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Constituent counting rule and ω photoproduction
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The constituent counting ruling (CCR) has been found to hold for numerous hard, exclusive processes. It
predicts the differential cross section at high energies and fixed cos θc.m. should follow dσ

dt ∼ 1
sn−2 , where n is

the minimal number of constituents involved in the reaction. Conversely, there are hard, exclusive processes
for which it has been found that the CCR does not work. The exact reasons for these have not been clearly
established. One such example, for which the analysis of CLAS data deviates from the prediction of the CCR, is
the omega photoproduction reaction. Here, we provide an in-depth analysis of the reaction γ p → ωp at θc.m. ≈
90◦ using CLAS data with an energy range of s = 5–8 GeV2, where the CCR has been shown to work in other
reactions. We argue for a stringent method to select data to test the CCR. Naïvely, this reaction would have
n = 9 and we would expect a scaling of s−7. Instead, a scaling of s−(9.08±0.11) was observed. A careful analysis of
conservation of angular momentum is proposed to explain the discrepancy, supporting the validity of the CCR
when applied properly.
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I. INTRODUCTION

The transition from hadronic to partonic degrees of free-
dom is an interesting area of nuclear physics that is still not
well understood. Knowing which kinematic regions have what
effective degrees of freedom and how the transition between
the two occurs can tell us much about quantum chromody-
namics (QCD). Currently these problems are very difficult to
solve purely through theoretical tools, and thus experiment
can be used to provide guidance.

In the early days of QCD it was recognized that one of
the consequences of having partons as the effective degree of
freedom was the constituent counting rule (CCR) [1,2]. The
rule states that for hard, exclusive processes the differential
cross section should have the form

dσ

dt
= f (cos θc.m.)

sn−2
= f (cos θc.m.)

sN
, (1)

where θc.m. is the center-of-momentum scattering angle,1 s
and t are Mandelstam variables, N is the scaling parameter,
and f is some function which, at least in principle, is calcula-
ble via QCD. Here n = ∑

i ni is the sum of the total number of
constituents taking part in the hard subprocess. For elementary
particles ne = 1, for mesons nM = 2, and for baryons nB = 3.
The rule is thought to be correct when the hardness of the

1From here on, any mention of the angle θ should be taken to be in
the center-of-mass (c.m.) frame.
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scattering is larger than the mass squared of any of the external
particles t � maxi(M2

i ) and at high energy s � maxi(M2
i ) (up

to small corrections, such as logarithmic corrections due to
renormalization).

The CCR can be justified on the basis of perturbative
QCD (pQCD) and dimensional arguments. Specifically, in the
QCD Feynman rules for scattering amplitudes the vertices
have no dimension, gluon propagators have a dimensional-
ity of inverse mass squared 1

M2 , quark propagators have 1
M ,

while external quarks have
√

M. Looking at a reaction with
the minimal number of constituents where all participate,
we need n

2 − 1 virtual gluons, n
2 − 2 virtual quarks, and n

external quarks (see Fig. 1). It follows that the dimensional-
ity of the scattering amplitude is [M] = 1

M2( n
2 −1)

1
M

n
2 −2 Mn/2 =

1
Mn−4 , which implies [ dσ

dt ] = 1
M2(n−2) [3]. For a hard, exclusive

QCD process there is only one mass scale,
√

s, and thus
dσ
dt ∼ 1

sn−2 , with the dimensionless constant depending on the
dimensionless degree of freedom, cos θ (alternatively, −t

s ).
Additional gluon exchange and higher Fock state contribu-
tions are suppressed by additional factors of 1

s . The above
argument makes use of the approximate conformal symmetry
of QCD, while a nonperturbative derivation has been made
through the use of the AdS-CFT correspondence [4,5]. In-
cluding QED processes to describe meson photoproduction is
straightforward.

The CCR has been found to hold for a number of reac-
tions, often at surprisingly low energy and hardness scales.
For example, in Ref. [6] it was shown that, for the reaction
γ p → K+�, scaling of s−7 occurs for t values as low as
1.5 GeV2 and s as low as 5 GeV2 for cos θ = 0. Scaling at
relatively low energy has also been observed with the photo-
production of pions. It was seen in Refs. [7,8] for γ p → π+n
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FIG. 1. Example of minimal diagram connecting all constituents
for MB → MB. Here there are n = 10 constituents or external
quarks, n/2 − 1 = 4 gluon propagators, and n/2 − 2 = 3 quark
propagators.

and γ n → π− p for s approximately greater than 6.25 GeV2

with θ = 90◦. The energy values (in terms of s) that are the
focus of our work have a maximum value of 8.04 GeV2 and
go down to between approximately 5 and 6 GeV2, depending
on the angle (the cuts were made in terms of t). We will be
looking at a kinematical range comparable to these previous
studies.

In spite of the examples cited above, there has been mixed
success of the CCR at intermediate energies and momentum
transfers. A study of ten meson-baryon (MB → MB) and
baryon-baryon (BB → BB) exclusive reactions at θc.m. = 90◦
and −t ≈ 5 GeV2 found that only three out of the ten reactions
had n − 2 within 1σ of the expected result and only one other
within 2σ [9]. Other apparent failures of the CCR led to the
development of the handbag model and the use of generalized
parton distributions (GPDs) in the study of deeply virtual
Compton scattering [10–12] and hard meson production [13].
Arguments were made for the use of the handbag model in
Compton scattering off the proton with moderate momentum
transfer (−t � 10 GeV2) [14]. A subsequent experiment at
Jefferson Lab showed an extra suppression of 1

s2 for Compton
scattering than the CCR predicted [15]. The results, however,
were consistent with the handbag model.

Recently, there has been a discussion in the literature about
the applicability, limitations, and necessary conditions for
the CCR [16,17]. Reference [16] claims, “... were the con-
stituent counting rule right, it would provide a very powerful
and straightforward tool to access the valence quark struc-
tures of the exotic hadrons. But unfortunately ... for hadrons
with hidden-flavor quarks it is problematic to apply such a
naive constituent counting rule.” In contrast, Brodsky et al.
[17] state “constituent counting rules are completely rigor-
ous when they are applied properly.” Given that the CCR
has been suggested as a tool to study exotic hadrons, a
good understanding of its correct application is needed. Here,
we examine the issue by analyzing the data for a specific
reaction.

A naïve application of the CCR to γ p → ωp would sug-
gest n = nγ + np + nω + np = 1 + 3 + 2 + 3 = 9, a scaling
of N = n − 2 = 7, and thus dσ/dt ∼ s−7 for fixed cos θ .
However, our analysis of the data is in fact more consistent
with dσ/dt ∼ s−9. As discussed in Sec. IV, we provide a

theoretical argument that explains why the correct scaling
power is N = 9.

II. DATA

The data being analyzed here were collected in the Jef-
ferson Lab CLAS g11 experiment [18]. The relatively large
number of events and low uncertainties of the γ p → ωp
reaction compared with other meson photoproduction data al-
lowed for an in-depth analysis. The differential cross sections
in the data set were converted via

dσ

dt
= 1

2Eγ |pω|
dσ

d cos θc.m.

, (2)

where Eγ is the energy of the photon and |pω| is the magnitude
of the three-momentum of the ω meson in the c.m. frame.

The scaling of the cross section with the energy is ulti-
mately a result of the point-like behavior of the scattering.
Therefore, the CCR is expected to hold best when the −t
value is relatively large (hard scattering). Equally impor-
tant for the unambiguous identification of a scaling trend is
to avoid strong final-state interactions between the outgo-
ing hadrons. Center-of-mass angles around θ = 90◦ are large
enough that they reduce the chances of final-state interactions
while not being so large that they introduce backscattering
events, which include unwanted u-channel processes. Pub-
lished experimental cross-section data frequently do not have
bins corresponding exactly to cos θ = 0. Such is the case with
the data set used in this analysis, and thus the four cos θ

bins −0.15, −0.05, +0.05, and +0.15 were examined. We
will show in Sec. III that including several angle bins can be
useful in getting the scaling parameter N at θ = 90◦. Most
past analyses of the CCR use a cut in Mandelstam s (i.e.,
s > s0), in conjunction with the large center-of-momentum
angle criteria to select hard scattering events. We argue that
−t is the hardness of the scattering, so it should indicate the
onset of pQCD. Other studies have correctly used hardness
scales rather than energy to mark the onset of pQCD. For
example, Ref. [19] used transverse momentum to determine
scaling in the case of deuteron photodisintegration, which was
found to work in the case of large angles. The specific use
of −t to define hardness was also employed in the case of
polarized, wide-angle, Compton scattering [20]. Also, as can
be seen in Fig. 2, a cut in s would still leave low −t events,
while a cut in −t puts a lower limit on s. This can be seen
easily in the massless limit where −t = s

2 (1 − cos θ ). A lower
limit for −t imposes a lower limit for s since (1 − cos θ ) � 2.
However, for a given s, −t can be made arbitrarily small when
cos θ → 1.

We selected data with −t > 2 GeV2, resulting in 118 data
points that met the criteria. The uncertainties considered were
the statistical and point-to-point systematic uncertainties of
the differential cross section dσ

d cos θ
included in the published

data. The −t cutoff value was chosen based on a natural
energy scale considering the proton mass as well as observing
a plateauing of the fit parameter N around −t = 2 GeV2. In
this region, the exact −t cut selected has minimal impact on
the results. This is demonstrated by Fig. 3. The range over −t
from about 1.5 to 2.5 GeV2 has a relatively flat distribution of
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FIG. 2. Kinematics of the CLAS g11 ω photoproduction data. An
s cut leaves low −t events, but a −t cut puts a lower bound on s.

the scaling parameter N . This plot also shows how poor the
fits are in terms of the χ2/df when the −t cut is less than
1.5 GeV2.

III. ANALYSIS

A. Scaling

In Fig. 4, the four angle bins around cos θ = 0 are shown
with various scaling factors applied. Scaling of s−7 is clearly
not observed for any of the angle bins. There appears to be
some scaling like s−8 above s = 6 GeV2, but only for the
cos θ = −0.15 bin. The scaling is most obvious in the s−9

case, where the distribution is quite flat for three of the four
angles. Most importantly, the scaling is most extreme at the
two cos θ bins closest to zero: cos θ = −0.05 and cos θ =
+0.05. This demonstrates that there is scaling as low as s =
5 GeV2, which agrees with observations for other reactions.

FIG. 3. The value returned for the fit parameter N as a function
of the −t cut is shown. The fitting function used is the Taylor series
expansion form of the differential cross section from Eq. (3). The −t
value of each data point represents the minimum |t | value allowed
in the data set for that fit. The vertical bars show the reduced χ2 for
each fit. The reduced χ 2 values range from 83 to 13 over the −t cut
region of 0 to 1.4 GeV2. The blue, horizontal, dashed line is added in
at N = 9 to demonstrate the scaling of this value over a range of −t
cuts.

FIG. 4. The differential cross sections of the four angle bins near-
est cos θ = 0 with three different scaling factors applied. s9 scaling
is shown for both s and −t on the x axis.

The scaling is not what we would expect it to be based on
simply adding up the constituents in the reaction. Scaling by
s9 (corresponding to n = 11) was found to work best, as can
be seen in Fig. 4. For a given angle, the scaled s9dσ/dt is
nearly constant over the higher-s ranges, while without scal-
ing, the cross section spans nearly two orders of magnitude.

B. Fits

The different angle bins can be fit with one function
without explicit knowledge of f (cos θ ) by noting that, near
cos θ = 0, a Taylor-series expansion can be taken: f (cos θ ) =
A + B cos θ + O(cos2 θ ). Keeping just the linear term, we can
fit the function

dσ

dt
= (A + B cos θ )s−N . (3)

Through this approach, data from multiple bins are used in the
fit. Three different types of fits were performed on the data:
χ2 minimization, Bayesian estimation, and bootstrapping. No
further details will be discussed for the χ2 minimization
method, given its ubiquitousness. However, the following will
provide a brief explanation of how the two latter fitting tech-
niques were done.

1. Bayesian estimation

In the Bayesian approach one conditions on the data D.
The posterior distribution for the parameters A, B, and N is
proportional to the likelihood multiplied by the prior:

P (A, B, N |D) ∝ P (D|A, B, N )P (A, B, N ). (4)

Since N is the parameter of interest, one can then find the N
posterior distribution P (N ) by marginalizing out A, B. For the
likelihood we take P (D|A, B, N ) = exp(− 1

2χ2).
First we assumed the three parameters to be independent,

P (A, B, N ) = P (A)P (B)P (N ). While not completely realis-
tic, it is a starting point and with enough data a more accurate
relation between the variables should emerge. Uniform distri-
butions were used for all three variables, where for N we tried
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FIG. 5. Results of MCMC sampling. The graphs on the diagonal
represent the histograms of each parameter and the off-diagonal
graphs show the distributions in terms of each pair of parame-
ters. Numbers above the parameter histograms indicate median and
quintiles.

to capture our initial expectation that it should be around seven
or eight but also allow some leeway by having it uniformly
distributed between five and ten, N ∼ U (5, 10). For A and
B, we use U (104, 107). The likelihood function is the same
as with the χ2 approach. To get a representative sampling
of parameter space we used a Markov chain Monte Carlo
(MCMC) algorithm implemented through the library EMCEE

[21]. The lower-right panel of Fig. 5 shows the marginalized
posterior distribution for N and from the mean and standard
deviation we get the Bayesian uniform prior estimate: NBU =
9.08 ± 0.05. Figure 6 shows the fit using the average values
for the parameters.

FIG. 6. The differential cross section fit with (A + B cos θ )s−N ,
shown by the dash line. The data and fits were multiplied by eg(θ )

with g(θ ) = 5(cos θ + 0.15) for readability.

TABLE I. Scaling parameter estimates.

Method N Comments

χ 2 minimization 9.07 ± 0.08 χ 2/df = 2.23
Bayesian 9.08 ± 0.05 Uniform priors
Bootstrap 9.07 ± 0.06 Uniform distribution

To test the dependence on the prior we also tried a Gaussian
distribution for N with the mean and standard deviation based
on an earlier result [22], N ∼ N (μ = 7.2, σ 2 = 0.72). We
obtained nearly identical results, suggesting that our results
are not sensitive to the choice of priors.

2. Bootstrapping

The two methods above assume the likelihood is a Gaus-
sian while in the Bayesian method we employed parametric
distributions for the priors. As a check against these as-
sumptions, we also made use of the nonparametric bootstrap
method [23]. Each data point was resampled according to
a uniform distribution centered at the value and a range of
±2 times the uncertainty. The result was consistent with the
two other fitting methods. Table I shows the results for the
different methods.

C. Angle and cutoff dependence of scaling

Above, it was assumed that N is independent of cos θ .
Renormalization arguments would suggest that N has some
dependence on the transverse momentum transfer [24], thus
on cos θ .2

To see the effects, we broadened the inclusion of angles
to −0.3 < cos θ < +0.3 and for each bin took a fit of the
form As−N . Figure 7 shows how N depends on cos θ . The N
value peaks near cos θ = 0, justifying our approximation that
the scaling is independent from cos θ , although it is centered
at cos θ ≈ −0.08 rather than cos θ = 0. In the high-energy
limit where everything is effectively massless, the transverse
momentum of the reaction is p2

⊥ = tu
s = s

4 (1 − cos2 θ ). Let-
ting �QCD be the QCD scale, then from renormalization and
QCD one would then expect to see quantities to evolve in
terms of

ln

(
p2

⊥
�2

QCD

)

 ln

(
s

4�2
QCD

)
+ cos2 θ + O(cos4 θ ), (5)

which would explain the approximate cos2 θ dependence of
N . Doing a quadratic fit for N in terms of cos θ suggests
N (cos θ = 0) ≈ 9.1, consistent with our results and offering
another way to estimate the scaling parameter at cos θ =
0 using multiple angle bins. Taking the four bins nearest
cos θ = 0 we estimate the uncertainty due to the angle de-
pendence to be δNθ = (

∑
i

1
δN2

i
)−1/2 = 0.051. A cutoff of

2A similar situation is expected in the large Bjorken x region for
parton distribution functions (PDFs), where it is expected that the
valence PDFs go like f (x) ∼ (1 − x)N with N = 3 at low Q2

0 but
increase with Q2 [25].
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FIG. 7. Dependence on N with cos θ . Each bin was fit with the
function As−N .

−t = 2.0 GeV2 was used. Table II summarizes the uncertainty
results.

IV. DISCUSSION

The results obtained here contradict an earlier study that
found N = 7.2 ± 0.7 [22]. However, that result was based
on only five data points and all of the points (except for
one, which is from SLAC and has s = 6.13 GeV2) have s >

7 GeV2, going up to s = 8.06 GeV2. Although these values
are within the same range we are examining, they are not
representative of the overall data set used in this analysis.
The data discussed in this paper that pass the −t > 2 GeV2

cut have s values that go down to as low as approximately
5.8 GeV2, depending on the angle. It is, however, fairly con-
sistent with another analysis that found a scaling of N =
9.4 ± 0.1 [26]. As mentioned before, a Compton-scattering
experiment at Jefferson Lab also found an extra factor of 1

s2

from what was expected by CCR [15].
One possible explanation for the discrepancy between the

naïve application of the CCR and the results of this analysis is
that s and −t are too low for it to be applicable. However,
as mentioned earlier, the CCR does seem to explain other
reactions at comparable energies and hardness scales. Also,
this argument does not explain why it does work with N = 9.

We propose the following mechanism to explain the re-
sults: In Fig. 8, a model for ω photoproduction off the proton
is presented. Since the reaction is at a high-enough energy, one
can assume helicity conservation of quarks participating in the
hard scattering subprocess. The matrix elements with vertices
γ T

μi
(i = 1, 2, 3) are constrained to be transverse because they

coupled to vector bosons (photon and meson) with transverse
polarization states.

TABLE II. Fit systematic uncertainties.

Source of uncertainty δN Estimate

Fit 0.051
Angle dependence 0.067
−t cutoff dependence 0.072

FIG. 8. Diagram for ω photoproduction. The polarization vec-
tors of the photon ε

μ1
T and vector meson εν

ωT
are constrained to be

transverse.

Consider the photon-quark interaction γ T
μ1

in the Breit
frame of the quark represented by the spinor of u(p). In this
frame, the quark has no transverse momentum (p⊥ = 0), thus
there is no orbital angular momentum to account for. Since in
the Breit frame the momentum flips, �p = − �p1, helicity con-
servation implies that the spin must also flip. Using Tables II
and III from Appendix A of Ref. [27], we can see there is
a suppression of one power of s at each of the vertices γμ1

and γμ2 . For γ T
μ3

, there is no suppression if we demand pT
2 ∼

pT
3 ∼ p+

2 ∼ p+
3 , i.e., t ∼ s, which happens at large angles. If

t ∼ s is not fulfilled there is an extra power suppression at
γ T

μ3
as well. Overall, the power counting is of two powers of

s more than the naive one, leading to N = 11 − 2 = 9. Thus,
a careful consideration of conservation of angular momentum
to the CCR explains why dσ/dt in the photoproduction of
the spin − 1ω behaves differently from that of scalar mesons.
Given that the ρ0 meson is also spin-1 and has a similar
quark structure to the ω, we predict a similar scaling should
follow.

V. CONCLUSION

In this analysis, we have examined the published CLAS
g11 data for s scaling in ω photoproduction. We demon-
strated and argued the advantage of cutting by the relevant
hardness parameter −t (rather than s) and combining several
angle bins through a Taylor expansion of the cos θ -dependent
function of dσ

dt . Around θ = 90◦, we found the scaling to be
N = 9.08 ± 0.11, inconsistent with a naïve application of the
CCR. We have made the case for additional gluon exchanges
and spin-flipping to conserve helicity. Further exploration of
these mechanisms are warranted. Future CLAS12, GlueX, and
the CLAS g12 experiment (Eγ up to 5.45 GeV) data for this
reaction at higher energy scales could be used to examine if
this trend continues into higher energies. Other reactions from
these experiments could also be tested against our observa-
tions. Our results suggest that the CCR is in fact valid for the
examined data. However, the data selection must be based on
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hardness of the scattering, using −t instead of s. It is thus
worth pointing out that, when applied appropriately, the CCR
could also be used to investigate exotic hadrons such as hybrid
mesons to be studied in the GlueX experiment [28], where a
range of beam energies will make an analysis similar to ours
possible.
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