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In this paper, we studied the approximate scattering state solutions of the Dirac equation with the hyperbolical potential with
pseudospin and spin symmetries. By applying an improved Greene-Aldrich approximation scheme within the formalism of
functional analytical method, we obtained the spin-orbit quantum numbers dependent scattering phase shifts for the spin and
pseudospin symmetries. The normalization constants, lower and upper radial spinor for the two symmetries, and the relativistic
energy spectra were presented. Our results reveal that both the symmetry constants (𝐶ps and 𝐶s) and the spin-orbit quantum
number 𝜅 affect scattering phase shifts significantly.

1. Introduction

Scattering theory is very central to the study of several fields
such as atomic, nuclear, high energy or condensed matter
physics. It allows for descriptions and interpretations ofmany
collisions processes such as excitation and ionization by par-
ticle or radiation impact [1–7]. Complete information about
the quantum systems can only be obtained by investigating
scattering state solutions of relativistic and nonrelativistic
equations with quantum mechanical potential model.

As a result, several authors in quantum mechanics have
strictly followed different approaches to study the scattering
state solutions of the relativistic and nonrelativistic wave
equations for central and noncentral potential models [8–15].
In their works, they have reported the calculations on phase
shifts, transmission and reflection coefficients, resonances,
normalized radial wave functions and properties of 𝑆-matrix
for potential models of their interest. All these are sufficient
enough to predict, correlate, and describe the behaviour of
particles.

However, literature revealed that the investigations on
the spin and pseudosymmetries [16, 17] of Dirac equation,
which was previously on the bound state problems [18–21],
have now been extended to scattering state problems [22, 23].
Just of recent, under the spin and pseudospin symmetry, the
analysis of scattering state solutions of Dirac equation with
certain potential function models of interest were considered
by some authors. These include Yukawa potential [22] and
Hellmann potential [23].

This is owing to the fact that the symmetries in Hadron
and nuclear spectroscopy [24] as well as deformation and
superdeformation in nuclei [25] can be best understood
by studying scattering state problems under pseudo(spin)
symmetry. Among the various relativistic potential function
models, we consider hyperbolical potential (Schiöberg poten-
tial), which was proposed by Schiöberg in 1986 [26] in order
to find a more suitable empirical potential energy function
for diatomic molecules. In 2012, Wang et al. [27] constructed
an improved version of hyperbolical potential (called new
Schiöberg potential) by employing the dissociation energy
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and the equilibrium bond length for a diatomic molecule as
explicit parameters. As Jia et al. [28, 29] also reported that
the new Schiöberg potential, Deng-Fan potential, and the
Manning-Rosen potential are the same empirical potential
energy functions.

In view of the above works, we are motivated to inves-
tigate the scattering state solutions of Dirac equation with
hyperbolical potential suggested by Schiöberg in 1986 and
apply an improved Greene-Aldrich approximation scheme
within the formalism of functional analytical method. In
the present study the new Schiöberg potential is ignored
and we focus on the effects of the symmetry constants and
the positive potential parameters on the relativistic energy
and the scattering phase shifts of the hyperbolical potential
(Schiöberg potential).

This paper is organized as follows: Section 2 contains
the basic equation. In Section 3, we studied the approxi-
mate scattering state solutions for the hyperbolical potential
in detail. The discussions and conclusions are given in
Section 4.

2. The Basic Equations

By considering the Dirac wave equation and its correspond-
ing spinors, the two-coupled first-order differential equations
for the upper and lower components of the spinor may be
obtained as [30–33]

[ 𝑑𝑑𝑟 + 𝜅𝑟 ] 𝐹𝑛𝜅 (𝑟) = [𝑀 + 𝐸𝑛𝜅 − Δ (𝑟)] 𝐺𝑛𝜅 (𝑟) , (1)

[ 𝑑𝑑𝑟 − 𝜅𝑟 ]𝐺𝑛𝜅 (𝑟) = [𝑀 − 𝐸𝑛𝜅 + Σ (𝑟)] 𝐹𝑛𝜅 (𝑟) , (2)

where Δ(𝑟) = 𝑉(𝑟) − 𝑆(𝑟) and Σ(𝑟) = 𝑉(𝑟) + 𝑆(𝑟). Solving for𝐺𝑛𝜅(𝑟) in (1) and 𝐹𝑛𝜅(𝑟) in (2), we obtain the Schrödinger-like
equations satisfying for upper radial spinor 𝐹𝑛𝜅(𝑟) and lower
radial spinor 𝐺𝑛𝜅(𝑟), respectively, as

{ 𝑑2𝑑𝑟2 − 𝜅 (𝜅 + 1)𝑟2
+ [− (𝑀 + 𝐸𝑛𝜅 − Δ (𝑟)) (𝑀 − 𝐸𝑛𝜅 + Σ (𝑟))
+ (𝑑Δ (𝑟) /𝑑𝑟) (𝑑/𝑑𝑟 + 𝜅/𝑟)𝑀 + 𝐸𝑛𝜅 − Δ (𝑟) ]}𝐹𝑛𝜅 (𝑟) = 0,

(3)

{ 𝑑2𝑑𝑟2 − 𝜅 (𝜅 − 1)𝑟2
+ [− (𝑀 + 𝐸𝑛𝜅 − Δ (𝑟)) (𝑀 − 𝐸𝑛𝜅 + Σ (𝑟))
− (𝑑Σ (𝑟) /𝑑𝑟) (𝑑/𝑑𝑟 − 𝜅/𝑟)𝑀 − 𝐸𝑛𝜅 + Σ (𝑟) ]}𝐺𝑛𝜅 (𝑟) = 0,

(4)

where 𝜅(𝜅 − 1) = �̃�(̃𝑙 + 1) and 𝜅(𝜅 + 1) = 𝑙(𝑙 + 1).

2.1. Pseudospin Symmetry Limit for the Hyperbolical Potential.
By following the pseudospin symmetry conditions and con-
sidering the hyperbolical potential Δ(𝑟) satisfying relativistic
model [34–37],

Δ (𝑟) = 𝑉 (𝑟) = 𝐷 [1 − 𝜎0 coth (𝛼𝑟)]2 , (5)
where 𝐷, 𝛼, and 𝜎0 are the three positive potential param-
eters that significantly affect the relativistic energy spectra
and the relativistic scattering phase shifts. Schiöberg [26]
reported that this potential is closely related to the Morse,
the Kratzer, the Coulomb, and the harmonic oscillators and
other potential functions in a particular limit. The properties
and applications of this potential have been given by Lu et al.
(2005) and Schiöberg (1986).

Under the pseudospin symmetry condition (4) yields

{{{
𝑑2𝑑𝑟2 − 𝜅 (𝜅 − 1)𝑟2 − 𝛾 + 𝛽𝐷[1 − 𝜎0 (1 + 𝑒−2𝛼𝑟)1 − 𝑒−2𝛼𝑟 ]2}}}
⋅ 𝐺ps,𝑛𝜅 (𝑟) = 0,

(6)

where 𝛾 = (𝑀 + 𝐸𝑛𝜅)(𝑀 − 𝐸𝑛𝜅 + 𝐶ps) and 𝛽 = 𝑀− 𝐸𝑛𝜅 + 𝐶ps
are the pseudospin symmetry energy parameters.

2.2. Spin Symmetry Limit for the Hyperbolical Potential. In a
similar way, we consider the spin symmetry conditions and
take Σ(𝑟) as hyperbolical potential [34–37]. That is,

Σ (𝑟) = 𝑉 (𝑟) = 𝐷 [1 − 𝜎0 coth (𝛼𝑟)]2 , (7)
and using the spin symmetry conditions, (3) becomes

{{{
𝑑2𝑑𝑟2 − 𝜅 (𝜅 + 1)𝑟2 − �̃� − �̃�𝐷[1 − 𝜎0 (1 + 𝑒−2𝛼𝑟)1 − 𝑒−2𝛼𝑟 ]2}}}
⋅ 𝐹s,𝑛𝜅 (𝑟) = 0,

(8)

where �̃� = (𝑀−𝐸s,𝑛𝜅)(𝑀+𝐸s,𝑛𝜅−𝐶s) and �̃� = (𝑀+𝐸s,𝑛𝜅−𝐶s)
denote spin symmetry energy parameters.

2.3. Pekeris-Type Approximation. To obtain the approximate
solutions in the presence of the spin symmetry and pseu-
dospin symmetry, we use the Greene-Aldrich approximation
[38] and apply the widely used scheme for the centrifugal
term; namely,

1𝑟2 ≈ 4𝛼2 [𝑐0 + 𝑒−2𝛼𝑟(1 − 𝑒−2𝛼𝑟)2] , (9)

where 𝑐0 = 1/12 is a dimensionless constant [39]. This ap-
proximation has been used to obtain the approximate
analytical solutions of Dirac equation with the hyperbolic
potential in the presence of spin symmetry and pseudospin
symmetry [21]. When 𝑐0 = 0, this approximation reduces
to the well-known Greene-Aldrich approximation [38]. Note
that another approximation scheme has been proposed to
overcome the effect of centrifugal term in [40]. Our interest
here is to apply this improved Greene-Aldrich approximation
and see whether the symmetry constants (𝐶ps and𝐶s) and the
spin-orbit quantum number 𝜅 will have any influence on the
scattering phase shifts.
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3. Relativistic Scattering State Solutions

3.1. Pseudospin Symmetry Limit for Hyperbolical Potential.
Defining a variable 𝑧 = 1− 𝑒−2𝛼𝑟 and applying approximation
in (9), then (6) reduces to

{ 𝑑2𝑑𝑧2 − 1(1 − 𝑧) 𝑑𝑑𝑧 + [𝑃𝑧
2 + 𝑄𝑧 + 𝑅𝑧2 (1 − 𝑧)2 ]}𝐺ps,𝑛𝑘 (𝑟)

= 0,
(10)

with the following useful definitions:

𝑃 = 𝑘214𝛼2 + 𝛽𝐷𝜎𝑜𝛼2 ,
𝑄 = 4𝛼2𝜅 (𝜅 − 1) 𝑐0 − 4𝛽𝐷𝜎0 (1 + 𝜎0)4𝛼2 ,
𝑅 = −4𝛼2𝜅 (𝜅 − 1) 𝑐0 + 4𝛽𝐷𝜎204𝛼2 ,

(11)

where 𝑘1 = √𝛽𝐷(1 − 𝜎0)2 − 𝛾 − 4𝛼2𝜅(𝜅 − 1)𝑐0 is the asymp-
totic wave number for the pseudospin symmetry limit.

In order to solve (10) via the functional analyticalmethod,
we need to assume a wave function

𝐺ps,𝑛𝜅 (𝑧) = 𝑧𝜆 (1 − 𝑧)−𝑖𝑘1/2𝛼 𝑓 (𝑧) , (12)

with the pseudospin wave function parameter 𝜆 = 1/2 +(1/2)√1 + 4𝜅(𝜅 − 1) − 4𝛽𝐷𝜎20/𝛼2. Inserting (12) into (10)
leads to the formation of hypergeometric equation [41]

𝑧 (1 − 𝑧) 𝑓 (𝑧) + [2𝜆 − (2𝜆 − 𝑖𝑘1𝛼 + 1) 𝑧]𝑓 (𝑧)
+ [(𝜆 − 𝑖𝑘12𝛼 )

2 + 𝑃]𝑓 (𝑧) = 0.
(13)

By considering the boundary condition that 𝑓(𝑧) tends
to finite when 𝑧 → 0, the lower component of radial wave
functions for any arbitrary 𝜅-wave scattering states for the
hyperbolical potential is obtained as [42]

𝐺ps,𝑛𝜅 (𝑧)
= 𝑁𝑛𝜅 (1 − 𝑒−2𝛼𝑟)𝜆 𝑒𝑖𝑘1𝑟2𝐹1 (𝑎, 𝑏, 𝑐; 1 − 𝑒−2𝛼𝑟) , (14)

where

𝑎 = 𝜆 − 𝑖𝑘12𝛼 − √−𝛽𝐷𝜎𝑜𝛼2 − 𝑘214𝛼2 ,
𝑏 = 𝜆 − 𝑖𝑘12𝛼 + √−𝛽𝐷𝜎𝑜𝛼2 − 𝑘214𝛼2 ,
𝑐 = 2𝜆.

(15)

It is required that we consider the following conjugate
relations which define the asymptotic phases:

𝑐 − 𝑎 − 𝑏 = (𝑎 + 𝑏 − 𝑐)∗ = 𝑖𝑘1𝛼 , (16a)

𝑐 − 𝑏 = 𝜆 + 𝑖𝑘12𝛼 − √−𝛽𝐷𝜎𝑜𝛼2 − 𝑘214𝛼2 = 𝑎∗, (16b)

𝑐 − 𝑎 = 𝜆 + 𝑖𝑘12𝛼 + √−𝛽𝐷𝜎𝑜𝛼2 − 𝑘214𝛼2 = 𝑏∗ (16c)

and𝑁𝑛𝜅 is the normalization.

3.1.1. Pseudospin Symmetry Phase Shifts and Normalization
Constant. To obtain the phase shifts 𝛿𝑙 and normalization
constant, we apply the following recurrence relation of
hypergeometric function or analytic-continuation formula
[41]:

2𝐹1 (𝑎, 𝑏, 𝑐; 𝑧) = D (𝑐)D (𝑐 − 𝑎 − 𝑏)
D (𝑐 − 𝑎)D (𝑐 − 𝑏)

⋅ 2𝐹1 (𝑎; 𝑏; 1 + 𝑎 + 𝑏 − 𝑐; 1 − 𝑧) + (1 − 𝑧)𝑐−𝑎−𝑏
⋅ D (𝑐)D (𝑎 + 𝑏 − 𝑐)

D𝑎D (𝑏)
⋅ 2𝐹1 (𝑐 − 𝑎; 𝑐 − 𝑏; 𝑐 − 𝑎 − 𝑏 + 1; 1 − 𝑧) .

(17)

Considering (17) and the property 2𝐹1(𝑎, 𝑏; 𝑐; 0) = 1, as 𝑟 →∞, we have

2𝐹1 (𝑎, 𝑏; 𝑐; 1 − 𝑒−2𝛼𝑟) = D (𝑐)
⋅  D (𝑐 − 𝑎 − 𝑏)
D (𝑐 − 𝑎)D (𝑐 − 𝑏) + D (𝑐 − 𝑎 − 𝑏)

D (𝑎∗)D (𝑏∗) 𝑒−𝛼(𝑐−𝑎−𝑏)𝑟
 ;

(18)

using (16a), (16b), and (16c) we may transform (18) as

2𝐹1 (𝑎, 𝑏; 𝑐; 1 − 𝑒−2𝛼𝑟) = D (𝑐)
⋅  D (𝑐 − 𝑎 − 𝑏)
D (𝑐 − 𝑎)D (𝑐 − 𝑏) +

 D (𝑐 − 𝑎 − 𝑏)
D (𝑐 − 𝑎)D (𝑐 − 𝑏)


∗ 𝑒−𝑖𝑘1𝑟 .

(19)

By taking D(𝑐 − 𝑎 − 𝑏)/D(𝑐 − 𝑎)D(𝑐 − 𝑏) = |D(𝑐 − 𝑎 − 𝑏)/D(𝑐 −𝑎)D(𝑐 − 𝑏)|𝑒𝑖𝛿 and inserting in (19), we have

2𝐹1 (𝑎, 𝑏; 𝑐; 1 − 𝑒−2𝛼𝑟) = D (𝑐)  D (𝑐 − 𝑎 − 𝑏)
D (𝑐 − 𝑎)D (𝑐 − 𝑏)


⋅ 𝑒−𝑖𝑘1𝑟 [𝑒𝑖(𝑘1𝑟+𝛿) + 𝑒−𝑖(𝑘1𝑟+𝛿)] . (20)

Therefore, we obtain the asymptotic form of the lower spinor
for 𝑟 → ∞ as

𝐺ps,𝑛𝜅 (𝑟) = 2𝑁𝑛,𝜅D (𝑐)  D (𝑐 − 𝑎 − 𝑏)
D (𝑐 − 𝑎)D (𝑐 − 𝑏)


× sin(𝑘1𝑟 + 𝜋2 + 𝛿) .

(21)
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On comparison of (20) with the boundary condition 𝑟 →∞ ⇒ 𝐺ps,𝑛𝜅(∞) → 2 sin(𝑘1𝑟 + 𝛿𝑙,𝑛𝜅 − 𝑙𝜋/2) [42]. Thus, we
finally obtain the explicit pseudospin symmetry phase shifts
and the normalization constant, respectively, as

𝛿𝑙ps,𝑛𝜅
= 𝜋2 (𝑙 + 1) + argD(𝑖𝑘1𝛼 )
− argD(𝜆 + 𝑖𝑘12𝛼 + √−𝛽𝐷𝜎𝑜𝛼2 − 𝑘214𝛼2)

− argD(𝜆 + 𝑖𝑘12𝛼 − √−𝛽𝐷𝜎𝑜𝛼2 − 𝑘214𝛼2) ,

(22)

𝑁ps,𝑛𝜅

=
D(𝜆 + 𝑖𝑘1/2𝛼 + √−𝛽𝐷𝜎𝑜/𝛼2 − 𝑘21/4𝛼2)√2𝜆
×

D(𝜆 + 𝑖𝑘1/2𝛼 − √−𝛽𝐷𝜎𝑜/𝛼2 − 𝑘21/4𝛼2)

D (𝑖𝑘1/𝛼)

.

(23)

3.1.2. Analytical Properties of S-Matrix for the Pseudospin Sym-
metry Limit. Here, the analytical properties of partial-wave𝑠-matrix are investigated to verify the fact that the poles of the𝑠-matrix in the complex energy plane correspond to bound
states for real poles [42]; thus, we consider D(𝜆 + 𝑖𝑘1/2𝛼 +√−𝛽𝐷𝜎𝑜/𝛼2 − 𝑘21/4𝛼2), where its first-order poles are at the
point [42]

(𝜆 + 𝑖𝑘12𝛼 + √−𝛽𝐷𝜎𝑜𝛼2 − 𝑘214𝛼2) = 0, −1, −2, −3, . . .
= −𝑛 (𝑛 = 0, 1, 2, . . .) .

(24)

Consequently, the bound state energy levels for the pseu-
dospin symmetry limit are obtained as

𝛾4𝛼2 = 𝛽𝐷4𝛼2 (1 − 𝜎0)2 − 𝜅 (𝜅 − 1) 𝑐0
+ [(𝑛 + 𝜆)2 + 𝛽𝐷𝜎0/𝛼22 (𝑛 + 𝜆) ]2 . (25)

3.2. Spin Symmetry Limit for theHyperbolical Potential. Using
the previously defined transformation variable and approx-
imation, (8) becomes

{ 𝑑2𝑑𝑧2 − 1(1 − 𝑧) 𝑑𝑑𝑧 + [�̃�𝑧
2 + �̃�𝑧 + �̃�𝑧2 (1 − 𝑧)2 ]}𝐹s,𝑛𝑘 (𝑟)

= 0,
(26)

with the following spin symmetry phase parameters:

�̃� = 𝑘224𝛼2 − �̃�𝐷𝜎0𝛼2 ,
�̃� = 4𝛼2𝜅 (𝜅 + 1) 𝑐0 + 4�̃�𝐷𝜎0 (1 + 𝜎0)4𝛼2 ,
�̃� = −4𝛼2𝜅 (𝜅 + 1) 𝑐0 − 4�̃�𝐷𝜎204𝛼2 ,

(27)

where 𝑘2 = √−�̃�𝐷(1 − 𝜎0)2 − �̃� − 4𝛼2𝜅(𝜅 + 1)𝑐0 is the asymp-
totic wave number for the spin symmetry limit.

Similarly, we also assume the following upper wave
function for the spin symmetry

𝐹s,𝑛𝜅 (𝑧) = 𝑧�̃� (1 − 𝑧)−𝑖𝑘2/2𝛼 𝑓 (𝑧) , (28)

with the spin symmetry wave function parameter �̃� = 1/2 +(1/2)√1 + 4𝜅(𝜅 + 1) − 4�̃�𝐷𝜎20/𝛼2.
To avoid repetition, we follow the same procedures in

previous subsection and write the upper component of spin
symmetry radial wave functions for any arbitrary 𝜅-wave
scattering states as

𝐹s,𝑛𝜅 (𝑧)
= 𝑁𝑛𝜅 (1 − 𝑒−2𝛼𝑟)�̃� 𝑒𝑖𝑘2𝑟2𝐹1 (𝑎, 𝑏, 𝑐; 1 − 𝑒−2𝛼𝑟) , (29)

where we have used the following wave function parameters:

𝑎 = �̃� − 𝑖𝑘22𝛼 − √ �̃�𝐷𝜎0𝛼2 − 𝑘224𝛼2 ,
𝑏 = �̃� − 𝑖𝑘22𝛼 + √ �̃�𝐷𝜎0𝛼2 − 𝑘224𝛼2 ,
𝑐 = 2�̃�,

(30)

where 𝑁𝑛𝜅 is the normalization constant depending on 𝑛
and 𝜅.
3.2.1. Spin Symmetry Phase Shifts and Normalization Con-
stant. Following the same steps in Section 3.1.1, we write the
explicit spin symmetry phase shifts and the corresponding
normalization constant, respectively, as

�̃�𝑙s,𝑛𝜅 = 𝜋2 (𝑙 + 1) + argD(𝑖𝑘2𝛼 )
− argD(�̃� + 𝑖𝑘22𝛼 + √ �̃�𝐷𝜎0𝛼2 − 𝑘224𝛼2)
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− argD(�̃� + 𝑖𝑘22𝛼 − √ �̃�𝐷𝜎0𝛼2 − 𝑘224𝛼2) ,
(31)

𝑁s,𝑛𝜅 =
D(�̃� + 𝑖𝑘2/2𝛼 + √�̃�𝐷𝜎0/𝛼2 − 𝑘22/4𝛼2)√2�̃�
×

D(�̃� + 𝑖𝑘2/2𝛼 − √�̃�𝐷𝜎0/𝛼2 − 𝑘22/4𝛼2)

D (𝑖𝑘2/𝛼)

,

(32)

where we have employed the following phase shifts parame-
ters for simplicity:

𝑐 − 𝑎 − 𝑏 = (𝑎 + 𝑏 − 𝑐)∗ = 𝑖𝑘2𝛼 ,
𝑐 − 𝑏 = �̃� + 𝑖𝑘22𝛼 − √ �̃�𝐷𝜎0𝛼2 − 𝑘224𝛼2 = 𝑎∗,
𝑐 − 𝑎 = �̃� + 𝑖𝑘22𝛼 + √ �̃�𝐷𝜎0𝛼2 − 𝑘224𝛼2 = 𝑏∗.

(33)

3.2.2. Analytical Properties of S-Matrix for the Spin Symmetry
Limit. Following the same fashion in Section 3.1.2, the corre-
sponding bound state energy levels for the spin symmetry are
determined by the following energy equation:

𝜅 (𝜅 + 1) 𝑐0 + �̃�4𝛼2 + �̃�𝐷4𝛼2 (1 − 𝜎0)2

− [[
(𝑛 + �̃�)2 − �̃�𝐷𝜎0/𝛼22 (𝑛 + �̃�) ]]

2

= 0.
(34)

3.3. Nonrelativistic Limit for the Scattering State Solution. To
study the nonrelativistic limit, we apply the following appro-
priate mapping to (34):

𝜅 (𝜅 + 1) = 𝑙 (𝑙 + 1) ,
𝐸s,𝑛𝑘 −𝑀 → 𝐸𝑛𝑙,
𝑀 + 𝐸s,𝑛𝑘 → 2𝜇

72
,

𝐶s = 0.
(35)

Consequently, we obtain the nonrelativistic bound state
energy levels for any arbitrary 𝑙 as

𝐸𝑛𝑙 = 2𝛼272𝑙 (𝑙 + 1) 𝑐0𝜇 + 𝐷 (1 − 𝜎0)2
− 𝛼2728𝜇 [(Λ + 2𝑛)2 − 8𝜇𝐷𝜎0/𝛼272(Λ + 2𝑛) ]2 ,

(36)

where Λ = 1 + √1 + 4𝑙(𝑙 + 1) + 8𝜇𝐷𝜎20/𝛼272.
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Figure 1: A plot of pseudospin scattering phase shifts for the
hyperbolical potential as a function of spin-orbit number 𝜅 for 𝑙 =0, 1, 2, 3 with positive potential parameter 𝜎0 = 0.10, 𝛼 = 0.10,𝑐𝑜 = 1/12, 𝐶ps = 0, 𝐷 = 10, and 𝐸 = 𝑀 = 1. The relativistic mass
and energy are equal in all the calculations.

4. Discussion and Conclusion

The pseudospin symmetry bound states energy spectra dis-
played in Table 1 are obtained from (25) and the correspond-
ing spin symmetry bound states energy spectra displayed
in Table 2 are obtained from (34) while the nonrelativistic
bound state energy spectra are obtained from (36). The
pseudospin symmetry and spin symmetry phase shifts are
obtained from (22) and (31), respectively.

In Tables 1 and 2, for fixed values principal quantum
number 𝑛, the relativistic bound state energies increase with
decreasing values of spin-orbit quantum numbers 𝜅 whether
the symmetry constants are present or not. The relativistic
bound state energy increases with increase in principal
quantum number 𝑛 for all 𝜅 < 0. An increase positive
parameter 𝜎0 decreases the relativistic bound state energy for
all 𝑛 and all 𝜅 < 0. The results reasonably showed that the
presence symmetry constants contribute significantly to the
relativistic bound state energies. Table 3 displayed improved
nonrelativistic energies for the states 2p, 3p, 3d, 4p, 4d, and 4f
for positive potential parameter 𝜎0 = 0.10.

The pseudospin symmetry and spin symmetry phase
shifts are displayed in Tables 4 and 5, respectively. To see
the clearer behaviour of the phase shifts in the spin and
pseudospin symmetry limits we plot the numerical results of
phase shift in both pseudospin and spin symmetries against
the spin-orbit quantumnumbers 𝜅 in Figures 1–4. In Figure 1,
phase shifts are slightly decreasing exponentially to the left
and to the right for negative and positive values of spin-
orbit quantum numbers, respectively, for zero pseudospin
constant. A steady phase shifts is observed at −1 ≤ 𝜅 ≤ 1.
This suggests that the spin-orbit number affects phase shifts
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Table 1: Pseudospin symmetry bound state energies at the poles of 𝑠-matrix (in units fm−1) for the hyperbolical potential as a function of
positive potential parameter 𝜎0 for different values 𝑛 and 𝜅 < 0, 𝛼 = 0.1 in atomic units (𝜇 = 7 = 1), and 𝑐𝑜 = 1/12.
𝑛 𝜅 𝜎0 𝐸ps,𝑛𝜅,𝐷 = 5, 𝐶ps = 0 𝐸ps,𝑛,𝜅,𝐷 = 10, 𝐶ps = −5
1 −1 0.10 2.279163696, 1.029316001 2.1233814120, −3.993501276
1 −1 0.15 1.861759552, 1.031095657 1.3219168610, −3.993392561
1 −1 0.20 1.595805327, 1.034022382 0.8412753547, −3.993236371
1 −1 0.25 1.410036018, 1.038851771 0.5132318062, −3.993028490
1 −2 0.10 2.499986930, 1.049190512 2.3968826230, −3.989115288
1 −2 0.15 2.038697268, 1.051647743 1.4930060260, −3.988979900
1 −2 0.20 1.734781325, 1.055647948 0.9587751244, −3.988786147
1 −2 0.25 1.518635403, 1.062147486 0.5989218610, −3.988529604
1 −3 0.10 2.699088639, 1.074153615 2.7421356920, −3.983691020
1 −3 0.15 2.214785842, 1.077522035 1.7216780460, −3.983519794
1 −3 0.20 1.879801953, 1.082984677 1.1206711830, −3.983275390
1 −3 0.25 1.634694558, 1.091816104 0.7192390968, −3.982952907
1 −4 0.10 2.860475911, 1.104471112 3.1199566410, −3.977227902
1 −4 0.15 2.372200392, 1.109000893 1.9871570450, −3.977014236
1 −4 0.20 2.015688603, 1.116352376 1.3149710440, −3.976709786
1 −4 0.25 1.745900039, 1.128273463 0.8667745016, −3.976309013
2 −1 0.10 2.615061529, 1.055125495 3.1191738270, −3.987973646
2 −1 0.15 2.170952096, 1.059520099 2.1743591190, −3.987691971
2 −1 0.20 1.854820744, 1.066898930 1.5763871650, −3.987286660
2 −1 0.25 1.610697844, 1.079577280 1.1529573900, −3.986746084
2 −2 0.10 2.751633202, 1.082483207 3.3080559170, −3.982048026
2 −2 0.15 2.286444614, 1.087766383 2.2967933160, −3.981747832
2 −2 0.20 1.948294269, 1.096614037 1.6626435590, −3.981316476
2 −2 0.25 1.684969993, 1.111784132 1.2171612360, −3.980742235
2 −3 0.10 2.880415615, 1.115474816 3.5565298640, −3.975069259
2 −3 0.15 2.407308925, 1.122116505 2.4653804670, −3.974727589
2 −3 0.20 2.050458310, 1.133236516 1.7841645900, −3.974237859
2 −3 0.25 1.766983989, 1.152366772 1.3088621540, −3.973588060
2 −4 0.10 2.985001626, 1.154437579 3.8391364550, −3.967043330
2 −4 0.15 2.516623028, 1.162869448 2.6672425580, −3.966648795
2 −4 0.20 2.146938664, 1.177051056 1.9336438780, −3.966084415
2 −4 0.25 1.844677707, 1.201768936 1.4235514910, −3.965337543

significantly for any arbitrary angular momentum quantum
number.

Figure 2 illustrates the behaviour of phase shifts in the
presence of pseudospin constants; the graphs follow the same
pattern with more negative phase shifts. The negativity is
an indication that pseudospin constant strongly influence
scattering phase shifts. However, Figures 3 and 4 illustrate
the behaviour of spin symmetry phase shifts. An exponential
rise in phase shifts to the left and to the right for negative
and positive value of the spin-orbit quantum numbers 𝜅,

respectively, is observed for all angular momentum quantum
number 𝑙.

In conclusion, we have studied the approximate scattering
state solution of Dirac equation with the hyperbolical poten-
tial using a short-range approximation within the framework
of functional analytical method. We have obtained the spin
and pseudospin symmetry bound state energies and their
corresponding nonrelativistic energies, spin and pseudospin
symmetry phase shifts, normalization constants, pseudospin
symmetry lower component, and spin symmetry upper com-



Advances in High Energy Physics 7

Table 2: Spin symmetry energies at the poles of 𝑠-matrix (in units fm−1) for the hyperbolical potential as a function of positive potential
parameter 𝜎0 for different values 𝑛 and 𝜅 < 0, 𝛼 = 0.1 and 𝐷 = 10 in atomic units (𝜇 = 7 = 1), and 𝑐𝑜 = 1/12.
𝑛 𝜅 𝜎0 𝐸𝑛,𝜅<0,𝐷 = 10, 𝐶s = 0 𝐸𝑛,𝜅<0,𝐷 = 10, 𝐶s = 5
0 −2 0.10 2.852765813, −0.9971975973 4.894486374, 4.004871783
0 −2 0.15 2.286257855, −0.9971671352 4.484669284, 4.005013210
0 −2 0.20 1.976243190, −0.9971235606 4.291486196, 4.005228383
0 −2 0.25 1.777926670, −0.9970658947 4.186281947, 4.005540044
0 −3 0.10 3.349240971, −0.9941222745 5.374173995, 4.010207082
0 −3 0.15 2.597878123, −0.9940696246 4.789639030, 4.010461236
0 −3 0.20 2.190050696, −0.9939945667 4.496311909, 4.010844649
0 −3 0.25 1.933251119, −0.9938956907 4.328836785, 4.011393011
0 −4 0.10 3.899001828, −0.9899271098 5.855422017, 4.017491955
0 −4 0.15 2.970664174, −0.9898454341 5.119514795, 4.017895505
0 −4 0.20 2.458599114, −0.9897291933 4.729861208, 4.018501874
0 −4 0.25 2.135123157, −0.9895764138 4.498048414, 4.019363991
0 −5 0.10 4.445008402, −0.9846098450 6.309268779, 4.026738666
0 −5 0.15 3.365034712, −0.9844924012 5.451065869, 4.027328768
0 −5 0.20 2.754614425, −0.9843254210 4.975122387, 4.028213547
0 −5 0.25 2.364503739, −0.9841062477 4.681992554, 4.029467529
1 −2 0.10 4.307228207, −0.9929477534 5.855267990, 4.012335498
1 −2 0.15 3.494799666, −0.9928150205 5.188967231, 4.012888014
1 −2 0.20 3.001609225, −0.9926233942 4.804823066, 4.013746766
1 −2 0.25 2.661245323, −0.9923666479 4.556984308, 4.015030469
1 −3 0.10 4.595853112, −0.9881911614 6.178641705, 4.020607401
1 −3 0.15 3.680442629, −0.9880244067 5.414291047, 4.021342479
1 −3 0.20 3.132109286, −0.9877847131 4.970695195, 4.022473524
1 −3 0.25 2.758390431, −0.9874654265 4.683014161, 4.024139623
1 −4 0.10 4.953432668, −0.9823076582 6.534290370, 4.030858520
1 −4 0.15 3.924112012, −0.9820955447 5.675159767, 4.031828444
1 −4 0.20 3.308851693, −0.9817915310 5.167984043, 4.033311444
1 −4 0.25 2.892600410, −0.9813881332 4.835489514, 4.035475765
1 −5 0.10 5.338358623, −0.9752962991 6.885521151, 4.043099865
1 −5 0.15 4.202075842, −0.9750304881 5.945991145, 4.044348875
1 −5 0.20 3.517208069, −0.9746502453 5.378418925, 4.046250921
1 −5 0.25 3.054278778, −0.9741470070 5.001075188, 4.049010392

ponent of radial spinor wave functions for any arbitrary 𝜅-
wave scattering states.

We also studied the behaviour of phase shifts with
spin-orbit quantum numbers under spin and pseudospin
symmetries and we have successfully showed that rela-
tivistic scattering phase shifts largely depend on the sym-
metry constants (𝐶ps and 𝐶s) and spin-orbit quantum
numbers 𝜅
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Table 3: Nonrelativistic energies at the poles of 𝑠-matrix (in units fm−1) for the hyperbolical potential as a function of positive potential
parameter 𝜎0 for different states in atomic units (𝜇 = 7 = 1), 𝑐𝑜 = 1/12 , and𝐷 = 10 in all the calculations.

𝑛 𝑙 𝜎0 States 𝐸𝑛𝑙 for 𝛼 = 0.10 𝐸𝑛𝑙 for 𝛼 = 0.15 𝐸𝑛𝑙 for 𝛼 = 0.20 𝐸𝑛𝑙 for 𝛼 = 0.25
0 1

0.10
2p

2.61890 3.90580 5.00395 5.88694
0.15 1.68043 2.57796 3.43332 4.21023
0.20 1.20892 1.86672 2.52064 3.14766

1 1
0.10

3p
4.73556 6.04579 6.91727 7.48500

0.15 3.46030 4.62316 5.50084 6.15070
0.20 2.68324 3.67163 4.46580 5.09331

0 2
0.10

3d
3.62747 5.29513 6.47684 7.25824

0.15 2.27024 3.56732 4.69715 5.59908
0.20 1.57921 2.54881 3.48311 4.31406

2 1
0.10

4p
6.00303 7.11562 7.71968 8.02132

0.15 4.66775 5.80666 6.52479 6.95757
0.20 3.75708 4.81251 5.53175 6.00386

1 2
0.10

4d
5.33170 6.73691 7.54672 7.97921

0.15 3.85825 5.19508 6.13602 6.75665
0.20 2.95305 4.10518 5.00371 5.66610

0 3
0.10

4f
4.69061 6.43208 7.43782 7.98144

0.15 3.00365 4.60199 5.79916 6.61027
0.20 2.07438 3.35838 4.47793 5.35424

Table 4: Pseudospin scattering phase shifts for hyperbolical potential with positive potential parameter 𝜎0 = 0.10, 𝛼 = 0.10, 𝑐𝑜 = 1/12, and𝐸 = 1. The relativistic mass is𝑚 = 1 in atomic units (𝑚 = 7 = 1).
𝑙 𝜅 𝛿𝑙,ps,𝜅 for 𝐶ps = 0,𝐷 = 10 𝛿𝑙,ps,𝜅 for 𝐶ps = 0.05, 𝐷 = 10

0

−1, 1 1.521873210037270, 1.570796326794897 −8.076217263995554, −6.037944299866905−2, 2 0.446819990038913, 1.521873210037270 −9.291029083349983, −8.076217263995554−3, 3 −1.097154578790937, 0.446819990038913 −9.904139528549850, −9.291029083349983−4, 4 −2.972292099735542, −1.097154578790937 −10.013382196552033, −9.904139528549850−5, 5 −5.103985153357378, −2.972292099735542 −9.621579256682395, −10.013382196552033

1

−1, 1 3.092669536832167, 3.141592653589793 −6.505420937200658, −4.467147973072009−2, 2 2.017616316833810, 3.092669536832167 −7.720232756555086, −6.505420937200658−3, 3 0.473641748003960, 2.017616316833810 −8.333343201754955, −7.720232756555086−4, 4 −1.401495772940645, 0.473641748003960 −8.442585869757139, −8.333343201754955−5, 5 −3.533188826562482, −1.401495772940645 −8.050782929887498, −8.442585869757139

2

−1, 1 4.663465863627064, 4.712388980384690 −4.934624610405762, −2.896351646277112−2, 2 3.588412643628707, 4.663465863627064 −6.149436429760190, −4.934624610405762−3, 3 2.044438074798856, 3.588412643628707 −6.762546874960058, −6.149436429760190−4, 4 0.169300553854252, 2.044438074798856 −6.871789542962241, −6.762546874960058−5, 5 −1.962392499767585, 0.169300553854252 −6.479986603092602, −6.871789542962241

3

−1, 1 6.234262190421960, 6.283185307179586 −3.363828283610865, −1.325555319482215−2, 2 5.159208970423603, 6.234262190421960 −4.578640102965293, −3.363828283610865−3, 3 3.615234401593753, 5.159208970423603 −5.191750548165161, −4.578640102965293−4, 4 1.740096880649148, 3.615234401593753 −5.300993216167345, −5.191750548165161−5, 5 −0.391596172972688, 1.740096880649148 −4.909190276297705, −5.300993216167345
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Table 5: Spin scattering phase shifts for hyperbolical potential with positive potential parameter 𝜎0 = 0.50, 𝛼 = 0.50, 𝑐𝑜 = 1/12, and 𝐸 = 1.
The relativistic mass is𝑚 = 1 in atomic units (𝑚 = 7 = 1).
𝑙 𝜅 𝛿𝑙,s,𝜅 for 𝐶s = 5,𝐷 = 10 𝛿𝑙,s,𝜅 for 𝐶s = 10,𝐷 = 10

0

−1, 1 −15.357449458632775, −15.177770279380065 −34.356717558868027, −34.211165018163769−2, 2 −15.177770279380065, −14.803384517679635 −34.211165018163769, −33.916113793943268−3, 3 −14.803384517679635, −14.204750986373117 −33.916113793943268, −33.463715091492688−4, 4 −14.204750986373117, −13.337466036355023 −33.463715091492688, −32.842249720235664−5, 5 −13.337466036355023, −12.138509328495319 −32.842249720235664, −32.036048006960613

1

−1, 1 −13.786653131837877, −13.606973952585166 −32.785921232073129, −32.640368691368877−2, 2 −13.606973952585166, −13.232588190884737 −32.640368691368877, −32.345317467148369−3, 3 −13.232588190884737, −12.633954659578222 −32.345317467148369, −31.892918764697786−4, 4 −12.633954659578222, −11.766669709560125 −31.892918764697786, −31.271453393440765−5, 5 −11.766669709560125, −10.567713001700424 −31.271453393440765, −30.465251680165718

2

−1, 1 −12.215856805042982, −12.036177625790272 −31.215124905278238, −31.069572364573975−2, 2 −12.036177625790272, −11.661791864089839 −31.069572364573975, −30.774521140353471−3, 3 −11.661791864089839, −11.063158332783328 −30.774521140353471, −30.322122437902888−4, 4 −11.063158332783328, −10.195873382765226 −30.322122437902888, −29.700657066645867−5, 5 −10.195873382765226, −8.9969166749055290 −29.700657066645867, −28.894455353370819

3

−1, 1 −10.645060478248087, −10.465381298995377 −29.644328578483339, −29.498776037779084−2, 2 −10.465381298995377, −10.090995537294944 −29.498776037779084, −29.203724813558573−3, 3 −10.090995537294944, −9.4923620059884290 −29.203724813558573, −28.751326111107996−4, 4 −9.4923620059884290, −8.6250770559703320 −28.751326111107996, −28.129860739850976−5, 5 −8.6250770559703320, −7.4261203481106310 −28.129860739850976, −27.323659026575921
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Figure 2: A plot of pseudospin scattering phase shifts for the
hyperbolical potential as a function of spin-orbit number 𝜅 for 𝑙 =0, 1, 2, 3 with positive potential parameter 𝜎0 = 0.10, 𝛼 = 0.10,𝑐𝑜 = 1/12, 𝐶ps = 0.05, 𝐷 = 10, and 𝐸 = 𝑀 = 1. The relativistic
mass and energy are equal in all the calculations.
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Figure 3: A plot of spin scattering phase shifts for the hyperbolical
potential as a function of spin-orbit number 𝜅 for 𝑙 = 0, 1, 2, 3 with
positive potential parameter 𝜎0 = 0.50, 𝛼 = 0.50, 𝑐𝑜 = 1/12, 𝐶s = 5,𝐷 = 10, and 𝐸 = 𝑀 = 1. The relativistic mass and energy are equal
in all the calculations.



10 Advances in High Energy Physics

 = 0

 = 1

 = 2

 = 3

Spin-orbit number 𝜅
50−5

Ph
as

e s
hi

ft 
(𝛿


,𝜅
,s

)

−35

−34

−33

−32

−31

−30

−29

−28

−27

Figure 4: A plot of spin scattering phase shifts for the hyperbolical
potential as a function of spin-orbit number 𝜅 for 𝑙 = 0, 1, 2, 3 with
positive potential parameter 𝜎0 = 0.50, 𝛼 = 0.50, 𝑐𝑜 = 1/12, 𝐶s = 10,𝐷 = 10, and 𝐸 = 𝑀 = 1. The relativistic mass and energy are equal
in all the calculations.
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Teller potential including the pseudo-centrifugal term,” Physics
Letters A, vol. 373, no. 18-19, pp. 1621–1626, 2009.

[40] W.-C. Qiang, K. Li, and W.-L. Chen, “New bound and scat-
tering state solutions of the Manning-Rosen potential with
the centrifugal term,” Journal of Physics. A. Mathematical and
Theoretical, vol. 42, no. 20, Article ID 205306, 2009.

[41] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, andMathematical Tables, U.S.
Department of Commerce, National Bureau of Standards, New
York, NY, USA, 1965.

[42] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non-
RelativisticTheory, Pergamon, New York, NY, USA, 3rd edition,
1977.


