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In this work, we explore the charged black holes with the power-law modified electromagnetic theory 
in a three-dimensional energy dependent space-time. Through exact solution of the field equations, 
we introduce a new class of nonlinearly charged black holes which are asymptotically anti-de Sitter 
(AdS). The black hole entropy, temperature and electric potential are calculated from the geometrical 
approaches. The counterterm method and Gauss’s electric law are utilized for calculating the black 
hole mass and electric charge, respectively. By use of the Smarr formula, which states the black hole 
mass as the function of thermodynamic extensive parameters, we prove the validity of the first law of 
thermodynamics for the new AdS black holes. By use of the canonical ensemble method, the black hole 
remnant or phase transitions are investigated regarding the signature of black hole heat capacity. We 
show that the AdS black hole solutions, we just obtained, are thermodynamically stable if their horizon 
radii are greater than a minimum value. Then, by considering the black hole thermal fluctuations, we 
examine the quantum gravitational effects on the thermodynamic properties of the new AdS black holes. 
We prove that, when the thermal fluctuations are taken into account, the thermodynamical first law is 
no longer valid. Also, the thermal stability of the black holes gets some corrections.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Gravity’s rainbow just like the Horava-Lifshitz gravity theory is 
the ultraviolet completion of general relativity. Both of them, as the 
attempts for constructing the quantum theory of gravity, are based 
on promoting the usual dispersion relation to the so-called mod-
ified dispersion relation. This modification is proposed by almost 
all of the quantum gravity models [1–3]. The modified dispersion 
relation is written as [4,5]

E2 f 2(ε) − p2 g2(ε) = m2, (1.1)

where f (ε) and g(ε), in order, are known as the temporal and spa-
tial rainbow functions and ε is a dimensionless quantity defined as 
the ratio of the energy of the test particle E to the Planck energy 
E P . The infrared version of dispersion relation is recovered by the 
requirements

lim
ε→0

f (ε) = 1, and lim
ε→0

g(ε) = 1. (1.2)
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There are several proposed functional forms for the rainbow func-
tions which are obtained from different motivations, among them 
are [6]

f (ε) = 1, and g(ε) = √
1 − ηεn, (1.3)

f (ε) = eζε − 1

ζε
, and g(ε) = 1, (1.4)

f (ε) = g(ε) = 1

1 − βε
. (1.5)

The coefficients η, ζ and β , known as the rainbow parameters, are 
of the order of unity, ε ≤ 1 and the power n is a positive integer. 
In general, the rainbow functions have a magnitude equal to or 
slightly different from unity [7,8].

Obviously, modified dispersion relation (1.1) is not Lorentz in-
variant. Doubly/or deformed special relativity which, instead of 
usual Lorentz transformations, is based on the nonlinear Lorentz 
transformations that preserve Lorentz invariance of modified dis-
persion relation. In the doubly special relativity, in addition to the 
speed of light Planck energy is another constant quantity, which 
are the upper bound of the speed and energy that a particle can 
attain. In 2004 this theory was extended to the curved manifolds 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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by Magueijo and Smolin. This doubly general relativity is named 
as rainbow gravity (or gravity’s rainbow) [9,10]. The name rainbow 
gravity comes from the fact that in this theory the space-time ge-
ometry depends on the energy of the test particle which probes 
the gravity. Therefore, particles with different energies identify dif-
ferent space-time metrics. In other words there are a family of 
metrics which are parameterized by the ratio ε = E/E p this is 
why this doubly general relativity is called as rainbow gravity (or 
gravity’s rainbow). Study of black holes physical and thermody-
namical properties in gravity’s rainbow have provided new and 
interesting results such as black hole remnant [11] and nonsingu-
lar universe [8]. Here, we explore the three-dimensional charged 
AdS black holes in rainbow gravity. Among the reasons that study 
of physics in the lower dimensional space-times can be interesting 
are that: black holes in lower dimensions are easier to study and 
this can essentially lead to a deeper insight into the fundamen-
tal ideas in comparison to higher dimensional black holes. Also, 
according to the AdS/CFT duality there is a connection between 
quantum gravity on AdS space and a Euclidean conformal field 
theory on the lower dimensional space-times [12,13]. Therefore, 
three-dimensional AdS black holes are more realized compared 
with the four and higher dimensional ones, and they are more 
useful objects for understanding of quantum field theory on AdS 
space-times.

In addition, Maxwell’s classical electrodynamics is confronted 
with the divergence of electric field and self-energy at the position 
of the point-like charged particles. With the purpose of solving 
this problem and other issues related to this theory, the idea of 
nonlinear electrodynamics was proposed. The lagrangian of vari-
ous models of nonlinear electrodynamics are nonlinear functions 
of Maxwell’s invariant F ab Fab . The first attempts in this line was 
made by Born and Infeld in 1934 [14–16]. After that some other 
models of nonlinear electrodynamics such as logarithmic, expo-
nential and power-law models were established [17,18]. Maxwell’s 
theory of electrodynamics, as the special case of nonlinear electro-
magnetic theory, is valid only for the case of weak electromagnetic 
fields when the interaction between photons can be ignored [19]. 
Nowadays, study of the exact black hole solutions have been ex-
tended by use of these models of nonlinear electrodynamics and 
they have provided many interesting results [20–22]. Here, we are 
interested on considering the power-law model of nonlinear elec-
trodynamics. Despite the Lagrangian of Maxwell’s electrodynamics, 
power-law nonlinear electrodynamics preserves its conformal in-
variance symmetry in all the space-time dimensions, provided that 
the power is chosen properly [23].

On the other hand, based on the outstanding results of Beken-
stein, Bardeen, Carter and Hawking, it is well-known that black 
holes are thermodynamic systems with the well-defined pure ge-
ometrical temperature and entropy. Here, we analyze the thermo-
dynamic properties of the three-dimensional AdS black holes in 
gravity’s rainbow with the power-Maxwell electromagnetic field 
and making use of the canonical ensemble method [24,25]. It is a 
common to believe that black holes, as the extreme quantum grav-
ity regimes, can not be completely described without consideration 
of quantum gravitational effects. Thus, with the purpose of finding 
the quantum gravitational corrections on the black hole thermody-
namics and thermal stability, we consider the black hole thermal 
fluctuations [26,27]. It has been shown that the black hole ther-
mal fluctuations are corresponded to the quantum fluctuations of 
the space-time geometry [28]. The effects of quantum gravity the-
ory, through consideration of the thermal fluctuations, have been 
explored for a variety of black holes [29,30].

This paper is structured as follows: In Sec. 2, by use of the vari-
ational principle, we obtain the electromagnetic and gravitational 
field equations in an energy dependent space-time. By considering 
the power-law model of nonlinear electrodynamics we solve the 
field equations and introduce a new class of asymptotically AdS 
black hole solutions. Sec. 3, is devoted to study of the thermody-
namic properties and thermal stability analysis of the new black 
hole solutions we just obtained. We calculate the temperature, en-
tropy, electric potential, conserved mass and charge of the black 
holes and show that they satisfy the first law of black hole ther-
modynamics. Then, making use of the canonical ensemble method 
and regarding the black hole heat capacity, we analyze the thermo-
dynamic stability or phase transitions of the new AdS black holes. 
Sec. 4 is dedicated to study of the quantum gravitational correc-
tions on the thermodynamic properties and thermal stability of the 
new AdS black holes by considering the black hole thermal fluctu-
ations. The results are summarized and discussed in section 5.

2. The field equations in gravity’s rainbow

The Lagrangian density for three-dimensional Einstein gravity 
with the cosmological constant � coupled to a nonlinear electro-
dynamics can be written in the following general form [31]

L = R− 2� +L(F), (2.1)

where R is the Ricci scalar, L(F) being the lagrangian of matter 
field in the form of nonlinear electrodynamics which is expressed 
as a function of Maxwell’s invariant F = F ab Fab . In terms of poten-
tial four-vector Aa , Fab = ∂a Ab − ∂b Aa is the Faraday tensor. Here, 
we are interesting on the power-law nonlinear electrodynamics 
with the following form of Lagrangian density [32]

L(F) = (−F)p, (2.2)

with p as the power which may be named as nonlinearity pa-
rameter. The case corresponding to the choice of p = 1 is nothing 
but the Lagrangian of Maxwell’s classical electrodynamics. Noting 
Eq. (2.1), we get the equation of motion corresponding to the met-
ric tensor as

Rab − 1

2
Rgab + �gab = Tab, (2.3)

and the stress-energy tensor Tab takes the following form

Tab = 1

2
L(F)gab − 2L′(F)Fac F c

b , (2.4)

where prime means derivative with respect to the argument. Also, 
the equation of motion for the electromagnetic tensor is written as

∇a

[
L′(F)F ab

]
= 0. (2.5)

Now, we solve the gravitational and electromagnetic field equa-
tions (2.3) and (2.5) in a spherically symmetric and energy depen-
dent space-time identified by the following ansatz [4,33]

ds2 = − V (r)

f 2(ε)
dt2 + 1

g2(ε)

[
dr2

V (r)
+ r2dθ2

]
, (2.6)

where, V (r) is an unknown function of radial component r, named 
as the metric function, to be determined. f (ε) and g(ε) are known 
as temporal and spatial rainbow functions, respectively.

Also, the only nonzero component of the Faraday tensor is Ftr =
−Frt . Taking it as a function of r, we have Ftr(r) = −A′

t(r) and the 
Maxwell invariant F can be written in the following explicit form

F = −2 f 2(ε)g2(ε)F 2
tr . (2.7)
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Regarding Eqs. (2.5), (2.6) and (2.7) we can write

(A′
t(r))

2p−2 [
A′

t(r) + (2p − 1)r A′′
t (r)

] = 0, p �= 1

2
, (2.8)

and its solution can be obtained as

At(r) = q

(
2p − 1

2 − 2p

)
r

2p−2
2p−1 for p �= 1

2
, 1, (2.9)

where q is the constant of integration and is related to the black 
hole electric charge. Also the nonzero component of the electro-
magnetic field is given by

Ftr = q r
−1

2p−1 for p �= 1

2
, 1. (2.10)

Now, one can determine the range of the nonlinear parameter p
at which our solutions are physically reasonable. It is evident that 
the electric potential At(r) should be finite at infinity. Thus, the 
following condition must be satisfied

2p − 2

2p − 1
< 0 or equivalently

1

2
< p < 1. (2.11)

In the geometry, introduced by (2.6), the gravitational field 
equations (2.3) lead to the following differential equations

V ′(r) + r

g2(ε)

[
2� + (2p − 1)(2qε)

pr− 2p
2p−1

]
, (2.12)

V ′′(r) + 1

g2(ε)

[
2� − (2qε)

pr− 2p
2p−1

]
, (2.13)

for the tt (rr) and θθ components, respectively. Here, qε is defined 
as qε = f 2(ε)g2(ε)q2. By taking derivative with respect to r from 
Eq. (2.12), one is able to show that the result is just the second 
order differential equation given by Eq. (2.13). It means that these 
two differential equations are not independent. Thus one can solve 
(2.12) and ensure that the solution satisfies Eq. (2.13).

Now, the metric function V (r), as the solution to the differential 
equation (2.12), can be calculated as

V (r) = −m − 1

g2(ε)

[
�r2 + (2p − 1)2

2p − 2
(2qε)

pr
2p−2
2p−1

]
,

for
1

2
< p < 1, (2.14)

where m is another integration constant which is related to the 
black hole mass. It is worth mentioning that in the case p = 3

4 , 
which is corresponding to the case of conformally invariant (CI) 
electromagnetic Lagrangian, the metric function takes the follow-
ing form

V (C I)(r) = −m − 1

g2(ε)

[
�r2 − (2qε)

3
4

2r

]
, for p = 3

4
. (2.15)

In order to determine the asymptotic behavior of the solutions, 
we notice the behavior of V (r) in the limiting case r → ∞. As 
the p dependent power of r (i.e. 2p−2

2p−1 ) is negative in the interval 
1
2 < p < 1, one can write

lim
r→∞ V (r) = −m − �

g2(ε)
r2 for

1

2
< p < 1, (2.16)

which confirms that the metric function V (r) describes an asymp-
totically AdS space-time for the p is in its allowed range. Also the 
space-time must be pure AdS for the case p = 0 with the following 
effective cosmological constant

�ef f = 1

g2(ε)

(
� − 1

2

)
. (2.17)

The space-time singularities can be examined by calculating the 
curvature scalars. The Ricci scalar and Riemann invariant are the 
important scalars from which one can extract the information 
about space-time singularities. After some manipulations, they can 
be calculated in the following forms

R = 6� + (4p − 3) (2qε)
p r

−2p
2p−1 , (2.18)

RμνρλRμνρλ = 12�2 + 4�(4p − 3) (2qε)
p r

−2p
2p−1

+
(

8p2 − 8p + 3
)

(2qε)
2p r

−4p
2p−1 . (2.19)

From Eqs. (2.18) and (2.19) one can argue that the Ricci scalar and 
Riemann invariant are finite for finite values of r and diverge as r
goes to infinity for the p-values in the range 1

2 < p < 1. There is a 
singularity located at the origin (i.e. r = 0 is an essential singular-
ity) for the new AdS black holes, we just obtained. Noting this fact 
and appearance of the horizons as the real roots of V (r = r+) = 0, 
as it is displayed by Fig. 1, ensure one to interpret the solutions 
as black holes. The plots show that the black holes with two hori-
zons, extreme black holes and naked singularity black holes can be 
obtained from the new AdS solutions in the presence of rainbow 
functions.
Fig. 1. V (r) versus r for � = −1, q = 2, m = 2.5 Eq. (2.14). (a) g(ε) = 1, f (ε) = 0.8 and p = 0.63 (continues), 0.715 (dashed), 0.75 (dotted). (b) p = 0.7, f (ε) = 0.8 and 
g(ε) = 0.76 (continues), 0.91 (dashed), 1.15 (dotted). (c) p = 0.7, g(ε) = 0.95 and f (ε) = 0.6 (continues), 0.85 (dashed), 1, 1 (dotted).
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3. Black hole thermodynamics and thermal stability

In this section we focus on the thermodynamic properties of 
the three-dimensional nonlinearly charged AdS black hole solu-
tions we have obtained in the previous section. We seek for sat-
isfaction of the first law of thermodynamics and investigate the 
thermal stability or phase transition regarding the black hole heat 
capacity in the canonical ensemble method. To do these, we need 
to calculate the conserved and thermodynamic quantities of the 
black holes.

Let’s start with the calculation of the black hole temperature 
T . It can be obtained by using the concept of surface gravity κ . 
The Hawking temperature associated with the black hole horizon 
is given by T = κ

2π , with κ =
√

− 1
2 (∇μχν)(∇μχν). Taking χμ =

(−1, 0, 0), as a matter of calculation, one is able to show that 
T = 1

4π V ′(r+). r+ is the black hole horizon radius which can be 
determined as the real root(s) of equation V (r+) = 0. Thus, making 
use of Eq. (2.14), we have

T = − 1

4π f (ε)g(ε)

[
2�r+ + (2p − 1)(2qε)

pr
−1

2p−1
+

]
. (3.1)

It must be noted that the extreme black holes (i.e. black holes with 
zero temperature) can occur provided that the black hole charge 
and size are fixed such that T (rext , qext) = 0. After some algebraic 
calculation we arrive at

rext =
{
(2p − 1)�22p−1 [qext f (ε)g(ε)]2p

} 2p−1
2p

, (3.2)

which exist always for p > 1
2 . It must be noted that the physi-

cal black holes, having positive temperature, are those with r+ >

rext . Otherwise the black holes have negative temperature and are 
not physically reasonable, which we call unphysical black holes 
throughout the paper.

The black hole entropy, as a pure geometrical quantity, is ob-
tained by use of the well-known entropy-area law. It can be writ-
ten as

S = πr+
2g(ε)

. (3.3)

The electric potential �, measured with respect to a reference 
point at a large distance from the horizon, is defined by the fol-
lowing standard relation [21,32,34]

� = Aμχμ|reference − Aμχμ|r=r+ , (3.4)

where, At is given by Eq. (2.9) and χμ is the null generator of the 
horizon. Therefore, we obtain

�(r+) = q

(
2p − 1

2 − 2p

)
r

2p−2
2p−1
+ . (3.5)

Now, we obtain the black hole electric charge, as a conserved 
quantity, by calculating the flux of the electric field at infinity (i.e. 
r → ∞). For this purpose we must use the Gauss’s electric law. It 
yields [35]

Q = p

g(ε)
(2)p−2 (qε)

2p−1
2 . (3.6)

Therefore, the obtained total charge depends on rainbow functions, 
which shows that due to the contribution of rainbow gravity, the 
total electric charge is modified. It reduces to the result of ref. [4]
when p = 1 is chosen. Also, similar results have been obtained by 
many authors (for example see refs. [5,30,33] and [36–38]).
The space-time under consideration is an asymptotically AdS 
one, thus we can obtain the conserved mass by utilizing the coun-
terterm method [39,40]. As a matter of calculation one is able to 
show that [4]

M = m

8 f (ε)
. (3.7)

Note that the integration constant m is obtained by use of the con-
dition V (r+) = 0.

Here, we check the first law of thermodynamics for the quan-
tities obtained in this subsection. At first we obtain the mass as a 
function of the extensive quantities S and Q as

M(Q , S) = − �S2

2π2 f (ε)
− (2p − 1)22p

16(p − 1) f (ε)

(
Q

p2p−2

) 2p
2p−1

×
(

2S

π

) 2p−2
2p−1

, (3.8)

where, Eqs. (2.14), (3.1), (3.3) and (3.7) have been used. By treat-
ing Q and S as the thermodynamical extensive variables one can 
calculate

� =
(

∂M

∂ Q

)
S
, T =

(
∂M

∂ S

)
Q

, (3.9)

and show that the results are compatible with those of Eqs. (3.5)
and (3.1). It confirms the validity of the thermodynamical first law 
in the form of

dM = T dS + �dQ . (3.10)

At this stage we explore the thermal stability or thermody-
namic phase transition of the new AdS black holes identified here. 
It is well-known that the type-one and type-two phase transition 
points and the ranges at which the black holes remain stable can 
be extracted regarding the signature of the black hole heat capac-
ity. In the canonical ensemble method the black hole heat capacity, 
with the black hole charge as a constant, can be calculated via the 
following relation [41]

HQ = T

(
∂ S

∂T

)
Q

. (3.11)

Regarding this definition and making use of Eqs. (3.1) and (3.3), 
after some algebraic calculations, one is able to show that

HQ = πr+
[
2� + (2p − 1)η+

]
2g(ε) (2� − η+)

, η+ = (2qε)
p r

−2p
2p−1
+ . (3.12)

According to the basis of the canonical ensemble method, a physi-
cally reasonable black hole (i.e. black holes having positive temper-
ature) is thermally stable if its heat capacity is positive. Otherwise, 
it is unstable and experience thermodynamic phase transition to 
be stabilized. The real root(s) of HQ = 0 (if any) determine the 
points at which the thermodynamic type-one phase transition oc-
curs. Type-two phase transition takes place at the divergent points 
of the black hole heat capacity. In order to determine the points 
of type-one and type-two phase transition and to characterize the 
ranges at which the black holes are stable, we have plotted HQ

and T versus r+ with and without rainbow functions in Fig. 2. 
The plots show that there is no point of type-two phase transition. 
The black holes undergo type-one phase transition at the vanish-
ing point of the black hole heat capacity, which is just the horizon 
radius of the extreme black holes r+ = rext . Also, the black holes 
with the horizon radii in the range r+ > rext have positive heat 
capacity and they are locally stable.
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Fig. 2. HQ (continues) and 5T (dashed) versus r+ for � = −1, q = 2, p = 0.7 Eqs. (3.1) and (3.6). Left: f (ε) = 1, g(ε) = 1 and Right: f (ε) = 0.8, g(ε) = 0.9.
4. Corrected thermodynamics in the presence of thermal 
fluctuations

The aim of this section is to find the corrections arisen from 
consideration of thermal fluctuations (TF) on the thermodynamic 
quantities and thermal stability of the new AdS black holes (more 
details on black hole TF can be found in refs. [42–45]). It is well-
known that entropy is the only thermodynamic quantity which is 
affected when the first-order corrections are taken into account. 
It means that, even in the presence of the black hole TF, the black 
hole temperature [Eq. (3.1)] and electric potential [Eq. (3.5)] remain 
unchanged [46,47]. By considering the leading order corrections, 
the black hole entropy gets logarithmic correction which can be 
written as [48–50]

S(T F ) = S − ξ

2
ln

(
ST 2

)
. (4.1)

Note that S is the uncorrected black hole entropy given by Eq. (3.3)
and T being the black hole temperature [Eq. (3.1)] and ξ is the 
parameter of TF or correction parameter with the dimension of 
Length.

Now, we check the validity of the first law of black hole ther-
modynamics by considering the impacts of TF. For this purpose, we 
proceed with two following alternatives:

• If we take the black hole mass unchanged and equal to that 
is given by Eq. (3.8), it is evident that(

∂M

∂ Q

)
S(T F )

= �, (4.2)

and after some manipulations we arrive at(
∂M

∂ S(T F )

)
Q

= T

1 − ξ
2S

[
1 + 2(2�−η+)

2�+(2p−1)η+

] . (4.3)

Noting Eqs. (4.2) and (4.3), the first law of black hole thermody-
namics remains valid provided that the following relation is satis-
fied

1 + 2(2� − η+)

2� + (2p − 1)η+
= 0, (4.4)

or equivalently, the first law of black hole thermodynamics is valid 
if the real root of Eq. (4.4) exist. That is

r+ =
[

(2p − 3)(2qε)
p

−6�

] 2p−1
2p

. (4.5)

The horizon radius r+ given by Eq. (4.5), if exist, identifies the 
radius of AdS black holes for which the first law of black hole ther-
modynamics is valid [26]. But in the AdS space-time with � < 0
and with the allowed p-values in the range 1

2 < p < 1 the horizon 
radius (4.5) does not exist. As the result, the first law of black hole 
thermodynamics, with these assumptions, is not valid.

• Following the works of Refs. [27,30], we define the cor-
rected black hole mass as M(T F ) = F (T F ) + T S(T F ) where F (T F ) =
− 

∫
S(T F ) dT is the Helmholtz free energy. In this case, after some 

calculations, we obtain

(
∂M(T F )

∂ S(T F )

)
Q

= T (T F ) = T , (4.6)

(
∂M(T F )

∂ Q

)
S(T F )

= � − ξ(2p − 3)

π f (ε)
(qε)

1
2 r

− 1
2p−1

+ . (4.7)

Regarding Eqs. (4.6) and (4.7), one can argue that the first law of 
black hole thermodynamics is valid provided that p = 3

2 is chosen. 
But p = 3

2 is not in the allowed range and the first law of black 
hole thermodynamics, with this new approach, is not valid too.

Now, in order to investigate the effects of TF on the stability of 
the black holes, starting from the modified version of Eq. (3.11) in 
the form of H(T F )

Q = T ∂ S(T F )

∂T , we obtained

H(T F )
Q = πr+ − 3ξ g(ε)

g(ε) (2� − η+)
�

+ (2p − 1)πr+ − (2p − 3)ξ g(ε)

g(ε) (2� − η+)
η+. (4.8)

Eq. (4.8) indicates the heat capacity of the new AdS black holes 
in which the quantum fluctuations are taken into account via con-
sideration of the TF. The plots of H(T F )

Q and T versus r+ in the 
absence and presence of the rainbow functions are displayed in 
the left and right panels of Fig. 3, respectively. They show that, just 
like the previous case, there is no point of type-two phase transi-
tion. There is only one point of type-one phase transition where 
the black hole heat capacity vanishes and we label it by r+ = R . 
Despite the previous case, this point of type-two phase transition 
does not coincide with the vanishing point of the black hole tem-
perature, it is clear that R > rext . This kind of black holes are locally 
stable if the horizon radii are in the range r+ > R .
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Fig. 3. H(T F )
Q (continues) and 5T (dashed) versus r+ for � = −1, q = 2, p = 0.7 Eqs. (3.1) and (4.8). Left: f (ε) = 1, g(ε) = 1 and Right: f (ε) = 0.7, g(ε) = 0.8.
5. Conclusion

This work considers the Einstein-�-power-Maxwell three-
dimensional charged black hole solutions in rainbow gravity, as 
the extension of the charged Einstein black holes to the case of 
nonlinear electrodynamics. By considering a static and circularly 
symmetric energy dependent geometry, we solved the equations 
of motion and found that the solutions are asymptotically AdS. As 
it shown in Fig. 1 the solutions can produce black holes with two 
horizons, extreme and naked singularity black holes for the suit-
ably fixed parameters. Calculation of the curvature scalars show 
that there is an essential space-time singularity located at r = 0. 
Existence of the horizons and appearance of the singularity in the 
curvature scalars are sufficient to ensure that the solutions can be 
interpreted as black holes.

We considered the thermodynamic behavior of the obtained 
black hole solutions and discussed the thermal stability or phase 
transitions through the canonical ensemble approach. By calculat-
ing the black hole conserved and thermodynamic quantities at first 
we proved that, although some of these quantities get modified in 
the presence of rainbow functions, the first law of black hole ther-
modynamics is valid in its standard form. Then, regarding the sig-
nature of the black hole heat capacity, we analyzed the black hole 
thermal stability or thermodynamic phase transition. We found 
that no type-two phase transition takes place. There is only one 
point of type-one phase transition located at the r+ = rext where 
the block hole temperature vanishes and extreme black holes oc-
cur. Also, the AdS black holes with the radii greater than rext are 
locally stable (Fig. 2).

Finally, with the purpose of finding the quantum gravitational 
effects on the thermodynamic properties and their thermal sta-
bility, we considered black hole TF. It is well-known that in the 
presence of the black hole TF the black hole entropy gets logarith-
mic corrections. Through alternative approaches we showed that 
the thermodynamical first law is no longer valid. Also, by ana-
lyzing the thermodynamic stability we found that, up to the first 
order corrections, the black hole heat capacity gets modified. As 
the result there is a point of type-one phase transition located at 
r+ = R > rext , which no longer coincides with the vanishing point 
of the black hole temperature. Also, the black holes with horizon 
radii in the range r+ > R are locally stable (Fig. 3).
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