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A R T I C L E I N F O A B S T R A C T

Editor: Hubert Saleur We consider the emergence of a non-Fermi liquid fixed point in a two-dimensional metal, 
at the onset of a quantum phase transition from a Fermi liquid state to an incommensurate 
charge density wave (CDW) ordered phase. The momentum of the CDW boson is centred at 
the wavevector , which connects a single pair of antipodal points on the Fermi surface with 
antiparallel tangent vectors. We employ the dimensional regularization technique in which the 
co-dimension of the Fermi surface is extended to a generic value, while keeping the dimension of 
the Fermi surface itself fixed at one. Although the system is strongly coupled at dimension 𝑑 = 2, 
the interactions become marginal at the upper critical dimension 𝑑 = 𝑑𝑐 , whose value is found to 
be 5∕2. Using a controlled perturbative expansion in the parameter 𝜖 = 𝑑𝑐 − 𝑑, we compute the 
critical exponents of the stable infrared fixed point characterizing the quantum critical point. The 
scalings of the original theory are determined by setting 𝜖 = 1∕2, where the fermion self-energy is 
seen to scale with the frequency with a fractional power law of 2∕3, which is the telltale signature 
of a typical non-Fermi liquid phase.
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1. Introduction

While Landau’s Fermi liquid theory has been incredibly successful in describing normal metals, there exists an extensive number of 
metallic states where the framework fails. Although of widely different origins, these systems are widely known as non-Fermi liquids. 
A finite density of nonrelativistic fermions interacting with transverse 𝑈 (1) gauge field bosons was the first model, considered by 
Holstein et al. [1] to study the effects of the electromagnetic fields on a metal, to exhibit a non-Fermi liquid character. Subsequently, 
it was realized that similar behaviour is found for finite-density fermions coupled with massless order parameter bosons at quantum 
critical points [2–31] or artificial gauge field(s) emerging in various kinds of scenarios [32–39]. While the Landau quasiparticles 
provide a natural single-particle basis for writing down the corresponding low-energy quantum field theories (QFTs) on the merit of 
being long-lived excitations in a Landau Fermi liquid, they are destroyed by the strong interactions between the soft fluctuations of 
the Fermi surface and the gapless bosonic quantum fields in the scenarios described above. Since these are fundamentally strongly-

interacting theories, it is a challenging task to build a controlled approximation amenable to theoretical analysis. As a result, there 
have been intensive efforts to devise QFT frameworks to explain the emergent physical characteristics of these non-Fermi liquid 
systems [1,2,7,17,19–31,35,38–54]. In two spatial dimensions, the corresponding theories are genuinely strongly interacting, while 
in three dimensions, they emerge as marginal Fermi liquids [20,53]. Analogous situations arise in two-dimensional (2d) and three-

dimensional (3d) semimetals, where a non-Fermi liquid state emerges when the chemical potential cuts a band-crossing point giving 
rise to a Fermi point (rather than a Fermi surface) and a long-ranged (i.e., unscreened) Coulomb potential is switched on [55–65].

For non-Fermi liquids arising at quantum critical points, there are two types of order parameter bosons: (1) cases where the 
critical bosonic field is centred about zero momentum, inducing the quasiparticles to lose coherence across the entire Fermi surface 
[2–24]; (2) the momentum of the quantum field describing the bosonic degrees freedom is centred around a finite wavevector equal 
to , which connects points on the Fermi surface (commonly known as hot-spots), such that the non-Fermi liquid behaviour emerges 
locally in the vicinity of the hot-spots [2,26–31,52]. Examples in the first category include the Ising-nematic critical point, while 
the second one include ordering transitions to phases like spin density wave (SDW), charge density wave (CDW) [25–31], and the 
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states [52].

The CDW (SDW) bosons with  ≠ 0 give rise to instabilitites involving charge (magnetic) order, where the charge (spin) density 
spontaneously breaks translational symmetries and develops a density modulation equal to ≠ 0. There are two distinct categoriza-

tions depending on the nature of the wavevector: (1) whether it is commensurate or incommensurate; (2) whether  is a nesting 
vector of the Fermi surface or not. While the so-called commensurate wavevectors can be written as a linear combination 𝐆 of the 
reciprocal lattice vectors {} with rational coefficients, we cannot do the same for the incommensurate wavevectors. Clearly, there 
are infinitely many possible rational coefficients, but the quantitative effects of commensurability decrease with the size of their 
denominators. For the special situation of  equalling a nesting vector connecting two points on the Fermi surface with antiparallel 
Fermi velocities (or, equivalently, tangent vectors), the spin and charge orderings feature a well-known singularity caused by an 
enhanced phase space for low-energy particle-hole excitations. In an inversion-symmetric crystal with the valence band dispersion 
𝜉(𝐤), the nesting vectors  are given by the condition 𝜉(∕2 +𝐆∕2) = 𝜉𝑘𝐹 , where 𝜉𝑘𝐹 is the Fermi energy. The nesting-vector nature 
of , coupled with inversion symmetry, implies that || = 2 𝑘𝐹 , where 𝑘𝐹 is the local radius of curvature/reciprocal of curvature 
of the Fermi surface (i.e., the magnitude of the local Fermi momentum vector). This results from the fact that the two hot-spots are 
related by inversion symmetry and, hence, both have the same value of 𝑘𝐹 . The 2𝑘𝐹 -wavevector instabilities are ubiquitous in 2d 
systems exhibiting high-temperature superconductivity — for example, (1) the ground state of the 2d Hubbard model at half-filling 
of the conduction band exhibits an SDW instability at a 2𝑘𝐹 -wavevector [66,67]; (2) d-wave bond charge order, triggered by anti-

ferromagnetic fluctuations, in models for cuprate superconductors occurs naturally at 2𝑘𝐹 -wavevectors [25,68]. We would like to 
emphasize that such a nesting vector causes a partial nesting of the Fermi surface, which is distinct from the perfect-nesting cases 
when slices (and not just discrete points) of a Fermi surface are connected by the same nesting vector. The evidence of incommensu-

rate CDW orderings has been reported in materials like NbSe2 and TaS2 [69,70], VSe2 [71], SmTe3 [72], and TbTe3 [73]. In some 
of these compounds, the CDW transition temperature can be tuned close to zero Kelvin by applying high pressure, unravelling a 
putative quantum critical point at the onset of the CDW ordering [74]. Such observations indicate the importance of a theoretical 
understanding of quantum critical points involving incommensurate 2𝑘𝐹 -wavevector instabilities.

In this paper, we consider a pair of antipodal points on a 1d Fermi surface (of a 2d metal) with parallel tangent vectors interacting 
with an order parameter boson, whose condensation gives rise to an incommensurate CDW ordered phase [75–77]. The CDW boson 
becomes massless right at the quantum critical point, giving rise to strong quantum fluctuations. The physical picture here is that 
the CDW boson drives the system across a quantum phase transition to an ordered state, where the electron density spontaneously 
breaks translational symmetries and develops a density modulation with a wave vector  that is incommensurate with the underlying 
reciprocal lattice vectors. For the sake of definiteness, we choose  = 2 𝑘𝐹 𝒙̂, without any loss of generality.

To deal with the QFT describing the above system, we implement the analytic approach of dimensional regularization [19–23,52,
2

53,78], in which the co-dimension of the Fermi surface is increased (as a mathematical tool) with the aim to obtain the value of the 
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Fig. 1. Schematics of the one-dimensional Fermi surface with two hot-spots connected by the wavevector  = 2 𝑘𝐹 𝒙̂ (indicated by the red arrow), which is incom-

mensurate with the underlying reciprocal lattice vectors. The fermionic fields in the vicinity of the right and left hot-spots are designated as 𝜓+ and 𝜓− , respectively. 
They interact with the CDW order parameter bosonic fields whose momenta are centred at .

upper critical dimension 𝑑 = 𝑑𝑐 . Since 𝑑𝑐 is the dimension at which the interactions become marginal, we succeed in formulating a 
controlled perturbative approximation, although the quasiparticle-description has broken down. The critical exponents and various 
physical properties can now be calculated in a systematic expansion involving the perturbative parameter 𝜖 = 𝑑𝑐 − 2. Halbinger 
et al. [77] have considered this incommensurate CDW problem by employing the same methodology, and have found that the 
fermion-boson interactions lead to a stable non-Fermi liquid fixed point. Furthermore, their results show that the resulting critical 
Fermi surface is flattened at the hot-spots. However, they arrived at their conclusions from some inaccurate computations, which, 
in addition to other results, could not find the correct critical dimension 𝑑𝑐 = 5∕2. They carried out their computations assuming 
that 𝑑𝑐 is equal to 5∕2, predicting that it would be obtained at the two-loop order. Consequently, their answers do not include the 
all-important frequency depedence of sgn(𝑘0)|𝑘0|2∕3 for the fermion self-energy, which is predicted in the earlier (uncontrolled) 
random phase approximation (RPA) calculations [75,76]. In order to address these inadequacies, the analysis via the dimensional 
regularization scheme must be reexamined, if only to put it on a firmer basis.

The paper is organized as follows. In Sec. 2, we introduce the effective low-energy Euclidean action in the Matsubara frequency 
space, describing the fermionic excitations at the two hot-spots of the Fermi surface interacting with the CDW boson fluctuations. 
The original theory is embedded in 𝑑 = 2 spatial dimensions. We also explain how to generalize the theory to a generic value of 𝑑
by increasing the number of dimensions perpendicular to the 1d Fermi surface, as this will allow us to identify the upper critical 
dimension 𝑑𝑐 and, subsequently, to regularize the theory via the renormalization group (RG) procedure. Sec. 3 is devoted to the 
derivations of the bosonic and fermionic self-energies, and showing that 𝑑𝑐 comes out to be 5∕2. Using the one-loop results, the RG 
flow equations are determined in Sec. 4 by absorbing the ultraviolet (UV) divergences into singular counterterms. We discuss the 
nature of the fixed points in the infrared (IR) limit and show that the system flows to a stable non-Fermi liquid point. Finally, we 
conclude with the relevant discussions in Sec. 5, comparing our computations and results with earlier works. The appendix shows a 
part of the computations of the fermion self-energy.

2. Model

We consider the low-energy QFT action describing finite-density fermions confined to two spatial dimensions, and interacting 
with an incommensurate CDW order parameter with momentum centred at  = 2 𝑘𝐹 𝒙̂. Thus, the nesting vector  connects two 
hot-spots on the Fermi surface located along the 𝑥-axis, as shown in Fig. 1. In (2 + 1)-dimensions, the effective action describing the 
electrons near the hot-spots and the CDW order parameter mode is given by [75–77]

𝑆 =
∑
𝑠=±∫

𝑘

𝜓†
𝑠
(𝑘)

(
−𝑖 𝑘0 + 𝑠𝑘1 + 𝑘22

)
𝜓𝑠(𝑘) + ∫

𝑘

𝜙+(𝑘)
(
𝑘20 + 𝑘21 + 𝑘22

)
𝜙−(−𝑘)

+ 𝑒∫
𝑘,𝑞

[
𝜙+(𝑞)𝜓

†
+(𝑘+ 𝑞)𝜓−(𝑘) + 𝜙−(−𝑞)𝜓†

−(𝑘− 𝑞)𝜓+(𝑘)
]
, (1)

where 𝑘 = (𝑘0, 𝐤) denotes the three-vector comprising the Matsubara space frequency 𝑘0 and the spatial momentum vector 𝐤 =
(𝑘1, 𝑘2) ≡ (𝑘𝑥, 𝑘𝑦), ∫𝑘 ≡ ∫ 𝑑𝑘0 𝑑

𝑑𝐤∕(2 𝜋)𝑑+1, and 𝑑 = 2 is the number of spatial dimensions. The fermionic degrees of freedom about 
the right and left hot-spots are denoted by 𝜓+(𝑘) and 𝜓−(𝑘), respectively. The fields 𝜙+(𝑘) and 𝜙−(𝑘) refer to the bosonic fluctuations 
carrying frequency 𝑘0 and momenta ∕2 +𝐤 and −∕2 +𝐤, respectively. The bosons are massless as we are considering the quantum 
critical point. To simplify notations, we have rescaled the fermionic momenta in a way such that the absolute value of the Fermi 
velocity is unity and the curvature of the Fermi surface is equal to 2 at the hot-spots. Although the bosonic velocity is in general 
distinct from that of the fermions, we have set the bare velocity of the bosons equal to unity as well. This is because the dynamics 
of the bosons at the critical point is dominated by the particle-hole excitations of the Fermi surface at low energies, and the actual 
3

value of the bosonic velocity does not matter in the low-energy effective theory.
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In our action, since the Fermi surface is locally parabolic, we can set the scaling dimensions of 𝑘1 and 𝑘2 are equal to 1 and 
1∕2, respectively. In order to extract the critical scalings in a controlled approximation, we increase the co-dimensions of the Fermi 
surface [19,28,78] to eventually determine the upper critical dimension 𝑑 = 𝑑𝑐 , where the fermion self-energy shows a logarithmic 
singularity. To preserve the analyticity of the theory in momentum space (alternatively, locality in real space) with generic co-

dimensions, we introduce the two-component “spinors” [19–21,52–54]

Ψ(𝑘) =
(
𝜓+(𝑘) 𝜓†

−(−𝑘)
)𝑇

and Ψ̄ ≡Ψ† 𝛾0 , (2)

and write an action that describes the 1d Fermi surface embedded in a 𝑑-dimensional momentum space:

𝑆 = ∫
𝑘

Ψ̄(𝑘) 𝑖
(
𝚪 ⋅𝐊+ 𝛾𝑑−1 𝛿𝑘

)
Ψ(𝑘) + ∫

𝑘

(
𝑘2
𝑑
+ 𝑎̃ 𝑒𝑘

)
𝜙+(𝑘)𝜙−(−𝑘)

− 𝑖 𝑒𝜇𝑥𝑒∕2

2 ∫
𝑘, 𝑞

[
𝜙+(𝑞) Ψ̄(𝑘+ 𝑞) 𝛾0 Ψ̄𝑇 (−𝑘) + 𝜙−(−𝑞)Ψ𝑇 (𝑞 − 𝑘) 𝛾0 Ψ(𝑘)

]
,

𝑥𝑒 =
5
2
− 𝑑 , 𝛿𝑘 = 𝑘𝑑−1 + 𝑘2

𝑑
, 𝑒𝑘 = 𝑘𝑑−1 +

𝑘2
𝑑

2
. (3)

The (𝑑 − 1)-component vector 𝐊 ≡ (𝑘0, 𝑘1, … , 𝑘𝑑−2) includes the frequency and the (𝑑 − 2)-components of the momentum vector 
due to the added co-dimensions. The original momentum components along the 𝑥- and 𝑦-directions have been relabelled as 𝑘𝑑−1
and 𝑘𝑑 , respectively. Hence, in the resulting 𝑑-dimensional momentum space, the set of components {𝑘1, ⋯ , 𝑘𝑑−1} represents the 
(𝑑 − 1) the direction perpendicular to the Fermi surface, while 𝑘𝑑 is along the parallel direction. Similarly, the vector of matrices 
𝚪 ≡ (𝛾0, 𝛾1, … , 𝛾𝑑−2) has (𝑑 − 1) components representing the gamma matrices associated with 𝑘0 and the extra co-dimensions. 
Ultimately, we are interested in continuing to 𝑑 = 2, which implies that, in practice, it is sufficient to consider only the 2 × 2 gamma 
matrices 𝛾0 = 𝜎𝑦 and 𝛾𝑑−1 = 𝜎𝑥 in our computations.

In the purely bosonic part of the action, only the 𝑘2
𝑑

part of the kinetic term is retained, because 
(|𝐊|2 + 𝑘2

𝑑−1
)

is irrelevant under 
the scaling of the patch-theory formalism [2,19–21,52,53,77], where each of 

{
𝐊, 𝑘𝑑−1

}
has dimension unity and 𝑘𝑑 has dimension 

1∕2. Dependence on 𝑒𝑘 in the bosonic propagator will be generated via the susceptibility, which is obtained from the dynamics of 
the strong particle-hole fluctuations. Anticipating this, we have already added the extra term 𝑎̃ 𝑒𝑘, which will be generated in the 
RG process, and its has been dictated by the divergent term in the one-loop susceptibility calculated in the following subsection 
[see Eq. (13)]. In other words, we have simply included a term which will be generated via quantum corrections. This term has 
a mass dimension equal to unity, similar to the 𝑘2

𝑑
term, with a vanishing engineering dimension for 𝑎̃. If we do not include this 

term, the loop integrations involving the bosonic propagator will turn out to be infrared-divergent, and these divergences will be the 
mere artifacts of our dropping the irrelevant terms in the minimal local effective action (if it contains only the 𝑘2

𝑑
term). Finally, the 

engineering dimension of the fermion-boson coupling 𝑒 is equal to 𝑥𝑒∕2 — this observation has dictated us to introduce an explicit 
factor of a mass scale 𝜇 raised to the power 𝑥𝑒∕2, chosen so as to ensure that 𝑒 is dimensionless, which is the usual procedure 
followed in QFT calculations.

The emergent sliding symmetry in the Ising-nematic case [2,19–21] forces the terms proportional to 
[
Ψ̄(𝑘)𝑘𝑑−1 Ψ(𝑘)

]
and [

Ψ̄(𝑘)𝑘2
𝑑
Ψ(𝑘)

]
in Eq. (3) to renormalize in the same way. In other words, the fermion propagator depends on 𝑘𝑑−1 and 𝑘2

𝑑
only 

through 𝛿𝑘 even after loop corrections. However, that is not the case here, and the renormalization process is not guaranteed to 
retain the sole dependence on 𝛿𝑘. In other words, it is possible that the nature of the renormalized terms may turn out to be such 
that it leads to a flattening of the Fermi surface at the hot-spots, as found in the RPA calculations of Ref. [76]. Nevertheless, as we 
will see from our explicit calculations, the flattening does not show up in our one-loop level computations.

3. One-loop self-energies and dimensional regularization

The value of 𝑥𝑒 tells us that the coupling constant 𝑒 becomes marginal at the upper critical dimension 𝑑𝑐 = 5∕2. In other words, 𝑒
is relevant for 𝑑 < 5∕2 and irrelevant for 𝑑 > 5∕2. Our aim is to access the interacting phase perturbatively in 𝑑 = 5∕2 − 𝜖, using 𝜖 as 
the perturbative parameter. In particular, this implies that at the end of our systematic 𝜖-expansion, we have to set 𝜖 = 1∕2 for our 
original two-dimensional theory. Before embarking on deriving the RG flows, in this section, we compute the one-loop self-energies 
for the bosonic and fermionic degrees of freedom, which will feed into the equations necessary for determining the beta functions of 
the coupling constants 𝑒 and 𝑎̃.

The bare fermion and boson propagators for the action defined in Eq. (3) are given by

𝐺(0)(𝑘) ≡ ⟨
Ψ(𝑘) Ψ̄(𝑘)

⟩
0 =

1
𝑖

𝚪 ⋅𝐊+ 𝛾𝑑−1 𝛿𝑘|𝐊|2 + 𝛿2
𝑘

, 𝐷+
(0)(𝑘) ≡

⟨
𝜙+(𝑘)𝜙−(−𝑘)

⟩
0 =

1
𝑘2
𝑑
+ 𝑎̃ 𝑒𝑘

,

𝐷−
(0)(𝑘) ≡

⟨
𝜙−(𝑘)𝜙+(−𝑘)

⟩
0 =𝐷+

(0)(𝑘) . (4)
4
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Fig. 2. The one-loop diagrams for (a) the boson self-energy and (b) the fermion self-energy. Curves with arrows represent the bare fermion propagator 𝐺(0), whereas 
the wiggly lines represent the dressed bosonic propagator 𝐷(1).

3.1. One-loop boson self-energy

The one-loop boson self-energy [cf. Fig. 2(a)] is defined by

Π(𝑘) = − 𝑒2 𝜇𝑥𝑒

4
× 2∫

𝑞

Tr
[
𝛾0𝐺(0)(𝑘) 𝛾0𝐺𝑇

(0)(𝑘− 𝑞)
]
. (5)

Using the commutation relations between the gamma-matrices, and the identities 𝛾𝑇
𝑑−1 = −𝛾0 𝛾𝑑−1 𝛾0 and Γ𝑇 = −𝛾0 Γ 𝛾0, we get

Π(𝑘) = 𝑒2 𝜇𝑥𝑒 ∫
𝑞

𝐐 ⋅ (𝐐−𝐊) − 𝛿𝑞 𝛿𝑘−𝑞(
𝐐2 + 𝛿2

𝑞

)[
(𝐐−𝐊)2 + 𝛿2

𝑘−𝑞

] . (6)

Noting that 𝛿𝑘−𝑞 = 𝑘𝑑−1 + 𝑞𝑑−1 + (𝑘𝑑 − 𝑞𝑑 )2, we first shift 𝑞𝑑−1 → 𝑞𝑑−1 − 𝑞2
𝑑
, and then use the Feynman parametrization to obtain

Π(𝑘) = 𝑒2 𝜇𝑥𝑒 ∫
𝑞

1

∫
0

𝑑𝑡
|𝐐|2 − 𝑡 (1 − 𝑡) |𝐊|2 − 𝑒𝑘𝑞 𝑞𝑑−1 + 𝑞2

𝑑−1[|𝐐|2 + 𝑡 (1 − 𝑡) |𝐊|2 + 𝑡 𝑒2
𝑘𝑞

+ 𝑞2
𝑑−1 − 2 𝑡 𝑒𝑘𝑞 𝑞𝑑−1

]2 (
where 𝑒𝑘𝑞 = 𝑘𝑑−1 + 𝑘2

𝑑
− 2𝑘𝑑 𝑞𝑑 + 2 𝑞2

𝑑

)

= 𝑒2 𝜇𝑥𝑒 ∫ 𝑑𝑑−1|𝐐|𝑑𝑞𝑑 1

∫
0

𝑑𝑡
|𝐐|𝑑

2𝑑 𝜋
𝑑+1
2 Γ

(
𝑑−1
2

)[|𝐐|2 + 𝑡 (1 − 𝑡)
(
𝑒2
𝑘𝑞

+ |𝐊|2)]3∕2

= 𝑒2 𝜇𝑥𝑒 ∫ 𝑑𝑞𝑑

21−2𝑑 csc
( 𝑑 𝜋

2

)(
𝑒2
𝑘𝑞

+ |𝐊|2) 𝑑−2
2

𝜋
𝑑−1
2 Γ

(
𝑑−1
2

) . (7)

Changing variables to 𝑢 =
√
2 𝑞𝑑 − 𝑘𝑑∕

√
2 with the Jacobian factor 1∕

√
2, we get

Π(𝑘) = 𝑒2 𝜇𝑥𝑒

∞

∫
0

𝑑𝑢

2
3
2 −2𝑑 csc

( 𝑑 𝜋

2

) [(
𝑢2 + 𝑒𝑘

)2 + |𝐊|2] 𝑑−2
2

𝜋
𝑑−1
2 Γ

(
𝑑−1
2

) . (8)

Since the bare susceptibility at zero temperature diverges at the nesting vector 𝐐, the well-defined self-energy is given by subtracting 
off the singular contribution for this momentum, which translates to

Π̃(𝑘) = Π(𝑘) − Π(0) =
2

3
2 −2𝑑 csc

( 𝑑 𝜋

2

)
𝑒2 𝜇𝑥𝑒

𝜋
𝑑−1
2 Γ

(
𝑑−1
2

) 𝐼Π(𝑘,𝑑) , (9)

where (after changing variables as 𝑧 = 𝑢2 + 𝑒𝑘)

𝐼Π(𝑘,𝑑) ≡
∞

𝑑𝑧

(
𝑧− 𝑒𝑘

)2−𝑑 − [
𝑧2 + |𝐊|2] 2−𝑑

2

2−𝑑
5

∫
𝑒𝑘 2

√
𝑧− 𝑒𝑘

[
𝑧2 + |𝐊|2] 2

(
𝑧− 𝑒𝑘

)2−𝑑
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Γ(𝑑−1)
(
−𝑒𝑘

)𝑑− 3
2

2

⎡⎢⎢⎣
Γ
(
3−𝑑
2

)
2𝐹1

(
3−2𝑑
4 ,

5−2𝑑
4 ; 3−𝑑2 ;− |𝐊|2

𝑒𝑘
2

)
√
𝜋

+ 2𝐹1
(
1
2 ,1;𝑑;1

)
Γ(𝑑)

⎤⎥⎥⎦
+

|𝐊|𝑑 3𝐹2
(
3
4 ,1,

5
4 ;

3
2 ,

𝑑

2 +1;−|𝐊|2∕𝑒𝑘2)
4𝑑

(
−𝑒𝑘

)3∕2 +
𝜋3∕2 |𝐊|𝑑−1 sec( 𝑑 𝜋

2

)
2𝐹1

(
1
4 ,

3
4 ;

𝑑+1
2 ;−|𝐊|2∕𝑒2

𝑘

)
4
√
−𝑒𝑘 Γ

(
2−𝑑
2

)
Γ
(
𝑑+1
2

)
+ |𝐊|𝑑−2√−𝑒𝑘 3𝐹2

(
1
2 ,1,1 −

𝑑

2 ;
3
4 ,

5
4 ;−

𝑒2
𝑘|𝐊|2
)
+

(
−𝑒𝑘

)𝑑− 3
2

3−2𝑑 for 𝑒𝑘 < 0

√
𝜋 𝑒

𝑑− 3
2

𝑘
Γ
(
3−𝑑
2

)
2𝐹1

(
3−2𝑑
4 ,

5−2𝑑
4 ; 3−𝑑2 ;−|𝐊|2∕𝑒𝑘2)

2Γ(2−𝑑) for 𝑒𝑘 > 0 .

(10)

Note that the zeroes coming from 1∕Γ
( 2−𝑑

2

)
and 1∕Γ(2 − 𝑑) at 𝑑 = 2 are cancelled by the factor csc

( 𝑑 𝜋

2

)
present in Eq. (9).

The leading order terms obtained in the limit |𝐊|2∕𝑒2
𝑘
≪ 1 are found to be:

𝐼Π(𝑘,𝑑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Γ(𝑑−1) (−𝑒𝑘)
𝑑− 3

2

2

[
2𝐹1

(
1
2 ,1;𝑑;1

)
Γ(𝑑) +

Γ
(
3
2 −𝑑

)
√
𝜋

+
√
𝜋

Γ
(
𝑑− 1

2

)
]
+ (−𝑒𝑘)

𝑑− 3
2

3−2𝑑 +
𝜋3∕2 |𝐊|𝑑−1 sec( 𝑑 𝜋

2

)
2
√
−𝑒𝑘 Γ

(
2−𝑑
2

)
Γ
(
𝑑+1
2

) +( |𝐊|𝑑
(−𝑒𝑘)3∕2

)
for 𝑒𝑘 < 0

√
𝜋 Γ

(
3
2 −𝑑

)
2Γ(2−𝑑) 𝑒

3
2 −𝑑
𝑘

+
√
𝜋 Γ

(
7
2 −𝑑

)|𝐊|2
4 (𝑑−3)Γ(2−𝑑) 𝑒

7−2𝑑
2

𝑘

+
( |𝐊|4

𝑒
11∕2−𝑑
𝑘

)
for 𝑒𝑘 > 0 .

(11)

Finally, expanding in 𝜖 for 𝑑 = 5∕2 − 𝜖, we get

⎡⎢⎢⎢⎣𝜇
𝑥𝑒

2
3
2 −2𝑑 csc

( 𝑑 𝜋

2

)
𝜋

𝑑−1
2 Γ

(
𝑑−1
2

) × 𝐼Π(𝑘,𝑑)
⎤⎥⎥⎥⎦
|||||𝑑=5∕2−𝜖

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−
𝑒𝑘

(
𝜇|𝑒𝑘|

)𝜖
32𝜋3∕4 Γ(3∕4) 𝜖

− 𝜋−2 ln(32𝜋)+2 𝛾𝐸+4

128𝜋3∕4 Γ
(
3
4

) 𝑒𝑘

(
𝜇|𝑒𝑘|
)𝜖

−
𝜋3∕4 |𝐊| 32√|𝑒𝑘|

(
𝜇|𝐊| )𝜖

32
√
2Γ2(3∕4)Γ(7∕4)

+ (𝜖) for 𝑒𝑘 < 0

−
𝑒𝑘

(
𝜇

𝑒𝑘

)𝜖
32𝜋3∕4 Γ(3∕4) 𝜖

− 3𝜋+2 ln(32𝜋)−2 𝛾𝐸 −4
128𝜋3∕4 Γ(3∕4)

𝑒𝑘

(
𝜇

𝑒𝑘

)𝜖

−
|𝐊|2
𝑒𝑘

(
𝜇

𝑒𝑘

)𝜖
32𝜋3∕4 Γ(3∕4)

+ (𝜖) for 𝑒𝑘 > 0 ,

(12)

where 𝛾𝐸 is the Euler–Mascheroni constant. It is important to note here that the loop integral has an upper critical dimension at 
𝑑 = 3∕2 and, as a result, it shows a pole in 𝜖 also at 𝑑 = 5∕2 − 𝜖. As such, these terms in the one-loop corrected action will be 
irrelevant, which is reflected by the that they have a scaling dimension equal to (1 − 𝜖) at 𝑑 = 5∕2 − 𝜖.

From our analysis above, we conclude that the self-energy correction in Eq. (9) is given by

Π̃(𝑘) = −𝑒2
[

1
32𝜋3∕4 Γ (3∕4) 𝜖

+ 𝑎

]
𝑒𝑘 −

𝑒2 𝜇𝑥𝑒 𝑏 |𝐊|𝑑−1√|𝑒𝑘| Θ(−𝑒𝑘) −
𝑒2 𝑐 |𝐊|2|𝑒𝑘|7∕2−𝑑 Θ(𝑒𝑘) , (13)

where

𝑎 =
𝜋 − 2 ln(32𝜋) + 2 𝛾𝐸 + 4

128𝜋3∕4 Γ
(
3
4

) Θ(−𝑒𝑘) +
3𝜋 + 2 ln(32𝜋) − 2 𝛾𝐸 − 4

128𝜋3∕4 Γ (3∕4)
Θ(𝑒𝑘) ,

𝑏 = 𝜋3∕4

32
√
2 Γ2(3∕4)Γ (7∕4)

, 𝑐 = 1
32𝜋3∕4 Γ (3∕4)

. (14)

We note that the bare boson propagators 𝐷± are still independent of 𝐊, the loop integrations involving it are ill-defined unless 
one resums a series of diagrams that provides a nontrivial dispersion along these frequency and momentum components. Hence, in all 
loop calculations involving the boson propagators, we include the lowest order fine correction ΠLD(𝑘) from the one-loop self-energy, √
6

which is proportional to |𝐊|𝑑−1∕ |𝑒𝑘|. Therefore, both for the 𝜙+(𝑘) and 𝜙−(𝑘) bosonic fields, we use the dressed propagator
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𝐷(1)(𝑘) =
1[

𝐷+
(0)(𝑘)

]−1
− ΠLD(𝑘)

= 1

𝑘2
𝑑
+ 𝑎̃ 𝑒𝑘 +

𝑏 𝑒2 𝜇𝑥𝑒 |𝐊|𝑑−1 Θ(−𝑒𝑘)√|𝑒𝑘|
, (15)

which is equivalent to rearranging the perturbative loop-expansions such that the one-loop finite part of the boson self-energy, 
dependent on 𝐊, is included at the zeroth order. We would like to emphasize that ΠLD(𝑘) is the so-called Landau-damped term
which leads to the signature sgn(𝑘0)|𝑘0|2∕3-dependence of the fermion self-energy, characterizing the non-Fermi liquid behaviour in 
various quantum critical systems [2,19–21,25,52,53,77]. The Landau-damped part also plays the most significant role in inducing 
unconventional superconductivity in this kind of non-Fermi liquid systems [23,24,48,49,79].

3.2. One-loop fermion self-energy

The fermion self-energy [cf. Fig. 2(b)] is given by the integral

Σ(𝑘) = 𝑒2 𝜇𝑥𝑒 ∫
𝑞

𝛾0𝐺
𝑇
(0)(𝑞 − 𝑘) 𝛾0𝐷(1)(𝑞) = 𝑖Σ1(𝑘)𝚪 ⋅𝐊+ 𝑖Σ2(𝑘) 𝛾𝑑−1 , (16)

where

Σ1(𝑘) = − 𝑒2 𝜇𝑥𝑒|𝐊|2 ∫
𝑞

𝐊 ⋅ (𝐐−𝐊)
(𝐐−𝐊)2 + 𝛿2

𝑞−𝑘

𝐷(1)(𝑞) (17)

and

Σ2(𝑘) = 𝑒2 𝜇𝑥𝑒 ∫
𝑞

𝛿𝑞−𝑘

(𝐐−𝐊)2 + 𝛿2
𝑞−𝑘

𝐷(1)(𝑞) . (18)

The steps to compute these two parts have been explained in the next two subsections, which can be skipped if the reader is not 
interested in the tedious intermediate steps. For their benefit, we state here the final result. Setting 𝑑 = 𝑑𝑐 − 𝜖, we get the singular 
part to be

Σ(𝑘) = −
𝑒4∕3 1

(2 − 𝑎̃)2∕3 𝜖
𝑖 (𝚪 ⋅𝐊) +(𝜖0), 1 =

√
2 Γ

( 5
4

)
3
√
3𝜋7∕4 𝑏1∕3

, (19)

where the divergence is parametrized by a pole at 𝜖 = 0.

3.2.1. Computation of 𝚪-dependent part

The leading order dependence of Σ1(𝑘) on 𝐊 can be extracted by setting the external momentum components 𝑘𝑑 and 𝑘𝑑−1 to 
zero. Hence, we will evaluate

Σ1(𝐊,0,0) = 𝑒2 𝜇𝑥𝑒|𝐊|2 ∫
𝑞

𝐊 ⋅ (𝐊−𝐐)
(𝐐−𝐊)2 + 𝛿2

𝑞

× 1
𝑞2
𝑑
+ 𝑎̃ 𝑒𝑞 + 𝑒2 𝜇𝑥𝑒 𝑏 |𝐐|𝑑−1 Θ(−𝑒𝑞)∕√|𝑒𝑞| . (20)

Changing the description to 𝑞𝑑 and 𝑒𝑞 as integration variables, and dividing into the parts 𝑒𝑞 < 0 and 𝑒𝑞 > 0 as Σ1(𝐊,0,0) = 𝐼1 + 𝐼2, 
we have

𝐼1 =
𝑒2 𝜇𝑥𝑒|𝐊|2 ∫

𝑒𝑞<0

𝑑𝑑−1𝐐𝑑𝑞𝑑 𝑑𝑒𝑞

(2𝜋)𝑑+1
−𝐊 ⋅ (𝐐−𝐊)

(𝐐−𝐊)2 +
(
𝑒𝑞 + 𝑞2

𝑑
∕2

)2 1
𝑞2
𝑑
+ 𝑎̃ 𝑒𝑞 + 𝑒2 𝜇𝑥𝑒 𝑏 |𝐐|𝑑−1∕√|𝑒𝑞|

= 𝑒2 𝜇𝑥𝑒|𝐊|2
∞

∫
0

𝑑𝑢√
𝑢∕2

∞

∫
0

𝑑𝑒𝑞

∞

∫
−∞

𝑑𝑑−1𝐐
(2𝜋)𝑑+1

𝐊2 −𝐊 ⋅𝐐
(𝐐−𝐊)2 +

(
𝑢− 𝑒𝑞

)2 1
2𝑢− 𝑎̃ 𝑒𝑞 + 𝑒2 𝜇𝑥𝑒 𝑏 |𝐐|𝑑−1∕√𝑒𝑞

[
where 2𝑢 = 𝑞2

𝑑

]
, (21)

and

𝐼2 =
𝑒2 𝜇𝑥𝑒|𝐊|2 ∫

𝑒𝑞>0

𝑑𝑑−1𝐐𝑑𝑞𝑑 𝑑𝑒𝑞

(2𝜋)𝑑+1
−𝐊 ⋅ (𝐐−𝐊)

(𝐐−𝐊)2 +
(
𝑒𝑞 + 𝑞2

𝑑
∕2

)2 1
𝑞2
𝑑
+ 𝑎̃ 𝑒𝑞

= 𝑒2 𝜇𝑥𝑒|𝐊|2 ∫
𝑒𝑞>0

𝑑𝑑−1𝐐𝑑𝑞𝑑 𝑑𝑒𝑞

(2𝜋)𝑑+1
−𝐊 ⋅𝐐

𝐐2 +
(
𝑒𝑞 + 𝑞2

𝑑
∕2

)2 1
𝑞2
𝑑
+ 𝑎̃ 𝑒𝑞

= 0 . (22)

Since rhe integral 𝐼1 cannot be evaluated exactly, we need to make some reasonable approximations to extract the leading 
order corrections. We note that the first factor of the integrand tells us that the dominant contribution is concentrated around the 
7

region |𝐐| ∼ |𝐊| and 𝑢 ∼ 𝑒𝑞 . As for the second factor, the dominant contribution comes from 𝑒𝑞 ∼ |𝐐|2 (𝑑−1)∕3 ∼ |𝐊|2 (𝑑−1)∕3. Since 
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|𝐊|2 (𝑑−1)∕3 ≫ |𝐊| for small |𝐊| close to zero and 2 (𝑑 −1)∕3 < 1, we can substitute 𝑢 ∼ 𝑒𝑞 in the 
√
𝑢 factor in the overall denominator 

and the 2 𝑢 term in the denominator of the second factor, and extend the lower limit of the integral over 𝑢 to −∞, leading to

𝐼1 ≃
𝑒2 𝜇𝑥𝑒|𝐊|2

∞

∫
−∞

𝑑𝑑−1𝐐𝑑𝑢

(2𝜋)𝑑+1 ∫
𝑒𝑞>0

𝑑𝑒𝑞√
𝑒𝑞∕2

𝐊 ⋅ (𝐊−𝐐)
(𝐐−𝐊)2 + 𝑢2

1
(2 − 𝑎̃) 𝑒𝑞 + 𝑒2 𝜇𝑥𝑒 𝑏 |𝐐|𝑑−1∕√𝑒𝑞

[
shifting 𝑢→ 𝑢+ 𝑒𝑞

]

= 𝑒2 𝜇𝑥𝑒|𝐊|2
∞

∫
−∞

𝑑𝑑−1𝐐𝑑𝑢

(2𝜋)𝑑+1 ∫
𝑒𝑞>0

𝑑𝑒𝑞
𝐊 ⋅ (𝐊−𝐐)
(𝐐−𝐊)2 + 𝑢2

√
2

(2 − 𝑎̃) 𝑒3∕2𝑞 + 𝑒2 𝜇𝑥𝑒 𝑏 |𝐐|𝑑−1
= −

𝑒4∕3 Γ
( 5−2𝑑

6

)
Γ
( 𝑑

2

)
Γ
( 𝑑+2

6

)
2

4𝑑−1
6 𝜋

𝑑+1
2 × 3

√
3 (2 − 𝑎̃)2∕3 𝑏1∕3 Γ

( 5𝑑−2
6

) ( 𝜇|𝐊|
) 2𝑥𝑒

3
. (23)

The integral blows up at 𝑑 = 5∕2, which thus gives us the value of the upper critical dimension 𝑑𝑐 . The fermion-boson coupling 𝑒
is irrelevant for 𝑑 > 𝑑𝑐 , relevant for 𝑑 < 𝑑𝑐 , and marginal for 𝑑 = 𝑑𝑐 . This allows us to access the strongly interacting non-Fermi 
liquid state perturbatively, in a controlled approximation, using 𝑑 = 5∕2 − 𝜖, where 𝜖 serves as the perturbative/small parameter. 
In our dimensional regularization scheme, the divergence appears as ∼ 𝜖−1, with the Γ

( 5−2𝑑
6

)
factor having a pole at 𝑑 = 𝑑𝑐 . We 

also note that this term produces the behaviour of the fermion self-energy as ∼ sgn(𝑘0) |𝑘0|2∕3 at 𝑑 = 2, which matches with the 
uncontrolled RPA result [75,76]. We would like to point out that the correct 𝑘0-dependence of Σ could be captured only because we 
have included the crucial Landau damping term in the dressed bosonic propagator 𝐷(1). The |𝑘0|2∕3-scaling was missed in Ref. [77]

due to the non-inclusion of ΠLD.

3.2.2. Computation of 𝛾𝑑−1-dependent part

The leading order dependence of Σ2(𝑘) on 𝑘𝑑 and 𝑘𝑑−1 can be extracted by setting 𝐊 = 0. Hence, we will evaluate

Σ2(𝟎, 𝑘𝑑 , 𝑘𝑑−1) = 𝑒2 𝜇𝑥𝑒 𝐼3 , 𝐼3 = ∫
𝑞

𝛿𝑞−𝑘

𝐐2 + 𝛿2
𝑞−𝑘

× 1
𝑞2
𝑑
+ 𝑎̃ 𝑒𝑞 + 𝑒2 𝜇𝑥𝑒 𝑏 |𝐐|𝑑−1 Θ(−𝑒𝑞)∕√|𝑒𝑞| , (24)

where 𝛿𝑞−𝑘 = 𝑞𝑑−1 − 𝑘𝑑−1 + 𝑘2
𝑑
+ 𝑞2

𝑑
− 2 𝑘𝑞 𝑞𝑑 . We note that the first factor of the integrand sets the condition that the dominant 

contributions must come when |𝐐| ∼ 0. This immediately tells us that, in the denominator of the second factor, the term proportional 
to 𝑏 is subleading. Hence, to extract the leading order contribution, we can set it to zero. In the appendix, we show that the subleading 
order term turns out to be proportional to 𝑏1∕3 and is not singular at 𝑑 = 𝑑𝑐 . Therefore, we calculate the approximate integral

𝐼3 ≃ ∫
𝑞

𝛿𝑞−𝑘

𝐐2 + 𝛿2
𝑞−𝑘

× 1
𝑞2
𝑑
+ 𝑎̃ 𝑒𝑞

= ∫
𝑑𝑑−1𝐐𝑑𝑞𝑑 𝑑𝑢

(2𝜋)𝑑+1
𝑢− 𝑘𝑑−1[|𝐐|2 + (
𝑢− 𝑘𝑑−1

)2] (2 − 𝑎̃)
× 2

𝑞2
𝑑
+ 2 𝑎̃

2−𝑎̃

(
𝑢− 2𝑘𝑑 𝑞𝑑 − 𝑘2

𝑑

) [where 𝑢 = 𝛿𝑞 + 2𝑘𝑑 𝑞𝑑 + 𝑘2
𝑑
] . (25)

Using the identity

∞

∫
−∞

𝑑𝑤

𝑤2 +𝐴
=

{
0 for  < 0
𝜋√ for  > 0 , (26)

for the Cauchy principal value of the integral, the 𝑞𝑑 -integral is performed first to obtain the form

𝐼3 = ∫
𝑑𝑑−1𝐐𝑑𝑢

(2𝜋)𝑑
𝑢− 𝑘𝑑−1[|𝐐|2 + (

𝑢− 𝑘𝑑−1
)2] ×

Θ
(
𝑢−

(2+𝑎̃)𝑘2
𝑑

2−𝑎̃

)
(2 − 𝑎̃)

√
𝑢−

(𝑎̃+2)𝑘2
𝑑

2−𝑎̃

= ∫
𝑑𝑑−1𝐐𝑑𝑢

(2𝜋)𝑑

(2+𝑎̃)𝑘2
𝑑

2−𝑎̃ + 𝑢̃− 𝑘𝑑−1[|𝐐|2 +(
(𝑎̃+2)𝑘2

𝑑

2−𝑎̃ + 𝑢̃− 𝑘𝑑−1

)2
] × Θ(𝑢̃)

(2 − 𝑎̃)
√
𝑢̃

[where 𝑢̃ = 𝑢−
(2 + 𝑎̃) 𝑘2

𝑑

2 − 𝑎̃
]

=

∞

∫
𝑑|𝐐|

𝑑−1
1√ ( 𝑑−1 )

⎡⎢⎢ 1√ ( ) + 1√ ( )
⎤⎥⎥
8

0 𝜋 2 2𝑑 2 − 𝑎̃ Γ 2 |𝐐|2−𝑑 ⎢⎣ (2 + 𝑎̃) 𝑘2
𝑑
− (2 − 𝑎̃) 𝑘𝑑−1 + 𝑖 |𝐐| (2 + 𝑎̃) 𝑘2

𝑑
+ (2 − 𝑎̃) −𝑘𝑑−1 + 𝑖 |𝐐| ⎥⎦
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=
sin

( 𝜋 𝑑

2

)
Γ
( 3
2 − 𝑑

)
Γ
( 𝑑

2

)
2𝜋

𝑑+1
2 (2 − 𝑎̃)

[
−𝑒𝑘 +

(6 + 𝑎̃

2 − 𝑎̃

) 𝑘2
𝑑

2

]𝑑− 3
2

. (27)

The Γ
( 3
2 − 𝑑

)
has a pole at 𝑑 = 3∕2, which shows that this term has (1) a logarithmic divergence at 𝑑 = 3∕2, and (2) a linear 

divergence at 𝑑 = 5∕2, when we translate the divergences in the language of the Wilsonian cutoff Λ ∼ 𝜇. We need to treat this result 
carefully by remembering that, in the dimensional regularization procedure, UV divergences of all degrees show up as the poles of 
Γ-functions. The degree of divergence can be understood by using an explicit UV cut-off in the language of the Wilsonian RG, which 
is denoted here by Λ. Although this term will play an important role for analyzing UV-stable fixed points, it should be discarded here 
because we are considering the RG flows in the IR, and this term represents an IR-irrelevant operator for the theory in 𝑑 = 5∕2 − 𝜖.

Some more comments are in order. The situation above is similar to having a 𝜙6-term in a 𝜙4 scalar field theory in (3 + 1)-
dimensions. A simple power counting of momenta arising in loop diagrams shows that adding a 𝜙6-interaction vertex to a free 
scalar field theory gives an upper critical dimension of 3, while addition of a 𝜙4-vertex has the upper critical dimension value of 4. 
Therefore, adding a 𝜙6-vertex to the 𝜙4 theory in four spacetime dimensions makes the theory nonrenormalizable.

The above statements can also be quantified in an alternate way. Let us expand the expression in 𝜖, where 𝑑 = 3∕2 − 𝜖. Then we 
have

Σ2
|||𝑑=3∕2−𝜖 =

𝑒2
[
−𝑒𝑘 +

(
6+𝑎̃
2−𝑎̃

)
𝑘2
𝑑

2

]
√
2𝜋5∕4 (2 − 𝑎̃) 𝜖

⎡⎢⎢⎢⎣
𝜇

−𝑒𝑘 +
(
6+𝑎̃
2−𝑎̃

)
𝑘2
𝑑

2

⎤⎥⎥⎥⎦
1+𝜖

+(𝜖0), (28)

which indicates that the term has a linear UV divergence at 𝑑 = 5∕2. Another crucial observation is that 𝐼3 vanishes identically at 
𝑑 = 2. All these observations together dictate that there will be no contribution to the RG flows in the IR from this term and, hence, 
should not be included in the counterterms. Consequently, the flattening of the Fermi surface at the hot-spots, found in the RPA 
calculations [76], does not show up in our one-loop results.

3.3. One-loop vertex correction

It is not possible to get a one-loop vertex diagram and, hence, the corresponding correction is zero.

4. Renormalization group flows under minimal subtraction scheme

Eq. (3) is supposed to be the physical action, defined at an energy scale 𝜇 ∼ Λ, consisting of the fundamental Lagrangian with 
non-divergent quantities. However, we have seen that the loop integrals lead to divergent terms and, in order to cure it, we employ 
the renormalization procedure, using dimensional regularization as the regularization method. In our dimensional regularization 
formalism, the UV-divergent terms are the ones arising in the 𝜖 → 0 limit. We use the minimal subtraction (MS) renormalization 
scheme to control the UV divergences [80,81], which involves cancelling the divergent parts of the loop-contributions via adding ap-

propriate counterterms. More precisely, we adopt the modified minimal subtraction (MS) scheme where, in addition to the divergent 
term, we absorb the universal term proportional to 𝜖0 (that always accompanies the term with the 1∕𝜖 pole) into the corresponding 
counterterm.

The action, consisting of the counterterms to absorb the singular terms, takes the form:

𝑆𝐶𝑇 =∫
𝑘

Ψ̄(𝑘) 𝑖
[
𝐴1 𝚪 ⋅𝐊+ 𝛾𝑑−1

(
𝐴2 𝑒𝑘 +𝐴3

𝑘2
𝑑

2

)]
Ψ(𝑘) + ∫

𝑘

(
𝐴4 𝑘

2
𝑑
+𝐴5 𝑎̃ 𝑒𝑘

)
𝜙+(𝑘)𝜙−(−𝑘)

− 𝑖 𝑒𝜇𝑥𝑒∕2

2 ∫
𝑘, 𝑞

𝐴6

[
𝜙+(𝑞) Ψ̄(𝑘+ 𝑞) 𝛾0 Ψ̄𝑇 (−𝑘) + 𝜙−(−𝑞)Ψ𝑇 (𝑞 − 𝑘) 𝛾0 Ψ(𝑘)

]
. (29)

The counterterm-factors are given by the power series

𝐴𝜁 =
∞∑
𝑛=1

𝑍
(𝑛)
𝜁

𝜖𝑛
with 𝜁 ∈ [1,6] , (30)

such that they cancel the divergent 1∕𝜖𝑛 contributions from the Feynman diagrams. Due to the (𝑑 − 1)-dimensional rotational 
invariance in the space perpendicular to the Fermi surface, each term in 𝚪 ⋅𝐊 is renormalized in the same way.

Subtracting 𝑆𝐶𝑇 from the so-called bare action 𝑆bare, we obtain the renormalized action, which is the physical effective action 
of the theory, re-written in terms of non-divergent quantum parameters. While the bare parameters can be divergent, the physical 
observables are the renormalized coupling constants, which are determined by the RG equations. The RG flows describe the evolution 
of the bare couplings as functions of the floating energy scale 𝜇 𝑒−𝑙 (i.e., with respect to an increasing logarithmic length scale 𝑙). To 
9

achieve this objective, we first define the bare (or fundamental) action
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𝑆bare =∫
𝑘𝐵

Ψ̄𝐵(𝑘𝐵) 𝑖

[
𝚪 ⋅𝐊𝐵 + 𝛾𝑑−1

{
𝑒𝐵
𝑘
+

(
𝑘𝐵

)2
2

}]
Ψ𝐵(𝑘𝐵) + ∫

𝑘𝐵

[(
𝑘𝐵
𝑑

)2 + 𝛼𝐵 𝑒𝐵
𝑘

]
𝜙𝐵
+(𝑘

𝐵) 𝜙𝐵
−(−𝑘

𝐵)

− 𝑖 𝑒𝐵

2 ∫
𝑘𝐵, 𝑞𝐵

[
𝜙𝐵
+(𝑞

𝐵) Ψ̄𝐵(𝑘𝐵 + 𝑞𝐵) 𝛾0
(
Ψ̄𝐵(−𝑘𝐵)

)𝑇 + 𝜙𝐵
−(−𝑞

𝐵)
(
Ψ𝐵(𝑞𝐵 − 𝑘𝐵)

)𝑇
𝛾0 Ψ𝐵(𝑘𝐵)

]
, (31)

consisting of the bare quantities, where the superscript “𝐵” has been used to denote the bare fields, couplings, frequency, and mo-

menta. We now relate the bare quantities to the so-called renormalized quantities (without the superscript “𝐵”) via the multiplicative 
𝑍𝜁 -factors such that

𝑆bare =𝑆 +𝑆𝐶𝑇 , 𝑍𝜁 = 1 +𝐴𝜁 , (32)

𝐊𝐵 =
𝑍1
𝑍3

𝐊 , 𝑒𝐵
𝑘
=

𝑍2
𝑍3

𝑒𝑘 , 𝑘𝐵
𝑑
= 𝑘𝑑 , Ψ𝐵(𝑘𝐵) =𝑍

1∕2
Ψ Ψ(𝑘) , 𝜙𝐵

±(𝑘
𝐵) =𝑍

1∕2
𝜙

𝜙± , (33)

and

𝑍Ψ =𝑍1

(
𝑍1
𝑍3

)−𝑑 (
𝑍2
𝑍3

)−1
, 𝑍𝜙 =𝑍4

(
𝑍1
𝑍3

)1−𝑑 (
𝑍2
𝑍3

)−1
, 𝑎̃𝐵 =𝑍5

(
𝑍1
𝑍3

)1−𝑑 (
𝑍2
𝑍3

)−2
,

𝑒𝐵 =𝑍𝑒 𝑒𝜇
𝜖

2 , 𝑍𝑒 =
𝑍6

(
𝑍1
𝑍3

)1− 𝑑

2
(

𝑍2
𝑍3

)−1∕2

√
𝑍1𝑍4

. (34)

Observing that there exists a freedom to change the renormalization of the fields and the renormalization of momenta without 
affecting the action, we have exploited it by requiring 𝑘𝐵

𝑑
= 𝑘𝑑 , which is equivalent to measuring the scaling dimensions of all the 

other quantities relative to the scaling dimension of 𝑘𝑑 . 𝑆 now represents the renormalized action (also known as the Wilsonian 
effective action) because it consists of the renormalized quantities. Basically, we have written the fundamental action of our theory 
in two different ways [82], which allows us to subtract off the divergent parts (represented by 𝑆𝐶𝑇 ).

4.1. RG flow equations from one-loop results

At one-loop order, the divergent contributions are obtained from Eqs. (13) and (19). These lead to

𝑍1 = 1 −
𝑒4∕3 1

(2 − 𝑎̃)2∕3 𝜖
, 𝑍2 = 1 , 𝑍3 = 1 , 𝑍4 = 1 , 𝑍5 = 1 −

𝑒2 2
𝑎̃ 𝜖

, 𝑍6 = 1 ,

𝑏 = 𝜋3∕4

32
√
2 Γ2

(
3∕4

)
Γ (7∕4)

, 1 =

√
2 Γ

( 5
4

)
3
√
3𝜋7∕4 𝑏1∕3

, 2 = 1
32𝜋3∕4 Γ (3∕4)

. (35)

To this leading order correction, we find that 𝑍2 =𝑍3, and they do not get any correction from the loop integrals.

Because 𝑍2 =𝑍3, we define a single dynamical critical exponent for the fermions as

𝑧 = 1 +
𝜕 ln

(𝑍1
𝑍2

)
𝜕 ln𝜇

= 1 +
𝜕 ln

(𝑍1
𝑍3

)
𝜕 ln𝜇

. (36)

This applies to our one-loop level calculations where the 𝛿𝑘-part as a whole is not renormalized. Furthermore, the anomalous 
dimensions for the fermions and the bosons are given by

𝜂𝜓 = 1
2
𝜕 ln𝑍𝜓

𝜕 ln𝜇
and 𝜂𝜙 = 1

2
𝜕 ln𝑍𝜙

𝜕 ln𝜇
, (37)

respectively. We also define the beta functions for the two coupling constants as

𝛽𝑒 =
𝑑𝑒

𝑑 ln𝜇
and 𝛽𝑎 =

𝑑𝑎̃

𝑑 ln𝜇
. (38)

The sole purpose of the introduction of the ad hoc mass scale 𝜇 is to regularize the theory, thus eliminating the infinities emerging 
from the loop integrals of Feynman diagrams. However, since physical quantities must be independent of 𝜇, as 𝜇 is not really a 
parameter of the fundamental theory, the bare parameters must be independent of it as well. Imposing this condition, as well as the 
requirement that the regular (i.e., non-singular) parts of the final solutions are of the forms

𝑧 = 𝑧(0) , 𝜂𝜓 = 𝜂(0)
𝜓

+ 𝜂(1)
𝜓

𝜖 , 𝜂𝜙 = 𝜂
(0)
𝜙

+ 𝜂
(1)
𝜙

𝜖 , 𝛽𝑒 = 𝛽(0)
𝑒

+ 𝛽(1)
𝑒

𝜖 , 𝛽𝑎 = 𝛽(0)
𝑎

+ 𝛽(1)
𝑎

𝜖 , (39)

in the limit 𝜖 → 0, we get the following differential equations:

𝜕𝑍
(1)

𝜕𝑍
(1)
10

𝑧 = 1 + 𝛽(1)
𝑎

1
𝜕𝑎̃

+ 𝛽(1)
𝑒

1
𝜕𝑒

,
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Fig. 3. The fixed-point values of 𝑒, 𝑎̃, 𝑧, and 𝜂𝜓 (= 𝜂𝜙), computed numerically from the zeroes of the two beta functions, plotted as functions of 𝜖 ∈ (0,1∕2].

𝜂𝜓 = 1
4

(
5 − 5𝑧+ 2

𝜕𝑍
(1)
1

𝜕𝑎̃
𝛽(1)
𝑎

+ 2
𝜕𝑍

(1)
1

𝜕𝑒
𝛽(1)
𝑒

)
+ (𝑧− 1) 𝜖

2
, 𝜂𝜙 = 3 − 3𝑧

4
+ (𝑧− 1) 𝜖

2
,

4𝛽(0)𝑒

𝑒
= 2

𝜕𝑍
(1)
1

𝜕𝑎̃
𝛽(1)
𝑎

− 𝑒𝑧
𝜕𝑍

(1)
1

𝜕𝑒
+ 𝑧− 1 , 𝛽(1)

𝑒
= − 𝑒𝑧

2
,

2𝛽(0)𝑎

𝑎̃
= (𝑧− 1)

(
3 + 2 𝑎̃

𝜕𝑍
(1)
5

𝜕𝑎̃

)
− 2

𝜕𝑍
(1)
5

𝜕𝑒
𝛽(1)
𝑒

, 𝛽(1)
𝑎

= −𝑎̃ (𝑧− 1) . (40)

The above set of equations have been obtained by (1) demanding that 𝑑

𝑑 ln𝜇 (bare quantity) = 0; (2) plugging in the values from 
Eqs. (35) and (39); (3) expanding in powers of 𝜖; and (4) matching the coefficients of the regular powers of 𝜖 in the resulting 
equations.

Solving the equations, we get

𝛽
(0)
𝑒

𝑒
=

31 𝜒 𝑒

2
(
3𝜒5∕3 − 41𝑒

) ,
𝛽
(1)
𝑒

𝑒
=

21 𝑎̃ 𝑒− 3𝜒5∕3

2
(
3𝜒5∕3 − 41𝑒

) , (41)

𝛽
(0)
𝑎

𝑒
=

31 𝜒 𝑎̃

3𝜒5∕3 − 41 𝑒
−2

√
𝑒 ,

𝛽
(1)
𝑎

𝑒
= −

21 𝜒 𝑎̃

3𝜒5∕3 − 41 𝑒
, (42)

𝑧 = 1 +
21 𝜒 𝑒

3𝜒5∕3 − 41 𝑒
, 𝜂𝜓 = 𝜂𝜙 = −

1 𝜒 𝑒

2
(
3𝜒5∕3 − 41 𝑒

) , (43)

where

𝑒 = 𝑒4∕3 and 𝜒 = 2 − 𝑎̃ . (44)

Since we are interested in the behaviour at the IR energy scales, we determine the RG flows with respect to the logarithmic length 
scale 𝑙, which are given by the derivatives

𝑑𝑒

𝑑𝑙
≡ −𝛽𝑒 and

𝑑𝑎̃

𝑑𝑙
≡ −𝛽𝑎 , (45)
11

for the two coupling constants 𝑒 and 𝑎̃, respectively.
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Fig. 4. The RG flows in the 𝑒-𝑎̃ plane for two different values of 𝜖: (a) 𝜖 = 10−3 representing the regime around 𝑑 = 𝑑𝑐 and (b) 𝜖 = 1∕2 representing the regime around 
𝑑 = 2 (which is the actual/physical dimension of the theory). The red disc represents the IR-stable fixed point in each case. The contour-shading (with the values 
shown in the plot-legends) corresponds to the natural logarithm of the norm of the flow vector field {−𝑒1∕3 𝛽𝑒, −𝛽𝑎} plus (a) 17 and (b) 8, respectively.

4.2. Stable fixed points

The fixed points of the theory are obtained as the points where the two beta functions, viz. 𝛽𝑒 and 𝛽𝑎, go to zero simultaneously. 
The nomenclature originates from the fact that these are the equilibrium points of the differential equations describing the RG flows 
in the space of the two coupling constants, 𝑒 and 𝑎̃. Due to the complicated form of the beta functions, it is not feasible to obtain 
closed-form expressions for these fixed points. Hence, we find their values numerically for a given value of 𝜖. In order to determine 
the stability of a fixed point, one needs to figure out whether the flow lines (in the IR), given by the vector field with the components 
{−𝛽𝑒, −𝛽𝑎} in the 𝑒-𝑎̃ plane, are towards or away from it. Accordingly, they are classified as stable or unstable. The values of 𝑧, 𝜂𝜓 , 
and 𝜂𝜙 at the stable fixed points, as functions of 𝜖, are shown in Fig. 3. In the range 𝜖 ∈ (0, 1∕2], we find precisely one stable fixed 
point for each value of 𝜖. The stable nature of these fixed points has been illustrated by the RG flows for 𝜖 = 10−3 and 𝜖 = 1∕2 in 
Fig. 4, which is obvious from the fact that the RG flow trajectories in each subfigure converge towards the fixed point while flowing 
from a high value of the floating mass scale to lower and lower values.

Since 𝑍2 =𝑍3 = 1 at the one-loop order, we do not find any flattening of the Fermi surface at the hot-spots, unlike the interpre-

tation of Ref. [77], where the authors performed the RG using the pole of Σ2 at 𝑑 = 3∕2. However, as we have argued earlier, this 
does not contribute to the RG flows towards the IR. Furthermore, we would like to point out that both the fermionic and the bosonic 
anomalous dimensions remain equal, each taking a negative value (see the last panel of Fig. 3) in the range 𝜖 ∈ (0, 1∕2], unlike the 
results found in Ref. [77].

5. Discussions and outlook

In this paper, we have revisited the QFT of the quantum critical point emerging at the continuous phase transition from a normal 
metal phase to an ordered phase involving an incommensurate CDW modulation. In our one-loop computations, we have used a 
dressed boson propagator by including the Landau-damping correction ΠLD, which is instrumental in inducing the non-Fermi liquid 
behaviour with a characteristic scaling of sgn(𝑘0)|𝑘0|2∕3 for the fermion self-energy [19–21,52–54,83]. In Ref. [77], the authors 
computed the fermion self-energy Σ(𝑘) by assuming the ad hoc form of the boson-self energy Π̃(𝑞) to be ∝ −𝑞𝑑−1, which they 
argued is generated in RG due to symmetry arguments. However, a careful analysis shows that the RG procedure generates a term 
proportional to 𝑒𝑘 and, additionally, terms with Landau damping [cf. Eq. (13)]. As a consequence of not including the all-important 
Landau-damped term in the dressed bosonic propagator, they did not obtain any contribution in Σ(𝑘) proportional to 𝚪 ⋅ 𝐊 and, 
hence, missed the crucial sgn(𝑘0)|𝑘0|2∕3-dependence at 𝑑 = 2. They concluded that the correct frequency-dependence would show 
up at two-loop order. Furthermore, Halbinger et al. included the part proportional to 𝛾𝑑−1 in the one-loop fermion self-energy in the 
counterterms, which leads to their conclusion of the flattening of the Fermi surface at the hot-spots (as found in the RPA calculations 
of Ref. [76]). However, that term has a factor of Γ(3∕2 − 𝑑), which first blows up at 𝑑 = 3∕2 — hence, it should not contribute to 
the beta-functions for the flows towards IR, when 𝑑𝑐 is equal to 5∕2. Their integrals are actually somewhat similar to the scenario 
12

for our 𝐼3 calculation, and we have argued in detail why that term should not be included while computing the RG flows.
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While we have addressed here the behaviour of a system with two hot-spots in the incommensurate CDW setting in two spatial 
dimensions, it will be worthwhile to extend it to the case of three dimensions [84], where we expect a marginal Fermi liquid 
behaviour, analogous to the results found in Refs. [20,21,53]. Another interesting direction to investigate is the scenario when the 
Fermi surface harbours two pairs of hot-spots [85]. Last, but not the least, we would like to compute the nature of superconducting 
instabilities in the presence of these critical CDW bosons, utilizing the RG set-ups constructed in Refs. [23,59].
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Appendix A. Details of calculating the 𝒃-dependent part of 𝚺𝟐

In this appendix, we compute the 𝑏-dependent part of the fermion self-energy contribution from Σ2 [cf. Eqs. (16) and (18)]. 
Starting with Eq. (24), we define

Σ2(𝟎, 𝑘𝑑 , 𝑘𝑑−1) = 𝑒2 𝜇𝑥𝑒
(
𝐼4 + 𝐼5

)
, (46)

where

𝐼4 = ∫
𝑞, 𝑒𝑞<0

𝛿𝑞−𝑘

𝐐2 + 𝛿2
𝑞−𝑘

× 1
𝑞2
𝑑
+ 𝑎̃ 𝑒𝑞 + 𝑒2 𝜇𝑥𝑒 𝑏 |𝐐|𝑑−1∕√|𝑒𝑞| , (47)

and

𝐼5 = ∫
𝑞, 𝑒𝑞>0

𝛿𝑞−𝑘

𝐐2 + 𝛿2
𝑞−𝑘

× 1
𝑞2
𝑑
+ 𝑎̃ 𝑒𝑞

. (48)

We note that 𝛿𝑞−𝑘 = 𝑒𝑞 + 𝑒−𝑘 + 𝑘2
𝑑
∕2 + 𝑞2

𝑑
∕2 −2 𝑘𝑞 𝑞𝑑 . Since the part 𝐼5 is included in 𝐼3, whose computation has been detailed in the 

main text itself, we focus only on 𝐼4 here.

To simply the calculations a bit, we set 𝑘𝑑 to zero to obtain

𝐼4 = ∫
𝑞, 𝑒𝑞>0

𝑞2
𝑑
∕2 − 𝑒𝑞 − 𝑘𝑑−1

𝐐2 +
(
𝑞2
𝑑
∕2 − 𝑒𝑞 − 𝑘𝑑−1

)2 × 1
𝑞2
𝑑
− 𝑎̃ 𝑒𝑞 + 𝑒2 𝜇𝑥𝑒 𝑏 |𝐐|𝑑−1∕√𝑒𝑞

=

∞

∫
0

𝑑𝑢√
𝑢∕2

∞

∫
0

𝑑𝑒𝑞

∞

∫
−∞

𝑑𝑑−1𝐐
(2𝜋)𝑑+1

𝑢− 𝑒𝑞 − 𝑘𝑑−1|𝐐|2 + (
𝑢− 𝑒𝑞 − 𝑘𝑑−1

)2 1
2𝑢− 𝑎̃ 𝑒𝑞 + 𝑒2 𝜇𝑥𝑒 𝑏 |𝐐|𝑑−1∕√𝑒𝑞

[
where 2𝑢 = 𝑞2

𝑑

]
. (49)

We observe that the first factor of the integrand forces the dominant contribution to be concentrated around the region |𝐐| ∼ 0 and 
𝑢 ∼ 𝑒𝑞 +𝑘𝑑−1. As for the second factor, the dominant contribution comes from 𝑒𝑞 ∼ |𝐐|2 (𝑑−1)∕3. Hence, we can substitute 𝑢 ∼ 𝑒𝑞 +𝑘𝑑−1
in the 

√
𝑢 factor (in the overall denominator) and the 2 𝑢 term (in the denominator of the second factor), and extend the lower limit 

of the integral over 𝑢 to −∞. This leads to

𝐼4 ≃

∞

∫
0

𝑑𝑢√
𝑒𝑞 + 𝑘𝑑−1

∞

∫
0

𝑑𝑒𝑞

∞

∫
−∞

𝑑𝑑−1𝐐
(2𝜋)𝑑+1

𝑢− 𝑒𝑞 − 𝑘𝑑−1|𝐐|2 + (
𝑢− 𝑒𝑞 − 𝑘𝑑−1

)2
√
2

(2 − 𝑎̃) 𝑒𝑞 + 2𝑘𝑑−1 + 𝑒2 𝜇𝑥𝑒 𝑏 |𝐐|𝑑−1∕√𝑒𝑞
= 0 . (50)
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Hence, to leading order, the 𝐼4 integral vanishes, and there remains no 𝑏-dependent term.
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