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Abstract

It is shown that similarly to massless superparticle, classical global symmetry of the Berkovits twistor 
string action is infinite-dimensional. We identify its superalgebra, whose finite-dimensional subalgebra 
contains psl(4|4, R) superalgebra. In quantum theory this infinite-dimensional symmetry breaks down to 
SL(4|4, R) one.
© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Twistor string theory [1,2] inspired remarkable progress in understanding spinor and twistor 
structures underlying scattering amplitudes in gauge theories and gravity. Unlike conventional 
superstrings the twistor string spectrum presumably includes only a finite number of oscilla-
tion modes, in particular those of the open string sector are exhausted by 4-dimensional N = 4
super-Yang–Mills theory and conformal supergravity [3]. Since the latter theory is non-unitary 
and one is unable beyond the tree level to disentangle its modes from those of super Yang–
Mills, there were made over time other propositions of twistor string models [4–6]. However, 
for tree-level gluon amplitudes there was proved [7] the equivalence of the expressions obtained 
within the Berkovits model [2] and using the field-theoretic approach. To gain further insights 
into the properties of twistor strings it is helpful to identify their symmetries both classical and 
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quantum. In Refs. [1,8] it was shown that except for an obvious PSL(4|4, R) global symmetry 
twistor strings are also invariant under its Yangian extension that is closely related to infinite-
dimensional symmetry of integrable N = 4 super-Yang–Mills theory [9,10].

In this paper we argue that the world-sheet action of Berkovits twistor string is invariant un-
der infinite-dimensional global symmetry, whose superalgebra contains as a finite-dimensional 
subalgebra the generators of PSL(4|4, R), ‘twisted’ GLt (1, R) symmetries and constant shifts 
of supertwistor components. For the twistor string model with ungauged gl(1, R) current global 
symmetry algebra is isomorphic to the Dirac brackets (D.B.) algebra of the collection of all 
monomials constructed from an arbitrary number l ≥ 0 of PSL(4|4, R) supertwistors and the 
dual supertwistor. We identify this infinite-dimensional superalgebra as a twistor string algebra 
(TSA). Its finite-dimensional subalgebra is spanned by gl(4|4, R) generators and dual super-
twistor corresponding to l = 1 and l = 0 monomials respectively. The relations of the global 
symmetry algebra of the Berkovits model are obtained from those of TSA by setting to zero 
gl(1, R) current. In the quantum theory we show that classical inifinite-dimensional symmetry 
breaks down to SL(4|4, R) one, whose consistency was proved in [8] using the world-sheet CFT 
techniques.

Infinite-dimensional nature of the symmetries of massless superparticles was revealed already 
in [11]. So in Section 2 we consider the (higher-spin) symmetries of N = 4 supersymmetric 
models of massless particles in the supertwistor formulation [12,13]. We included in this section 
also some of the known material, in particular on the finite-dimensional symmetries and spectrum 
identification, to make it self-contained and to prepare the ground for subsequent discussion of 
the twistor string symmetries in Section 3.

2. Higher-spin symmetries of D = 4 N = 4 massless superparticles

Kinetic term of the Shirafuji superparticle model [12] specialized to the case of N = 4 super-
symmetry [13] has the form

S =
∫

dτL , L = i

2

(
Z̄AŻA − ˙̄ZAZA

)
. (2.1)

PSU(2, 2|4) supertwistor ZA has 4 bosonic components Zα transforming in the fundamental 
representation of SU(2, 2) ∼ SO(2, 4) and 4 fermionic components ξ i – in the fundamental rep-
resentation of SU(4) [14]. Components of the dual supertwistor

Z̄A = (Z̄α, ξ̄i) = (Z)†H, H =
⎛⎝ 0 I2×2

I2×2 0
I4×4

⎞⎠ (2.2)

transform in the antifundamental representation of SU(2, 2) × SU(4).
In the canonical formulation non-trivial D.B. of the supertwistor components are

{
ZA, Z̄B

}
D.B.

= iδA
B ,

{
Z̄B,ZA

}
D.B.

= −i(−)aδA
B , (2.3)

where a is the Grassmann parity equal 0 for the supertwistor bosonic components and 1 for the 
fermionic components.
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2.1. Classical symmetries of D = 4 N = 4 massless superparticle

2.1.1. U(2, 2|4) global symmetry
Action (2.1) is manifestly invariant under U(2, 2|4) global symmetry generated by

G(1,1) = Z̄BΛB
AZA:

δZA = {
ZA,G(1,1)

}
D.B.

= iΛA
BZB, δZ̄A = {Z̄A,G(1,1)}D.B. = −iZ̄BΛB

A. (2.4)

Supertwistor ZA and its dual Z̄A are thus transform linearly under U(2, 2|4). Associated Noether 
current up to a numerical factor coincides with the generator of U(2, 2|4) transformations and is 
given by valence (1, 1) composite supertwistor

TA
B = Z̄AZB (2.5)

that on D.B. satisfies the relations of u(2, 2|4) superalgebra{
TA

B,TC
D

}
D.B.

= i
(
δB
C TA

D − (−)ε
b
aεd

c δD
A TC

B
)
, εb

a = (−)a+b. (2.6)

Irreducible components of (2.5)

TA
B = {

T̃α
β, T̃i

j ; Qα
j , Qi

β; T, U
}

(2.7)

include the generators of SU(2, 2) × SU(4) transformations, D = 4 N = 4 Poincaré and confor-
mal supersymmetries, U(1) phase rotation and ‘twisted’ Ut(1) rotation respectively

T̃α
β = Z̄αZβ − 1

4
δβ
α (Z̄Z), T̃i

j = ξ̄iξ
j − 1

4
δ
j
i (ξ̄ ξ ),

Qα
j = Z̄αξ j , Qi

β = ξ̄iZ
β,

T = Z̄Z + ξ̄ ξ, U = Z̄Z − ξ̄ ξ. (2.8)

Throughout this paper tilde over a tensor indicates that it is traceless under contraction of its 
upper and lower indices of the same sort. Component form of u(2, 2|4) superalgebra relations 
(2.6) reads{

T̃α
β, T̃γ

δ
}

D.B.
= i

(
δβ
γ T̃α

δ − δδ
αT̃γ

β
)
,{

T̃i
j , T̃k

l
}

D.B.
= i

(
δ
j
k T̃i

l − δl
i T̃k

j
)
,{

Qα
j ,Qk

δ
}

D.B.
= i

(
δ
j
k T̃α

δ + δδ
αT̃k

j + 1

4
δδ
αδ

j
k T

)
,

{
T̃α

β,Qγ
l
}

D.B.
= i

(
δβ
γ Qα

l − 1

4
δβ
α Qγ

l

)
,

{
T̃α

β,Qk
δ
}

D.B.
= −i

(
δδ
αQk

β − 1

4
δβ
α Qk

δ

)
,

{
T̃i

j ,Qγ
l
}

D.B.
= −i

(
δl
iQγ

j − 1

4
δ
j
i Qγ

l

)
,

{
T̃i

j ,Qk
δ
}

D.B.
= i

(
δ
j
k Qi

δ − 1

4
δ
j
i Qk

δ

)
,{

U,Qα
j
} = 2iQα

j ,
{
U,Qi

β
} = −2iQi

β . (2.9)
D.B. D.B.
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Few remarks regarding above relations are in order. su(2, 2) ⊕ su(4) and supersymmetry gen-
erators span psu(2, 2|4) – the minimal superalgebra that includes conformal and R-symmetries. 
To obtain in closed form corresponding (anti)commutation relations it is common to set T = 0. 
The generators of psu(2, 2|4) and T span su(2, 2|4) superalgebra. Unlike the case N �= 4 this 
superalgebra is not simple since T forms an Abelian ideal. Because U does not appear on the 
r.h.s. of (2.9) u(2, 2|4) superalgebra has the structure of semidirect sum of su(2, 2|4) and ut (1).

Component form of U(2, 2|4) transformations (2.4) is obtained by calculating D.B. of the 
supertwistor components with the individual generators in (2.8). In such a way we find transfor-
mation rules of the supertwistor components under SU(2, 2) × SU(4) rotations

δZα = iΛα
βZβ, δZ̄α = −iZ̄βΛβ

α, Λα
α = 0;

δξ i = iΛi
j ξ

j , δξ̄i = −iξ̄jΛ
j
i, Λi

i = 0, (2.10)

supersymmetry transformations

δZα = iεα
iξ

i, δξ̄i = −iZ̄αεα
i;

δZ̄α = −iξ̄i ε̄
i
α, δξ i = iε̄i

αZα,
(
εα

i

)† = ε̄i
α, (2.11)

as well as, U(1) and Ut(1) rotations

δZα = iaZα, δZ̄α = −iaZ̄α, δξ i = iaξ i, δξ̄i = −iaξ̄i; (2.12)

δZα = iatZ
α, δZ̄α = −iat Z̄α, δξ i = −iat ξ

i , δξ̄i = iat ξ̄i . (2.13)

2.1.2. OSp(8|8) global symmetry
Action (2.1) is also invariant under the symmetries generated by monomials composed of 

either supertwistors or dual supertwistors only. Linear functions G(1,0) = Z̄AΛA and G(0,1) =
Λ̄AZA generate constant shifts of supertwistors

δZA = {
ZA,G(1,0)

}
D.B.

= iΛA; δZ̄A = {Z̄A,G(0,1)}D.B. = −iΛ̄A. (2.14)

Consider also generating functions defined by valence (2, 0) and (0, 2) supertwistors

G(2,0) = Z̄A1Z̄A2Λ
A2A1 = Z̄A(2)Λ

A(2),

G(0,2) = Λ̄A2A1ZA1ZA2 = Λ̄A(2)ZA(2), (2.15)

where convenient notation to be widely used below is ZA(l) =ZA1 · · ·ZAl (ZA(0) = 1, ZA(1) =
ZA) and Z̄A(l) = Z̄A1 · · · Z̄Al

(Z̄A(0) = 1, Z̄A(1) = Z̄A).1 Associated variations of supertwistors 
read

δZA = {
ZA,G(2,0)

}
D.B.

= 2iZ̄BΛBA;
δZ̄A = {Z̄A,G(0,2)}D.B. = −2iΛ̄ABZB. (2.16)

Corresponding Noether currents can be identified with valence (2, 0) and (0, 2) supertwistors

TA(2) = Z̄A1Z̄A2, TA(2) =ZA1ZA2 . (2.17)

1 Composite objects like ZA(l) and Z̄A(l) are graded symmetric in their indices. In general it is assumed graded 
symmetry in supertwistor indices denoted by the same letters. Similarly one defines the products of supertwistor bosonic 
and fermionic components as Zα(m) = Zα1 · · ·Zαm , Z̄α(m) = Z̄α1 · · · Z̄αm and ξ i[n] = ξ i1 · · · ξ in , ξ̄i[n] = ξ̄i1 · · · ξ̄in
(n ≤ N = 4) that are (anti)symmetric. Antisymmetry in a set of n indices is indicated by placing n in square brackets. 
Both symmetrization and antisymmetrization are performed with unit weight.
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Together with u(2, 2|4) currents (2.5) they generate OSp(8|8) global symmetry of the Shirafuji 
model (2.1). (Anti)commutation relations of osp(8|8) superalgebra are given by (2.6) and{

TA(2),TB(2)
}

D.B.
= −i

(
(−)a2δ

B1
A2

TA1
B2 + (−)a2(b1+b2)δ

B2
A2

TA1
B1

+ (−)b1(a1+a2)δ
B1
A1

TA2
B2 + (−)a2b2+a1(b1+b2)δ

B2
A1

TA2
B1

)
,{

TA(2),TB
C
}

D.B.
= −i

(
(−)a2ε

c
b δC

A2
TA1B + (−)a1ε

c
b+a2cδC

A1
TA2B

)
,{

TA(2),TB
C
}

D.B.
= i

(
δ
A2
B TA1C + (−)a2bδ

A1
B TA2C

)
. (2.18)

Decomposition of the generators (2.17)

TAB = {Tαβ, Tij ; Qαj } : Tαβ = Z̄αZ̄β, Tij = ξ̄i ξ̄j , Qαj = Z̄αξ̄j ;
TAB = {

Tαβ, Tij ; Qαj
} : Tαβ = ZαZβ, Tij = ξ iξ j , Qαj = Zαξj (2.19)

allows to find component form of the transformations (2.16)

δZα = 2iΛαβZ̄β;
δZα = −2iΛαi ξ̄i , δξ i = 2iΛαiZ̄α;
δξ i = −2iΛij ξ̄j (2.20)

and

δZ̄α = −2iΛ̄αβZβ;
δZ̄α = −2iΛ̄αiξ

i, δξ̄i = −2iΛ̄αiZ
α;

δξ̄i = −2iΛ̄ij ξ
j . (2.21)

Component form of the relations (2.18) that involve osp(8|8) \ u(2, 2|4) currents reads{
Tαβ,Tγ δ

}
D.B.

= −i
(
δ
γ
β T̃α

δ + δδ
β T̃α

γ + δγ
α T̃β

δ + δδ
αT̃β

γ
) − i

4

(
δγ
α δδ

β + δδ
αδ

γ
β

)
(T + U),{

Tαβ,Qγ l
}

D.B.
= −i

(
δ
γ
β Qα

l + δγ
α Qβ

l
)
,{

Tij ,Tkl
}

D.B.
= i

(
δk
j T̃i

l − δl
j T̃i

k − δk
i T̃j

l + δl
i T̃j

k
) + i

4

(
δl
iδ

k
j − δk

i δ
l
j

)
(T − U),{

Tij ,Qγ l
}

D.B.
= i

(
δl
j Qi

γ − δl
iQj

γ
)
,{

Qαj ,Tγ δ
}

D.B.
= −i

(
δγ
α Qj

δ + δδ
αQj

γ
)
,

{
Qαj ,Tkl

}
D.B.

= i
(
δk
j Qα

l − δl
j Qα

k
)
,{

Qαj ,Qγ l
}

D.B.
= i

(
δl
j T̃α

γ − δγ
α T̃j

l + 1

4
δl
j δ

γ
α U

)
. (2.22)

Accordingly D.B. relations involving both u(2, 2|4) and osp(8|8) \ u(2, 2|4) generators acquire 
the form{

Tαβ, T̃γ
δ
}

D.B.
= −i

(
δδ
βTαγ + δδ

αTβγ − 1

2
δδ
γ Tαβ

)
,

{Tαβ,T}D.B. = {Tαβ,U}D.B. = −2iTαβ,{
Tαβ,Qk

δ
}

D.B.
= −i

(
δδ
βQαk + δδ

αQβk

)
,{

Tij , T̃k
l
}

D.B.
= −i

(
δl
j Tik + δl

iTkj − 1
δl
kTij

)
,

2
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{Tij ,−T}D.B. = {Tij ,U}D.B. = 2iTij ,{
Tij ,Qγ

l
}

D.B.
= i

(
δl
j Qγ i − δl

iQγj

)
,{

Qαj , T̃γ
δ
}

D.B.
= −i

(
δδ
αQγj − 1

4
δδ
γ Qαj

)
, {Qαj ,T}D.B. = −2iQαj ,{

Qαj ,Qγ
l
}

D.B.
= iδl

j Tαγ ,
{
Qαj ,Qk

δ
}

D.B.
= −iδδ

αTjk,{
Qαj , T̃k

l
}

D.B.
= −i

(
δl
j Qαk − 1

4
δl
kQαj

)
, (2.23)

and {
Tαβ, T̃γ

δ
}

D.B.
= i

(
δβ
γ Tαδ + δα

γ Tβδ − 1

2
δδ
γ Tαβ

)
,{

Tαβ,T
}

D.B.
= {

Tαβ,U
}

D.B.
= 2iTαβ,{

Tαβ,Qγ
l
}

D.B.
= i

(
δβ
γ Qαl + δα

γ Qβl
)
,{

Tij , T̃k
l
}

D.B.
= i

(
δ
j
k Til + δi

kTlj − 1

2
δl
kTij

)
,{

Tij ,T
}

D.B.
= {

Tij ,−U
}

D.B.
= 2iTij ,{

Tij ,Qk
δ
}

D.B.
= i

(
δ
j
k Qδi − δi

kQδj
)
,{

Qαj , T̃γ
δ
}

D.B.
= i

(
δα
γ Qδj − 1

4
δδ
γ Qαj

)
,

{
Qαj ,T

}
D.B.

= 2iQαj ,{
Qαj ,Qγ

l
}

D.B.
= iδα

γ Tj l,
{
Qαj ,Qk

δ
}

D.B.
= iδ

j
k Tαδ,{

Qαj , T̃k
l
}

D.B.
= i

(
δ
j
k Qαl − 1

4
δl
kQαj

)
. (2.24)

One observes that the ut(1) generator U appears on the r.h.s. of (2.22) in addition to all the 
su(2, 2|4) generators. As a digression let us note that OSp(2N |8) ⊃ U(2, 2|N) symmetry is man-
ifest in the superparticle models [15,16] formulated in generalized superspace with the bosonic 
coordinates described by symmetric 4 × 4 matrix that in addition to Minkowski 4-coordinates 
includes 6 coordinates described by the second rank antisymmetric tensor. Lagrangians of these 
models can be naturally written in terms of orthosymplectic supertwistors transforming linearly 
under OSp(2N |8).2

2.1.3. Higher-spin symmetries
The complete global symmetry of the model (2.1) is infinite-dimensional. Generic form of the 

generating function for both finite-dimensional and higher-spin symmetries is

G(k,l) = Z̄B1 · · · Z̄Bk
ΛBk ···B1

Al ···A1ZA1 · · ·ZAl , k, l ≥ 0. (2.25)

Parameters ΛB(k)
A(l) (anti)commute with themselves and with the supertwistor components de-

pending on their parities defined by the sum ε(Λ) = ∑
k bk +∑

l al of parities bk and al that take 

2 String models formulated in terms of OSp(N |8) supertwistors were considered in [17–19]. In Ref. [20] was discussed 
their relation to the Berkovits twistor string model [2].
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values 0(1) for the indices corresponding to bosonic (fermionic) components of supertwistors. 
Using associated variation of supertwistors

δZA = {
ZA,G(k,l)

}
D.B.

= ikZ̄B2 · · · Z̄Bk
ΛBk ···B2A

C(l)ZC(l),

δZ̄A = {Z̄A,G(k,l)}D.B. = −ilZ̄C(k)Λ
C(k)

ABl−1···B1ZB1 · · ·ZBl−1 (2.26)

one derives the variation of the superparticle’s Lagrangian

δL = (k + l − 2)
i

2

d

dτ

(
Z̄A(k)Λ

A(k)
B(l)ZB(l)

)
. (2.27)

From this expression it becomes clear that OSp(8|8) symmetry for which (k, l) = (1, 1), (2, 0)

or (0, 2) is special since the action is invariant under corresponding variation. For other values 
of (k, l) the invariance is only up to a total divergence. So the complete infinite-dimensional 
symmetry of the superparticle model (2.1) is generated by the sum

G =
∑
k,l≥0

G(k,l) =
∑
k,l≥0

Z̄B(k)Λ
B(k)

A(l)ZA(l). (2.28)

Associated Noether currents are given by a collection of all possible monomials of the form

T(k,l)
A(k)

B(l) = Z̄A(k)ZB(l), k, l ≥ 0. (2.29)

Such monomials span an infinite-dimensional superalgebra, whose (anti)commutation relations 
in schematic form read{

T(k,l)
B(k)

A(l),T(p,q)
D(p)

C(q)
}

D.B.
= i

(
δA
DT(k+p−1,l+q−1)

B(k)D(p−1)
A(l−1)C(q)

− δC
B T(k+p−1,l+q−1)

B(k−1)D(p)
A(l)C(q−1)

)
. (2.30)

2.2. Quantum symmetries of D = 4 N = 4 massless superparticle

At the quantum level D.B. relations (2.3) are replaced by (anti)commutators3[
ẐA, ˆ̄ZB

} = δA
B ,

[ ˆ̄ZB, ẐA
} = −(−)aδA

B (2.31)

and components of supertwistors and their duals become Hermitian conjugate operators

(ẐA)† = ˆ̄ZA.4 Thus global symmetry generators are promoted to Hermitian operators. Quan-
tized u(2, 2|4) generators ̂TA

B are defined by the graded symmetrized (Weyl ordered) expression

T̂A
B = 1

2

( ˆ̄ZAẐB + (−)abẐB ˆ̄ZA

)
. (2.32)

As far as component generators (2.7), (2.8) are concerned there are no ambiguities in the def-
inition of su(2, 2) and su(4) generators, because of their tracelessness, and supersymmetry 
generators, while u(1) and ut (1) generators can be presented in various forms

T̂ = 1

2
( ˆ̄ZẐ + Ẑ ˆ̄Z) + 1

2
( ˆ̄ξ ξ̂ − ξ̂ ˆ̄ξ) = ˆ̄ZẐ + ˆ̄ξ ξ̂ = Ẑ ˆ̄Z − ξ̂ ˆ̄ξ, (2.33)

Û = 1

2
( ˆ̄ZẐ + Ẑ ˆ̄Z) − 1

2
( ˆ̄ξ ξ̂ − ξ̂ ˆ̄ξ) = ˆ̄ZẐ − ˆ̄ξ ξ̂ + 4 = Ẑ ˆ̄Z + ξ̂ ˆ̄ξ − 4. (2.34)

3 Planck constant is omitted on the r.h.s.
4 Hermitian conjugation is assumed to reverse the order for both bosonic and fermionic operators.
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There are no numerical constants in ‘asymmetric’ representations of T̂ since equal in number 
bosonic and fermionic components of supertwistor and its dual give contributions that cancel 
each other. Also no ambiguity arises in the definition of quantized osp(8|8) \ u(2, 2|4) genera-
tors (2.17). In general higher-spin generators ̂T(k,l)

A(k)
B(l) are defined by the sum of all graded 

permutations of constituent supertwistors

T̂(k,l)
B(k)

A(l) = 1

(k + l)!
( ˆ̄ZB(k)ẐA(l) + · · ·). (2.35)

They satisfy (anti)commutation relations [21] that in schematic form read[̂
T(k,l)

B(k)
A(l), T̂(p,q)

D(p)
C(q)

}
∼

m≤min(l,p)
n≤min(k,q)∑

m,n≥0
m+n odd

δ
A(m)
D(m)δ

C(n)
B(n) T̂(k+p−m−n,l+q−m−n)

B(k−n)D(p−m)
A(l−m)C(q−n). (2.36)

2.3. Higher-spin symmetries of massless superparticle and higher-spin superalgebras

It is worthwhile to compare considered classical and quantum relations of the higher-spin 
currents with those of the higher-spin superalgebras based on orthosymplectic symmetries [22]. 
Generating function (2.28) of the infinite-dimensional global symmetry of the superparticle ac-
tion (2.1) can be considered as a symbol of the operator ̂G that is defined by the same expression 
(2.28) in which (Weyl ordered products of) quantized supertwistors (2.31) should be substituted. 
Associative algebra aq(8|8) (aq = ‘associative quantum’) of such operators is isomorphic to the 
∗-product algebra of their symbols. The ∗-product can be brought to the following form in terms 
of PSU(2, 2|4) supertwistors [21]

A(Z, Z̄) ∗ B(Z, Z̄) = Ae
B, 
 =
( ←−

∂

∂Z

−→
∂

∂Z̄
−

−→
∂

∂Z

←−
∂

∂Z̄

)
, (2.37)

where A(Z, Z̄) and B(Z, Z̄) are symbols of the operators Â(Ẑ, ˆ̄Z) and B̂(Ẑ, ˆ̄Z). Introduction 
of the Lie superalgebra structure in aq(8|8) requires assignment of parities to the monomials 
T̂(k,l)

B(k)
A(l) (and associated expansion coefficients) in G. The prescription [22] appropriate 

for the construction of higher-spin gauge theories consists in ascribing parity 1(0) to SU(2, 2)

(SU(4)) indices. Such a choice agrees with the spin-statistics relation for the expansion coeffi-
cients that are identified with the potentials (field strengths) of higher-spin gauge fields but, for 
instance, the generators of such a Lie superalgebra defined by the product of an odd number 
of supertwistor bosonic components should satisfy anticommutation relations, while those equal 
the product of supertwistor fermionic components – commutation relations. We adhere to alter-
native prescription motivated by the symmetries of the superparticle action that, however, results 
in wrong spin–statistics relation for some of the parameters in (2.28). Both prescriptions match 
for the superalgebras spanned by the generators composed of an even number of supertwistors, 
in particular for the finite-dimensional symmetries generated by quadratic monomials.

The r.h.s. of (anti)commutators A ∗B − (−)ε(A)ε(B)B ∗ A of aq(8|8) elements coincides with 
that of quantized generators (2.35) so that relations (2.36) can be identified as corresponding 
to infinite-dimensional Lie superalgebra Lie[aq](8|8). Then D.B. relations (2.30) can be identi-
fied with the classical limit h̄ → 0 of Lie[aq](8|8) that can be named Lie[acl](8|8). In general 
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the classical limit of Lie superalgebras based on ∗-product associative algebras is obtained by 
introducing explicit dependence on h̄(

A ∗ B − (−)ε(A)ε(B)B ∗ A
)
(Z, Z̄) = 1

h̄

(
Ae
h̄B − (−)ε(A)ε(B)Be
h̄A

)
,


h̄ = h̄
 (2.38)

and taking h̄ → 0. h̄ plays the role of the contraction parameter as was explained in [23,22].

2.4. D = 4 N = 4 massless superparticle with gauged U(1) symmetry

Modification of the model (2.1) considered by Shirafuji [12] consists in gauging U(1) sym-
metry (2.12) by adding T with the Lagrange multiplier to the action

SU(1) =
∫

dτλT. (2.39)

Gauging phase symmetry means that superparticle propagates on projective supertwistor space. 
Global symmetry of the action (2.1), (2.39) is described by a subalgebra of Lie[acl](8|8) spanned 
by the generators commuting with T. We identify this superalgebra as iucl(2, 2|4). It is the classi-
cal limit of iu(2, 2|4) (iu = ‘infinite-dimensional unitary’) superalgebra introduced in [21]. Both 
iu(2, 2|4) and iucl(2, 2|4) share the same finite-dimensional subalgebra u(2, 2|4). iucl(2, 2|4) is 
the centralizer of T in Lie[acl](8|8) analogously to the case of corresponding Lie superalgebras 
based on associative ∗-product algebras (see, e.g., relevant discussion in [24]). Generators of 
iucl(2, 2|4) are the same as those of iu(2, 2|4) and are given by the monomials in (2.29) with 
equal number of supertwistors and dual supertwistors

T(L,L)
A(L)

B(L) ≡ T(L)
A(L)

B(L) = Z̄A(L)ZB(L), L ≥ 1. (2.40)

Number L we shall call the level of the generator following [25]. D.B. relations of the generators 
(2.40) can be derived from (2.30){

T(L1)
B(L1)

A(L1),T(L2)
D(L2)

C(L2)
}

D.B.
= i

(
δA
DT(L1+L2−1)

B(L1)D(L2−1)
A(L1−1)C(L2)

− δC
B T(L1+L2−1)

B(L1−1)D(L2)
A(L1)C(L2−1)

)
.

(2.41)

Going on the constraint shell T ≈ 0 implies setting to zero those generators of iucl(2, 2|4) that 
are multiples of T. This narrows down higher-spin symmetry to the subalgebra of iucl(2, 2|4). 
For N �= 4 such a symmetry is generated by the classical limit of isl(2, 2|N) superalgebra [21]. 
The construction of this superalgebra is based on the direct sum representation of u(2, 2|N) as 
su(2, 2|N) ⊕ TN

5 and its higher-spin generalization. The N = 4 case requires special treatment 
since su(2, 2|4) = psu(2, 2|4) ⊕ T4.

2.5. Spectrum identification

Important realization [26,12] of quantized (super)twistors related to the definition of twistor 
wave functions is to treat components of ẐA as classical quantities, while components of the 

dual supertwistor ˆ̄ZA are considered as differential operators

5 In this and some of the subsequent formulas to avoid confusion T is endowed with the subscript explicitly indicating 
the number of odd components of associated supertwistors.
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ˆ̄Zα → − ∂

∂Zα
, ˆ̄ξ i → 
∂

∂ξ i
(2.42)

acting in the space of (homogeneous) functions of (Z, ξ). Alternatively, components of ˆ̄ZA may 
be treated as c-numbers, while components of ẐA are replaced by differential operators.

Quantum generator (2.33) of U(1) phase symmetry in the realization (2.42) can be brought to 
the form

T̂ = 2ŝ + 2 − ξ
∂

∂ξ
, (2.43)

where ŝ = −1 − 1
2Z ∂

∂Z
is the helicity operator [27]. Any homogeneous function on the su-

pertwistor space is its eigenfunction including the wave function F(Z, ξ) of the superparticle 
propagating on the projective supertwistor space that satisfies(

ŝ + 1 − 1

2
ξ

∂

∂ξ

)
F(Z, ξ) = 0. (2.44)

The solution to this equation is

F(Z, ξ) = f (Z) + ξ iϕi(Z) + 1

2!ξ
i[2]fi[2](Z)

+ 1

3!ξ
i[3]ϕi[3](Z) + 1

4!ξ
i[4]fi[4](Z). (2.45)

Even components in the expansion f , fi[2] and fi[4] upon the twistor transform [27] de-
scribe bosonic particles of helicities −1, 0 and +1 on (complexified conformally-compactified) 
Minkowski space–time, whereas odd components ϕi and ϕi[3] – fermions of helicities −1/2 and 
+1/2, altogether forming D = 4 N = 4 super-Yang–Mills multiplet that is CPT self-conjugate, 
i.e. includes particles of opposite helicities.

The spectrum of the superparticle model (2.1) is described by an infinite series of even 
F2k(Z, ξ) and odd Φ2k+1(Z, ξ) (k ∈ Z) eigenfunctions of the operator (2.43)(

ŝ + 1 − 1

2
ξ

∂

∂ξ
+ a

2

)
Fa(Z, ξ) = 0:{

(ŝ + 1 − 1
2ξ ∂

∂ξ
+ k)F2k = 0, a = 2k,

(ŝ + 1 − 1
2ξ ∂

∂ξ
+ k + 1

2 )Φ2k+1 = 0, a = 2k + 1,
(2.46)

where the subscript indicates homogeneity degree. Pairs of functions Fa and F−a (a > 0) 
describe (upon the twistor transform) CPT conjugate doubleton supermultiplets [28,29] with 
helicities ranging from −a/2 − 1 to a/2 + 1 that are even6 for even values of a and odd for odd 
values of a. This explains the notation introduced in Eq. (2.46). The low-spin supermultiplets in 
this series are Φ±1 with particles of helicities 0, ±1/2, ±1, ±3/2 and F±2 describing D = 4
N = 4 Einstein supergravity. The only exception is F0 ≡ F twistor function corresponding to the 
self-conjugate super-Yang–Mills multiplet considered in the previous paragraph.

Another way to derive the spectrum [13] of the superparticle model (2.1) is to transform 
[30,31] supertwistor components into two pairs of bosonic and two pairs of fermionic SU(2)

oscillators realizing [SU(2)]4 – the maximal compact subgroup of SU(2, 2|4). They provide 

6 The supermultiplet is even/odd if the particle with the highest value of the modulus of helicity is boson/fermion.
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minimal (single generation) oscillator realization of the su(2, 2|4) superalgebra and are used 
to construct doubleton supermultiplets [32,28,29]. All these supermultiplets assemble into two 
singleton supermultiplets of osp(8|8) that arise upon quantization of the massless superparticle 
on superspace with bosonic 4 × 4 matrix coordinates [16].

3. Higher-spin supersymmetries in twistor string models

For Lorentzian signature world sheet the simplest twistor string action can be presented as

S =
∫

dτdσ(LL + LR):

LL = −2
(
Yα∂−Zα + ηi∂−ξ i

) + LL-mat, LR = −2
(
Ȳα∂+Z̄α + η̄i∂+ξ̄ i

) + LR-mat,

(3.1)

where ∂± = 1
2 (∂τ ±∂σ ), σ± = τ ±σ , Y+α ≡ Yα , Ȳ−α ≡ Ȳα , η+i ≡ ηi , η̄−i ≡ η̄i and LL(R)-mat are 

Lagrangians for left- and right-moving non-twistor matter variables, whose contribution to the 
world-sheet conformal anomaly equals c = c̄ = 26 to cancel that of (b, c)-ghosts. Such variables 
may contain a current algebra for some Lie group (see, e.g., [3]). In Berkovits twistor-string 
model [2] global scale symmetry for both left- and right-movers

δZα = ΛZα, δYα = −ΛYα, δξ i = Λξi, δηi = −Ληi;
δZ̄α = Λ̄Z̄α, δȲα = −Λ̄Ȳα, δξ̄ i = Λ̄ξ̄ i , δη̄i = −Λ̄η̄i (3.2)

is gauged by adding to the action (3.1) appropriate constraints T = YαZα + ηiξ
i ≈ 0 and T̄ =

ȲαZ̄α + η̄i ξ̄
i ≈ 0 with the Lagrange multipliers

SGL(1,R) =
∫

dτdσ(λT + λ̄T̄ ). (3.3)

This necessitates add two units to the central charges of the matter variables to compensate that 
of (b, c)-ghosts and ghosts for the gauged GL(1, R) symmetry.

Definition of the open string sector, that to date is the only one well-understood, is based on 
the conditions ZA = Z̄A, YB = ȲB imposed on the world-sheet boundary on the supertwistors 
ZA = (Zα, ξ i), Z̄A = (Z̄α, ξ̄ i ) and their duals YB = (Yβ, ηj ), ȲB = (Ȳβ, η̄j ). So taking into ac-
count reality condition of the Lagrangian one is led to consider left(right)-moving supertwistors 
ZA (Z̄A) and dual supertwistors YB (ȲB ) as independent variables with real components. Such 
supertwistors are adapted for the description of fields on D = 4 N = 4 superspace for the space–
time of signature (+ + − −).7 Conformal group of Minkowski space–time of such a signature is 
SO(3, 3) ∼ SL(4, R) and its minimal N = 4 supersymmetric extension is PSL(4|4, R) with the 
bosonic subgroup SL(4, R) × SL(4, R) implying that bosonic and odd components of ZA belong 
to the fundamental representation of SL(4, R)L × SL(4, R)L, whereas bosonic and odd compo-
nents of YA belong to the antifundamental representation. Correspondingly components of Z̄A

and ȲA transform according to the (anti)fundamental representation of SL(4, R)R × SL(4, R)R .8

7 Detailed discussion of the reality conditions of the twistor string Lagrangian for both Lorentzian and Euclidean world 
sheets, and different real structures in the complex supertwistor space associated with D = 4 space–times of various 
signatures can be found, e.g., in [4].

8 In this section the same letters are utilized to label supertwistors, their components and indices as in the previous one, 
although here they are strictly speaking different mathematical objects related to another real structure in the complex 
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Focusing on the sector of left-movers of the model (3.1) and applying the Dirac approach 
yields equal-time D.B. relations{

Zα(σ ),Yβ

(
σ ′)}

D.B.
= δα

βδ
(
σ − σ ′), {

ξ i(σ ), ηj

(
σ ′)}

D.B.
= δi

j δ
(
σ − σ ′) (3.4)

that in terms of the PSL(4|4, R) supertwistors can be written as{
ZA(σ ),YB

(
σ ′)}

D.B.
= δA

Bδ
(
σ − σ ′),{

YB(σ ),ZA
(
σ ′)}

D.B.
= −(−)aδA

Bδ
(
σ − σ ′). (3.5)

Similar relations hold for the right-movers.

3.1. Classical symmetries of twistor strings

Global symmetry of the left-moving part of the action (3.1) is generated on D.B. by the func-
tion

G =
∫

dσ
∑
L≥0

G(L)(σ ), G(L)(σ ) = YB(σ )ΛB
AL...A1ZA1(σ ) · · ·ZAL(σ ). (3.6)

For arbitrary value of the order L transformation rules for the supertwistors read

δZA(σ ) = ΛA
B(L)ZB(L)(σ ),

δYA(σ ) = −LYC(σ )ΛC
ABL−1...B1ZB1(σ ) . . .ZBL−1(σ ). (3.7)

Associated Noether current densities up to irrelevant numerical factor are given by the monomials

T (L)
B

A(L)(σ ) = YBZA(L), L ≥ 0 (3.8)

that enter generating functions G(L). On D.B. they generate the TSA9{
T (L)

B
A(L)(σ ), T (M)

D
C(M)

(
σ ′)}

D.B.
= (

δA
DT (L+M−1)

B
A(L−1)C(M)

− δC
BT (L+M−1)

D
A(L)C(M−1)

)
(σ )δ

(
σ − σ ′).

(3.9)

The finite-dimensional subalgebra of TSA is spanned, apart from the order 0 generator YA(σ )

that is responsible for constant shift of the supertwistor components, by quadratic monomial in 
supertwistors

TA
B(σ ) = YAZB, (3.10)

generating gl(4|4, R) superalgebra

supertwistor space. For the dual supertwistor and its components we use independent notation since quantities with bars 
are reserved to label variables of the right-moving sector of the twistor string. We hope this will not cause a confusion 
since in each section only one kind of supertwistors is considered.

9 To be more precise one has to introduce TSA as an infinite-dimensional Lie superalgebra and then consider its loop 
version pertinent to twistor-string global symmetry. Let us also note that the subscript L in the notation of symmetry 
groups and algebras will be omitted as the discussion is concentrated on the sector of left-movers only. On the boundary 
left- and right-moving variables are identified and thus also no subscripts are needed.
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{
TA

B(σ ), TC
D

(
σ ′)}

D.B.
= (

δB
CTA

D − (−)ε
b
aεd

c δD
A TC

B
)
(σ )δ

(
σ − σ ′),

εb
a = (−)a+b. (3.11)

Irreducible components of gl(4|4, R) current densities (3.10) are

TA
B(σ ) = {

T̃α
β, T̃i

j ; Qα
j , Qi

β; T , U
}
:

T̃α
β = YαZβ − 1

4
δβ
α (YZ), T̃i

j = ηiξ
j − 1

4
δ
j
i (ηξ);

Qα
j = Yαξj , Qi

β = ηiZ
β; T = YαZα + ηiξ

i, U = YαZα − ηiξ
i . (3.12)

The densities of sl(4, R) × sl(4, R) currents T̃α
β(σ ), T̃i

j (σ ) and those of the supersymmetry 
currents Qα

j (σ ), Qi
β(σ ) span psl(4|4, R) superalgebra, while these generators and T (σ ) span 

sl(4|4, R). On D.B. they generate infinitesimal SL(4, R) × SL(4, R) rotations of the supertwistor 
components

δZα(σ ) = Λα
βZβ(σ ), δYα(σ ) = −Yβ(σ )Λβ

α, Λα
α = 0;

δξ i(σ ) = Λi
j ξ

j (σ ), δηi(σ ) = −ηj (σ )Λj
i, Λi

i = 0 (3.13)

and supersymmetry transformations

δZα(σ ) = εα
iξ

i(σ ), δηi(σ ) = −Yα(σ )εα
i;

δYα(σ ) = −ηi(σ )εi
α, δξ i(σ ) = εi

αZα(σ ), (3.14)

where εα
i and εi

α are independent odd parameters with 16 real components each. T (σ ) generates 
GL(1, R) transformations (3.2) and U(σ) – ‘twisted’ GLt (1, R) transformations

δZα(σ ) = ΛtZ
α(σ ), δYα(σ ) = −ΛtYα(σ ),

δξ i(σ ) = −Λtξ
i(σ ), δηi(σ ) = Λtηi(σ ). (3.15)

gl(4|4, R) relations (3.11) are spelt out in terms of irreducible components (3.12) as{
T̃α

β(σ ), T̃γ
δ
(
σ ′)}

D.B.
= (

δβ
γ T̃α

δ − δδ
αT̃γ

β
)
(σ )δ

(
σ − σ ′),{

T̃i
j (σ ), T̃k

l
(
σ ′)}

D.B.
= (

δ
j
k T̃i

l − δl
i T̃k

j
)
(σ )δ

(
σ − σ ′),{

Qα
j (σ ),Qk

δ
(
σ ′)}

D.B.
=

(
δ
j
k T̃α

δ + δδ
αT̃k

j + 1

4
δδ
αδ

j
k T

)
(σ )δ

(
σ − σ ′),

{
T̃α

β(σ ),Qγ
l
(
σ ′)}

D.B.
=

(
δβ
γ Qα

l − 1

4
δβ
αQγ

l

)
(σ )δ

(
σ − σ ′),

{
T̃α

β(σ ),Qk
δ
(
σ ′)}

D.B.
= −

(
δδ
αQk

β − 1

4
δβ
αQk

δ

)
(σ )δ

(
σ − σ ′),

{
T̃i

j (σ ),Qγ
l
(
σ ′)}

D.B.
= −

(
δl
iQγ

j − 1

4
δ
j
i Qγ

l

)
(σ )δ

(
σ − σ ′),

{
T̃i

j (σ ),Qk
δ
(
σ ′)}

D.B.
=

(
δ
j
k Qi

δ − 1

4
δ
j
i Qk

δ

)
(σ )δ

(
σ − σ ′),{

U(σ),Qα
j
(
σ ′)}

D.B.
= 2Qα

j (σ )δ
(
σ − σ ′),{

U(σ),Qi
β
(
σ ′)} = −2Qi

β(σ )δ
(
σ − σ ′). (3.16)
D.B.
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T (σ ) commutes on D.B. with all other gl(4|4, R) current densities thus forming an Abelian ideal. 
The density U(σ) of ‘twisted’ glt (1, R) current does not appear on the r.h.s. of (3.16) that allows 
to consider gl(4|4, R) as the semidirect sum of sl(4|4, R) and glt (1, R).

3.2. Quantum symmetries of twistor strings

It was shown in [8] that SL(4|4, R) symmetry is preserved at the quantum level, whereas 
the generator U of ‘twisted’ GLt (1, R) symmetry has anomalous OPE with the world-sheet 
stress–energy tensor implying that corresponding symmetry is broken in twistor string theory. 
Thus possible type of infinite-dimensional symmetry that could survive in the quantum theory 
is restricted to that based on sl(4|4, R) as finite-dimensional subalgebra. Since gl(4|4, R) super-
algebra belongs to the family of gl(M|M, R) superalgebras, whose properties differ from those 
of gl(M|N, R) superalgebras with M �= N , one is forced to take components of supertwistors as 
building blocks of the generators for sl-type superalgebras.

3.2.1. Superalgebraic perspective on quantum higher-spin symmetries
In the bosonic limit TSA reduces to TSAb – an infinite-dimensional Lie algebra, whose gener-

ators are obtained from (3.8) by setting to zero fermionic components of the supertwistors. Order 
0 and 1 generators are given by the dual bosonic twistor Yα and gl(4, R) generators YαZβ . The 
latter divide into sl(4, R) T̃α

β and gl(1, R) T0 = YαZα ones. Higher-order generators YαZβ(L)

divide into

T̃α
β(L) = YαZβ(L) − 1

L + 3
(YZ)δβ(1)

α Zβ(L−1) (3.17)

and T0Z
β(L−1). Expression (3.17) is an obvious generalization of T̃α

β from (3.12) to the case 
L > 1.

Proceeding to TSA superalgebra, from (3.9) one infers that the D.B. relations of order L and 
M generators close on order L + M − 1 generators. So that order 1 generators, i.e. gl(4|4, R)

ones (3.12), play a special role: D.B. relations of the generators of an arbitrary order L with those 
of order 1 yield again order L generators. This feature can be used to characterize irreducible 
higher-order generators.

Thus the form of irreducible order 2 generators can be found by D.B.-commuting corre-
sponding bosonic generator (3.17) with order 1 supersymmetry generators Qi

β and Qα
j , di-

viding generators that appear on the r.h.s. into irreducible SL(4, R) × SL(4, R) tensors, then 
D.B.-commuting them with Qi

β and Qα
j and so on. In such a way we obtain{

Qi
β(σ ), T̃γ

δ(2)
(
σ ′)}

D.B.
=

(
δβ
γ Qi

δ(2) − 1

5
δ(δ1
γ Qi

δ2)β

)
(σ )δ

(
σ − σ ′), (3.18)

where

Qi
δ(2) = ηiZ

δ(2) (3.19)

D.B.-commutes with Qi
β . Analogously calculation of D.B. relations of T̃γ

δ(2) and Qα
j yields{

Qα
j (σ ), T̃γ

δ(2)
(
σ ′)}

D.B.
= −

(
δ(δ1
α Q̃γ

δ2)j − 1

5
δ(δ1
γ Q̃α

δ2)j

)
(σ )δ

(
σ − σ ′), (3.20)

where another order 2 supersymmetry generator

Q̃γ
δi = T̃γ

δξ i (3.21)
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D.B.-commutes with Qα
j . Applying Qα

j to Qk
δ(2) gives{

Qα
j (σ ),Qk

δ(2)
(
σ ′)}

D.B.
= δ

j
k T̃α

δ(2)(σ )δ
(
σ − σ ′)

+ δ(δ1
α

(
T̃k

δ2)j + δ
j
k

(
9

40
T − 1

40
U

)
Zδ2)

)
(σ )δ

(
σ − σ ′)

(3.22)

and similarly{
Qi

β(σ ), Q̃γ
δl
(
σ ′)}

D.B.
=

(
δβ
γ T̃i

δl − 1

4
δδ
γ T̃i

βl

)
(σ )δ

(
σ − σ ′)

+ δl
i

[
T̃γ

βδ +
(

9

40
T − 1

40
U

)
×

(
δβ
γ Zδ − 1

4
δδ
γ Zβ

)]
(σ )δ

(
σ − σ ′), (3.23)

where

T̃i
βj = T̃i

jZβ. (3.24)

Continuing further one recovers the set of irreducible order 2 generators

T̃α
β(2), T̃i

αj , Tα
j [2] = Yαξj [2];

Qi
α(2), Q̃α

βj , Q̃i
j [2] = ηiξ

j [2] − 1

3
(ηξ)δ

[j1
i ξ j2] (3.25)

and

T Zα, UZα, T ξ i, Uξ i . (3.26)

The operators associated with the generators (3.26), as will be shown below, are not the primary 
fields in the world-sheet CFT and hence corresponding symmetries are broken at the quantum 
level. Since these generators appear on the r.h.s. of (3.22), (3.23) this implies breaking of the 
order 2 supersymmetries Qi

α(2), Q̃α
βj and, in view of (3.18), (3.20) breaking of the bosonic 

symmetry generated by T̃γ
δ(2). So that classical order 2 symmetries break in the quantum theory.

For order L > 2 calculation of D.B. relations of the corresponding bosonic generator (3.17)
and order 1 supersymmetry generators gives{

Qi
β(σ ), T̃γ

δ(L)
(
σ ′)}

D.B.
=

(
δβ
γ Qi

δ(L) − 1

L + 3
δδ(1)
γ Qi

δ(L−1)β

)
(σ )δ

(
σ − σ ′), (3.27)

and {
Qα

j (σ ), T̃γ
δ(L)

(
σ ′)}

D.B.
= −

(
δδ(1)
α Q̃γ

δ(L−1)j − 1

L + 3
δδ(1)
γ Q̃α

δ(L−1)j

)
(σ )δ

(
σ − σ ′),

(3.28)

where order L supersymmetry generators are defined by the expressions

Qi
δ(L) = ηiZ

δ(L), Q̃γ
δ(L−1)j = T̃γ

δ(L−1)ξ j . (3.29)

Their D.B. relations with order 1 supersymmetry generators read
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{
Qα

j (σ ),Qk
δ(L)

(
σ ′)}

D.B.
= δ

j
k T̃α

δ(L)(σ )δ
(
σ − σ ′) + δδ(1)

α

[
T̃k

δ(L−1)j

+ δ
j
k

(
L + 7

8(L + 3)
T − L − 1

8(L + 3)
U

)
Zδ(L−1)

]
(σ )δ

(
σ − σ ′)

(3.30)

and {
Qi

β(σ ), Q̃γ
δ(L−1)l

(
σ ′)}

D.B.
=

(
δβ
γ T̃i

δ(L−1)l − 1

L + 2
δδ(1)
γ T̃i

βδ(L−2)l

)
(σ )δ

(
σ − σ ′)

+ δl
i

[
T̃γ

βδ(L−1) +
(

L + 7

8(L + 3)
T − L − 1

8(L + 3)
U

)
×

(
δβ
γ Zδ(L−1) − 1

L + 2
δδ(1)
γ ZβZδ(L−2)

)]
(σ )

× δ
(
σ − σ ′), (3.31)

where

T̃k
δ(L−1)j = T̃k

jZδ(L−1). (3.32)

Continuing further calculation of D.B. relations of gl(4|4, R) supersymmetry generators and 
order L generators allows to find complete set of irreducible order L bosonic

T̃α
β(p)j [q] = T̃α

β(p)ξ j [q], q = 0,2,4, p + q = L;
T̃i

β(p)j [q] = T̃i
j [q]Zβ(p), q = 1,3, p + q = L (3.33)

and fermionic generators

Q̃α
β(p)j [q] = T̃α

β(p)ξ j [q], q = 1,3, p + q = L;
Q̃i

β(p)j [q] = Q̃i
j [q]Zβ(p), q = 0,2,4, p + q = L. (3.34)

Relevant (traceless) products of bosonic components of supertwistors are defined in (3.17) and 
the definition of (traceless) products of fermionic components is given in (3.12), (3.25) and by 
the expressions

T̃i
j [3] = ηiξ

j [3] − 1

2
(ηξ)δ

[j1
i ξ j2ξj3],

Qi = ηi, Qi
j [4] = ηiξ

j [4]. (3.35)

There are also generators of the form

T Zα(p)ξ i[q], UZα(p)ξ i[q], p ≥ 0, 0 ≤ q ≤ 4. (3.36)

It is these generators that correspond to non-tensor operators in the world-sheet CFT. They are 
present on the r.h.s. of (3.30) and (3.31) implying breaking of order L symmetries in analogy 
with those of order 2.

In Berkovits twistor string theory GL(1, R) symmetry is gauged so that generators carrying the 
factor of T are set to zero. However, GLt (1, R) symmetry, being anomalous, cannot be gauged 
thus the generators carrying the factor of U cannot be put to zero. So we conclude that for 
any order L it is not possible to find a set of generators with closed D.B. relations that would 
correspond to the primary fields. As a result the quantum symmetry of the twistor string reduces 
to SL(4|4, R) ×SL(4|4, R) for the sector of closed strings and its diagonal subgroup for the sector 
of open strings.
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3.2.2. Higher-spin symmetries from the world-sheet CFT perspective
This subsection we devote to consideration of the twistor part of the left-moving world-sheet 

CFT justifying the arguments above discussion relied on. To apply the 2d CFT technique to the 
model (3.1) it is helpful to carry out Wick rotation to Euclidean signature world-sheet

τ → iσ 2, σ → σ 1 ⇒ σ+ → z = σ 1 + iσ 2, σ− → −z̄ = −(
σ 1 − iσ 2).

(3.37)

The following changes of the world-sheet derivatives

∂+ → ∂z = 1

2
(∂1 − i∂2) ≡ ∂, ∂− → −∂z̄ = −1

2
(∂1 + i∂2) ≡ −∂̄, (3.38)

2d volume element

dτdσ → idσ 1dσ 2 = i

2
d2z, (3.39)

and supertwistor components

YA → YA(z), ȲA → −ȲA(z̄), (3.40)

result in the Euclidean action

SE =
∫

d2z
(
YA∂̄ZA + ȲA∂Z̄A

)
. (3.41)

Non-trivial OPE’s for the supertwistor components of the left-moving sector, on which we focus,

Zα(z)Yβ(w) ∼ δα
β

z − w
, ξ i(z)ηj (w) ∼ δi

j

z − w
(3.42)

in terms of the supertwistors can be written as

ZA(z)YB(w) ∼ δA
B

z − w
, YB(z)ZA(w) ∼ − (−)aδA

B

z − w
. (3.43)

By definition primary fields are characterized by the following general form of the OPE with 
the world-sheet stress-energy tensor

L(z)O(w) ∼ h

(z − w)2
O(w) + 1

z − w
∂O(w), (3.44)

where h is conformal weight of the primary field.10 The supertwistor part of the left-moving 
stress–energy tensor for the twistor string model (3.1) equals

Ltw(z) = −YA∂ZA (3.45)

so that YB and ZA are primary fields of conformal weight 1 and 0 respectively.
From the world-sheet CFT perspective the necessary condition for the considered global sym-

metries to survive in the quantum theory is that their generators become primary fields, i.e. their 
OPE’s with the stress–energy tensor are anomaly free, in other words, on the r.h.s. of (3.44) there 

10 It is assumed that composite operators depending on a single argument are normal-ordered but normal ordering 
signs : : will be omitted.
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should not appear terms with poles of order higher than two. As we find the generators containing 
the factor of T or U fail to comply with this requirement.

Using the relations

Yγ ∂Zγ (z)YβZα(w) ∼ δα
β

(z − w)3
− 1

(z − w)2
YβZα(w) − 1

(z − w)
∂
(
YβZα

)
(w) (3.46)

and

ηk∂ξk(z)ηj ξ
i(w) ∼ − δi

j

(z − w)3
− 1

(z − w)2
ηj ξ

i(w) − 1

z − w
∂
(
ηj ξ

i
)
(w), (3.47)

it follows that sl(4|4, R) generators T̃α
β , T̃i

j , Qα
j , Qi

β and T are primary fields of unit weight, 
while U is not [8]

Ltw(z)U(w) ∼ −8

(z − w)3
+ 1

(z − w)2
U(w) + 1

z − w
∂U(w). (3.48)

Higher-order generators (3.33), (3.34) also become primary fields of unit weight. While OPE’s 
of the generators (3.36) with the stress–energy tensor are anomalous

Ltw(z)T Zα(p)ξ i[q](w) ∼ − p + q

(z − w)3
Zα(p)ξ i[q](w) +O

(
(z − w)−2)

Ltw(z)UZα(p)ξ i[q](w) ∼ −8 + p − q

(z − w)3
Zα(p)ξ i[q](w) +O

(
(z − w)−2). (3.49)

In the case p = q = 0 one recovers discussed above OPE’s of gl(1, R) and glt (1, R) generators 
with the stress–energy tensor. For p �= 0, q �= 0 anomalous terms do not vanish so that associated 
symmetries are broken. Since generators (3.33), (3.34) are linked with other order L generators 
by order 1 supersymmetries (cf. Eqs. (3.27)–(3.31)) it appears that higher-spin symmetry is bro-
ken for arbitrary value of L except for L = 1, for which quantum-mechanically consistent global 
symmetry is isomorphic to SL(4|4, R).

4. Conclusion and discussion

In this paper we performed the analysis of higher-spin global symmetries of D = 4 N = 4
massless superparticle models in supertwistor formulation extending the consideration of 
Ref. [11]. Discussed infinite-dimensional conformal superalgebras stemming from the aq(8|8)

algebra require further study as they could underly N = 4 supersymmetric extension of in-
teracting higher-spin theories on AdS5 [33,34] and conformal higher-spin theories on D = 4
Minkowski space–time [35]. We have also revealed inifinite-dimensional classical symmetries in 
the Berkovits twistor string model and its extension with ungauged GL(1, R) symmetry. Noether 
current densities associated with these symmetries have been constructed in terms of PSL(4|4, R)

supertwistors. In the generalized twistor string model the D.B. relations of the Noether current 
densities have been shown to form the TSA inifinite-dimensional Lie superalgebra, whose finite-
dimensional subalgebra is spanned by gl(4|4, R) generators and the generator of constant shifts 
of the supertwistor components. The full classical symmetry of the twistor string action is gener-
ated by the direct sum of two copies of TSA superalgebra for the left- and right-movers that for 
the open string sector are identified on the boundary. Classical symmetry of the Berkovits model 
is described by the subalgebra of TSA obtained by going on the constraint shell YαZα +ηiξ

i ≈ 0. 
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Its finite-dimensional subalgebra is spanned by psl(4|4, R), ‘twisted’ glt (1, R) generators and 
that of shifts of the supertwistor components.

The fact that the symmetry of twistor string action is infinite-dimensional is anticipated due 
to the symmetry enhancement in N = 4 super-Yang–Mills theory at zero coupling [36,37]. One 
could similarly anticipate infinite-dimensional symmetry of free N = 4 conformal supergravity 
[38] that is present in the spectrum of Berkovits twistor string on equal footing with N = 4 super-
Yang–Mills theory. Observed infinite-dimensional symmetry breaking down to SL(4|4, R) at the 
quantum level also agrees with the higher-spin symmetry breaking in N = 4 super-Yang–Mills 
once the interactions are switched on [37]. Looking at the symmetry enhancement on the stringy 
side [36,39] in the weak coupling regime of gauge/gravity duality our results seem to support 
the evidence [20] for the tensionless nature of twistor strings or rather certain equivalence of the 
limits of zero and infinite tension [40]. Interesting question is whether other twistor string models 
[4–6] are invariant under higher-spin symmetries.

To conclude let us make a few comments on the twistor string spectrum. There are three 
kinds of states in the open string sector of the Berkovits model [3]. Twistor counterpart of N = 4
super-Yang–Mills multiplet is described by the vertex operator

VYM(z) = jR(z)FR
0

(
Z(z)

)
, (4.1)

where jR (R = 1, . . . , dimG) represent currents of unit conformal weight from the current al-
gebra G that enters the Lagrangian LL(R)-mat in (3.1) and FR

0 (Z) is a scalar function on the 
supertwistor space of homogeneity degree zero. Other options to construct vertices of overall 
conformal weight one and homogeneity degree zero are

Vf (z) = YA(z)f A
(
Z(z)

)
, Vg(z) = gA

(
Z(z)

)
∂ZA (4.2)

with the supertwistor functions f A(Z) and gA(Z) having homogeneity degrees (GL(1, R)

charges) +1 and −1. They satisfy the constraints ∂Af A = ZAgA = 0 and are defined mod-
ulo the gauge invariances δf A =ZAf, δgA = ∂Ag to match upon the twistor transform the states 
of N = 4 conformal supergravity [3]. As far as the open string sector of the model (3.1) is 
concerned the vertex operators are formally remain the same as above but the condition of 
zero homogeneity degree in supertwistor components is relaxed so that FR

a (Z) describes not 
only N = 4 super-Yang–Mills states but also all the doubleton supermultiplets via the pairs of 
functions F±a(Z) having opposite homogeneity degrees +a and −a. In particular, functions 
F±2(Z) describe N = 4 Einstein supergravity multiplet. It is then natural to take jR corre-
sponding to some Abelian algebra. The states of N = 4 Einstein supergravity also reside in 
conformal supergravity vertices (4.2) with the supertwistor functions constrained by the ansatz
f A(Z) = IAB∂BF ′+2(Z) and gA(Z) = F ′−2(Z)IABZB , where IAB, IAB are infinity supertwistors 
[41]. Supertwistor functions f A(Z) and gA(Z) with other values of GL(1, R) charges corre-
spond to higher-spin counterparts of N = 4 conformal supergravity multiplet and deserve further 
study. In the Berkovits twistor string model important role is played by the gauged GL(1, R)

symmetry that allows to shift conformal weights of the supertwistor fields and reproduce scatter-
ing amplitudes for various helicity configurations of external particles. In the ungauged case to 
be able to study scattering amplitudes of particles from, for instance, doubleton supermultiplets 
some additional variables should be introduced. This could impose further restrictions or lead to 
the determination of the structure of yet undetermined matter Lagrangians in (3.1).
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