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Abstract In the framework of a mesoscopical model for
dielectric media we provide an analytical description for the
electromagnetic field confined in a cylindrical cavity contain-
ing a finite dielectric sample. This system is apted to simulate
the electromagnetic field in a optic fiber, in which two dif-
ferent regions, a vacuum region and a dielectric one, appear.
A complete description for the scattering basis is introduced,
together with field quantization and the two-point function.
Furthermore, we also determine soliton-like solutions in the
dielectric, propagating in the sample of nonlinear dielectric
medium.

1 Introduction

Dielectric media in the framework of analogue gravity are
an active subject of investigation, with particular reference
to the Hawking effect in nonlinear dielectrics. See e.g. [1–
13]. As to experiments with dielectric media and their debate
one may refer to [4,5,7,14–16] and also to the (uncontrover-
sial) experiment in a optic fiber reported in [17]. In general,
the problem is quite difficult, because of dispersive effects
associated with condensed matter systems. Notwithstanding,
a framework can be provided where, in the limit of weak dis-
persive effects, in a precise mathematical sense, one is able
to find how the Hawking effect manifests itself when the
system is affected by the presence of horizon(s) (mathemati-
cally, turning point(s)) [13]. Mostly, calculations are carried
out for a dielectric medium filling all the space. Furthermore,
in order to avoid technical difficulties arising mainly because
of the gauge field nature of the electromagnetic field, which
arise naturally in the Hopfield model (see [8,19,20]), we have
introduced a simplified model, called the ��-model, where
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the original fields of the Hopfield model are replaced by two
scalar fields: � in place of the electromagnetic field, and �

in place of the polarization [8]. An exact quantization for
the fully relativistically covariant version of the model have
been provided in [18]. We have also taken into account the
case of dielectric medium filling only an half-space [21]. We
have verified that, in the latter case, spectral boundary con-
ditions are required, because of the peculiar role played by
the polarization field.

Herein, we extend our analysis by taking into account
a cylindrical geometry, where the dielectric field fills only
a finite cylindrical region of length 2L and radius R. The
remaining region of radius R is filled by vacuum. This
simplified setting can be still interesting because the vac-
uum regions could be also replaced by regions containing
dielectrics with different refractive index.

In the first part of our analysis, we discuss in details the
problem of the boundary conditions to be imposed on the
fields, and a complete scattering basis for the problem is
introduced through separation of variables allowed by our
peculiar geometrical setting. We also provide the full propa-
gator for the model at hand.

In the second part, we take into account a fully nonlinear
dielectric, where the nonlinearity is simulated by introduc-
ing a term proportional to the fourth power of the polar-
ization field �. Our aim is to show that solitonic solutions
exist, representing a dielectric perturbation travelling with
constant velocity in the direction of the cylindrical fiber axis.
We can show that, by taking into account ‘homogeneous’
solutions which do not vary in the radial direction and also
in the azimuthal one, soliton-like solutions exist, with dif-
ferent characteristics depending on suitable parameters. A
linearization around the solitonic solution is the natural set-
up for studying the analog Hawking effect also in the present
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case. The present analysis is in preparation of the analysis
of the Hawking effect in the geometrical setting described
above.

2 The relativistic Kerr-�� model in a cylindrical fibre

Let us consider the electromagnetic field in a cylindrical cav-
ity, along the z direction, where an Hopfield dielectric is at
rest in the lab, filling the region Cχ = {(t, x, y, z)| − L ≤
z ≤ L , x2 + y2 ≤ R2}. In general, we consider inertial
frames which are boosted in the z direction with respect to
the Lab frame. See also Fig. 1.

If nnn is the four-vector with covariant components n =
(0, 0, 0, 1) in the Lab frame, then, in an arbitrary inertial
frame centered in000 (the origin of the Lab frame) the confining
cylindrical region is C = {xxx ∈ M1,3

000 | − (xxx − (xxx · vvv)vvv + (xxx ·
nnn)nnn)2 ≤ R2}, where v = (1, 0, 0, 0) in the Lab frame, and
the dielectric region is Cχ = {xxx ∈ Cχ | − L ≤ xxx · nnn ≤ L}.

The φ −ψ model is thus described by the action principle
as follows:

S[φ,ψ] = 1

2

∫
C

∂μφ∂μφ d4x

+
∫
Cχ

(
1

2
vμ∂μψvν∂νψ

−ω2
0

2
ψ2 − gφvμ∂μψ

)
d4x . (2.1)

This is because we require for ψ to vanish outside Cχ by
definition.

2.1 Equations of motion

There are several interesting discussions regarding the deduc-
tion of the equations of motion. Nevertheless we will follow
a simple deduction, by using local variations and then by
choosing boundary conditions. With “local variations” we
mean the following. Fix a point p internal to Cχ (in the topo-
logical sense) or internal to C\Cχ . Thus, there is at least an
open set U (p) such that is completely contained in Cχ (or
in C\Cχ ). A local variation is a variation of the fields with
support in such a U (p). Using local variations we get for the
equations of motion

�φ = 0, (2.2)

ψ = 0, (2.3)

outside Cχ , and

�φ + gvμ∂μψ = 0, (2.4)

(vμ∂μ)2ψ + ω2
0ψ − gvμ∂μφ = 0, (2.5)

inside Cχ . Now, we are left with the choice of the bound-
ary conditions in order to completely define the theory. The
boundary consists in ∂C , which includes the conditions at
infinity and Cχ ∩ ∂C , and ∂Cχ that adds ∂Cχ −Cχ ∩ ∂C =:

−L ∪
L in obvious notations. In order to choose such con-
ditions, let us start by considering (global) variations in ψ .
The support of ψ is compact, so we choose to work with
variations which are C∞(Cχ ) with support in Cχ . In partic-
ular, we do not require for them to be continuous on 
−L

and 
L . Nevertheless, since vvv is orthogonal to NNN , where the
latter is the suitably oriented normal field to ∂C and ∂Cχ ,
there are no boundary terms in δS under variations of ψ , and
then we are not required to choose any particular condition
on ψ (apart from requiring that it must be at least C2(Cχ )).

A little bit more involved is the (global) variation in φ. In
this case we have to tackle the variation

δ
1

2

∫
C

∂μφ∂μφ d4x =
∫
C

∂μδφ∂μφ d4x

=
∫
C

∂μ(δφ∂μφ) d4x −
∫
C

δφ∂μ∂μφ d4x . (2.6)

Requiring for φ to be continuous in C implies that δφ must
be continuous. However, requiring also the continuity of ∂μφ

looks too much restrictive in general. In order to manipulate
the divergence in the last expression, let us notice that if we
do not require for ∂μφ to be continuous on 
0 and 
L , then
we cannot apply the divergence theorem directly but we need
to separateC into three regions asC = Cχ ∪C−∪C+, where
C− ∪ C+ := C − Cχ (with obvious notation). This way
∫
C

∂μ(δφ∂μφ) d4x =
∫
C−

∂μ(δφ∂μφ) d4x

+
∫
C+

∂μ(δφ∂μφ) d4x +
∫
Cχ

∂μ(δφ∂μφ) d4x, (2.7)

and δφ∂μφ is continuous and, indeed, smooth in each of the
three regions. So we can apply the divergence theorem to
each of the three regions. The result is that, if we assume
that nμ∂μφ is continuous in an open neighbourhood of 
A,
A = −L , L , then
∫
C

∂μ(δφ∂μφ) d4x

=
∫

∂C
Nμ∂μφ δφ d3σ. (2.8)

Since we do not mean to fix the value of φ on the boundary,
we can get rid of the boundary term by imposing the Neuman
condition Nμ∂μφ|∂C = 0. More precisely this condition is
clear on the cylindrical boundary but it should also include
a condition at z → ±∞. There, the above Neuman condi-
tion looks not suitable if we want to allow for sources or,
say, fluxes. In this sense it seems that at infinity some other
condition could be better, but it is not a case of interest here.
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C

Cχ C+C_ Σ Σ

−L L

Fig. 1 The geometry for the problem at hand is displayed. The region
Cχ contains the dielectric medium, the other two cylindrical regions
C± with the same radius R are void. The inner boundaries indicated

in the text as 
±L are for simplicity both indicated with 
. Again,
for simplicity, we have not indicated the other boundaries we take into
consideration in the main text

On the boundaries 
A of the dielectric we are left with the
condition of continuity of the normal derivative of φ. Let us
investigate a little bit more at this condition by looking at the
Eqs. (2.2) and (2.4). They show that �φ is not continuous on

A. Now, since ψ vanishes outside Cχ , we can write both
these equations as

∂μ(∂μφ + gvμψ) = 0. (2.9)

Since ψ is discontinuous, ∂μψ is expected to produce δ-
function contributions supported on 
A. However, vvv · nnn =
0, so that vμ∂μψ is discontinuous but does not contains δ

contributions. Thus, the same happens for �φ. Now, since C
is contractible we can add to nnn and vvv two other vectors on C ,
eeei (i = 1, 2) in order to get a complete constant orthonormal
frame. Thus, we can write

0 = ∂μ(vμ∂vvvφ − nμ∂nnnφ − eμ
1 ∂eee1φ − eμ

2 ∂eee2φ)

= ∂vvv∂vvvφ − ∂nnn∂nnnφ − ∂eee1∂eee1φ − ∂eee2∂eee2φ. (2.10)

Now, ∂eee1φ, ∂eee2φ and ∂vvvφ are discontinuous, but no δ contri-
bution arises in further deriving, since ∂eee1 , ∂eee2 and ∂vvv derive
in directions orthogonal to nnn (and, so, tangent to the sepa-
rating hypersurface). The remaining term ∂nnnφ is continuous
and the further derivative ∂nnn introduce at most new disconti-
nuities. This shows that no further conditions are necessary
for having consistent equations: all the condition we have to
require inside C are the continuity of φ and ∂nnnφ everywhere,
with the last vanishing on ∂C .

2.2 General solution

Let us work in a frame with four-velocity

v = γ (ν)(1, 0, 0, ν), (2.11)

so that

n = γ (ν)(ν, 0, 0, 1). (2.12)

2.2.1 Outside the dielectric

The dielectric region is defined by −νt − L/γ (ν) ≤ z ≤
−νt + L/γ (ν).

If we choose cylindrical coordinates, outside the dielectric
the equations of motion are simply ψ = 0 and

∂2
t φ − ∂2

z φ − ∂2
ρφ

− 1

ρ
∂ρφ − 1

ρ2 ∂2
θ φ = 0. (2.13)

Separating the variables as

φ(t, ρ, z, θ) = KφT (t)φR(ρ)φZ (z)φ�(θ), (2.14)

with K a constant, we find that

φT (t) = e−ik0t , φZ (z) = eikz z, φ�(θ) = eimθ , (2.15)

with m ∈ Z, and

φ′′
R + 1

ρ
φ′
R +

(
k2
ρ − m2

ρ2

)
φ = 0, (2.16)

where kρ must satisfy k2
0 − k2

z − k2
ρ = 0. The only solutions

continuous in ρ = 0 are φR(ρ) = Jm(kρρ), where Jm are
the usual Bessel functions. The boundary condition on ∂C
reduces to

J ′
m(kρR) = 0, (2.17)

so that at the end we have

φR(ρ) = J|m|,s(ρ) = J|m|
(
zms

ρ

R

)
, |m|, s ∈ N, (2.18)

where zms is the s-th positive zero of J ′
m . The corresponding

dispersion relations are k2
0 = k2

z + z2
ms/R

2, which can be
codified in

K = cm,s(k0, kz)δ

(
k2

0 − k2
z − z2

ms

R2

)
. (2.19)

In conclusion, we can write the general solution outside the
dielectric in the form

φ =
∑
s∈N

∑
m∈Z

∫ ∞

−∞
dkz

4πk0

(
cm,s(kz)e

−ik0t+ikz z+imθ

+c∗
m,s(kz)e

ik0t−ikz z−imθ
)
J|m|

(
zms

ρ

R

)
, (2.20)

ψ = 0, (2.21)
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where

k0(kz,m, s) =
√
k2
z + z2

ms

R2 . (2.22)

2.2.2 Inside the dielectric

Inside the dielectric, the equations take the form (v0 = γ (ν)

and v = νγ (ν))

∂2
t φ − ∂2

z φ − ∂2
ρφ − 1

ρ
∂ρφ

− 1

ρ2 ∂2
θ φ + gv0∂tψ + gv∂zψ = 0, (2.23)

(v0∂t + v∂z)
2ψ + ω2

0ψ − gv0∂tφ − gv∂zφ = 0. (2.24)

By means of the separation ansatz

φ(t, ρ, z, θ) = φ̃φT (t)φR(ρ)φZ (z)φ�(θ), (2.25)

ψ(t, ρ, z, θ) = ψ̃ψT (t)ψR(ρ)ψZ (z)ψ�(θ), (2.26)

we find that

ψT (t) = φT (t) = e−ik0t , ψZ (z) = φZ (z) = eikz z, ψ�(θ)

= φ�(θ) = eimθ , (2.27)

ψR(ρ) = φR(ρ) = J|m|,s(ρ)

= J|m|
(
zms

ρ

R

)
, s ∈ N, m ∈ Z, (2.28)

and φ̃, ψ̃ must satisfy the algebraic system
(−k2

0 + k2
z + k2

ρ igω
−igω ω2

0 − ω2

)(
φ̃

ψ̃

)
=
(

0
0

)
, (2.29)

where we have put kρ = zms/R and

ω = vμkμ = k0v0 − vkz . (2.30)

This has nontrivial solutions if the determinant of the matrix
vanishes, which means

DR := k2
0 − k2

z − k2
ρ + g2ω2

ω2
0 − ω2

= 0. (2.31)

Notice that this is an implicit equation in k0 = k0, since ω

is a function of k0. With this condition, the solution of the
algebraic system takes the form

φ̃ = b(k0, kz,m, s)δ(DR), (2.32)

ψ̃ = k2
0 − k2

z − k2
ρ

igω
b(k0, kz,m, s)δ(DR). (2.33)

If we set

DR′ := ∂k0 DR = 2k0

(
1 + g2ω2

0v
0

(ω2
0 − ω2)2

)
, (2.34)

then we can write the general solution inside the dielectric as

φ =
2∑

a=1

∑
s∈N

∑
m∈Z

∫ ∞

−∞
dkz

2πDR′
(a)

×
(
b(a)ms(kz)e

−ik0
(a)

t+ikz z+imθ + c.c.
)
J|m|

(
zms

ρ

R

)
,

ψ =
2∑

a=1

∑
s∈N

∑
m∈Z

∫ ∞

−∞
dkz

2πDR′
(a)

×
(
b(a)ms(kz)e

−ik0
(a)

t+ikz z+imθ − c.c.
) −igω(a)

ω2
(a) − ω2

0

× J|m|
(
zms

ρ

R

)
,

where (a) indicates the branch like in [18,20].

2.2.3 Gluing conditions

At this point we must impose the continuity of φ and ∂nnnφ.
From now on, we will work in the lab frame where v ≡
(1, 0, 0, 0) and ω = k0. In this case, the normal direction is
z and the gluing conditions are

φ(−L−) = φ(−L+), φ(L−) = φ(L+),

∂zφ(−L−) = ∂zφ(−L+),

∂zφ(L−) = ∂zφ(L+), (2.35)

where we defined for short

φ(z±) := lim
ε→0

φ(t, ρ, z ± |ε|, θ). (2.36)

It is convenient to define a scattering basis, defined by replac-
ing the Fourier modes with solutions of the form (omitting
the angular and radial parts, at time t = 0)

φk(z) =
(
eikz + Rksme

−ikz
)

χ(−∞,−L)(z)

+
(
Mksme

iqs,m (k)z + Nksme
−iqsm (k)z

)
χ[−L ,L](z)

+ Tksme
ikzχ(L ,∞)(z),

(2.37)

going from the left to the right, and the analogous left moving
modes. Here Rksm , Tksm , Mksm , and Nksm are reflection and
transmission coefficients. Moreover, we choose the measure
to be dkz/(2π)2k0 everywhere so that inside the dielectric

b(a)ms and cms reabsorb the normalization factor 1+ g2ω2
0v0

(ω2
0−ω2)2

from DR′.
We have defined the functions χ(a,b)(z) = 1 for z ∈ (a, b),

0 otherwise.
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Writing the conditions (2.35) explicitly, we obtain the fol-
lowing algebraic system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−ikL + RksmeikL = Mksme−iqL + NksmeiqL

ke−ikL − RksmkeikL = Mksmqe−iqL − NksmqeiqL

TksmeikL = MksmeiqL + Nksme−iqL

TksmkeikL = MksmqeiqL − Nksmqe−iqL

(2.38)

that has solution

Rksm = 2i(k2 − q2
sm(k)) sin(2qsm(k)L)e2i(qsm (k)−k)L

(k − qsm(k))2e4iqsm (k) − (k + qsm(k))2
,

(2.39)

Mksm = − 2k(k + qsm(k))ei(qsm (k)−k)L

(k − qsm(k))2e4iqsm (k) − (k + qsm(k))2
, (2.40)

Nksm = 2k(k − qsm(k))ei(3qms (k)−k)L

(k − qsm(k))2e4iqsm (k) − (k + qsm(k))2
, (2.41)

Tksm = − 4kqsm(k)e2iqsm (k)Le−2ikL

(k − qsm(k))2e4iqsm (k) − (k + qsm(k))2
. (2.42)

2.3 The scattering basis

The positive energy scattering basis consists in the dielectric
modes and the gap modes. In the lab frame, the dielectric
modes are (we write the φ-component only):

φR
D,ksm(t, ρ, z, θ) = κksme

−iωksm t eimθ J|m|
(
zms

ρ

R

)

×
[(

eikz + Rksme
−ikz

)
χ(−∞,−L)(z)

+
(
Mksme

iqs,m (k)z + Nksme
−iqsm (k)z

)
χ[−L ,L](z)

+ Tksme
ikzχ(L ,∞)(z)

]
,

(2.43)

φL
D,ksm(t, ρ, z, θ) = φR

D,ksm(t, ρ,−z, θ), (2.44)

where

ωksm =
√
k2 + k2

ρ, (2.45)

qsm(k)2 + k2
ρ = (k2 + k2

ρ)
ω2

0 + g2 − k2 − k2
ρ

ω2
0 − k2 − k2

ρ

, (2.46)

m ∈ Z, s ∈ N, k > 0, (2.47)

and the coefficients are

Rksm = 2i(k2 − q2
sm(k)) sin(2qsm(k)L)e2i(qsm (k)−k)L

(k − qsm(k))2e4iqsm (k)L − (k + qsm(k))2
,

(2.48)

Mksm = − 2k(k + qsm(k))ei(qsm (k)−k)L

(k − qsm(k))2e4iqsm (k)L − (k + qsm(k))2
,

(2.49)

Nksm = 2k(k − qsm(k))ei(3qms (k)−k)L

(k − qsm(k))2e4iqsm (k)L − (k + qsm(k))2
, (2.50)

Tksm = − 4kqsm(k)e2iqsm (k)Le−2ikL

(k − qsm(k))2e4iqsm (k)L − (k + qsm(k))2
.

(2.51)

Notice that

|Tksm |2 + |Rksm |2 = 1, (2.52)

so that there is no trapping in the dielectric. The dielectric
modes are defined in the range for ωk,s,m not in the gap
[ω0, ω̄], and do not form a complete basis for all possible
initial conditions.

In order to get a complete basis we have to add the gap
modes

φR
G,ksm(t, ρ, z, θ)

= κ̃ksme
−iωksm t eimθ J|m|

(
zms

ρ

R

)
sin((k + L)z)χ(−∞,−L](z),

(2.53)

φL
G,ksm(t, ρ, z, θ)

= κ̃ksme
−iωksm t eimθ J|m|

(
zms

ρ

R

)
sin((k − L)z)χ[L ,∞)(z),

(2.54)

defined for

ω2
0 ≤ k2 + k2

ρ ≤ ω̄2. (2.55)

These represent modes that are totally reflected by the dielec-
tric.

The normalisation constants κksm and κ̃ksm can be com-
puted by using the results in appendix A. If we choose

κksm = κ̃ksm

2
= 1(

1 − m2

z2
ms

) 1
2 √

πRJ|m|(zms)

, (2.56)

then the scattering solution are orthonormalised (with mea-
sure dk/2π(2k0)).

3 Quantization

Here we determine the scalar product and invert the expres-
sions to compute the amplitudes fields c, b in terms of the
fields and their conjugate momenta, and impose the equal
time canonical commutation relations (ETCCR).

We write the full field as a superposition of the component
fields φR

D etc, so:

φ(t, z, ρ, θ) =
∑
s,m

∫
Rm,s

dk

4πk0

{
aR
D,ksmφR

D,ksm(t, z, ρ, θ)

+aLD,ksmφL
D,ksm(t, z, ρ, θ)
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+dR
G,ksmφR

G,ksm(t, z, ρ, θ)

+dL
G,ksmφL

G,ksm(t, z, ρ, θ) + h.c.

}
, (3.1)

where Rm,s is the range of k satisfying the right spectral
conditions for any given s,m. In the particular case when
s = m = 0 one has that the integration is on [0, ω0]∪[ω̄,∞)

for D modes and [ω0, ω̄] for the G modes (see [18]).
Now, our purpose is to determine the commutation rela-

tions between the operators a’s and d’s: to do this, we note
that the scalar product defined in appendix A can also be
written as

( f | f̃ ) = 〈�, �̃〉 := i

2

∫
d3 ���̃, (3.2)

where

� =

⎛
⎜⎜⎝

φ

ψ

πφ

πψ

⎞
⎟⎟⎠ (3.3)

and

� =
(

02x2 12x2

−12x2 02x2

)
. (3.4)

Given the orthogonality relations, we can write the coeffi-
cients as the scalar product

aR
D,ksm = 〈�R

D,ksm, �ksm〉, (3.5)

and similarly for the other coefficients.
With some algebra, we can evaluate the products aR

D,ksm

aR
D,k′s′m′

†
and aR

D,k′s′m′
†
aR
D,ksm , and imposing the ETCCR

[φ(x), πφ(y)] = iδ(3)(x − y), we get that the commutator is
equal to the scalar product

[aR
D,ksm, aR

D,k′s′m′
†] = 〈�R

D,ksm, �R
D,k′s′m′ 〉. (3.6)

Therefore we can easily evaluate the commutation relations,
using the orthogonality relations calculated in appendix A.
The relevant commutators are

[
aR
D,ksm, aR

D,k′s′m′
†
]

= 4πωksmδmm′δss′δ(k
′ − k), (3.7)[

aLD,ksm, aLD,k′s′m′
†
]

= 4πωksmδmm′δss′δ(k
′ − k), (3.8)[

dR
G,ksm, dR

G,k′s′m′
†
]

= 4πωksmδmm′δss′δ(k
′ − k), (3.9)[

dL
G,ksm, dL

G,k′s′m′
†
]

= 4πωksmδmm′δss′δ(k
′ − k), (3.10)

and all other vanish.

4 The two-point function of the Kerr-�� model

The full quantum theory, in absence of the Kerr nonlinear
term, is fully defined by the free propagator. Let us compute
the two-point function of the free theory

iG0
ψψ(x, x ′) = 〈ψ(x)ψ(x ′)〉∣∣

λ=0 . (4.1)

In general, its explicit expression will depend on where we
choose the points x and x ′. We will not consider the gap
modes. In fact, the right and left gap modes can be included
by noting that they are equivalent to the φR and φL modes
respectively, with reflection coefficient R = 1 and all other
coefficients vanishing, so that, if necessary, the correspond-
ing contributions can be deduced by taking the limit R → 1.

We start by discussing the case x, x ′ ∈ Cχ , which is the
most important one for computing Feynman diagrams in per-
turbation theory, when the nonlinearity is included. For sim-
plicity, we restrict to the case ρ = ρ′, θ = θ ′ in the following
computation, but at the end we will give the general result:

iG0
ψψ(x, x ′) = θ(t − t ′)

∑
s,m

∫ ∞
0

dk

4πωksm

[
ψ R
ksm (x)ψ R

ksm (x ′)∗

+ψL
ksm (x)ψL

ksm (x ′)∗
]

+ (x ↔ x ′)

= i

2π

∫
dω

∑
s,m

∫ ∞
0

dk

4πωksm

e−i(ω+ωksm )(t−t ′)

ω + iε

×
[ (

Mksme
iq(k)z + Nksme

−iq(k)z
)

×
(
M∗
ksme

−iq(k)z′ + N∗
ksme

iq(k)z′)

+
(
Mksme

−iq(k)z + Nksme
iq(k)z

)

×
(
M∗
ksme

iq(k)z′ + N∗
ksme

−iq(k)z′) ]

× g2ω2
ksmκ2

sm |Jm (ρ)|2
(ω2

ksm − ω2
0)2

− i

2π

∫
dω

∑
s,m

∫ ∞
0

dk

4πωksm

ei(ω+ωksm )(t−t ′)

ω + iε

×
[ (

Mksme
iq(k)z′ + Nksme

−iq(k)z′)

×
(
M∗
ksme

−iq(k)z + N∗
ksme

iq(k)z
)

+
(
Mksme

−iq(k)z′ + Nksme
iq(k)z′)

×
(
M∗
ksme

iq(k)z + N∗
ksme

−iq(k)z
) ]

× g2ω2
ksmκ2

sm |Jm (ρ)|2
(ω2

ksm − ω2
0)2

= i

2π

∫
dω̃

∑
s,m

∫ ∞
0

dk

4πωksm

×
[
2
(
|Mksm |2 + |Nksm |2

)
cos(q(k)(z − z′))

+2Re(Mksm N∗
ksm ) cos(q(k)(z + z′))

]

× g2ω2
ksmκ2

sm |Jm (ρ)|2
(ω2

kms − ω2
0)2

e−iω̃(t−t ′)

123
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×
(

1

ω̃ − ωkms + iε
− 1

ω̃ + ωkms − iε

)
. (4.2)

In the second step we used the integral representation θ(τ ) =
i

2π

∫
dω e−iωτ

ω+iε for the Heaviside θ -function, and in the third
step we have performed the change of variables ω̃ = ω+ωksm

in the first integral, and ω̃ = −ω − ωksm in the second one.
Notice that the two-point function (4.2) can be written as the
sum of two functions

G0
ψψ(x, x ′) = G1(t − t ′, ρ, θ, z − z′)

+G2(t − t ′, ρ, θ, z + z′). (4.3)

This makes evident the breaking of translation invariance
along the z axis. While G1 is translationally invariant, G2 can
be interpreted as depending on the reflections at the bound-
aries of the dielectric region.

Let us focus first on the G1 part. By performing a change
of variable k = ka(q), where the subscript a = ± denotes
the two branches of the dispersion relation, we find

G1(t − t ′, ρ, θ, z − z′) =
∑
s,m,a

∫
dω

2π

∫ ∞

0

× dq

2πDR′
a(q)

e−iω̃(t−t ′)

× g2ω2
asm(q)κ2

sm |Jm(ρ)|2
(ω2

asm(q) − ω2
0)

2

× 2ωasm(q)

ω2 − ω2
asm(q) + iε

×
(
|Masm(q)|2 + |Nasm(q)|2

)

×
(
eiq(z−z′) + e−iq(z−z′)

)
,

(4.4)

where

ωasm(q) := ωka(q)sm, (4.5)

Masm(q) := Mka(q)sm, (4.6)

DR′
a(q) = 2ωasm(q)

(
1 + g2ω2

0

(ω2
asm(q) − ω2

0)
2

)
. (4.7)

Notice that ωasm(q) ≡ ωa

(√
q2 + k2

ρ

)
, where ωa(·) denotes

the two solutions of the dispersion relation as in [18]. After
defining ka(−q) := −ka(q), we can rewrite the integral in
q over the whole (−∞,+∞) range. Performing the sum
over a explicitly and extending and noting that Masm(−q) =

M∗
asm(q), we obtain the final expression

G1(t − t ′, ρ, θ, z − z′)

=
∑
s,m

∫
dω

2π

dq

2π
κ2
sm |Jm(ρ)|2e−iω(t−t ′)+iq(z−z′)

× ω2 − q2 − k2
ρ

(ω2 − q2 − k2
ρ)(ω2 − ω2

0) − g2ω2

× 1

(ω2 − q2 − k2
ρ) (ω2+sm(q) − ω2−sm(q))

× [(ω2 − ω2−sm)(ω2+sm − q2 − k2
ρ)

× (|M+sm(q)|2 + |N+sm(q)|2) − (ω2 − ω2+sm)

× (ω2−sm − q2 − k2
ρ)(|M−sm(q)|2 + |N−sm(q)|2)]

=:
∑
s,m

∫
dω

2π

dq

2π
κ2
sm |Jm(ρ)|2 e−iω(t−t ′)+iq(z−z′)

× D(ω, q, s,m) �1(ω, q, s,m),

(4.8)

where D(ω, q, s,m) is the factor in the first line, which
equals the free propagator G0

ψψ computed in [18] for the
case of the infinite dielectric medium. Also we defined
�1(ω, q, s,m), which includes the corrections due to the
reflections and transmissions appearing in the finite dielec-
tric. Notice that in the case |Mq |2 + |Nq |2 = 1 we have
�1(ω, q) = 1. From the expression (4.8) we can read the
Fourier transform of the G1 part of the propagator. It has the
same poles as the ones in the infinite dielectric case, corre-
sponding to the Sellmeier dispersion relation.

It can be of interest to understand the asymptotic behaviour
of the factor �1 for large momenta. For the |Masm(q)|2 +
|Nasm(q)|2 factor, we have

|Masm(q)|2 + |Nasm(q)|2

= k2
a(q)

(
k2
a(q) + q2

)
(
k2
a(q) + q2

)2 sin2(2qL) + 4q2k2
a(q) cos2(2qL)

.

(4.9)

In the case a = +, we have ka(q) ∼ q for q � ω0. There-
fore, in the limit q → ∞ the whole factor (4.9) tends to
1/2. In the case a = −, instead, limq→∞ ka(q) = ω0, and
Eq. (4.9) has a point dependent limit. Indeed, we can take a
succession qn such that sin(2qnL) = 0, in such a way that for
n → ∞ equation (4.9) tends to 1/4. For all other successions
such that sin(2qnL) = C �= 0, we have

|M−sm(q)|2 + |N−sm(q)|2 ∼ ω2
0

q2 sin2 C
→ 0.

Therefore, we see that the Fourier transform of the propaga-
tor (4.8) is ∼ q−2, with the exception of small neighbour-
hoods of the points qn = nπ/(2L), where sharp peaks of
height 1/4 appear.

For the G2 part of the propagator, with similar manipula-
tions, we obtain
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G2(t − t ′, ρ, θ, z + z′)

=
∑
s,m

∫
dω

2π

dq

2π
κ2
sm |Jm(ρ)|2e−iω(t−t ′)+iq(z+z′)

× ω2 − q2 − k2
ρ

(ω2 − q2 − k2
ρ)(ω2 − ω2

0) − g2ω2

× (ω2 − ω2−sm)(ω2+sm − q2 − k2
ρ)Re(M+sm(q)N+sm(q)∗) − (ω2 − ω2+sm)(ω2−sm − q2 − k2

ρ)Re(M−sm(q)N−sm(q)∗)
(ω2 − q2 − k2

ρ) (ω2+sm(q) − ω2−sm(q))

=:
∑
s,m

∫
dω

2π

dq

2π
κ2
ms |Jm(ρ)|2 e−iω(t−t ′)+iq(z+z′)D(ω, q, s,m) �2(ω, q, s,m)

(4.10)

The factors Masm(q)Nasm(q)∗ have a very similar
behaviour as the factors |Masm(q)|2 + |Nasm(q)|2 studied
before, so also the function G2 is vanishing for large q.

The final expression of the propagator, in the general case
ρ′ �= ρ, θ ′ �= θ , is therefore:

G0
ψψ(t − t ′, ρ, ρ′, θ − θ ′, z, z′) χ[−L ,L](z) χ[−L ,L](z′)

=
∑
s,m

∫
dω

2π

dk

2π
e−iω(t−t ′) J|m|,s(ρ)J|m|,s(ρ′)eim(θ−θ ′)

× κ2
smD(ω, q, s,m)

[
�1(ω, q, s,m)eiq(z−z′)

× +�2(ω, q, s,m)eiq(z+z′)
]
.

(4.11)

The remaining components of the propagator, Gφφ and
Gφψ , can be derived in a very similar way. We express the
result as a matrix propagator

(
G0

φφ G0
φψ

G0
ψφ G0

ψψ

)
χ[−L ,L](z) χ[−L ,L](z′)

= G1(τ, ρ, ρ′,�, ξ−) + G2(τ, ρ, ρ′,�, ξ+), (4.12)

where τ = t − t ′, � = θ − θ ′, ξ∓ = z∓ z′. The matrices Ga ,
a = 1, 2, result as the Fourier transform in τ and ξ∓ of

G̃a(ω, ρ, ρ′,�, k)

=
∑
s,m

κ2
sm J|m|,s(ρ)J|m|,s(ρ′)eim�

× 1

(ω2 − k2 − k2
ρ)(ω2 − ω2

0) − g2ω2
Ma, (4.13)

The matrix M1 has the following components (here we omit
the obvious dependences on m, s and q):

Mφφ
1 = (ω2 − ω2−)(ω2+ − ω2

0)(|M+|2 + |N+|2) − (ω2 − ω2+)(ω2− − ω2
0)(|M−|2 + |N−|2)

(ω2+ − ω2−)
, (4.14)

Mφψ
1 =

(
Mψφ

1

)∗ = −igω
(ω2 − ω2−)(|M+|2 + |N+|2) − (ω2 − ω2+)(|M−|2 + |N−|2)

(ω2+ − ω2−)
, (4.15)

Mψψ
1 = (ω2 − ω2−)(ω2+ − q2 − k2

ρ)(|M+|2 + |N+|2) − (ω2 − ω2+)(ω2− − q2 − k2
ρ)(|M−|2 + |N−|2)

(ω2+ − ω2−)
. (4.16)

The matrixM2 is obtained fromM1 by replacing the factors
(|Ma |2 + |Na |2) by Re(MaN∗

a ).
The calculations for the case z < −L , z′ > L and

z, z′ < −L are very similar, and actually simpler, to the
previous case. The φ–φ propagator in this case is the only
non vanishing one, and it is given by

G0
φφ(t − t ′, ρ, θ, z, z′) χ[−∞,−L](z) χ[L ,+∞](z′)

=
∑
s,m

∫
dω

2π

dk

2π
e−iω(t−t ′)κ2

sm J|m|,s(ρ)J|m|,s(ρ′)eim(θ−θ ′)

× 1

ω2 − ω2
ksm

T ∗
ksme

ik(z−z′).

(4.17)
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G0
φφ(t − t ′, ρ, θ, z, z′) χ[−∞,−L](z) χ[−∞,−L](z′)

=
∑
s,m

∫
dω

2π

dk

2π
e−iω(t−t ′)κ2

sm J|m|,s(ρ)J|m|,s(ρ′)eim(θ−θ ′)

× 1

ω2 − ω2
ksm

[
eik(z−z′) + R∗

ksme
ik(z+z′)

]
.

(4.18)

In the second case again we find a dependence on z + z′
which is due to reflections; in the first case this does not
happen due to the fact that RkmsT ∗

kms is purely imaginary,
so that RkmsT ∗

kms + R∗
kmsTkms = 0. We also notice that for

T = 1 and R = 0 we find the usual Feynman propagator for
a scalar field.

The propagators in the cases z < −L , −L < z′ < L and
−L < z < L , z′ > L have less trivial dependence on z and
z′. The non vanishing components in this cases are

G0
φφ(t − t ′, ρ, θ, z, z′) χ[−∞,−L](z) χ[−L ,L](z′)

=
∑
s,m

∫
dω

2π

dk

2π
e−iω(t−t ′)

× κ2
sm J|m|,s (ρ)J|m|,s (ρ′)eim(θ−θ ′)

ω2 − ω2
ksm

×
[
M∗
ksme

ikz−iq(k)z′ + N∗
ksme

ikz+iq(k)z′],

(4.19)

G0
φψ (t − t ′, ρ, θ, z, z′) χ[−∞,−L](z) χ[−L ,L](z′)

=
∑
s,m

∫
dω

2π

dk

2π
e−iω(t−t ′) κ2

sm J|m|,s (ρ)J|m|,s (ρ′)eim(θ−θ ′)

ω2 − ω2
ksm

× −igω

ω2
ksm − ω2

0

[
M∗
ksme

ikz−iq(k)z′ + N∗
ksme

ikz+iq(k)z′],
(4.20)

G0
ψφ(t − t ′, ρ, θ, z, z′) χ[−∞,−L](z) χ[−L ,L](z′)

=
∑
s,m

∫
dω

2π

dk

2π
e−iω(t−t ′) κ2

sm J|m|,s (ρ)J|m|,s (ρ′)eim(θ−θ ′)

ω2 − ω2
ksm

× igω

ω2
ksm − ω2

0

[
M∗
ksme

ikz−iq(k)z′ + N∗
ksme

ikz+iq(k)z′],
(4.21)

where the factor in square brackets is the same for all three
components. These expressions are obtained by making use
of the following equalities, that are easily checked:

Mkms = Rkms N
∗
kms + TkmsM

∗
kms, (4.22)

Nkms = RkmsM
∗
kms + Tkms N

∗
kms . (4.23)

5 Solitonic solutions

In this section we introduce a nonlinearity in the model, with
the aim of describing the perturbation of refractive index
propagating in the nonlinear dielectric medium when a strong
laser pulse is shot into the dielectric and the Kerr effect is

stimulated. The propagating perturbation breaks the homo-
geneity of the dielectric sample described in the previous
section. Still, the solutions for the homogeneous case repre-
sent a good asymptotic scattering basis for the full nonlinear
problem in the linearisation of the theory around the dielec-
tric perturbation represented by the solitonic solutions we are
going to describe.

With this aim, we add a fourth order term in the polar-
ization field ψ , as in [21]. A fourth order term in nonlinear
optical media appears also e.g. in [22], where a fourth order
term in the displacement field can be introduced in the case
of an optical fiber. We have discussed a fourth order term in
the polarization field for the Hopfield model in [11], where
we have shown that our solitonic solutions can be associ-
ated with the Kerr effect in a proper way. It is also to be
remarked that our approach does not represent the standard
way to approach the Kerr effect (see also [23,24]). and that
our solitonic solutions are more constrained that the usual
solutions of the nonlinear Schrödinger equation studied in
[24]. See also the discussion in [25].

Our non-linear theory has the following action

S[φ,ψ] =
∫
C

1

2
∂μφ∂μφ d4x

+
∫
Cχ

[
1

2
(vμ∂μψ)2

−ω0
2

2
ψ2 − gφvμ∂μψ − λ

4!ψ
4
]
d4x; (5.1)

the equations of motion are

�φ + gvμ∂μψ = 0, (5.2)

(vμ∂μ)2ψ + ω2
0ψ

− gvμ∂μφ + λ

3!ψ
3 = 0. (5.3)

In lab vμ = (1, 0, 0, 0), so the equations become

�φ + gψ̇ = 0, (5.4)

ψ̈ + ω2
0ψ − gφ̇ + λ

3!ψ
3 = 0. (5.5)

We are not looking for the general solution of the system
above, still we are interested in finding out analytical solu-
tions. We attempt the ansatz

φ(t, z, ρ, θ) = f (z − V t)Y (ρ, θ), (5.6)

ψ(t, z, ρ, θ) = h(z − V t)Y (ρ, θ); (5.7)
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the radial and angular parts can be separated if Y = const 1

to obtain the equations

(1 − V 2) f ′′ + gVh′ = 0, (5.8)

V 2h′′ + gV f ′ + ω2
0h + Y 2λ

3! h3 = 0, (5.9)

where the prime stands for the derivative with respect to the
argument z − V t .

Integrating the first equation and inserting in the second,
after a new integration we obtain

Vh′

i
√

Y 2λ
12 h4 + (ω2

0 − g2V 2γ 2)h2 + 2gκVh − 2χ

= 1, (5.10)

where κ and χ are constants of integration, and γ = (1 −
V 2)− 1

2 . We will also use the notation

v := γ V . (5.11)

It is worth to mention here that we accept solution having
finite energy. It is immediate to see that the energy density
inside the dielectric is

E = 1

2
φ̇2 + 1

2
∇φ · ∇φ + 1

2
ψ̇2

+1

2
ω2

0ψ
2 + λ

4!ψ
4 = Y 2

(χ + (gVγ 2h(z − V t) − κ)2 − (1 − V 2)κ). (5.12)

Thus, the energy is finite if h has no poles. Notice that, in
particular, h has to be limited, which implies that the quartic
radicand in (5.10) must have real roots. So, the constants
must be constrained in order to ensure this condition.

5.1 κ = χ = 0

In this case, the solution inside the dielectric is the solitonic

solution obtained in [21]. With a =
√

12
λY 2 (g2v2 − ω2

0) and

b = 1
v

√
g2v2 − ω2

0, we find (for −L ≤ z ≤ L)

h = a

cosh(bγ (z − V t))
, (5.13)

f = 2agv

b
arctan

[
tanh

(
b

2
γ (z − V t)

)]
, (5.14)

while the solution in vacuum is a superposition of a progres-
sive and a regressive wave, whose form is determined by the
continuity of φ and ∂zφ, as discussed in Sect. 2.1:

∂z f =

1 This would be equivalent to a calculation involving only s-waves in
presence of spherical symmetry.

{
1+V

2
agγ v

cosh[bγ (L(1−V )−V (z−t))] + 1−V
2

agγ v
cosh[bγ (L(1+V )+V (z+t))] , z ≤ −L

1+V
2

agγ
cosh[bγ (L(1−V )+V (z−t))] + 1−V

2
agγ

cosh[bγ (L(1+V )−V (z+t))] , z ≥ L
.

(5.15)

Note that the solution exists only if v > ω0/g, that is

V 2 >
ω2

0

g2 + ω2
0

. (5.16)

5.2 κ �= 0, χ �= 0

We look for a Möbius transformation

h = as + b

cs + d
, (5.17)

which maps (5.10) into the form

i

V
= s′√

4s3 − g2s − g3
. (5.18)

The assumption that the original quartic equation has at
least one real root ensures that such a transformation exists
with real coefficients a, b, c, d that can be chosen to satisfy
ad−bc = ±1, see Appendix B. Equation (5.18) has general
solution

s(x) = ℘(g2, g3; i(x − x0)/V )

= −℘(g2,−g3; (x − x0)/V ), (5.19)

where g2, g3 are defined in Appendix B and ℘ is the Weier-
strass elliptic function defined by

℘(z) = 1

z2

+
∑

(n,m)∈Z2−{0,0}

(
1

(z + nω1 + mω2)2 − 1

(nω1 + mω2)2

)

(5.20)

with ω1, ω2 the two periods satisfying τ := ω2/ω1 /∈ R, and
x0 is an integration constant. Indeed, we can be more precise
and notice that there are two distinct situations, when all three
roots of 4z3 − g2z − g3 are distinct. In our case, g2 and g3

are real and so we may have three real roots e3 < e2 < e1, or
one real root e2 and two complex roots e1, e3, with e1 = ē3.
Let us shortly discuss the two cases.

5.2.1 3 Real roots

e3 < e2 < e1. The periods of ℘(g2,−g3, z) are

ω1 = 2
∫ ∞

e1

dz√
4z3 − g2z + g3

∈ R>, (5.21)

ω2 = 2i
∫ e3

−∞
dz√−4z3 + g2z − g3

∈ iR>, (5.22)
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Fig. 2 Plot of the solution (5.23) corresponding to the three real root
case. The parameters have the following values: Y = ω0 = g = 1,
λ = V = 0.5, χ = 2, κ = 3, z0 = 0

and we get two distinct solutions for h. The first one is

h(z − V t) = a℘(g2,−g3; t − (z − z0)/V ) − b

c℘(g2,−g3; t − (z − z0)/V ) − d
. (5.23)

In this case ℘ assumes all values in [e1,∞). Since we are
interested in solutions with h of class C2 everywhere inside
the dielectric, we must discard solutions such that the denom-
inator above vanishes somewhere. This happens only if the
condition

ce1 − d > 0 (5.24)

is satisfied. Analysing this condition in general depends on
several details. A partial analysis can be found in appendix B.
This solutions represent trains of pulses having period ω1,
and moving with constant velocity as we can see from Fig. 2.

The second solution is

h(z − V t) = a℘(g2,−g3; t − (z − z0)/V + ω2
2 ) − b

c℘(g2,−g3; t − (z − z0)/V + ω2
2 ) − d

.(5.25)

In this case ℘ oscillates in the interval [e3, e2], which is
acceptable if the condition

d

c
/∈ [e3, e2] (5.26)

is satisfied. Again, we get a train of pulses which is shifted
along the horizontal axis, as shown in Fig. 3.

5.2.2 1 Real root

e2 ∈ R. In this case we have two complex conjugate periods
ω1 = ω and ω2 = ω̄ with

ω =
∫ ∞

e2

dz√
4z3 − g2z + g3

+ i
∫ e2

−∞
dz√−4z3 + g2z − g3

.

(5.27)

Fig. 3 Plot of the solution (5.25) corresponding to the three real root
case. The parameters have the following values: Y = ω0 = g = 1,
λ = V = 0.5, χ = 2, κ = 3, z0 = 0

In this case there is only one kind of solutions, having the
form (5.23) with condition (5.24). This represents a train of
pulses having period ω + ω̄, like for example in Fig. 4.

5.2.3 Elementary solutions

These solutions correspond to the cases of degenerate roots
and could be directly deduced as particular cases of the
Weierstrass cases. However, since classifying all possible
Weierstrass configurations is quite cumbersome, as shown in
Appendix B, it is easier to construct them directly. In order
to obtain a solution expressible in an algebraic form, we set
equal to zero the discriminant of the fourth degree polynomial
at the denominator of (5.10), and resolve it for the constant
λ (here � := ω2

0 − g2v2):

Y 2λ± = − 3

64χ3

(
27g4κ4V 4 + 72g2κ2V 2χ� + 32χ2�2

±
√
g2κ2V 2(9g2κ2V 2 + 16χ�)3

)
; (5.28)

λ± is real if and only if �χ ≥ −9g2κ2V 2/16. Recall that at
least one between λ+ and λ− must be positive in order to be
consistent with our physical assumptions.

On the other hand, with the aid of the general theory of
quartic equations [27], we discover the nature of the roots of
our polynomial, depending of how the parameters change.
It holds (one must choose the positive one between λ+ and
λ−):

• if � < 0 and − 3�2

2λ± < χ < �2

2λ± , then we have four real
roots, of which two are double;

• if � < 0 and χ < − 3�2

2λ± , there are a double real root and
two complex conjugate roots;

• if � > 0 and χ < 0, then there are again a double real
root and two complex conjugate roots.
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Fig. 4 Plot of the solution (5.23) corresponding to the one real root
case. The parameters have the following values: Y = 103, ω0 = g = 1,
λ = V = 0.5, χ = 2, κ = 103, z0 = 0

This is what the theory tells us. We can say something more:
from the equation λ

12h
4 + �h2 + 2gκVh − 2χ = 0, we see

that if χ > 0, it can be chosen h such that the polynomial is
zero. So, we conclude that for every χ > 0 the equation has
two double real roots.

Note that not all of these conditions are compatible with
our choice of λ±. Consider, for example, λ+: if we want
to guarantee the positivity of λ+, then the combination
� > 0, χ > 0 is not acceptable, while the other com-
binations allow λ+ > 0. Moreover, the reality condition
χ� ≥ −9g2κ2V 2/16 provide further constraints. Indepen-
dently by the value of the parameters, the general solution
of (5.10) can be easily written: if α is the double real root,
and β, δ are real (or complex), then, recalling that in our case
δ + β = −2α,

h =
[

β − δ

2(α − β)(α − δ)
cos

(√
λ(α − β)(α − δ)

12

z − V t

V

)

− 2α

(α − β)(α − δ)

]−1

+ α. (5.29)

The term (β − δ) shows that if β and δ are not real, then the
final solution is not real too and must be excluded. So, the
parameters must be such that the roots are all real. In this
case

(α − β)(α − δ) = 4α2 − (α + β)2 = 4α2 − (α + δ)2

(5.30)

shows that we may have both signs for (α − β)(α − δ), so
that we have

h =
[

β − δ

2(α − β)(α − δ)
cos

(√
λ(α − β)(α − δ)

12

z − V t

V

)

− 2α

(α − β)(α − δ)

]−1

+ α, if (α − β)(α − δ) > 0,

(5.31)

h =
[

β − δ

2(α − β)(α − δ)
cosh

(√
λ(α − β)(α − δ)

12

z − V t

V

)

− 2α

(β − α)(α − δ)

]−1

+ α, if (α − β)(α − δ) < 0,

(5.32)

The last case includes the simplest situation k = 0, χ = 0
studied above. The first case, instead, includes the simple
case studied below.

5.3 κ �= 0, χ = 0

As a particular subcase, we can study Eq. (5.10) with χ = 0;
here the analysis is simplified, because we have to study a
cubic equation. Requiring the discriminant of the cubic to be
zero, we find

λ = − 4�3

9g2κ2V 2 , (5.33)

so the positivity of λ requires � < 0, that is v > ω0/g as
usual.

With this value for λ there are three real roots, of which
two are double. The double root is −3gκV/�, and the simple
root is 6gκV/�. The solution of (5.10) is

h = − 3gκV

ω2
0 − g2v2

[
3

cos
(

3gκ
√

λ

2(ω2
0−g2v2)

(z − V t)
)

− 2
+ 1

]
.

(5.34)

6 Conclusions

We have studied, in the simplified framework of the φψ-
model, the propagation of the electromagnetic field in a spa-
tially finite sample of dielectric medium. This situation is
physically relevant in the Analogue Gravity picture for the
Hawking effect, as experiments involve necessarily finite
samples of dielectrics. We have chosen to work in a cylin-
drical geometry, where the dielectric field fills only a finite
cylindrical region of length 2L and radius R. The remain-
ing region of radius R is filled by vacuum. This may be
considered as a model for a optic fiber, which are an active
benchmark for experiments in Analogue Gravity [17].

Our present study concerns analytical properties of the
solutions for the equations of motion of the involved fields.
As a preliminary analysis, we have considered the boundary
conditions to be imposed on the fields, together with a com-
plete scattering basis and the quantization of the fields in the
case of a still homogeneous dielectric sample. We have also
described the propagator for the fields in the given setting.

Then we have introduced a nonlinearity in the model, as
the dielectric media we are interested in must be associated
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with the Kerr effect. Indeed, as pointed out firstly in [1], a
possibility to obtain analogous black hole in dielectrics con-
sists in generating strong laser pulses which propagate inside
a nonlinear dielectric medium. The Kerr effect gives rise to a
propagating perturbation of the refractive index which plays
the role of the analogous black hole, and is indeed involved
with a horizon. Our interest has been to find out solitonic
solutions describing the aforementioned perturbation, i.e. the
background solutions around which a linearization is per-
formed, and the perturbations are quantized. We have shown
that solitonic solutions exist, representing a dielectric pertur-
bation travelling with constant velocity in the direction of the
cylindrical fiber axis.

Further developments can involve different aspects, all
with a noticeable physical interest. One may study pertur-
bation theory for the model, looking for quantum effects
induced by surface effects, e.g. transition radiation [26]. Also,
one can study absorption in the model, associated with the
fourth order perturbation. Our main research focus, which is
represented by the analogous Hawking effect, requires the
analysis of the linearization of the model around the soli-
tonic solution and its quantization. One may also limit to
consider, in the comoving frame of the dielectric perturba-
tion, the dependence of the dielectric susceptibility and of the
resonance frequency on space (induced by the Kerr effect),
and analyze the Hawking effect with simpler background
profiles. Future works will be devoted to the aforementioned
goals.
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Appendix A: Orthogonality relations

For

f =
(

φ

ψ

)
, f̃ =

(
φ̃

ψ̃

)
, (A.1)

we define

jμ
f, f̃

(xxx):=i[φ∗(xxx)∂μφ̃(xxx)−φ̃(xxx)∂μφ∗(xxx)+vμ(ψ∗(xxx) ˙̃
ψ(xxx)

− ψ̃(xxx)ψ̇∗(xxx)) + gvμ(ψ∗(xxx)φ̃(xxx) − φ∗(xxx)ψ̃(xxx))].
(A.2)

It is a conserved current

∂μ jμ
f, f̃

(xxx) = 0, (A.3)

and the scalar product is

( f | f̃ ) =
∫
Ct

j0
f, f̃

(xxx), (A.4)

where Ct is the slice of C obtained by fixing t .
The conservation law is particularly helpful for computing

the scalar product among plane wave solutions or scattering
wave solutions. These solutions have the form

φ(xxx) = e−iωksm tϕksm (x), (A.5)

so if we take

f (xxx) = e−iωksm t
(

ϕksm(x)
�ksm(x)

)
,

f̃ (xxx) = e−iωk′s′m′ t
(

ϕk′s′m′(x)
�k′s′m′(x)

)
, (A.6)

then

∂0 j
0
f, f̃

(xxx) = i(ωksm − ωk′s′m′) j0
f, f̃

(xxx), (A.7)

and integrating over the spatial slice and using the continuity
equation we get

( f | f̃ ) = − 1

i(ωksm − ωk′s′m′)

∫
∂Ct

j f, f̃ (xxx) · n(xxx) d2σ(xxx),

(A.8)

where we have used the continuity of j f, f̃ (xxx) · n(xxx), as a
consequence of the boundary conditions. In order to compute
this integral let us restrict it on the compact cylinder

CZ
t = {(ρ, θ, z) ∈ Ct | − Z ≤ z ≤ Z}, (A.9)

so that

( f | f̃ ) = − 1

i(ωksm − ωk′s′m′)
lim

Z→+∞∫
∂CZ

t

j f, f̃ (xxx) · n(xxx) d2σ(xxx). (A.10)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


294 Page 14 of 17 Eur. Phys. J. C (2021) 81 :294

Finally, by taking into account the boundary condition for
the fields we get

( f | f̃ ) = − 1

i(ωksm − ωk′s′m′)
lim

Z→+∞

(∫
DZ

j z
f, f̃

(xxx)ρ2dρdθ

−
∫
D−Z

j z
f, f̃

(xxx)ρ2dρdθ

)
, (A.11)

where

D±Z = {(ρ, θ, z) ∈ Ct |z = ±Z}. (A.12)

Using
∫ 2π

0
ei(m

′−m)θdθ = 2πδmm′ , (A.13)

for two right dielectric scattering functions we get

( f | f̃ )
κ∗
ksmκksm

= − ei(ωksm−ωk′s′m )t

i(ωksm − ωk′s′m)
2πδmm′

×
∫ R

0
J|m|

(
zms

ρ

R

)
J|m|

(
zms′

ρ

R

)
ρdρ

× lim
Z→+∞

[
(k − k′)R∗

ksme
−i(k+k′)Z

− (k − k′)Rk′s′me
i(k+k′)Z + (k + k′)

×
(
(T ∗

ksmTk′s′m + R∗
ksm Rk′s′m)e−(k−k′)Z

− ei(k−k′)Z
)]

.

(A.14)

We first show that

Lemma 1 It holds

∫ R

0
J|m|

(
zms

ρ

R

)
J|m|

(
zms′

ρ

R

)
ρdρ

= δss′
R2

2z2
ms

(z2
ms − m2)J 2

m(zms). (A.15)

Proof The Bessel equation can be written in the form

d

dρ

(
ρ
d

dρ
J|m|

(
zms

ρ

R

))

+
(

ρ
z2
ms

R

2

− m2

ρ

)
J|m|

(
zms

ρ

R

)
= 0, (A.16)

from which we get

d

dρ

[
ρ J|m|

(
zms′

ρ

R

)
d

dρ
J|m|

(
zms

ρ

R

)

− ρ J|m|
(
zms

ρ

R

)
d

dρ
J|m|

(
zms′

ρ

R

)]

+ z2
ms − z2

ms′
R2 ρ J|m|

(
zms

ρ

R

)

J|m|
(
zms′

ρ

R

)
= 0,

(A.17)

that integrated from 0 to R in dρ gives
∫ R

0
J|m|

(
zms

ρ

R

)
J|m|

(
zms′

ρ

R

)
ρdρ = 0, (A.18)

if s �= s′. Moreover, from (A.16) we get

0 = d

dρ

(
ρ J|m|

(
zms

ρ

R

) d

dρ

(
ρ
d

dρ
J|m|

(
zms

ρ

R

)))

+ z2
ms

R2 2ρ J 2
m

(
zms

ρ

R

)

+
(

ρ2 z
2
ms

R2 − m2
)

2J|m|
(
zms

ρ

R

) d

dρ
J|m|

(
zms

ρ

R

)

= d

dρ

(
ρ J|m|

(
zms

ρ

R

) d

dρ

(
ρ
d

dρ
J|m|

(
zms′

ρ

R

)))

+ z2
ms

R2 2ρ J 2
m

(
zms

ρ

R

)

− d

dρ

(
ρ
d

dρ
J|m|

(
zms

ρ

R

))2

.

(A.19)

After integration in dρ from 0 to R, and using the definition
of zms , we get

2
z2
ms

R2

∫ R

0
J 2|m|

(
zms

ρ

R

)
ρdρ = −R2 J 2|m|(zms)

d2

dρ2 J
2|m|
(
zms

ρ

R

)∣∣∣∣
ρ=R

. (A.20)

Using again the Bessel equation we finally get the assert. ��
Thus

( f | f̃ )
κ∗
ksmκksm

= − ei(ωksm−ωk′sm )t

i(ωksm − ωk′sm)
2πδmm′δss′

R2

2z2
ms

(z2
ms − m2)J 2

m(zms)

lim
Z→+∞

[
(k − k′)R∗

ksme
−i(k+k′)Z

−(k − k′)Rk′sme
i(k+k′)Z + (k + k′)(

(T ∗
ksmTk′sm + R∗

ksm Rk′sm)e−(k−k′)Z − ei(k−k′)Z
)]

.

(A.21)

In order to compute this limit, we rewrite it in the form

lim
Z→∞

k − k′

ωksm − ωk′sm

×
[
(k + k′)e

−(k−k′)Z − ei(k−k′)Z

k′ − k

+
(
R∗
ksme

−i(k+k′)Z − Rk′sme
i(k+k′)Z

)

+(k + k′)
T ∗
ksmTk′sm + R∗

ksm Rk′sm − 1

k′ − k
e−(k−k′)Z

]
.

(A.22)
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Since k and k′ are positive, the second term in the square
brackets vanishes in the limit because of the Riemann–
Lebesgue theorem. The second term vanishes for the same
reason unless k = k′. Since |Tksm |2 + |Rksm |2 = 1, it stays
finite for k = k′ (if we take the continuation by the limit
k′ → k). Thus, in the distributional sense, it vanishes. So,
the surviving limit is

lim
Z→∞

k − k′

ωksm − ωk′sm

[
(k + k′)2i sin((k − k′)Z)

k′ − k

]

= 2πk
dk

dω
2iδ(k′ − k), (A.23)

and we finally get

( f | f̃ ) = |κksm |24ωksmπ2R2

×
(

1 − m2

z2
ms

)
J 2
m(zms)δmm′δss′δ(k

′ − k). (A.24)

The same result is true for two left dielectric wave functions.
The same procedure can be used to compute the scalar

product between two right (or left) gap wave functions g, g̃

(g|g̃) = |κ̃ksm |2ωksmπ2R2

×
(

1 − m2

z2
ms

)
J 2
m(zms)δmm′δss′δ(k

′ − k). (A.25)

All other combinations vanish. It is worth to mention that for
the particular case m = 0 there is also the zero z0,0 = 0, for
which

( f | f̃ ) = |κk00|24kπ2R2δ(k′ − k), (A.26)

(g|g̃) = |κ̃k00|2kπ2R2δ(k′ − k). (A.27)

Appendix B: Study of Eq. (5.10)

Let us write the quartic as

Y 2λ

12
h4 + (ω2

0 − g2V 2γ 2)h2 + 2gκVh − 2χ = p(h),

(B.1)

with

p(x) = α0x
4 + α2x

2 + α3x

+ α4 ≡ α0(x − E0)(x − E1)(x − E2)(x − E3),

(B.2)

where E j are the polynomial roots, satisfying E0 + E1 +
E2 + E3 = 0. We are assuming that there is at least one

real root and so define E0 to be the largest real root. Let us
consider the change of variables

h = as + b

cs + d
, (B.3)

with a, b, c, d all real. These parameters are defined up to a
global real rescaling, which can be fixed so that ad−bc = ε,
with ε = ±1. We get

h′ = εs′

(cs + d)2 , (B.4)

so that

h′
√
p(h)

= εs′

q(s)
, (B.5)

where

q(s) = a0s
4 + a1s

3 + a2s
2 + a3s + a4, (B.6)

with

a0 = c4 p

(
a

c

)
, (B.7)

which we easily set to zero by imposing

a = cE0. (B.8)

With this position, the remaining coefficients are

a1 = c3(b − E0d) p′(E0), (B.9)

a2 = (b − E0d)c2d p′(E0) − (b − E0d)ε
c

2
p′′(E0),

(B.10)

a3 = 4cd3 p

(
b

d

)
+ εd2 p′

(
b

d

)
, (B.11)

a4 = d4 p

(
b

d

)
. (B.12)

We have to impose the condition a2 = 0 and a1 = 4. Notice
that b − E0d = −ε/c. Moreover, since we are assuming
the roots are generic, therefore all distinct, p′(E0) �= 0. We
finally get:

a = E0c, b = c

4

(
p′(E0) − 1

2
E0 p

′′(E0)

)
,

c = 2√|p′(E0)|
d = − p′′(E0)

8
c. (B.13)

and ε = −sign(p′(E0)). With the assumption E0 real, these
coefficients are all real and lead us to Eq. (5.18), with

g2 = 4cd3 p

(
b

d

)
+ εd2 p′

(
b

d

)
,
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g3 = d4 p

(
b

d

)
. (B.14)

The conditions leading to this solution are essentially the
ones guaranteeing the existence of at least one real solution
of p(x) = 0.

The discriminant of our quartic equation is

� = 256α3
0α3

4 − 128α2
0α2

2α2
4 + 144α2

0α2α
2
3α4 − 27α2

0α4
3

+16α0α
4
2α4 − 4α0α

3
2α2

3 . (B.15)

From [27, Theorem 7], we see that if � < 0 there are always
2 real roots and 2 complex conjugate roots. For � = 0 we
boil down to the case of degenerate solutions, studied apart in
the main text. Finally, if � > 0 the only case with real roots is
when the conditions M ≡ α0α2 < 0 and N ≡ 4α0α4 −α2

2 <

0 are satisfied. If the case, then there are four real solutions.
More explicitly, since α0 = λ

12Y
2 > 0, we have to con-

sider the sign of

�̃ ≡ �

16α0
= −128α2

0χ3 − 32α0�
2χ2 − 72α0�g2κ2V 2χ

−27α0g
4κ4V 4 − 2�4χ − g2κ2V 2�3, (B.16)

where

� = ω2
0 − g2V 2γ 2. (B.17)

Moreover,

M

α0
≡ α2 = �, (B.18)

N ≡ 4α0α4 − α2
2 = −8α0χ − �2. (B.19)

Therefore, if χ ≥ 0 and � > 0, �̃ < 0 we have always
two real roots and two complex conjugate roots. If χ ≥ 0
and ω < 0 then �̃ may have any sign but M and N are both
negative, so we always have two or four real roots. This was
also evident from the fact that p(0) = −2χ so, if χ > 0, we
always have at least one real root (two if χ > 0 or if κ �= 0
when χ = 0. For χ = κ = 0, x = 0 is a double root of p
and the discriminant vanishes).

When χ is negative things are little bit more complicate. In
this case one has to study more carefully the sign of �̃. When
it is negative then we are done, while when it is positive then
� must be negative, providing the same condition v > ω0/g
as for the caseχ = κ = 0. In this case, we have also to impose
the condition N < 0, which gives g2v2 > ω2

0 + √
8α0|χ |,

that is

V 2 >
ω2

0 + |Y |
√

2
3λ|χ |

g2 + ω2
0 + |Y |

√
2
3λ|χ |

, (B.20)

which generalizes condition (5.16).

So, one is left with the study of the general conditions for
which �̃ have a specific sign when χ is negative. We will
not pursue this here, but we limit ourselves to the following
considerations. We can look at �̃ > 0 as a second order
inequality in α0, recalling the physical constraint α0 > 0.
Since χ is negative, this is always true if the discriminant is
negative, while if it is positive we are led to the condition
α0 > max(0, α+), α+ being the higher root of the quadric. A
complete classification of all possibilities is not difficult but
quite cumbersome and out of the task of the present work.
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