 1 5
D Sa S
[ x{ ' [C(x) S Sc(x)} e B 0+ a0 e
| A I S
—len| )+ 43 A2 8(x) | Ir Sy (x/ ) |:W( )+ A (SW(X):|
| 18] K S
. S _
Fien | € F Tageg | T {‘“’”* KW} swxo} - “
The terms with second-order differentials with respect to ¥ and y cancel, and finally we obtain
— —
’ 1 5 s 1, 1 5
fd x[ s [C(XH A2 8c(x):| A0 E [ W 33 (SAM(x)] 52(v)
— _5> - _)
+ iey _c(x) o A3 ¥ (x )m
— _8) - (_
— iey _c(x)+ A2 550 5‘#( )llf(x)} (42)

This comes pretty close to manifest BRST invariance. The simple expression is due to the BRST
covariant diffusion of the fields, Eq. (26). In Appendix C we give the standard ERG formulation

of QED for comparison.
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4. GFERG and BRST in the dimensionless framework

To gain more insights into the scaling properties of the Wilson action, we adopt the dimen-
sionless framework. Instead of the momentum cutoff A, we use the dimensionless logarithmic

scale parameter t defined by

-7

A = e

(43)

We write the Fourier transforms of the fields in terms of the dimensionless fields (with tildes)

as
Au(k)y = A"PP2A4, (k/N),

c(k) = A=PH2E(k/N),

&(—k)= A"PRPE(—k/A),

Y(p)= APV (p/A),

F(=p) = AP0 (—p/A).

The dimensionless gauge coupling is defined by

~ €A _e ,bLf/2
esze/Z_Z<_> '

The gauge-fixing parameter remains the same:

§ = &n =812
Denoting
. ad
Ve =VA = —AMIHZA,
we obtain

o= (5-7)e.

d. .
d__[ér = 2Vr§r~

(44a)
(44b)
(44c)
(44d)

(44e)

(45)

(46)

(47)

(48)

(49)

The Wilson action in the dimensionless framework is a functional of the dimensionless fields

above:

11/31
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In order to rewrite the GFERG differential equation (34) in the dimensionless framework, we
need to use
d S0 _ d

—e —A—e5n
0T oA

D2 ko) Ay —>
+/k( Stk ak>Au(k) 82“(1{)6
5 8 (D+4 A PN B
+ /ke 550) (—2 + k- Bk) c(k)-l—/ (2 + k- ak> c(—k) 85(—k)e
. 8 (D+1 - 3
+/ef~—(T+p 8>W(p)+ (—+p B)w(—p)‘ e
P

5y (p) 8¢ (=p)
(51

Since we work only in the dimensionless framework from now, we omit the tildes altogether,
and we obtain the GFERG equation as

D+2 5
305 = AP+ Ty 4 kD k). —2 oS
¢ /k[( Tt ") A S

62
+ 2K +1 -y, esf}
( 7) S0 A

—
, D i 5
+ /k[<2k +5+k-ak> c(—k)-(SE(_k)e

<~ —> <~
s, O » D+4 2 oS 4
+ &% 5e0 (2k +—— +k- ak) c(k) — 22k +1)5( 5 56(}{)}
K3 D+1
St 2 =~z r- .
+ /p[e ) (ZP +— YFr + D 8p> v(p)
D+1 Kt
2 _ . I — . S
+ (Zp +— YFe + P 3p) Vv (=p) 81/7(—1))6

8y (=p) ¥ (p)
b 0 s 5
+ /d xTr(w;(x/)e {4let|: (x)+8A e ):|
2 5 % 5
-2t gt a2 [ e
+ / dPx Tr{—4ie, [Au(x) - M%(x)} 3,

— <«
2 8 , 8 o4 s, 0
-2 s e ] }[W) ' l&/?(x)} W
(52

5 B
—i(4p* +1 = 2yp,) Tr ———* }
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Except for the last two integrals, the rhs coincides with the ERG equation. For the last two
integrals we have kept the coordinate space notation to take the limit x' — x carefully.*

Similarly, we can rewrite the BRST invariance in the dimensionless framework. In coordinate
space it is given by

< —
P ) o s 1 8 18 s
/ o {_8“ [c(x) " 8E(x)} 4,000 & [A“(x) T (SA,L(x)i| 5en) ¢

. — —> . ? <— -
+ e, |:c(x) + mj| V(x )5W( : — e |:c(x) + SE(x):| U x )W(x)} =0. (53)

5. Perturbative solution
In constructing the Wilson action S;, we assume that it does not depend on t explicitly: we
assume that its r-dependence comes only through the t-dependence of three dimensionless
parameters, i.e., the gauge coupling e,, gauge-fixing parameter &, and the electron mass pa-
rameter m.. This assumption is not valid, however, for S;, the dimensionless version of S,
given by Eq. (24). As long as the renormalization scale u is finite, S, depends on A/u = e7*
explicitly. To remove this, we must take the “continuum limit”; i.e., we must take u — +o0.
Both the differential equation (52) and the BRST invariance (53) have been derived based
on the integral formula (24), but neither has explicit dependence on . In practice we can con-
struct the continuum limit of S; by solving Egs. (52) and (53) simultaneously under the above
assumption. The gauge coupling e, and the gauge-fixing parameter &, are introduced through
the BRST invariance (53). We normalize the kinetic terms of the gauge and electron fields; this
fixes the anomalous dimensions y, and y , as functions of ¢? although they may also depend
on &.. (We believe that neither depends on &,.) We introduce a normalization condition of the
electron mass term that determines the t-dependence of m, in the form

d _ 2
Emf = [1 + B (er)] My (54)

We believe that 8, is also independent of &,.. We thus obtain
a‘L’ eSr — ares(er ,Er ,m,)

e _ (1. 2 2y O N 0| Stersomn
- {[2 y (e,)] ¢ o T2 (@) &g [+ B (&) meg = pe . (55)
We will drop the suffix T from the parameters e, £, and m,.> Thus, our GFERG differential

equation becomes

a a d m
{[5 —y@]eq + 2@ +[1+ )] m%} Steem)

2
— rhs of Eq. (4.10). (56)
If we define the beta function of ¢* by
B(e*) = =2y ()¢, (57)
Wwe can rewrite
€ 51 9 B(e?) a
- — = 58
[2 vie )]eae |:2+ 2 |“9e 58

4The dimensionless coordinate is given by &, = Ax,,. We have omitted the tilde in the GFERG equa-
tion.
SWe write e for e, . It should not be confused with the renormalized coupling e of the original action S.
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Our purpose is to solve the GFERG equation (56) and the BRST invariance (53) together per-
turbatively in powers of e. For this purpose we expand the Wilson action in powers of e:

S(e, £, m) = SOE, m)+ eSV(E, m)+ &SP E, m)+ - -- . (59)

5.1 Tree level
SO satisfies the GFERG equation

D+2 85O 1 6S© 550
9SO = / <2k2 — 4k a) k 2
" i Ty RO J AR - s 20K D e 5, k)

<«

S D+4
+ //C|:S(0)8c(k) <2k2 + T+ + k- ak) (k)

—
D f

2AF 4+ = + k-3 ) (k) - s©
+( +5+ k)c( )(SE(—k)

<~ —
8 8
+22k* + 1)SO —— S(O)}

sc(k)  8&(—k)
+/ SO —— ] (2 L2l a)w()
D+1 K
22 ) (0)
+ (24 2 4 pa,) e TS
+i(4pr+ NSO —— —— 5O, 60
S T R } .
This is solved by
1 K,k K2 ki, K2
(O _ _ pttv nvv
_ k? - p+im
~ [ et = - /,, Fp) o D) (61)

We have normalized the kinetic terms appropriately.
The &-dependence of the longitudinal part is determined by the BRST invariance (53); at tree
level it gives

— —
5 ©) §S© 1 [ B §S© ] S ol _
/k[ M|:c(k)+8( k)S }Mﬂ(k) Skﬂ Au( k)+8A,L(k) 55(_k)S =0. (62)

Let us check that Eq. (61) satisfies this:

3 o 8
I “[‘(k”a( 0> }6@(1«)

k? —k?
= [ (1~ i) e

/]
ge 2K 4 |2’

o2k
= [ etk (63a)
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1 I N
fk g [A“(_k) * 6Au<k)] Se=K)"

- / Lha (—k)(l— i ) K c(k)
& e~ 4 |2 ) o2 4 |2
o2k K2
— [ kb S e (63b)

Hence, S is BRST invariant.

5.2 BRST invariance simplified to manifest gauge invariance
Before proceeding to calculate SV, we stop to simplify our expression for the BRST invariance
given in Eq. (53).

The GFERG equation (56) implies the absence of higher-order corrections to the ghost-
dependent part of the action S.° Hence, the ghost part of the action is exactly as given
in Eq. (61):

2

_ k
Suon = = [ )zl (64)

Hence, we can rewrite the BRST invariance as

, e 8S 1. 58 — K>
/k {(_’k W e O Tk [A"(_k) * SAu(k)] oy e®

Y 5

+ e c(k)/w( PR S T = k2c( )/ 59 (p +k>

W(p)}

(65)

The integrand is proportional to ¢(k), and its coefficient must vanish. This results in the Ward—
Takahashi (WT) identity given by
gk 4 k2 LS

ge=2 N84, (k)

— <

ef{:/x—p—k) A w(p)} (66)
)4

SY(—p) Sy (p+k)
where

S;=8-80 (67)
is the interaction part, and we have used the BRST invariance of S©. Equation (66) differs

from the classical gauge invariance
— <~

8 Sclassical . - o) S
ku BAM(/C) = 8‘/}; |:¢(—P - )31//(— ) class1ca1 - Sclasswalaw(p i k)lﬁ(]’)i| (68)

merely by the k-dependent factor on the lhs.
In fact Eq. (66) implies that the action

2

1 k ko, _ k
Siv=S+5 fk AR i + f (k) (k) (69)

without the gauge-fixing and ghost terms is invariant under the 1nﬁn1te31mal ‘gauge” transfor-
mation

®Recall Eq. (24). Since the original action S is quadratic in ghost fields, S, produced by the Gaussian
functional integration of S remains quadratic in ghost fields.
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—2k2 kZ
3,0 = ==k 1 ), (700
59 (p) = —e fk X (p — ). (70b)
S (—p) = fk X ()G (—p — ). (70¢)

where x (k) is an arbitrary infinitesimal function. On this account we may call S;;,, manifestly
gauge invariant. The meaning of this gauge invariance is left for future studies. Please note that
Eq. (66) is valid in the presence of additional interaction parameters in the action. In deriving
Eq. (66) we have only assumed that the ghost part is given by Eq. (64); as long as the action
satisfies the BRST invariance (53), we can derive Eq. (66).

5.3 First order
Since the gauge coupling e in Eq. (56) accompanies the gauge field, the first-order term S
must have the structure:

S0 = [ =V A K (7
12

Because of the charge conjugation symmetry of our formulation, we can exclude the term cubic
in the gauge potential [15].
Equation (56) gives

4—-D d
- — ) sM
( 2 +m8m)

D+2 9 5S© 8SM
= 2+ — =+ k- A, (k) + 202K + 1
“( Tt k> ) 202K+ )SAA—kJ 54, (6)

< —>
8 D+1 d

sO_— (2 — —) 4p* +1 5O
+/p 31//(p)|: pt ==t v(p)+i(dp* + )81//(—) :|

<« —
D+1 ad ) )
24 o 402 + 1)S© o
+/p[< + I ) Tep i ) sw(m}sw(—p)

<—

.0 (0>] o 9 [ 85 }
+4/p’k Tr {pu [W(p)—i—l(w;(_p)S S St/f(p-l—k)} A, (k) + 54—

— <~
1) - 1)
41 Tr{— SOy (=p—k)+iSO——— k
w4, r{aw(—p) {‘”( PR sw(p+k)}(” N )“]

A, (k 55 72
[0+ i) "
At this stage, it is very helpful to introduce new variables by’
85O 2
k)= 4,(k e Iy (k) A, (k 73
A (k) “()+8Au(k) hyw (k) Ay (K), (73a)

"Note that e"zAM (k), e W( p), and e”zlfl(p) are the variables of the 1PI action in the lowest order in
perturbation theory (see, e.g., Eq. (23) of Ref. [25]). We thus expect that interaction vertices simplify if
expressed in terms of these variables.
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_>
W(p) = +i SO _ 21 h 73b
(r)=¥(p) T p ) e F(P)Y(p), (73b)
_ - - > 1
W(=p) = P (-p) +iSs e v (=p)e " =hr(p), (73c)
where
k. k, 1 kyk, £
h,“,(k) = (8/“) - 22 )8_2k2+k2 + 22 §€_2k2 +k2’ (74&)
I
D)= Iy (74b)
from Eq. (61). These A-functions are the high-momentum propagators satisfying
(k 7t 2) By (k) = 22K% + 1) hy, (k)b (K), (75a)
(p‘ 9 + m + 1) he(p) = (4p” + l)e_szl.hF(p)z» (75b)
ap om i
and
(b + im)he(p) = ie™ hp(p) + 1. (76)
Using Eq. (73), it is straightforward to show
0 D+2 8
(k T )[e A“(k)]'s[ekZAM(k)]
A+ — =+ k- A, (k) + 202K + 1 55 ) 77
= e+ B v g o zee s | s o
s ) 9 D+1
5" U(p)] (p ap T am T T2 )[ep ‘I’("’)]
_ T (2 Lol i>w()+(4 + D3 5 SO (78)
DI T T
and
( .i+mi+D_+1>[q,(_ M.L
P ap om 2 P 8 [¥(—p)er’]
D+1 ) s 5
207+ —— 4p* +1)S® — : 79
[( # O3 g )R e cwr(p)} sicn
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In terms of these new variables, Eq. (72) becomes quite simple:

4__D i (1)
( > —|—m8m>S

D—|—2 ssM
:/k (k. )[ A)] - 5 A

+ fp [ lIJ(p) ( am DTH) [epzlp(p)]

—
9 9  D+1\r- ) 5
+ c—tm—+ —— ) | ¥(-p)e’ | == SV
/,,(p op  Mom T 2 )[ (-p)e” ] 5[V (=per’]

+4 / ) PV (—p — k)P (p I+ im)W(p)A, (k)
Ds

4 [ Bp— R+ TSNP + 0 A, (50)
pk
We now write
s = / B(—p— )P T, (p, ke W(p)ek A, (k). (81)
.k
so that the vertex part ?M satisfies the inhomogeneous scaling equation

9 9 9
2 yk 2 V.0 k
(p op T ok T am ) w(p. )

= 4P PR (4 k4 im)p,, 4 del” " PTR (h 4+ im)(p + k). (82)
" w

We wish to find a local solution that can be expanded in powers of p and k at zero momenta.
Equation (82) determines V,,(p, k) up to a constant vector. A particular solution is obtained by
the formula in Appendix A. The general solution is

Vi(p k) = Vyy + 2(p+ k + im)p, F((p + k> — p* — k%)
+2(p+ im)(p+ k) F(p> — (p+ k) — K2, (83)

where V), is a constant vector, and

F(x)zex_l

(84)
IN/M is determined by imposing the WT identity (66), which requires
ke Vou(p, ko) = PP (p 4 i) — & PR (p i), (85)
This gives I7M = ¥, and we obtain
Vi(p. k) = v+ 2+ k+ im)p, F(p+ k) = p* = )
+ 200+ im)(p+ k) F(p* = (p+ k) = i), (86)
It follows from this that
Vilp+ k. —k) = Vu(p. k), 87)

which will be used frequently below.
Our result for S coincides with the first-order term of the gauge invariant local Wilson
action obtained in Ref. [15].

18/31



PTEP 2022, 023B02 Y. Miyakawa et al.

5.4 Second order
We expect that the anomalous dimensions are second order in e:

y =0(), yr = 0(¢%), B = O(e?). (88)
In what follows we denote
) _ 2 _ 2
y=vyie+---, YF=VYrie + -, IBm=,Bmle + - (89)
Extracting the second-order terms in Eq. (56) is already a laborious task. We obtain
@ e I <) I <0
@4-D)SY+m—SY 4+ 2y E—=8" + Bum—S
am a& am

5S©) ) 5
SO SO
2 @9+”*11;[ v+ (zﬁSwO_) }

NLESAYY 5@
/k(k P >[e A“(k)]'s[eszM(k)]

2k + 1 i
+ +
.A( V54,005 4,,(—h)

<«
) 8 < a 9 D—|—1> >
+/,,S sfervip] U ap T Mom T 2 [ep ‘I’(”)]

—

N i D+l S DU )
+/p<p op " Mom T2 >[ep v p)] 3[6”2‘1’(—19)]S

— «
) )
—Ap*+ DTr| — 5@
+ [ o e r[swc—p) 5¢Uﬂ}

Et
i(4p* + 1)SM .
+,A’(p T S )
/de4lA (X)S(l)%a \IJ( )

+M/A()

s

Dy _4;i I . 3) (1)
+ /d X (—4i) A, (x)0, W (x) (Slﬁ(x)s

S 5
¥ (x) " 8P (x)
53
8y (x) sv(x)

(1)

+ / dPx (—4)AM(X)S(O)3

SO

+ / dPx4A,(x)SM3

(_
/ dPx2A,(x)A, (x)S(O)M/ = )\Il(x)

—

D i S 4
+ fd x2AM(x)AM(x)\II(x)8lﬁ(x)S
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s 58M
8A, (k) 8A4,(—k)

2
+/k(2k +1)

<
) 5§SM
+ / dPx4iSO ——5,W(x) ———
Sy (x) 8A,(x)
1
o 88V

Do 40A D).
+ /d X (—4i)0,¥(x) A WS

K 5
D (1),
+ /d x4A,(x)Tr |:8M81ﬁ(x)S 81ﬁ(x):|

F 5
D (_ (1)
+ /d x(—4) A, (x) Tr |:81/;(x)S au(w(x)}

oy o o 9
- /d x (=40 A (x) Ay (x) Tr |:31ﬁ(x)S Slﬁ(x/)}

T O
WSS FerTEi

b T ss™
+ /d x(—4z)8ﬂ\11(x)-—81}(x) 54,09

5 S ssm
SY(x) "8 (x) SA.(x)

+ /de4 AN 3 1) L 5O
8A,(x) " 8P (x) 8y (x)
525© s
+ / dPx2 SO W(x)
8A,(x)8A,(x) SY(x)

+ / dPx (—4)S©

5250 F
+ dPx2 U(x)— S
f 54,0034,00) - V55 0

+4dex 581 Tr| 9 5 SO 5 - s Sy i (90)
8 A, (x) K8y (x) SY(x) Sy (x) “sy(x) |’

where we have used variables defined in Eq. (73). Note that we take the limit X' — x only after
taking differentials as has been explained in Sect. 3. In Appendix B we elaborate on how this
limit actually works in this case.

We have four types of terms:

) _ @ 2) 2) )
s@ =g |1ZAA¢+S |MW+S | +S |W. 91)

We compute them one by one.

5.5 YAAY term
Let us first consider the term proportional to V¥ A Ay

SPgany = /

U(—p —k — DeP™HDV (p ke, De” W(p)eE A, (k)e A (D), (92)
pk,l

20/31



PTEP 2022, 023B02 Y. Miyakawa et al.

where ﬁw(p, k)= ;vu (p, 1, k). Equation (90) gives

ad ad d ad ~
-~ 1 -~ - 1 vV 9 b
(p 8p+k 8k—i—l 8[+m +)V,L(pkl)

=5 I7M(p + L k)Y (=D[A(p + 1) + 11e2P by (p 4+ 12V, (p, )
2V (p+ 1 I)he(p + l)[e“’*’)z*”z*’z (p+1+im)p,
+ D (o im)(p 4 1) ]
i 2[e(p+k+1)2—(p+l)2—k2 (p+k+1+im)p+1),
+ PR K (h o [ 4 im)(p + K+ Z)M]hp(p +DV,(p.1)
P [e(pH)LPHZ Vi(p+ 1. )py + e —0HeP = 4 je 4 1),V (p. 1 )]
+(n v k<)

o [e”’*k*’)z*”z(ﬁ I im) el TR (p im)] : (93)

where we have used the relation (76). Noting further the properties (75), we can simplify the
above to

9 9 9 9 ~
- 7 . P 1 v 9 b
(p oy R g T )V,L(pkl)

9 9 9 3
=(p - —+k — 41 —+m—+1
(p R TR +)

1 ~ ~ ~ ~
x5 [V(p+ 1. k)he(p+ DVi(p. 1) + Vi(p + k, Dhe(p + k)V,(p, k)]
—2 [e(f’+l)2_'”2_12 Vi(p+ 1, k)p, + e =HFD =R (p 4 je 4 1), Vo (p, 1)]
+(u<vk<l)
— 28,67 [e(f’+k+[)2_p2 (p+ Ik + 1+ im)+ e ~PHFD (4 im)] : (94)

The last line can be integrated by the formula in Appendix A as
28, [PHE P (p bt L i)+ e (g i) |

ad ad 0 d
=—6W<p-a—p+k — - —+m—+l)

dk al
x [(p+k+1+im)F(p+k—+1)7—p* -k —1%)
+ (p+im)F(p* — (p+k+1) =k = 1%)], 95)

where the function F(x) is defined by Eq. (84). Therefore, the solution to Eq. (94) is given by
Vip. k1) = % [Vip+ 1, 1he(p+ DVo(p, D) + Volp + k, D (p + )V, (p, k)]
— Su[(p+E+T+imF(p+k+1y = p* =k 1)
+ (p+imFQP* — (p+k+1y -k —1%)]
— X (p. K, D), 96)
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where X, (p, k, [) satisfies

9 9 3 9
itk — 4l —4m—+ 1) Xu(p k|
(p o T T e +> (D k. 1)

1 22 e~ 5 ~
— E [e(P+l) —p =l VM(P +1,k)p, + e(P+l)2_(p+k+l)2_k (p+k+ l)u V,(p, l):|

+(u<vksl)

_ l{ PP
2

X [y +2(p+k+1+im)p+ D F((p+k+17—(p+1) -k

+ 200+ 1+ im)p+k+ D F((p+17 = (p+k+1) —i)]p,

+ e(p+l)2—(p+k+l)2—k2(p+ k+1),

X [vo+20p+1+imp,F((p+1) —p* = 1)

L 2p+im)(p+ D F (P — (p+ 1) — 12)]}

+ (< v k<) 97)

This can be solved again by the formula in Appendix A to yield
1 1
Xuw(p. ke 1) = 2vupoF((p + 0 —p =)+ 2P HE+DunF((p+ = (p+k+17—k)

+%(ﬁ—l—l+im)(p+k+l)MpUF((p+l)2—(p+k—|—l)2—k2)
1 (ﬁ+/k+l+lm)(p+l)upv
2(p+k+D2—(p+1)*—

x [F((p+k+1)y?—p*—k* - )—F((p+l)2—p2—12)]

L(p+im)(p+k+Du(p+1),
2T PP

X[FPP—=(p+k+1P k=P = F(p+1 = (p+k+1)y k)]
+(u v k<), (98)

x F((p+1yP—p* =)+ =

where we have used the identity

FOFG) = (145 ) Flxey) - 22 - 220 99)

X

Equation (96) with X),, given by Eq. (98) gives a local solution to Eq. (93). The solution is
unique because the homogeneous equation

a ad 9 ~
(p 8—+k ﬁw 5+m—+1>V,w(p,k,z)zo (100)

has no solution analytic in momenta and m.

5.6 YUy term

We observe that the inhomogeneous terms of Eq. (90) that can contribute to the four-Fermi
term always contain the factor §SV/54,,(x), where SU is given by Eq. (71). This suggests the
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structure

U (—p — k)" T, (p, k)e” W(p)
q.k

(=9)e” Tu(q + k, —k)e ™ W(q + k) Dy, (k). (101)

Sy iy =

N —
'6' —_—

Using Eq. (82) and the properties (75), we find that the ERG equation for Eq. (101) takes the
following extremely simple form:

0 ad ad d
— —+ k- — —+2)|T k)-T, k,k)D,,(k
(p 55+ g0 e 2) [T ) Tl k0D 0]

0 0 0 0 ~ ~
<p bk 5{+m—+2) (7,0, k) - Vg + ko O (B)] . (102)

Since the corresponding homogeneous equation

0 ad ad d
- — c—+ k= —+2]) T k)-T, k,k)D,,(k)| =0 103
(0550 g ke g w4 2) [Tl + kR (0] =0 (103

has no solution analytic in momenta and m, we get the unique local solution

1 _ - i
S5y = 3 /,, » U (—p — k) "™V, (p, ke W(p)
x W(—q)e” V(g + k. —k)e™ " W(g + k)i (k). (104)

5.7 AA term and y,

Now, we can study the second-order correction to the 44 term. We will see that the analyticity
of this term determines the first non-trivial order coefficient of the anomalous dimension, y;
in Eq. (89). We first note that the WT identity (66) requires that this correction be transverse:

1 2 2 kk,
SO =5 [ A0 A0 (5,0 -
k

- ) Vr (k). (105)

For this to be local, V7 (k) must be of order k2 at k = 0. We may also normalize the kinetic term
by demanding V7 (k) to be of order (k?)2.
Now, the part of the ERG equation (90) relevant to the 44 term gives

1 9 ) K,k
3 {[k T Tme =2 (4 D)] Vr(k) — 2mk } (5,w - 7)

d ad ~

— i / eI T [hp(p + k) Vo (p. hr (p)] 2p + k),
P

— 4e_2k25,w / e Tr |: > 1 - ]
» e +i(p+ im)
= 1,,(k), (106)
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where we have used Eq. (75). Since the lhs is symmetric under k<> — k and p<>v, we make this
symmetry manifest on the rhs too by rewriting

1 ad ad ~
Iﬂu(k) = —z/p Tr [(p . a—p +m% + 1) hp(p) . V;w(p, —k, k):|

1 0 0 d ~
Tl =tk S m— 1)k k) Vyulp+ k. k, —k
2/}) r[(p 8p+ 8k+m8m+ ) r(p+k)- Vo (p+ )]

— 2ie” | PP T [ (p + KV (p hp(D)] 2p + )

= 2ie™ | &P T [hp (), (p. K)hE (p + K)] (2p + K)o

> 1
—4e7 s, / e Tr[ } 107
G » ¢ e~ +i(p+ im) (107)

where we have used Eq. (87). By using Egs. (82), (96), (97), and

——

)
(k ot 2) F(=2k?) = 2¢7 2, (108)

we can show

< Te|he (PP (p. i (p + KOV (p. )
— 4 [hr ()Xo (. = ) + hi(p -+ K)Xop(p + K K, =K

— 4i8WF(—2k2)e_21’2hF(p)}. (109)
Now, let us compute y| for D = 4. The lhs of Eq. (106) gives
—2y1 (K28, — kuk,) (110)

to order k*. We can determine y by calculating 1,,,(k) to the same order. Since k - 3/dk = 2 for
the k? term, Eq. (109) gives

0 ~ ~
291 (B0l = k) == [ 5= (0 Te e ()T, . e (0 + (. )
P 4

— 4[he(P)Xuo(p, =k, k) + he(p + k)Xo (p + k. K, —k)]

— 418, F (—2k)e™ hp(p )}> |m:o,0(k2>'

The 4-momentum integral on the rhs is thus given by a surface integral at |p| — oco. From the
explicit form of the integrand, it is not difficult to find the surface term that contributes to the
integral at |p| = co. For instance, the last term does not contribute because of the factor e
In this way, we obtain

(111)

1 8
=gy (112)
Hence, from Eq. (57) the beta function of ¢ is
1 8
B(e?) = —2y(e*)e® ~ — (e*). (113)

(4n)? 3
This agrees with the 1-loop beta function of QED.
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5.8 Y term andy p, B

Finally, we consider the second-order correction to the fermion kinetic and mass terms:
525y = [ B-pe Te(per (). (114)
p
The GFERG equation is given by

ad 0 ~
[p- = m— 1+ (4_1))} Vr(p) — Bunim — 2yp1(p + im)
ap om

a ~
= /k <k . ﬁ + 2) h;,w(k) : Vu.v(pv _kv k)

/ O (pr ) (p ip+k Dmly 1) hie(p+K) - T, )

+ 4i f] By (k)™ P =0 =R e (p - 1) p Vo(p, ko)
+4 /k s (R)e” = THT R (p i) (p + k)b (p + KO P (p. K)
+ 4i fk (V7 (p, K)e™ PP =P =F (5 + K)p,
+4 /k sV (, )~ PHP R (4 1)+ i) (p + K),

B Lok
4 /k o () + imye

= Ir(p), (115)

where we have used Eq. (75) for the first two lines on the rhs. We have also used Eq. (87). We
may normalize the kinetic and mass terms so that ¥z(p) has no term proportional to either p
or m. By using Egs. (96), (82), (97), (76) and (108), we obtain

a d ~
Ir(p) = / (p 3 + k- ﬁ +mo— 3) [ ()Y, (p, =k, K)] . (116)
Now, let us compute 8,1, y r1 for D = 4. The lhs of Eq. (115) gives
—Bmiim = 2yp1 (p+ im) (117)

to first order in p and m. We can determine g,,; and y g by calculating /x(p) to the same order.
We can take p - 9/0p + mo/dom = 1, and Egs. (115) and (116) give

. . a ~
—Bumim — 2yp1(p + im) = /k ot Lol )i =k 1] Lo 00 (118)

It is again straightforward to find the surface term at |k| = oo, which contributes to this integral,

and we obtain
6 3

Bmi = @y YIS G
The former is the usual mass anomalous dimension in QED. Interestingly, the latter coincides
with the anomalous dimension resulting from the wave function renormalization of the flowed
or diffused (i.e., not usual) fermion field; the 1-loop renormalization factor has been given
in Eq. (2.16) of Ref. [26], where Cr = 1 for QED with the electron. Note that this anoma-
lous dimension is independent of the gauge-fixing parameter &. This is expected because the

(119)
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Wilson action (24), by construction, reproduces the correlation functions of flowed or diffused
fields up to contact terms [10].

6. Conclusion

In this paper we have constructed the gradient flow exact renormalization group (GFERG)
for QED, based on the BRST invariant diffusion equations (17). With the exclusion of the
gauge-fixing term, the Wilson action (69) becomes manifestly invariant under the gauge trans-
formation (70). We have computed the action perturbatively in powers of the coupling e to the
order ¢, reproducing the 1-loop beta function and anomalous dimensions. It was especially
pleasing to find the anomalous dimension of the electron field as gauge invariant.

Our perturbative calculations show that the Wilson action becomes complex despite the sim-
plicity in gauge invariance. The complexity comes from that of the GFERG differential equa-
tions. But we believe that the manifest gauge invariance will turn out to be a big advantage
when we attempt to solve the GFERG differential equations non-perturbatively (with some
gauge invariant approximations).

Whether the GFERG differential equation (52) has a non-trivial fixed point satisfying the
WT identity (66) is of great interest to be studied in the future; see, e.g., Ref. [27] and references
cited therein for related studies. At present we do not even know what it means to have a fixed
point in the GFERG formalism.

The GFERG formalism was originally introduced for non-Abelian gauge theories [10]. It
would be interesting to extend the analysis of this paper to see how far we can simplify the
realization of non-Abelian gauge invariance compared with the standard ERG formalism.
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Appendix A. Integration formula
A particular solution to

ad
(sz +m—+€) F(p,m) = f(p,m), (Al)
where
lir% of f(ap, am) =0, (A2)
is given by
1
F(p,m) = f do o~ f(ap, am). (A3)
0

Note that this solution is analytic in the momenta and m.
The proof is straightforward. Noting

0 1 0 0
oo (@p,am) =~ (Z Pyt m—m> flap, am) (A4)
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under the prerequisite (A2), we have

1
(Zpl +mim>/(; do ot~ f(ap, am)
:/ daagif(ozp,am)
0 Ja
1
=f(pm)—¢ / da o~ f(ap, am). (AS)
0

This is Eq. (A1) for Eq. (A3).

Appendix B. The working of the limit x' — x

In Sect. 3.1 we have explained how to take second- and higher-order functional differentials at
the same point as a limit of functional differentials at different points. This careful treatment
is necessary to avoid unphysical singularities. In deriving the GFERG differential equation for
the second-order Wilson action S® we need to practice the treatment. There are three integrals
to consider.

B.1 AA term
We compute

re s
b 4 (0)
/ dPx ( 4z)AM(x)Au(X)T{a&(x)S W(x/)}

P+ im
e i (p+im)
—e W 4 e 4 i(p+im) i)

2 1 i(p+ im)
1
e’ +i(p+im)

—ip(x—x")

— / (—4i) A, (k)A,(—k) / Tr(-)
k p

_ fk (—4i) A, (k) A, (—) fp i Tr

— 4 /k Ay (k) A (—k) / e~ PO =2 Ty
P
+ 16 /k A, () A, (—k) / e P, (B1)
P
For x # x , we find
/ e~ = §(x — x) = 0. (B2)
p

Hence, in the limit x — x, we obtain

1
e’ +i(p+im)’

_ _ -2p’
4 /k A () Ay (—k) /p Ty (B3)

where the integral over p is absolutely convergent.
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B2y term
We compute

2de 825 S(O)iqj( )+ 0 )lS«»
A 0o, |7 s T s

2 2
=2 / oo lpon_ K ]
k e k2 Ee 2 4 k2

< [ |7en St s+ S )]
ooy ]
“ e )+ b | e
Ignoring the delta function again, we obtain
2 [0 [ [ v
F ) 0], (B3)

where /,,,(k) 1s defined by Eq. (74a).

B.3 Vanishing terms
We examine the last integral of Eq. (90):

4dex 350 Tr|d s SO o _ i NUF! 5
8A,(x) ey(x) T SY(x)  su(x) Y(x)

5S1) e e bt im
=4 _q T px=x) 4 pip(x'—x) }
54, (k) k_ofp( P r{[e ) G

1 22 | : _2p?
=4 551 / (=)p Tr {[ei‘”(x_x/) + eip(x’_x)] e +i(p+im)—eF }
k=0p

84, (k) e’ 4+ i(p+im)
55(1) i / : / 2
=4 [elﬂx—x) + P —X>] {—4 +e ¥ Tr . (B6
8A, (k) k:()/p P e’ +i(p+im) (BS)
Ignoring the derivative of the delta function, we obtain a vanishing integral over p:
X —=x SS(I) 22 1

— e Tr =0. B7
54,0y /,, e S Gy im) (57
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Appendix C. ERG for QED

In the ERG formalism, the Wilson action is constructed as
SalAwet v ] = / [dA;de’dE/dt//’dl/;’] exp{S [A;L, A,y gl_r’]

A2 2 2 2 2
-5 [A,L(k) —zye A A;(k)] [A,L(—k) — zpe RN A;(—k)]

e / [E(—k) RN F k)] [c(k)—e_kz/‘\zc’(k)]
k

A /,, [7(=p) = 2eae™ N5 (=p) | [#(p) = zene™ 20 ()] } (C1)

where the electron fields are diffused according to the standard diffusion equation. z, and zp,
here differ from those in Eq. (24).
The Wilson action satisfies the ERG differential equation

Aie‘sA
oA

k? 8 k? 1 8 s,
= [ (35 ) 4o + (2 1) assaosacn )¢
e ERONR ) k2 15 g8
+ [ R+ s ® 2 () R s
S <8_ ]72 p2 T _6> S,
v f [e 5305 (2R = v ) v+ (25 =y ) F o) 5

(47 1oy LD D 2
“( IcR V“>X Y’ ) | ()

This is the same as the first part of Eq. (34); the second part proportional to e, = eu/?/z,
and ¢35 present in Eq. (34) are missing here. The difference is due to the simple diffusion equa-
tions that we have adopted for the electron fields in ERG.
The BRST invariance of the original S is inherited by the Wilson action as
—

- 1 5 s,
& /k [ n= k)+A26A (kJ Se—h)"
- / I e —
k

SAM(k)

— epe f eI T [/ [c(OI Y (p — K] eSA]
k

p sY(p)
r
_ —Sa —p?/A? Sa I
ene [ e [e | Eewn (i k)]] (©3)
where we have defined the composite operators as
—
2 2 8
_ KA
[c(k)] = ¢ [()+ S } (C4a)
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—
_ Z/AZ i 8
W) =e [w(p)+ T = lﬁ(_p)SA] (C4b)
. <
[F(=p)] =™ [&(—p) +—Shs ;@)} . (Cdo)

Since the ghost part of the action is given by

_ k?
Snston = = [ ) Tepw= ol O} (C3)

the BRST invariance reduces to the WT identity

ée*2k2+k2k 5S;
gek 1s4,(k)

— <
— oo S —(p+ky+p? 0 s 8
= ee /pe p P Tr”:w(p)—i_l&ﬁ(—p) e TR

— <~
— pp~S —P*H(p+k)? L S| d(—p — L
ee /p e TR Ty () {e |:1p( p—k)+ 181//(p+ k):” (C6)

in the dimensionless notation. Because of the mismatch of the exponential cutoff functions,
the WT identity is non-linear in S, not as simple as our WT identity (66).
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