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Electric fields in QED are known to discharge due to Schwinger pair production of charged particles.
Corresponding electric fields in non-Abelian theory are known to discharge due to the production of
gluons. Yet electric flux tubes in QCD ought to be stable to the production of charged gluons as they
confine quarks. We resolve this conundrum by finding electric field configurations in pure non-Abelian
gauge theory in which the Schwinger process is absent and the electric field is protected against quantum
dissipation. We comment on the implications for QCD flux tubes.
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I. INTRODUCTION

Quantum particle production in time-dependent back-
grounds continues to be a topic of great interest. The
situation arises in the context of gravitational collapse and
leads to Hawking radiation [1], in cosmology where
particle creation occurs due to the expansion of the universe
[2], and in Schwinger pair production [3] when the electric
field is described in terms of a time-dependent gauge field.
The production of particles implies that there is back-
reaction on the background, and external agencies must
maintain the background or else it will dissipate. For
example, black holes evaporate and capacitors discharge.

In a recent paper [4] we discussed time-dependent back-
grounds that are “unexciting,” i.e., time-dependent back-
grounds in which there is no net production of particles. (This
is connected to “shortcuts to adiabaticity (STA)” in quantum
mechanical systems reviewed in [5], and also related to
certain gravitational systems discussed in [6,7].) In most such
backgrounds, particles are produced and then later absorbed
so that the net particle production vanishes. A subset of
unexciting backgrounds are those for which the particle
production vanishes at all times. Such backgrounds are of
interest because they are protected against quantum dissi-
pation and no external agency is required to maintain the
background. Their time-dependence is of a stationary nature.
An example is that of a boosted soliton that is coupled to other
quantum degrees of freedom: a boosted soliton is time-
dependent but does not radiate particles.

Here we are interested in electric field backgrounds in
pure non-Abelian gauge theory. Generally we would expect

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2022/105(10)/105011(10)

105011-1

such electric field backgrounds to discharge due to the
Schwinger pair production of gluon excitations. However,
confinement suggests that electric flux tube configurations
should be protected against quantum dissipation. By care-
fully choosing the time-dependence of the electric field it is
possible to suppress particle production in a given excita-
tion mode [4,8], yet it is unclear what, if anything, could
prevent Schwinger pair production completely. Even an
exponentially suppressed pair production rate would even-
tually cause the electric flux tube to dissipate.

To clarify this motivation further, consider Schwinger
pair production in the case of electrodynamics with a
uniform electric field of strength £ and when the charge
carriers have mass m, and charge e. The rate of particle
production goes as [3],

n « e*E* exp(—nm?/eE) (1)

and can be understood in different ways depending on the
choice of gauge.

If one adopts Coulomb gauge, the gauge potential for a
uniform electric field along the z-direction is

A" = (=Ez,0,0,0). (2)

Then the gauge potential diverges asymptotically in the z
direction. As discussed in Refs. [9-11] for example,
particle production can be viewed as a tunneling process
in a potential which is infinitely negative as z — oo (see
Fig. 1) so that the produced particles escape to infinity. For
an electric field in a finite but large domain, the potential
does not diverge but goes to a constant as z — oo and the
particles still escape to infinity.

Alternatively, if one adopts temporal gauge, as we shall
do, the gauge potential is

A" = (0,0,0, Er). (3)
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FIG. 1. A sketch for the tunneling picture of Schwinger pair
production. The Coulomb curves (small-dashed) show the
Coulomb attractive potential between the pair of charges; the
long dashed line shows the potential energy of the positive charge
due to the external electric field, and the solid curves are the sum
of the Coulomb and external electric potentials. Quantum
fluctuations deep in the potential well with energy E can tunnel
out and escape to infinity and would be interpreted as Schwinger
particle pairs.

Now the gauge field is spatially well behaved but varies
with time. Any quantum excitations of charged fields will
obtain time-dependent frequencies, just as for a simple
harmonic oscillator with a time-varying spring constant. The
charged quantum modes in the vacuum will get excited due
to this time-dependent background leading to pair produc-
tion. The rate of particle production can be calculated using
the standard machinery of Bogolyubov coefficients (e.g.,
[2,12]), or in the framework of the “classical-quantum
correspondence” where quantum particle production is
described in terms of solutions of the classical equa-
tions [13,14].

Here we consider a pure non-Abelian SU(2) gauge
theory with a background (“‘color”) electric field in tem-
poral gauge. In addition, the theory contains “gluon”
excitations that are massless and charged. A background
electric field that is analogous to that in ordinary electro-
dynamics is known to pair produce gluons [8,15-28]. One
important difference from the original Schwinger calcu-
lation is that the gluons are massless and the exponential
suppression in (1) is absent. In fact, there are ultraviolet and
infrared divergences as discussed in Ref. [28] that are
presumably controlled by asymptotic freedom and confine-
ment. However, it appears that no matter how weak the
electric field strength is, there is always some particle
production and hence the electric field should decay.

If any non-Abelian electric field decays due to the
Schwinger process, it would imply that any external
electric charge would get shielded by gluons and the
resulting long range electric field would vanish. This runs
counter to the picture that QCD has electric flux tubes that

confine electric charges, and we are led to the question if
there can be non-Abelian electric field configurations that
are immune to the Schwinger process, i.e., non-Abelian
electric fields that are unexciting. Such electric flux tubes
would be models for the QCD string responsible for
confinement that have been discussed now for nearly half
a century [29-32].

A guess for an unexciting non-Abelian electric field
configuration was suggested in Ref. [4]. One needs the
electric field background to be stationary. Already we have
mentioned boosted solitons as unexciting backgrounds.
An alternative is to have “rotating” backgrounds. In non-
Abelian gauge theories, for example when quantizing
magnetic monopole backgrounds, it is known that there
are rotor degrees of freedom that, when excited, endow a
monopole with electric charge and convert it into a dyon.
Could such rotor degrees of freedom be relevant for
unexciting non-Abelian electric fields?

Approaching the problem from a different point of view,
one wishes to construct “stationary” gauge fields that lead
to a uniform electric field. Fortunately this problem has
been analyzed in detail in Ref. [16] and it is found that there
are two gauge inequivalent classes of gauge fields that lead
to the same non-Abelian electric field. One of these ways is
analogous to the Abelian gauge potential, while the second
one is necessarily due to the non-Abelian nature of the
model. We will explain this in more detail in Sec. III but
suffice it to say that this second description of the electric
field corresponds precisely to the uniform rotation of a rotor
degree of freedom with quantized angular momentum
(Sec. V). The analysis of Sec. IV shows explicitly that
this gauge background is stationary and does not lead to
particle production, and consequently is protected against
quantum dissipation. Quantum excitations on top of the
classical background will settle into some ground state
which is very difficult to determine because of the strongly
coupled nature of the system but, whatever the state may
be, it will be stationary. In Sec. VII we discuss the simpler
quantization of the homogeneous modes in the linearized
approximation. Even this limited analysis has some novel
features. Most of our analysis is done for a uniform electric
field as this is simpler but in Sec. VI we remark on
strategies to determine the profile of a flux tube. We start
our discussion with a motivating illustration of an unexcit-
ing electric field in 1 + 1D in Sec. II and summarize our
conclusions in Sec. VIIL

II. AN ILLUSTRATIVE EXAMPLE IN 1+1D

An example of an electric field configuration without
Schwinger pair production is already known in massless
QED in 1 + 1 dimensions [33,34] with action,

1
S = /d2x {1/77/”(1'3” +€A,4)W—ZF,WF”” , (4
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where y is a fermion field, A, is a U(1) gauge field, and F,
is the field strength.
An unexciting electric field background is given by [33],

For = Q(0(x + L/2) -06(x - L/2))
+9(f(x+L/2) - f(x-L/2)). (5)

where g =e/\/n and Q is the external charge on a
capacitor with plate separation L, and

fx) = —%sgn(x)(l — o). (6)

The terms proportional to Q in (5) give the electric field
of the classical capacitor, while the last two terms give
the contribution of a quantum condensate of fermions.
Quantum effects provide extra sources that screen some of
the classical electric field, resulting in a net electric field in
which there is no Schwinger pair production.

Similarly in the non-Abelian case discussed below, we
consider an electric field configuration that solves the
classical equations of motion only in the presence of some
sources (see Sec. IV). These sources can be external or be
generated internally by quantum effects due to higher order
interactions.

ITI. UNIFORM ELECTRIC FIELD

As discussed in [16], a homogeneous non-Abelian
electric field can be derived from several gauge inequiva-
lent potentials. Say we want the gauge potentials for an
electric field in the third isospin direction and pointing
along the z direction, i.e., £ = E; = Wgz where Wy are
gauge potentials from which the field strength Wy, is
derived in the usual way,

Wa, = 9,Wd — 0, Wa + e WhW¢, (7)

where we have set the gauge coupling to unity since we will
only be considering noninteracting quantum fluctuations
on an electric field background.

The first “trivial” way to obtain E? is to take,

Wi = —E160,z. (8)
Then
E¢ = —(0,W9 — O;W¢ + P WP W¢) = E595,.. (9)
A second way to obtain E; is to take [16],
W, =(2,0,0,0),

W2=(0,0,0,-E/Q), W;=0, (10)

u

where Q is a constant (that will turn out to be quantized in
Sec. V.) With (10) we also obtain

EY = E§%35,,. (11)

Even though the gauge potentials in Egs. (8) and (10) yield
the same field strength, they are gauge inequivalent, as
are the gauge fields for different values of Q, as can be
seen by1 computing other gauge invariant quantities such
as [16],

(D, Wi )2(D, W,y = —E? (92 - E—) (12)

where
(D,WH)a = g, WHva + etbewbwmre, (13)

Since the gauge invariant quantity on the left-hand side of
(12) depends on €2, gauge fields for different Q values are
gauge inequivalent. However, the energy density of the
configuration is independent of €, since the electric field
does not depend on Q.

In the context of “unexciting” backgrounds discussed
in [4], we would like to work in temporal gauge and set
W§ = 0. A gauge transformation yields,

W, =U"'"W,U +iU'9,U, (14)
where now W, = WiT“ = Wjjc?/2, T* are the generators
of SU(2) normalized to Tr(T*T?) = §*’/2 and ¢“ are the

Pauli spin matrices. The gauge transformation U that takes
us to temporal gauge is given by,

U = eio'Qt/2. (15)
Using the identities,

e = cos @ + ifi - osin 0
eM0Ge= 1100 — G cos(20) + i x & sin(20)

+ an-o(1 —cos(26)) (16)
we find
WY =0
W2 = —gcos(ﬂt)aﬂz,

E
Wy =— 5 sin(Q1)0,z. (17)

A global SU(2) rotation can be used to bring the gauge
fields to a form that we will use

'"We are using the signature (4, —, —, —).
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E
W, =— ﬁcos(Qt)aﬂz,

E
W2 =— o sin(Q1)0,.z.

Wﬁ =0 (18)
and we have dropped the primes for convenience.
Reference [16] wrote the gauge field in the form of (10)
to show that the same electric field can be obtained with a
one parameter (€2) family of gauge inequivalent gauge
fields. We are only interested in a fixed value of Q and it is
more convenient to write the nonvanishing components as

W = —ecos(Q1)0,z, W2 = —esin(Q1)d,z.  (19)

"
Then the electric field is given by
E = Qe. (20)

Equivalently, we can work with Wif = W} £+ iW2,

Wi = —ee*9,z,  W; =0. (21)
Defining
Wi =Wwh, +iw2, (22)
we find
Wi, =0,Wi —=0,Wi £i(W;Wi - W, W) (23)
and
Wi, =90,W; —0,W; +é(W;{W; -W W), (24)

For the background in (18) we get,

Wi, =F iE(0,10,2 — 0,10,2)e*™, W3, =0. (25)

The Lagrangian density for the non-Abelian gauge sector
is

1 _
L,= ~1 (Wi, WH= + W3, Wi, (26)
The full model will necessarily include a Lagrangian
density for external sources and their couplings to the
gauge fields as we will discuss in Sec. IV.

The important lesson of this section is that in non-
Abelian gauge theories we have several gauge inequivalent
choices for the gauge potential corresponding to an electric
field background. The gauge potential of interest to us is
time-dependent only because it is rotating in gauge field
space as in (21).

IV. EXPANSION AROUND A FLUX
TUBE BACKGROUND

We now consider the electric field configuration in (18)
as a background and denote it by A,. We assume it is
produced by some unspecified external sources, and we
wish to determine if it leads to Schwinger pair creation. We
write

= AF + eHUQE, =A,+ 0, (27)

where now Aj includes an unspecified radial profile

function, f(r), (r = /x> + y?),
Km0 A= (9

and Qy are quantum excitations around the background.
More explicitly,

Wi = e (—ef(r)0,z+ Qf), Wiy=0). (29)

Then
Wi, = e h + (2,05 — 2,05)
+i(Q,0F - 0.0;)]. (30)
where
szfi = FiEf(r)(0,20,t — 0,20,1)
+ef'(r)(0,20,r — 0,20,r), (31)

2,05 =0,0F +iQ0,10F +icf(r)9,z03. (32)

We also have

= 9,00~ 2,0, +5(0/ 07 - 0 Q) (33)

with
P, 0=

9,0 + ief(r)0,z0f — ief(r)0,z0;.  (34)

The Lagrangian density for Qy is evaluated from (26),

L __|”(Z{+ ( ;le_ -
l(Q/,{Ql/ - QgQ;AL)P

1 i
2.0 - 2,0, + 5 (0f 0

2.9;)

g

_oron)|. 69

The Lagrangian density (35) describes the interaction
of Qf with the background A,. Even at this stage it is clear
that there can be no particle production: the background
dependent terms in (35), for example <73, and in 2,
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are all independent of time and there is no z-dependence
either. For Schwinger pair production, the gauge field
background should either have nontrivial time-dependence
or it should have nontrivial spatial dependence, as dis-
cussed in Sec. I. The interactions of Qy with the back-
ground will lead to a nontrivial ground state wave
functional but without any time-dependent excitations.
Hence the electric-magnetic field background in (31) is
“unexciting.”

We will now examine the system more explicitly by
expanding the Lagrangian density in powers of Q.

A. First order Lagrangian density

The Lagrangian density up to linear order terms in Q is,
1
Ly = 1 S PO = 7Y e
1
- +5 (2"4}},) 0" +cc., (36)

where in the second line we have dropped total derivative
terms. The linear order variation does not vanish; neither
do they for the illustrative example in (5) since there are
external sources for the electric field and quantum effects
induce a condensate of sources. Here we simply supple-
ment this linear order Lagrangian density with a source
term that couples external currents, jy, to Wy,
Ly = jiWre = joare 4 00 TOE 1 ROR. (37)

The external current includes sources that are necessary
to generate the background net flux of electric field. The
currents can also contain effective quantum contributions
that arise due to higher order interactions as these backreact
at the linear level (see Sec. II). Here we simply assume the
existence of such a current without any dynamical
explanation.

Requiring that the linear order terms vanish up to total
derivatives gives,

. € . !

];:——eilgt<f”+£+92f aﬂz’
2 r

ji = —QleZGﬂt. (38)

These currents do not include the external sources located

at z = *£o0. To see this it is most transparent to consider the

Abelian case of a homogeneous electric field with field
strength tensor

F,, = E(0,10,z — 0,t0,z). (39)
Insertion into Maxwell’s equations gives

Juy=-0"F,, =0 (40)

and the charged capacitor plates at z = +oo are not
included in j,.

Since the currents in (38) do not include the asymptotic
sources, they must arise entirely as a quantum condensate
similar to the second line in (5). To show that such a
condensate arises due to the strong interactions is difficult
but some progress may be made in the semiclassical
approximation. We start with the equation of motion for
the gauge fields,

D,Wwa =0, (41)

where the covariant derivative is defined in (13). We then
substitute

Wi = A, +q, (42)

in (41) where A#? is classical while ¢"“ is quantum. The
operator equation (41) is replaced by its ground state
expectation value. If we assume that expectation values
of odd powers of ¢g#? vanish, some algebra yields,

D[(/A)Au;m — _j/m’ (43)

where DY A%4 is as in (13) with W replaced by A and

J = e (0,4 q" — ¢ 0" g5 + 26" 9,4")

+ A g q"" = 2¢""q")x + AL(¢""9") &

+ A (g0 ) g — A (qq"" ). (44)
The symbol (-), refers to the renormalized vacuum expect-
ation value. One possible renormalization scheme would be

to subtract out the expectation value in the trivial vacuum
with zero electric field,

(O)r = (0) = (0) = (45)

for any quantum operator O. To illustrate how the current
might result in a charge condensate, consider the y = 0,
a =3 component of (44). Since we are working in
temporal gauge and gy is defined in terms of Qj using
(27), the expression simplifies, and we get

i) =" + (0P,
+"0P - 070" (40

Assuming the ground state of Qf has zero “angular
momentum” (also see Sec. VII), we get a charge density,

i =2(0")? + (0724 (47)

This can be compared to (38) and for a homogeneous
electric field (f = 1) we have,
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~{(@")? + (). (48)
Note that the right-hand side can be positive due to the
definition in (45).

In summary, the background need not satisfy the
classical equations of motion; instead it is more realistic
to ask if the background satisfies the semiclassical equa-
tions of motion. By examining the semiclassical equations,
we discover that quantum effects can indeed provide
appropriate sources for the electric field background under
consideration.

B. Second order Lagrangian density

The quadratic order Lagrangian density is,
@__Lg o
‘C!] == Z |@ p Ql/

1
- @yQ;P _Z|@yQS - @L/Q;ﬂz

i
+ 3 [;z/;;(Q’ﬁQ”‘ — Q”3Q”‘) —c.c, (49)
or, explicitly,

T 26
+5(0)

1 1 .
) =20 -0 + (0 + 0y

- @0 - 0,0y
- 1007 - 0,07 - cf (.0 - 2,072
100 0,0 + e/ (.0 ~ 2,0
+ef'(ZiF; — eri)Qz('Z)Q5'3)’ (50)
where QF = QEI) + iQE2), 2;, 7; are unit vectors in the

z— and r— directions, and the contraction of spatial indices
is with the Kronecker delta, e.g., (Q(3))2 = Q,@Q?).
Denoting the momentum conjugate to Q“ by P¢, the

Hamiltonian density corresponding to Eg

Hy = % (P{)? + (a 0! - 9,0y
#3007 = 0,07 - er(20)" - 1,0/")
+ % 20 - 9,07 +ef (2,07 —2,07))2
—ef' (&7 - 2700 0% + 7, -
where,
R B

is an “angular momentum” term.

To check that the background is unexciting, we simply
note that the Hamiltonian density does not have any time-
dependence. If we decompose the field into eigenmodes,
the amplitude of each eigenmode is a quadratic variable that
behaves like a simple harmonic oscillator variable with
possibly an angular momentum contribution to the
Hamiltonian (see Sec. VII).

One potential complication is if the dlagonahzatlon of
the second order Hamiltonian density, Hé ), leads to modes
that have imaginary frequencies, i.e., are simple harmonic
oscillators with inverted potentials. An analysis of the
spectrum of frequencies was carried out in Ref. [35] for the
special choice Q =+/E and the authors found some
unstable modes. These unstable modes imply that the
quantum ground state of the Q¢ will be something other
than the simple harmonic oscillator ground states (at least
for this choice of Q). The instability will be tamed by the
higher order interactions. Since the higher order
Lagrangian density is also time-independent (see
Sec. IV C below), there can be no particle production
and the electric field background is protected against
quantum dissipation. However the danger is that the
expectation value of the quantum excitations might not
vanish and then the separation between the classical
background, A%, and the quantum excitations becomes
unclear. The idea behind postulating Ay as a background is
that the quantum excitations are small and their expectation
values vanish. For this to happen, the background should
not have any instabilities. The stability analysis deserves to
be investigated for the entire range of parameters.

To evaluate the quantum state of the Q¢ in the full
interacting theory is beyond the scope of the present work,
but we discuss the simpler problem of the quantum state for
homogeneous modes in the quadratic Hamiltonian in
Sec. VIL

C. Higher order Lagrangian density

For completeness we also give the cubic and quartic
order terms in the Lagrangian density,

7= 1| (2.0 - 7,00)(0107 - 0j0)

+5(%Q3—%Q?)(Q?Q;—QjQ;)—

1 1
—Z|Q?Qf—QEQZL|2—1—6|Q1~+Q}—Q}FQZ|2- (53)

To summarize Sec. IV, the electric field background (28)
is unexciting. There will be quantum fluctuations around
this background and they will be in some stationary
quantum ground state but particle production will be
absent. For this reason, the electric field background is
stable to quantum dissipation.
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V. SYMMETRY AND QUANTIZATION

As discussed in the Introduction, a static soliton can be
boosted to give a time-dependent background but this will
not lead to particle production. This is because the static
soliton has translational symmetry and a boosted soliton
provides time dependence to the background but the
excitation frequencies are still time-independent. In other
words, the boosted soliton is a “stationary” background.
Similarly, there should be a symmetry of the non-Abelian
gauge theory, and the electric field background we have
been discussing should be due to a time-dependence in the
symmetry variables. The situation is very similar to the
symmetries of monopoles and the rotor degree of freedom
that leads to dyons, discussed for example in Refs. [36,37]
and extensively in Section 2.7 of [38].

Consider the global gauge transformation

Wi = W, = =eWe, W)W, =W, (54)
where 0 is a constant parameter. The boosted soliton
background corresponds in this case to promoting the rotor
degree of freedom: 6 — 6(t).

Next let

Wi = eTi0

s W3 =} (55)

H e
where v§ = 0 in temporal gauge and we also assume that
the v background is static (just like the static soliton). The
angular variable € is assumed to only depend on time.
Substituting (55) in the Lagrangian for Wy (i.e., (26)
integrated over space) gives the Lagrangian for 6,

1 .
Ly= E16'2, (56)

where the “moment of inertia” is

= /d3x|v,.+|2. (57)

Solving for the quantum dynamics of @ is straightforward
and leads to the quantization of angular momentum and
correspondingly

Q=0=-,

; 1=0,+1,42, ... (58)

Thus the parameter € is quantized. The electric field
strength is also quantized as

E=Qe¢ :§l. (59)

The quantum number [/ has the interpretation of
the number of charge quanta. To see this we evaluate
the total charge, ¢“, by integrating the 4 = 0 component

of (38) over a volume V for the homogeneous case (f = 1).
This gives

¢ = —-VQeD = —15° (60)

in units where the gauge coupling constant g = 1 and we
have used (58) and I = €2V.

VI. FLUX TUBE PROFILE

The quantum state of the fluctuations Q¢ will depend on
the profile f(r). If we know the quantum state, we can
calculate the expectation value of the Hamiltonian, (H), for
the choice of f(r). If (H) is minimized for some f(r),
subject to a suitable constraint on the background electric
field, it would specify the profile of the electric field flux
tube and its tension. We can define the background electric
flux as

ot = /dzxézf?fz = ﬂFiEei"Q’/dQXf(r), (61)

with <7, given in (31) and @ = 0. The flux itself is not
gauge invariant but, having chosen a fixed form of the
background gauge fields, one can restrict the class of
functions in this background gauge. This amounts to
exploring profile functions for which the integral on the
right-hand side of (61) is unity,

Zﬂ/drrf(r) = 1. (62)

Unfortunately, there is no simple way to find the quantum
state of Q¢ for given f(r), especially as the fluctuations are
strongly interacting. The only hope seems to be to determine
f(r) numerically, using lattice techniques.

VII. QUANTUM STATE OF THE
HOMOGENEOUS MODES

We now consider the Hamiltonian density in (51) for
homogeneous excitations on a uniform electric field back-
ground. Then 8iQ]“- = 0and f = 1, and the Hamiltonian is
related to the Hamiltonian density by suitable factors of the
spatial volume V,

2 1 a €2V n 3 . 3
HY :W(PS >)2+T(ziQ§' ) _z,00)
2
\%
+ (@07 - z07 )+ P - o' PP).

(63)

The Hamiltonian then can be written as a sum of six sub-
Hamiltonians,
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L mn U oo €V o
+Q(oPY - ol PP (64)
= L (P Y oy (65)
YA 2
Loomvn, L pon €V omn
- — (P! ~ 2ot
=55 (P 50 (P2 + S5 (o)
+(o Py - 0P (66)
Lo, €V 6
H4:ﬁ(Py ) +T(Qy ) (67)
IR SPANCO IR SPC) I
HS ﬁ( z ) +W(Pz )
+0(e? P — ol Py (68)
Hy = - (POY. (69)
2V

The Hamiltonians H, and H, correspond to simple
harmonic oscillators, while Hg is that of a free particle.
Their eigenstates are well-known; the simple harmonic
oscillators states are all bound, while the free particle only
has continuum states. Hs is the Hamiltonian for a free
particle in two dimensions but with an additional angular
momentum term, while H; and H; are identical in structure
and can also be thought of as a particle in two dimensions
with an angular momentum term plus an anisotropic
potential. Thus we only need to consider H; and Hs.

Let us consider Hs first and write it in a less cumber-
some way,

1 1
Hs — Eﬂ% + Eﬂg + Q(ym, — xx,), (70)

where 7, and x, are momenta conjugate to x and y, and we
have also chosen units so that V = 1. One can check that

vz, — xz,,Hs| = 0 (71)
and there are simultaneous eigenstates of the angular
momentum operator, yz, — xzy, and Hs. Defining polar
coordinates in the usual way

X = rcoso,

y =rsinf (72)

the energy eigenstates (up to an overall normalization
factor) are given in terms of Bessel functions,

w(r.0,1) = Ce1J,(\/2(E + Qm)r)e™®,  (73)

with m = 0, &1, £2, ..., C is a normalization constant, and
the energy, &, is constrained by £ + Qm > 0.

An interesting point is that £ can be negative. In fact,
for Q > 0 and m — oo, £ can be arbitrarily negative. We
expect that when the quartic interactions are taken into
account, the energy may get bounded from below. For
example, if the interactions effectively provide a mass to the
homogeneous mode, we could consider a rotationally
symmetric simple harmonic oscillator in 2D with an addi-
tional angular momentum term

1 1 u?
Hey = Eﬂ% + Eﬂf + 5 (X +y?) + Qym, —xx,). (74)

As the system has rotational symmetry, the angular
momentum is still conserved. The Schrodinger problem
can be solved in polar coordinates by elementary means to
obtain the energy eigenvalues,2

Enm = (I’l+ |m| + I)M_Qm’
n=0,1,2,.... m=0,+£1,42,... (75)

Consider the case © > 0. Then, for fixed n and m — +oo,
we have E,,,, — (4 — Q)m, and the energy is bounded from
below only if 4 > Q. Considering that Q can have either
sign, the condition for the energy to be bounded from
below 1is,

p=Q (76)

and then the ground state is for n = m = 0 with energy u.
In the notation of (70), H; can be written as

2

1 1
H, — zﬂi +§ﬂ§ + Q(ym, — x7y) +%y2. (77)

The last term breaks rotational symmetry in the xy-plane
and the angular dependence will not be given by angular
momentum eigenstates as in (73). The wave function
will now be peaked on the x-axis; it will be bounded in the
y-direction while remaining unbounded in the x-direction.

In principle, we can also treat the case of inhomogeneous
excitations since the Hamiltonian is quadratic. However,
the diagonalization will be technically difficult and the
angular momentum term may resist complete diagonaliza-
tion as in the case of (77).

In this section we have discussed quantum aspects of the
homogeneous quantum excitations. The energy spectrum
for some of these homogeneous excitations is unbounded
from below. If higher order interaction terms effectively

*We find it more convenient to not define the principal
quantum number to be N = n + |m| as is conventionally done,
in which case m = 0, £1, ..., =N.
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give masses to these excitation modes, the spectrum gets
bounded provided the mass is greater than |Q| [see (76)].

VIII. CONCLUSIONS

We have found that an electric field in pure non-Abelian
SU(2) gauge theory can be stable against quantum dis-
sipation to Schwinger pair production. (Similar construc-
tions can be embedded in theories with larger gauge
groups.) This is because the gauge fields underlying the
electric field can be chosen as a stationary background in
which a rotor degree of freedom is rotating with fixed,
quantized, angular momentum in internal space. The
quantum state of excitations on this stationary background
is also stationary and there is no particle production and no
dissipation. This resolves a conundrum that one might
intuit from the case of Abelian electric fields, where the
electric field dissipates due to pair production, even if at an
exponentially suppressed rate. If the same conclusion
applied to non-Abelian electric fields, QCD flux tubes
would be susceptible to decay due to Schwinger pair
production of gluons. Thus we conjecture that QCD flux
tubes should be described by gauge fields as given in
Eq. (28). If we start with a non-Abelian electric field that is
in the Abelian configuration of (8), a guess is that it would
evolve into the unexciting non-Abelian configuration
of (28).

The existence of stable non-Abelian electric fields opens
up a number of related questions. One issue we faced is that
we had to postulate classical external charges to source the
background electric field. At present it is not known
whether such sources need to be external or if they can

arise due to the strong interactions as discussed in Sec. IV
A. The key open question is to determine properties of the
ground state of quantum excitations around the background
electric field. In Sec. IV B we have already pointed out the
danger posed by unstable modes as then the separation
between a classical background and quantum fluctuations
is not clear. Assuming that there is a range of parameters
where there are no unstable modes, there will be a well-
defined ground state which will depend on the profile of the
electric field flux tube. Perhaps there are lattice techniques
that can determine the optimum flux tube profile for which
the overall energy is minimized. The quantum state can also
settle the question whether the sources necessary for the
stationary background can arise from the internal dynamics
of quantum excitations. These are fascinating but difficult
questions that we hope to examine in the future.

Another system of interest is that of dyons that carry non-
Abelian electric charge, as these can also arise as stationary
solutions of non-Abelian Yang-Mills-Higgs theories. We
expect such dyons to be stable to Schwinger particle
production of non-Abelian gauge bosons but a detailed
analysis might yield surprises especially for large €2, as in
the discussion in Sec. VIL
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