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In a recent paper McGaugh, Lelli, and Schombert showed that in an empirical plot of the observed 
centripetal accelerations in spiral galaxies against those predicted by the Newtonian gravity of the 
luminous matter in those galaxies the data points occupied a remarkably narrow band. While one could 
summarize the mean properties of the band by drawing a single mean curve through it, by fitting the 
band with the illustrative conformal gravity theory with fits that fill out the width of the band we show 
here that the width of the band is just as physically significant. We show that at very low luminous 
Newtonian accelerations the plot can become independent of the luminous Newtonian contribution 
altogether, but still be non-trivial due to the contribution of matter outside of the galaxies (viz. the 
rest of the visible universe). We present a new empirical plot of the difference between the observed 
centripetal accelerations and the luminous Newtonian expectations as a function of distance from the 
centers of galaxies, and show that at distances greater than 10 kpc the plot also occupies a remarkably 
narrow band, one even close to constant. Using the conformal gravity theory we provide a first principles 
derivation of the empirical Tully–Fisher relation.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In a recent study McGaugh, Lelli, and Schombert (MLS) [1] pre-
sented an empirical plot of the observed centripetal accelerations 
(g(O B S)) of points in a wide class of spiral galaxies versus the lu-
minous Newtonian expectations (g(N E W )) for those points. While 
the plot does not contain any information that is not already con-
tained in plots of individual galactic rotation curves, the utility of 
the plot is that it allows one to include the data from every sin-
gle galaxy in one and the same figure. The plot thus enables one 
to encapsulate a large amount of galactic rotation curve data in a 
single plot, doing so in a way that allows one to identify regulari-
ties in galactic rotation curve data that hold for all spiral galaxies. 
Inspection of the g(O B S) versus g(N E W ) plot that we present in 
Fig. 1 immediately reveals three striking features. First, as noted 
by Milgrom in his development of the MOND theory [2], the de-
parture from g(N E W ) first sets in when g(O B S) drops below a 
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universal acceleration scale of order 10−10 m s−2. Second, when 
there are departures they occupy a remarkably small region in 
the plot. And third, as noted in [1], these departures would ap-
pear to be quite tightly correlated with the luminous Newtonian 
prediction. To quantify such a possible correlation, MLS made a 
one-parameter best mean fit to the plot in Fig. 1 with a funda-
mental acceleration parameter g0, and found a good fit with the 
function g(O B S) = g(ML S) where

g(ML S) = g(N E W )

[1 − exp(−(g(N E W )/g0)1/2)] , (1)

and extracted a value g0 = 1.20 × 10−10 m s−2. In this paper we 
shall evaluate the results of MLS and reach some alternate conclu-
sions.

2. The data analysis

In trying to produce a g(O B S) versus g(N E W ) plot there are 
two key variables, the distance to each galaxy (needed to fix dis-
tances R from galactic centers in g(O B S) = v2

O B S/R), and the visi-
ble mass of each galaxy (needed for g(N E W )). While uncertainties 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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in these quantities affect detailed fitting of both galactic rotation 
curves and Fig. 1, they do not affect the general structure of Fig. 1, 
with there always being departures from a g(O B S) = g(N E W )

curve.
While the analysis we present follows MLS in the main, we 

use a somewhat larger sample of spiral galaxies and a somewhat 
different methodology to model the luminous matter Newtonian 
contribution gN EW (R) to centripetal accelerations in galaxies. The 
original analysis of [1] consisted of 153 spiral galaxies and a total 
of 2693 rotation curve data points. The sample we consider con-
sists of 207 spiral galaxies all of whose individual rotation curves 
we have successfully fit with the conformal gravity theory that we 
consider below. Our sample consists of a total of 5791 data points, 
with many of the galaxies in our sample also being in the sample 
studied in [1]. Our sample consists of the 141 galaxies whose ro-
tation curves were studied in [3] together with a set of 26 LITTLE 
THINGS galaxies [4] and 40 galaxies from the Spitzer Photometry 
and Accurate Rotation Curves (SPARC) set studied in [1]. In the fol-
lowing we will find it instructive to break the sample up into high 
surface brightness (HSB) and low surface brightness and dwarf 
galaxies (collectively LSB galaxies in the following since many LSBs 
are dwarfs), with our sample containing 56 HSB galaxies with 2870 
points and 151 LSB galaxies with 2921 points.

To model the luminous matter contribution we follow the pro-
cedure used in the fitting to individual rotation curves that was 
presented in [3]. Specifically, we take the luminous matter optical 
disks to have surface brightness �(R) = �0 exp(−R/R0) with scale 
length R0. We take the HI gas in the galaxy to also be an exponen-
tial with scale length equal to four times the optical disk R0, and 
multiply the HI gas mass by 1.4 to account for helium. We include 
bulges for the few galaxies in our sample that have them. We use 
reported optical disk scale lengths, and when scale lengths are re-
ported in more than one filter in the main we take the longest 
wavelength available. For the adopted distances to galaxies we use 
the mean values reported in the NASA/IPAC Extragalactic Database 
(NED) and allow for up to its stated one standard deviation varia-
tion in the few cases where it helped with the individual rotation 
curve fits. Since the study of [1] leads to the possible presence of a 
universal acceleration scale in the data it is necessary to know the 
absolute distances to galaxies as well as possible, with our use of 
the NED data providing a uniform benchmark for these distances. 
For the inclinations of the galaxies we allowed up to the variation 
reported in observations, though this only affected a few of the 
galaxies. With each star putting out a Newtonian potential of the 
form V ∗

N EW = −β∗c2/r where β∗ = M�G/c2 = 1.48 × 105 cm, the 
contribution of an exponential disk with N∗ stars is of the form

gN EW (R) = N∗β∗c2 R

2R3
0

[I0 (x) K0 (x) − I1 (x) K1 (x)], (2)

where x = R/2R0. Use of this formula in the 141 galaxy conformal 
gravity theory fits studied in [3] and in conformal gravity fits to 
the individual rotation curves of the additional 66 galaxies in our 
sample (which we shall report on elsewhere) enabled us to extract 
out a value for N∗ (and thus a mass to light ratio M/L) for each 
galaxy. As well as being both typical of the M/L ratios ordinarily 
obtained in rotation curve studies and typical of the M/L values 
found in the local solar neighborhood, as exhibited in the confor-
mal gravity fits to the three representative galaxies shown below 
in Fig. 5, the extracted M/L values are typically as large as they 
could be without overshooting the rotation curve data in the inner 
galactic region.

At each data point in each galaxy we can determine a value 
for the observed gO B S (R) = v2 (R)/R , and can thus construct 
O B S
Fig. 1. The g(O B S) versus g(N EW ) plot and the g(ML S) fit (dotted curve) to it. 
The solid diagonal is the line g(O B S) = g(N EW ).

the plot of g(O B S) versus g(N E W ) for our 5791 points that 
we show in Fig. 1. (Each point in the plot is constructed from 
the central value of each reported velocity and errors in veloc-
ity measurements are not incorporated.) We have applied the 
MLS formula to our data and given our different input parame-
ters, find the mean fit shown in Fig. 1 with the slightly different 
g0 = 0.6 × 10−10 m s−2 (the minimum is however quite shallow), 
but other than that we are in broad agreement with the analogous 
plot given in [1].1

The realization that the band in Fig. 1 is quite narrow actually 
predates the work of [1], since in the 141 galaxy study given in 
[3] we had tabulated gO B S (R) at the last data points in each of 
the galaxies and found them to be remarkably close to each other 
in magnitude, with a value of order the quantity γ0c2 to be pre-
sented below. This same regularity is found to persist in the other 
66 galaxies we have studied. For our 207 galaxy sample we illus-
trate this by plotting g(O B S) versus g(N E W ) at each last data 
point in Fig. 2. In Fig. 2 we also plot g(O B S) versus the total mass 
at each last data point, and this graph is particularly instructive 
since it essentially makes no reference to any gravity theory what-
soever, as it is basically a plot of the last centripetal acceleration 
versus luminosity galaxy by galaxy. This regularity, together with 
the familiar Tully–Fisher relation that we discuss below, point in 
favor of the determining factor for rotation curve dynamics being, 
if anything, the luminous matter content rather than any possible 
non-luminous matter content in a galaxy, and any theory of galac-
tic rotation curves would need to be able to account for it.

To emphasize that the regularity is between g(O B S) and lumi-
nous mass rather than between g(O B S) and g(N E W ), in Figs. 3
and 4 we plot g(O B S) versus the total visible galactic M and 
g(O B S) versus g(L O C) for the entire 5791 points in our 207 

1 We have traced the difference between our fitted value of g0 = 0.6 ×
10−10 m s−2 and the value MLS quote of g0 = 1.2 × 10−10 m s−2 primarily to the 
fact that MLS took a specific common M/L value for all galaxies while we used lu-
minous masses obtained from the conformal gravity fits themselves. (Moreover MLS 
themselves noted that their fits were not sensitive to the specific common value for 
M/L that they used as such precision was not needed in order to establish a general 
trend.) The M/L values that we used on average were twice the M/L values MLS 
used, necessitating a reduction in two in our fitted value of g0. In addition there 
was a non-negligible number of cases in which the NED/IPAC distances to galax-
ies that we used differed significantly from the distances used by MLS (as quoted 
in the SPARC data basis). We should also note that for bright spirals the conformal 
gravity fitting leads to a luminous Newtonian expectation that dominates the sharp 
initial rise of the inner region rotation curve (see e.g. the NGC 3198 plot that we 
provide in Fig. 5). This rise is characteristic of the exponential disk formula given in 
(2), and this natural explanation of the inner region rise would be lost with M/L
values smaller than the ones we use, and would in addition then require some new 
dynamics in the inner regions of bright spirals.
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Fig. 2. g(O B S) versus g(N EW ) and g(O B S) versus M/M� for the last data point in each galaxy.
Fig. 3. g(O B S) versus M/M� for all points in each galaxy.

Fig. 4. g(O B S) versus the conformal gravity g(L O C).

galaxy sample, where g(L O C) is the conformal gravity expectation 
due to all the local luminous matter in a galaxy as given in (3) be-
low. With Figs. 3 and 4 being very similar to Fig. 1, g(O B S) has to 
be understood as being correlated with the luminous matter con-
tent in the galaxy per se rather than with its specific Newtonian 
expectation. We will see below that while such an interpretation 
is valid, the same data also admit of an entirely different one.

3. Implications of the data

In our study of the 207 galaxies in our sample we have found 
that the conformal gravity theory provides very good point by 
point fitting to the 5791 point rotation curve data, with three ex-
amples (a dwarf DDO 154, a non-dwarf LSB UGC 128, and an HSB 
NGC 3198) being shown in Fig. 5. Since Fig. 1 is based on the data 
Fig. 5. Conformal gravity fits to some typical galactic rotation curves, with veloci-
ties in km s−1 and distances in kiloparsecs. The luminous Newtonian contribution 
is given by the dashed curve, the net contribution of the two linear potential terms 
and the quadratic potential term is given by the dotted curve, with the full curve 
giving the total contribution.
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points of the selfsame 207 galaxies, the conformal theory must 
also be compatible with Fig. 1. It is thus instructive to see how it 
achieves this not merely from the perspective of conformal grav-
ity itself (to thus show that one can account for the systematics 
exhibited in Fig. 1 via a fundamental theory in which its velocity 
expectation (viz. (4) below) is derived from first principles), but 
from a more general perspective, as one can consider conformal 
gravity serving here as a foil.2

In the conformal gravity theory (viz. a pure metric theory of 
gravity that is based on the locally conformal invariant action 
IW = −αg

∫
d4x(−g)1/2Cλμντ Cλμντ where Cλμντ is the conformal 

Weyl tensor) each star puts out a local (L O C ) potential V ∗
L O C (r) =

−β∗c2/r + γ ∗c2r/2 [7], where γ ∗ is a gravitational parameter as-
sociated with a linear potential. For an exponential disk of stars 
the V ∗

L O C (r) potential generates a net local term

gL O C (R) = gN EW (R) + (N∗γ ∗c2 R/2R0)I1 (x) K1 (x) (3)

due to the local visible material in the galaxy. In Newtonian grav-
ity the force due to a spherically symmetric distribution of sources 
only depends on the sources that are interior to the point of obser-
vation since the solid angle grows like r2 while the force falls like 
1/r2. For any other potential there is no such exterior cancellation 
since the solid angle does not change as one changes the force. 
Thus for the conformal theory one has to take the material exte-
rior to any given galaxy (viz. the rest of the matter in the universe) 
into consideration. Since the matter exterior to a given galaxy does 
not depend on the galaxy of interest its effect is thus universal, 
with it being analytically found [3,7] to lead to two global uni-
versal potential terms: a global linear term γ0c2 R/2 due to the 
homogeneous cosmological background (which explains why there 
should be a universal acceleration in the first place), and a global 
quadratic potential term −κc2 R2/2 due to inhomogeneities in it 
such as clusters of galaxies. When taken together with the local 
terms the total centripetal acceleration given by the conformal the-
ory (denoted by C G) is of the form [3]

gC G(R) = gL O C (R) + γ0c2

2
− κc2 R, (4)

with large R behavior

gC G(R) → N∗β∗c2

R2
+ N∗γ ∗c2

2
+ γ0c2

2
− κc2 R. (5)

Very good point by point fitting to the rotation curves of the 
entire 207 galaxy sample has been obtained by us with only one 
free parameter per galaxy (viz. the visible N∗), with the γ ∗ , γ0
and κ parameters taking the fixed values γ ∗ = 5.42 × 10−41 cm−1, 
γ0 = 3.06 × 10−30 cm−1, κ = 9.54 × 10−54 cm−2 in every fit. The 
fitted values of these parameters show that γ0 is indeed a cos-
mological scale, that κ is indeed a cluster of galaxies scale, and 
that dark matter is not needed for an understanding of the sys-
tematics of galactic rotation curves. When written in terms of an 
acceleration, we see that γ0c2 = 2.76 × 10−11 m s−2, a value that 
is characteristic of the values for g(O B S) that are shown in the 
figures.

To demonstrate that the conformal gravity theory does fit all 
the data, in Fig. 6 we have plotted g(O B S) versus the conformal 

2 As a theory conformal gravity has been applied in both astrophysical and 
quantum-mechanical contexts, and a list of its successes and challenges may be 
found in [5,6]. However, independent of theoretical or observational studies of con-
formal gravity, one can consider our (4) purely from a phenomenological perspec-
tive and compare its phenomenological implications for Fig. 1 with those of the 
phenomenological g(ML S) given in (1).
Fig. 6. g(O B S) versus the conformal gravity g(C G). The solid diagonal is the line 
g(O B S) = g(C G).

Fig. 7. g(C G) overlay of g(O B S) versus g(N EW ). The solid lines other than the 
diagonal are the g(C G) expectations.

Fig. 8. g(C G) overlay of the HSB g(O B S) versus g(N EW ). The lines other than the 
diagonal are the g(C G) expectations.

gravity g(C G) of (4) for the entire 5791 data points. Given the fit 
of Fig. 6, we now overlay Fig. 1 with the conformal gravity g(C G)

predictions point by point, to obtain Fig. 7. As we see, the confor-
mal gravity predictions do not follow a single line but are spread 
out over the g(O B S) band. To appreciate in what specific way the 
conformal gravity fits do cover the band, it is instructive to break 
g(O B S) up into separate HSB and LSB pieces. This yields Figs. 8
and 9.

Figs. 8 and 9 exhibit a striking regularity, one that holds in-
dependent of conformal gravity per se: the data are essentially 
broken up into two distinct groups, the HSB galaxies all have large 
g(O B S) values only, while the LSB galaxies extend to altogether 



J.G. O’Brien et al. / Physics Letters B 782 (2018) 433–439 437
Fig. 9. g(C G) overlay of the LSB g(O B S) versus g(N EW ). The lines other than the 
diagonal are the g(C G) expectations.

smaller values. In addition, the conformal gravity HSB fits cover the 
width of the band, while the LSB fits center on a single curve. Now 
we had noted that the conformal theory fits the rotation curve 
data point by point. Thus the spread seen in the HSB Fig. 8 does 
not represent scatter around a mean but is the actual data them-
selves. (With the −κc2 R term in (4) only affecting the 20 or so 
largest galaxies in the sample [3], gC G(R) is otherwise bounded 
from below by its N∗ = 0 value, to thus give a band.) The width 
in Fig. 1 represents bona fide physical data, and even if it were, 
as suggested in [1], to be attributed solely to observational scat-
ter around a mean,3 even then one could say exactly the same of 
Fig. 6, with the conformal gravity interpretation of Fig. 1 still being 
fully justifiable.

Fitting for the LSB sample is quite different. Here as one re-
duces N∗ one reduces g(N E W ). Then, until one is at an R large 
enough for the −κc2 R term in (4) to be of consequence, the dom-
inant term in gC G(R) as N∗ reduces becomes γ0c2/2. This term is 
universal and galaxy independent, and thus one single curve dom-
inates the small g(N E W ) region of the LSB sample, and leads as 
g(N E W ) → 0 to a constant asymptote, as shown in Figs. 9 and 10, 
the latter of which plots a scaled up g(O B S) − g(N E W ) in the 
central region of the data points. Thus as g(N E W ) → 0, g(O B S)

becomes independent of the luminous matter content altogether. 
This particular behavior is exhibited in the fit to the dwarf DDO 
154 as N∗ is so low that the rotation curve is dominated by the 
γ0 term not just in the outer region but in the inner region too. 
Dwarfs are particularly interesting for rotation curve studies since 
the luminous Newtonian shortfall is evident even in the inner re-
gion, with these galaxies immediately revealing the full extent of 
the galactic missing mass problem.

The behavior of the conformal theory as g(C G) → 0 differs 
substantially from that associated with the g(ML S) function, as 
g(ML S) asymptotes to g(N E W )1/2 times a constant, to thus never 
become independent of the luminous Newtonian contribution. 
While a possible discrimination between these various options 

3 For the band in Fig. 1 to be due solely to observational uncertainties, it would 
have to be the case that for each specific galaxy one would have to be able to 
adjust global galactic input parameters within observational bounds so that in fits 
to rotation curves all the points in that galaxy would then simultaneously line up 
with a formula such as g(O B S) = g(ML S). And then, one would have to be able 
to do this for the entire 207 galaxy sample, galaxy by galaxy. Also we would note 
that the band only appears in the HSB sample, and for this sample observational 
uncertainties are much smaller than for the LSB sample. In addition, we should note 
that fitting Fig. 1 is not as stringent as actually fitting individual rotation curves 
themselves point by point (and we are not aware that the g(ML S) formula has 
actually been used to fit individual galactic rotation curves using a fitting procedure 
that would be constrained by observational uncertainties), since a error of order δ
in velocity translates into an error of order 2δ in g(O B S).
Fig. 10. g(O B S) − g(N EW ) scaled by the magnitude of γ0c2 versus g(N EW ).

awaits more small g(N E W ) data,4 our analysis here does show 
that from Fig. 1 one cannot infer that g(O B S) will always depend 
on g(N E W ).

At very large R the effect of the γ0c2/2 term in (4) is over-
come by the −κc2 R term, causing rotation velocities to start to 
drop and eventually come to zero, just as anticipated in Fig. 5. 
Since v2 cannot go negative, in the conformal theory galaxies have 
to have a maximum size, a size that is fixed via an interplay be-
tween the local and global terms in (4). Since such an outcome 
is not to be expected in theories in which rotational velocities are 
asymptotically flat, through the large R behavior of rotation curves 
one can test the conformal theory, and also one can explore the 
g(N E W ) → 0 limit of Fig. 1 when N∗ is large. Since the confor-
mal gravity theory does involve both local and global effects but 
no dark matter, postulating the presence of dark matter within 
galaxies can be viewed as being nothing more than an attempt 
to describe global physics in purely local terms.

In regard to dark matter, we also note that the challenge to it 
can be summarized by stating that there is universality in the data 
that is for the moment not accounted for by dark matter theories. 
Various alternate theories such as MOND [2], conformal gravity, 
and Moffat’s Modified Gravity Theory (MOG) [9] that fit rotation 
curves without any dark matter whatsoever, all do so with univer-
sal parameters, with only the M/L ratio varying from one galaxy to 
the next. In contrast, current dark matter models possess no such 
universality, and with each dark matter halo having at least two 
free parameters, to fit the 207 galaxy Fig. 1 dark matter models 
need 414 more free parameters than the three alternate theories.

4. Distance-dependent regularity

Even though the g(O B S) versus g(N E W ) plot does exhibit a 
remarkable structure, for practical applications it has the drawback 
that it only involves v2/R type ratios. Thus one can obtain a given 
value of g(N E W ) for many values of v by choosing differing values 
for R , with this being equally true of any value of g(O B S) that 
might be read off from Fig. 1 using this given value of g(N E W ). It 

4 A first step in this direction has recently been taken by Lelli, McGaugh, 
Schombert, and Pawloski in a follow up paper [8], which showed that the data 
might indeed be becoming independent of g(N EW ) at small g(N EW ). Specif-
ically, they augmented the spiral galaxy data with some dwarf spheroidal data 
and some late type galaxy data, which showed such flattening off at very low 
g(N EW ). Lelli, McGaugh, Schombert, and Pawloski even considered changing the 
g(ML S) formula because of this flattening off (by adding on to g(ML S) a term 
ĝ exp(−(g(N EW )g0/ĝ2)1/2) where ĝ is a new free parameter, and in their paper 
characterized the data as exhibiting a possible “acceleration floor”. As we have seen, 
the existence of such an acceleration floor follows naturally in the conformal gravity 
theory.
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Fig. 11. g(O B S) − g(N EW ) scaled by the magnitude of γ0c2 versus R .

would thus be instructive to have a universal plot for all galaxies 
that does depend on R . To this end rather than plot g(O B S) −
g(N E W ) as function of g(N E W ) (as in Fig. 10), we have found 
it instructive to instead plot g(O B S) − g(N E W ) as a function of 
R point by point for the 5791 points in our sample. This yields 
Fig. 11.

Inspection of Fig. 11 shows that by 10 kpc there is a luminous 
Newtonian shortfall at every single data point in our sample, with 
g(O B S) − g(N E W ) being positive for all such points. Moreover, 
the actual amount of the shortfall above 10 kpc is confined to a 
very narrow horizontal band, to thus be independent of R . Given 
the asymptotic behavior of gC G(R) exhibited in (5), we see that 
apart from the −κc2 R term (a term that is only important for the 
20 or so very largest of the galaxies), the N∗γ ∗c2/2 and γ0c2/2
contributions are in fact constant, with the sum taking the value 
γ0c2 when N∗ = γ 0/γ ∗ = 5.65 × 1010, viz. a mass value typical of 
bright spirals.5 Independent of its potential relevance to conformal 
gravity, Fig. 11 is of general interest because it encapsulates large 
R departures from the luminous Newtonian expectation in a very 
compact and direct way.

5. First principles derivation of the Tully–Fisher relation

For many spiral galaxies it has been found phenomenologically 
that the average rotational velocity obeys the Tully–Fisher relation 
v4 ∼ L. Thus up to mass to light ratios we can set v4 = AM/M�
in a convenient normalization. While the Tully–Fisher relation is 
usually stated in terms of the stellar luminosity, the more relevant 
quantity for velocities is the total mass M , which here therefore 
includes not just the stellar mass (disk and bulge) but the gas 
mass as well. (McGaugh et al. [10] have referred to the use of 
the total M rather than L as the baryonic Tully–Fisher relation.) 
With the velocity at the last data point in each galaxy typically 
being representative of the average velocity in each galaxy (rota-
tion curves being close to flat), a plot of v4 = AM/M� for the last 
data point in each of our 207 sample galaxies is provided as the 
continuous curve in Fig. 12, a fit that gives an extracted value of 
A = 0.0098 km4 s−4.

5 As shown in the 141 galaxy conformal gravity fits given in [3], within reported 
errors in the measured velocities the asymptotic (5) gives a very good accounting of 
the large R data. In addition we note that since in the dwarf galaxies that we have 
studied the baryonic contribution is negligible above 10 kpc or so, for these dwarfs 
the large R behavior of Fig. 11 is not sensitive to M/L at all or to how one might 
model it (in DDO 154 for instance a factor of 3 or so shortfall in velocity between 
v(O B S) and v(N EW ) at the last data point means a factor of 9 in v2 and thus a 
factor of nine in the potential). Dwarfs thus give an essentially model-independent 
description of the nature of the missing mass problem at large R .
Fig. 12. v4 versus M for the last data point in each of the 207 galaxies. Overlaid are 
v4 = AM/M� (continuous curve) and v4 = B(M/M�)(1 + N∗/D) (dashed curve).

Fig. 13. v4 versus M for the crossover point in each of the 207 galaxies. Overlaid 
are the v4 = AM/M� (continuous curve) and v4 = B(M/M�)(1 + N∗/D) (dashed 
curve) given in Fig. 12 for the last data points.

As can be seen in the fits to UGC 128 and NGC 3198, in con-
formal gravity fits to rotation curves the conformal gravity con-
tribution and the Newtonian contribution typically cross in a re-
gion far enough out from the center of the galaxy so that the 
galaxy can be treated as a point source, and close enough in that 
the quadratic term in (4) is negligible. Thus at the crossing point 
one can set v2 = β∗c2N∗/R + (γ ∗N∗ + γ0)c2 R/2 and β∗c2N∗/R =
(γ ∗N∗ + γ0)c2 R/2 for an R that depends on each galaxy, and thus 
at that point one can set v4 = B(M/M�)(1 + N∗/D) where B =
2c2M�Gγ0 = 0.0074 km4 s−4, where D = γ0/γ

∗ = 5.65 × 1010, 
and where here N∗ includes all galactic baryonic sources. Since 
the velocities at the last data points do not differ much from those 
at the crossover points in each galaxy, at the last data points we 
plot v4 = B(M/M�)(1 + N∗/D) as the dashed curve in Fig. 12. 
(To show that there is little difference between the velocities at 
the last data points and those at the crossover points, in Fig. 13
we also plot v4 versus M at the crossover points.) Since very few 
galaxies have N∗ > 5.65 × 1010, conformal gravity effectively leads 
to BM/M� < v4 < 2BM/M� , to not just be in agreement with 
Fig. 12, but to also provide a first principles derivation of the Tully–
Fisher relation.

6. Summary

To summarize, we note that the conformal gravity fitting of 
the HSB sample given in Fig. 8 suggests that the width seen in 
Fig. 1 is physical and not just scatter. The very low g(N E W ) limit 
of the fitting of the LSB sample given in Fig. 9 suggests that at 
small g(N E W ) the quantity g(O B S) is limiting to a value that 
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is independent of g(N E W ), and that g(O B S) is not necessarily 
determined by g(N E W ) alone. The plot of g(O B S) − g(N E W )

against R shows that g(O B S) − g(N E W ) is asymptoting to a value 
that is independent of R , just as expected in the conformal theory. 
Also, the conformal theory provides a first principles derivation of 
the Tully–Fisher relation. The plots presented in this paper point 
to regularities in the data that need to be accounted for in any 
theory of rotation curves. Now none of this is to say that confor-
mal gravity is necessarily to be preferred over any other theory. 
Nonetheless, from the perspective of conformal gravity our fits in-
deed show that g(O B S) is fixed by luminous matter alone, but 
the luminous matter that is relevant is not just from within galax-
ies but from the rest of the visible universe as well.
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