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Abstract We study the matter creation cosmology as an
alternative theory to explain the dark energy phenomena. We
discuss the matter-dominated Universe in a flat Friedmann-
Robertson-Walker line element by adopting the thermody-
namics of open systems, in which the matter creation irre-
versible processes may take place at a cosmological scale.
We propose a new form of the matter creation rate, Γ =
3αH0 + 3βH + 3γ ä

ȧ , which generalizes some of the pre-
vious models in the literature. Exact solutions of the field
equations are found and discussed the evolution of the Uni-
verse. Constraints on the model parameters are obtained from
Markov Chain Monte Carlo (MCMC) analysis using the
Supernova distance modulus data, observational measure-
ments of Hubble parameter, Baryon acoustic oscillation data.
The trajectories of the evolution of the scale factor, decelera-
tion parameter and equation of state parameter are plotted by
using best-fit values of the parameters. It is observed that the
model shows accelerating behavior and behaves quintessence
like (ω > −1). The age of the Universe is obtained which
is in good agreement with ΛCDM model. We examine the
model using two independent diagnostic parameters, namely
statefinder and Om. We apply Akaike information criterion
(AIC) and Bayesian information criterion (BIC) to discrim-
inate the model based on the penalization associated to the
number of parameters. The analysis shows that the model
has close resemblance to the ΛCDM cosmology. We also
discuss the thermodynamics of the model and find that the
model satisfies the generalized second law of thermodynam-
ics with certain constraints.

1 Introduction

The observations such as Type Ia Supernovae (SNe) [1–3],
Baryon Acoustic Oscillations (BAO) [4], Large Scale Struc-
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tures (LSS) [5] and Cosmic Microwave Background (CMB)
[6] provide strong evidence that the Universe at present is
undergoing an accelerated expansion rather than deceler-
ation (as predicted by the standard cosmology). Since the
discovery of the accelerating Universe, people are trying to
explain this observational fact in two different ways - either
by modifying the Einstein gravity itself or by introducing
some unknown kind of matter in the framework of Einstein
gravity. Most models consider accelerated expansion as due
to a component of the Universe that behaves opposite to grav-
ity, the so called dark energy(DE). The origin and nature of
the DE is still unknown, though some of its properties are
widely accepted, namely the fact that it has a negative pres-
sure. Cosmological constant is the common choice for this
unknown matter but it suffers the serious fine-tuning and cos-
mic coincidence problems. Recently, many theoretical mod-
els have been proposed to describe the Universe with dark
energy. A negative pressure can be seen as a possible driv-
ing mechanism for this acceleration. One of such mechanism
is the adiabatic matter creation which has negative pressure
produced by the particle production effects.

Prigogine et al. [7,8] proposed an interesting type of cos-
mological history including large-scale entropy production
by considering the cosmological thermodynamics of open
systems. They used the generalized form of the first law of
thermodynamics to describe the flow of energy from the grav-
itational field to the matter field, resulting in the creation of
particles. The authors argued that the creation of matter can
occur only as an irreversible process at the expense of the
gravitational field. This formalism gives a balance equation
for the number of created particles along with Einstein field
equations. The combination of this equation with the sec-
ond law of thermodynamics yields an additional negative
pressure which depends on the rate of matter creation. This
work actually suggested for the first time to incorporate the
particle creation process in the context of cosmology in a
self-consistent way. Calvao et al. [9] proposed a generaliza-
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tion of this result to include the variation of specific entropy
through a covariant formulation.

A model with adiabatic matter creation was proposed in
order to interpret the cosmological entropy and to solve the
Big-Bang singularity problem. However, after the discovery
of the accelerating expansion of the Universe, this model was
reconsidered to explain the expansion of the Universe and
got some unexpected results. It has been pointed out that the
matter creation can play the role of a dark energy component
and lead to drive the accelerating expansion of the Universe.

In this context, Many authors [10–17] have discussed
Friedmann-Robertson-Walker line element with matter cre-
ation cosmology and analyzed the results through the obser-
vations. It has been shown that the matter creation models are
consistent with the observations. Zimdahl et al. [18] tested
the matter creation models with SNe data and got the result
of accelerating Universe. Yuan et al. [19] studied the models
with adiabatic matter creation and showed that the model is
consistent with SNe data. Many phenomenological models
have been proposed in the literature [20–24].

We are mainly interested in the paper of Prigogine and
collaborators [7], in which the authors have applied the ther-
modynamics of open systems to cosmology, allowing both
particle and entropy productions. Recently, it has been found
that the matter creation cosmology successfully explains the
current accelerated expansion [25]. Therefore, this field is
very appealing as many important observations are carried
out during the past many years with matter creation.

In this paper, we present a matter-dominated cosmolog-
ical model with matter creation within the framework of
Friedmann-Robertson-Walker line element. We propose a
generalized form of matter creation rate and investigate the
evolution equations by independent/combined observational
data of SNe, Observational Hubble data (OHD) and BAO.
We observe that the best-fit values of the model parameters
give a smooth transition from decelerating phase to the accel-
erating phase. We study two independent diagnostic tests,
namely, the statefinder parameter and the Om diagnostic to
discriminate our model from the ΛCDM. We apply AIC and
BIC to discriminate the model. We also perform a thermo-
dynamic analysis based on the generalized second law (GSL)
of thermodynamics and explore the restrictions on the free
parameters of the cosmological model to satisfy the GSL.

The paper is organized as follows. In Sect. 2, we present
a brief review of matter creation cosmology and solution
of the field equations. In Sect. 3, some observational data
like SNe, OHD and BAO are given to find the best-fit val-
ues of model parameters. In Sect. 4, we present the result
and discussion of the model. In Sect. 5, we discuss the
model selection criteria to discriminate the model. We dis-
cuss the thermodynamic of the model based on generalized
second law of thermodynamics in Sect. 6. Finally, we sum-
marize our findings in Sect. 7. It is to be noted that through-

out the paper, we use particle creation and matter creation
synonymously.

2 Model with matter creation and solution

Let us start with the homogeneous and isotropic flat Fried-
mann-Robertson-Walker (FRW) line element

ds2 = −dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2θdφ2)

]
, (1)

where a(t) is the scale factor of the model. Throughout we
use units such that the speed of light, c = 1 and 8πG = 1.
The Einstein field equations are given by

Rμν − 1

2
R gμν = Tμν. (2)

The energy momentum tensor Tμν describes the matter con-
tent of the Universe. It is often appropriate to adopt the perfect
fluid form. However, we consider the energy-momentum ten-
sor empowered with the mechanism of matter creation of the
form

Tμν = (ρ + P) uμuν + P gμν, (3)

satisfying the covariant conservation equation Tμν ;ν = 0.
In (3), uμ is the fluid four-velocity, ρ is the energy density
and P is the dynamics pressure which is given by

P = p + pc, (4)

where p is the equilibrium pressure and pc is the pressure
due to the matter creation. The particle flux vector has the
form

Nμ = nuμ, (5)

where N is the total particle number in a comoving volume
V , n = N/V is the particle density and uμ is the usual four
velocity vector of the created particles. In the gravitationally
induced particle creation mechanism, (5) satisfies the balance
equation [8]

Nμ ;μ = Γ, (6)

where Γ is the rate of matter creation from the gravitational
field. In principle, Γ > 0 represents the matter creation,
Γ < 0 is for matter annihilation, and Γ = 0 is the case
when there is no matter creation. In general, the exact form
of Γ is unknown, but it should be determined in the context
of quantum processes in curved space time.

In this background, the field equations associated with
matter creation phenomena for line element (1) are given by
[9,10]
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3H2 = ρ, (7)

2Ḣ = − (ρ + p + pc) , (8)

where H = ȧ/a is the Hubble parameter, and ρ and p are
energy density and pressure, respectively, of matter exist-
ing in the universe in the form of cold dark matter during
matter dominated era. An overdot represents the derivative
with respect to cosmic time t . The energy conservation law
is given by

ρ̇ + 3(ρ + p + pc)H = 0. (9)

As the particle number is not conserved (i.e., Nμ ;μ �= 0),
the conservation equation (6) takes the form

Ṅ

N
= ṅ

n
+ 3H = Γ. (10)

It is to be noted that the creation pressure pc must be defined
in terms of the creation rate and other physical quantities.
In the case of adiabatic particle production, the particles and
entropy are generated but the entropy per particle does not
vary. Under such ‘adiabatic condition’, the creation pressure
can be written as [21]

pc = − Γ

3H
(ρ + p). (11)

Now, we can describe the dynamics of the Universe only if the
matter creation rate is known. The nature of Γ is unknown as
the associated quantum field theory (QFT) is yet to be devel-
oped. In general, there is no bound to choose some particular
choices for Γ . Therefore, we can assume some phenomeno-
logical but general choices for Γ . In the literature, various
forms of Γ , e.g., Γ = constant [26], Γ ∝ H [27], Γ ∝ H2

[28,29], and a linear combination [30], have been presented
to explain the early and present day acceleration of the Uni-
verse. However, the linear and quadratic forms of Γ (t) are
not compatible with the current cosmology, i.e., these models
do not show transition redshift. Therefore, a natural exten-
sion is to consider the linear combinations of H , H2.... and
the derivative of Hubble parameter. Finally, one can use the
observational data to test the viability of such models.

Thus, being motivated, in this work we propose a class
of Γ (t) cosmologies in a spatially flat FRW Universe where
Γ (t) is assumed to be the function of Hubble rate and its
cosmic derivative. We cover a series of Γ (t) (equivalently,
Γ (H0, H, Ḣ)) model in order to see their dynamical evolu-
tions and viabilities. We propose the following general form
of Γ :

Γ = 3αH0 + 3βH + 3γ
ä

ȧ
, (12)

which is a linear combination of three terms: the first term
is a constant, the second term is proportional to the Hubble
parameter, which characterizes the dependence of the matter
creation on expansion rate, and the third term is proportional

to ä/ȧ, characterizing the effect of acceleration of the expan-
sion. Here, α, β and γ are dimensionless free parameters
lying in the interval [0, 1] to be determined by observations,
H0 is the present value of the Hubble parameter and the factor
3 has been maintained for mathematical convenience.

The motivation of considering this form of Γ comes from
the matter creation thermodynamics. We know that the trans-
port phenomena is related to velocity, which is related to the
Hubble parameter, and the acceleration. Since we don’t know
the exact form of Γ , so a linear combination of three terms
of parametrization of Γ is more physical. The existence of
a transition redshift at late time also determines the form of
matter creation rate. We may also think the above form from
the evolution equation (8).

We are interested in processes that occurred after radiation-
dominated phase. Therefore, we neglect radiation and
baryons, and consider only the presence (and creation) of
pressureless (p = 0) dark matter particles. In this case,
Eq. (11) reduces to pc = −ρ Γ/3H for which Eq. (9)
reduces to

ρ̇

ρ
+ 3

(
1 − Γ

3H

)
H = 0, (13)

Combining (7) and (13), and using (12), we obtain the fol-
lowing dimensionless equation

ḣ

h
+ 3(1 − β − γ )

(2 − 3γ )
H0 h = 3α

(2 − 3γ )
H0, (14)

where h = H/H0 is the dimensionless Hubble parameter.
Using d

dt = ȧ
a

d
d lna , the above equation can be written as

h′ + 3(1 − β − γ )

(2 − 3γ )
h = 3α

(2 − 3γ )
, (15)

where a prime denotes the derivative with respect to con-
formal time ln a. Using h(a0) = 1, (15) gives the solution
as

h(a) = α

(1 − β − γ )

+
(

1 − α

(1 − β − γ )

) (
a

a0

)− 3(1−β−γ )
(2−3γ )

. (16)

Equation (16) shows that when α, β and γ are all zero, the
Hubble parameter, H = H0(a/a0)

−3/2 which corresponds
to the ordinary matter dominated universe. On integration of
(16), we obtain the solution of the scale factor a(t) (or the
redshift, z) as a function of time, when (β + γ ) �= 1

a(t) = 1

(1 + z)

=
⎡
⎣(1−β−γ )e

3αH0
(2−3γ )

(t−t0)−1+ (α+β+γ )

α

⎤
⎦

(2−3γ )
3(1−β−γ )

.

(17)
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We have normalized the scale factor so that its present
day value is one, a(t0) = 1. We can study three differ-
ent cases: 0 < α + β + γ < 1, α + β + γ = 1 and
α + β + γ > 1. In the case 0 < α + β + γ < 1, we
observe that in the early time as t → 0, the scale fac-

tor a(t) →
[
1 + 3(1−β−γ )H0

(2−3γ )
(t − t0)

] (2−3γ )
3(1−β−γ )

, which corre-

sponds to an early decelerated expansion and in the late time

as t → ∞, the scale factor a(t) → e
3αH0

(2−3γ )
(t−t0), correspond-

ing to de Sitter like Universe. The model predicts a Big-Bang

in the past at cosmic time: tb = t0 + (2−3γ )
3αH0

ln
(

1−(α+β+γ )
1−β−γ

)
.

The transition time can be obtained by equating to zero the
second derivative of scale factor given in (17) with respect
to time which is given by

ttr = t0 + (2 − 3γ )H−1
0

3α
ln

(
(3 − 3(α + β + γ ))

(2 − 3γ )

)
. (18)

The Hubble parameter in terms of redshift z, where 1 + z =
a−1, reads

H(z) = H0

[
α

(1 − β − γ )
+

(
1 − α

(1 − β − γ )

)

× (1 + z)
3(1−β−γ )

(2−3γ )

]
. (19)

When γ = 0, i.e., Γ = 3αH0 + 3βH (See, Ref. [31]), (17)
and (19) reduce to (14) and (13) of [31]. Further, In the limit
α → 0, the above equation reduces to (16) in [11].

To obtain the transition scale factoratr where the transition
from decelerated phase to accelerated phase takes place, we
take the derivative of (19) with respect to a,

dȧ

da
=

[
α

1 − β − γ

+ (3β − 1)(1 − α − β − γ )

(2 − 3γ )(1 − β − γ )
a− 3(1−β−γ )

2−3γ

]
. (20)

Equating (20) to zero, we obtain the transition scale factor,
atr as

atr =
[
(1 − 3β)(1 − α − β − γ )

α(2 − 3γ )

] 2−3γ
3(1−β−γ )

. (21)

It is clear that for α + β + γ = 1 or β = 1/3, the transition
from decelerated phase to accelerated phase occurs at a time
corresponds to atr → 0 closer to Big-Bang. In this case,
a = exp(H0(t − t0)), corresponds to de Sitter Universe. In
this case the model predicts an accelerated expansion from
the beginning. For (α + β + γ ) < 1, the transition occurs in
late-time whereas for (α +β + γ ) > 1, there is no transition
and in this case the model always accelerates from very early
time.

An important cosmological quantity is the decelera-
tion parameter q, which is an indicator of the accelerat-
ing/decelerating nature of the evolution of the Universe. It

is straightforward to show from (17) that the deceleration
parameter, defined as q = −aä/ȧ2, takes the following form
in terms of cosmic time t :

q = −1 + 3(1 − α − β − γ )

2 − 3γ
e− 3αH0

2−3γ
(t−t0). (22)

The redshift dependence of the deceleration parameter is
obtained as

q=−1+ 3(1−α − β − γ )

(2 − 3γ )

[
1+ α

1−β−γ

(
(1+z)−

3(1−β−γ )
2−3γ − 1

)] .

(23)

It can be observed that q(z) → −1 as z → −1, i.e.,
q(z) approaches to −1 in future and for z = 0, we get
q0 = 1−3(α+β)

2−3γ
. This shows that for α + β = 1/3, the decel-

eration parameter q0 = 0. This implies that the transition
into accelerating phase would occur at the present time. In
the absence of matter creation, i.e., for α = β = γ = 0, we
get q = 0.5, a value of q in matter-dominated model. Putting
q = 0 in (23), the transition redshift is given by

ztr =
[

α(2 − 3γ )

(1 − 3β)(1 − α − β − γ )

] 2−3γ
3(1−β−γ ) − 1. (24)

It is to be noted that for α = 0, we get ztr = −1, i.e., the
transition would be in future which gives the contradiction
with SNe data. From (7) and (16), we obtain the mass density
parameter Ωm = ρ/ρcri t and ρcri t = 3H2

0 as,

Ωm(a)=
⎡
⎣

(
1− α

1−β−γ

) (
a

a0

)− 3(1−β−γ )
2−3γ + α

1−β−γ

⎤
⎦

2

.

(25)

We observe that for α = β = γ = 0, the mass density
parameter reduces to Ωm ∼ a−3, which corresponds to the
matter dominated phase with null matter creation. It is also
noted that as a → 0, the mass density diverges.

In what follows we constrain the free parameters of the
model coming from the background tests.

3 Observational tests: SNe, OHD and BAO data

In this section we briefly present some details of the statistical
method and observational sample that we adopt in order to
constrain the model. We normalized H(z) using the latest
Planck data H0 = 67.8 ± 0.9 km s−1 Mpc−1 [32].

First of all, we consider the distant Type Ia Supernova
(SNe) compilation on the matter creation matter-dominated
model. We use the cJLA data set of 31 check points (30 bins)
covering the redshift range z = [0.01, 1.3] [33]. The best-fit
to the set of parameters is found by using a χ2 statistics, i.e.,
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χ2
SNe = r tC−1

b r (26)

where

r = μb − M − 5 log10dL (27)

in which μb is the observational distance modulus, M is a
free normalization parameter andCb is the covariance matrix
of μb, see Table F.2 [33]. Also, the dimensionless luminosity
distance is defined as

dL = c(1 + z)

H0

∫ z

0

dz′

H(z′, θ)
(28)

where θ represents the set of model parameters, θ =
(α, β, γ ).

Additionally, we also use the observational Hubble param-
eter dataset (OHD) of 43 measurement points collected in
[34] in the redshift range 0 < z < 2.5. The χ2 for Observa-
tional Hubble Data is

χ2
OHD =

n∑
i=1

[H(zi ) − Hobs(zi , θ)]2

σ 2
i

, (29)

where H(zi ) and Hobs(zi ) are the theoretical and observed
values respectively and σ 2

i the standard deviation of each
Hobs(zi ).

Next, we use the sample of Baryon Acoustic Oscillations
(BAO) distances measurements from SDSS(R) [35], the
6dF Galaxy survey [36], BOSS CMASS [37] and three par-
allel measurements from WiggleZ survey [38].
The angular diameter, dA(z, θ) is given by

dA(z∗, θ) = c
∫ z∗

0

dz′

H(z′, θ)
(30)

where z∗ denotes the photons decoupling redshift and accord-
ing to the Planck 2015 results [32] its value is z∗ = 1090.
Further, the dilation scale, Dv(z, θ) is given by Dv(z, θ) =( d2

A(z,θ)cz
H(z,θ)

) 1
3 .

The corresponding χ2 function is given by [40]

χ2
BAO = ATC−1A (31)

where A is a matrix given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dA(z∗,θ)
Dv(0.106,θ)

− 30.84
dA(z∗,θ)
Dv(0.35,θ)

− 10.33
dA(z∗,θ)
Dv(0.57,θ)

− 6.72
dA(z∗,θ)
Dv(0.44,θ)

− 8.41
dA(z∗,θ)
Dv(0.6,θ)

− 6.66
dA(z∗,θ)
Dv(0.73,θ)

− 5.43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and C−1 is the inverse of covariance matrix [40]. Here, we
have adopted the correlation coefficients given in [41].

We can combine the above probes by using a joint likeli-
hood analysis χ2

total = χ2
SNe + χ2

OHD + χ2
BAO .

4 Results and discussion

Using the observational data of SNe, OHD, BAO , we
test the cosmological model with adiabatic matter creation,
assuming a spatially flat Universe. We perform a global fit-
ting to determine the model parameters using the MCMC
method. We adopt a Python implementation of the ensemble
sampler for MCMC, the ‘emcee’, introduced by Foreman-
Mackey et al. [42]. The best fitting results of parameters are
listed in Table 1. In our statistical analysis, the model parame-
ters can be determined through the χ2 minimization method.
We minimize the function χ2 of individual from (26), (29),
(31) and jointly.

In statistical analysis, we find the best-fit values of model
parameters at 1σ(68.3%) and 2σ(95.4%)of confidence level,
respectively, satisfying the constraints 0 < α < 1, 0 <

β < 1, 0 < γ < 1 and 0 < (α + β + γ ) < 1. We can
test the reliability by comparing the result with spatially flat
ΛCDM model. We observe that the model provides a very
good fit to these data. Figures 1, 2, 3 and 4 show confidence
contours and the marginalized likelihood function of model
at 1σ(68.3%) (inner contour) and 2σ(95.4%) (outer contour)
using observational data of SNe, SNe+OHD, SNe+BAO
and SNe + OHD + BAO , respectively.

It can be observed from Table 1 that the result of the free
parameters obtained from SNe data are a little different from
SNe+OHD, SNe+ BAO and SNe+OHD+ BAO . The

Table 1 The best-fit results of
model parameters and free
normalization parameter M
obtained from the analysis with
different combinations of the
data sets

Data set α β γ M

SNe 0.263+0.187
−0.170 0.249+0.155

−0.161 0.166+0.180
−0.113 24.942+0.023

−0.028

SNe +OHD 0.423+0.080
−0.117 0.068+0.075

−0.048 0.322+0.097
−0.084 24.946+0.018

−0.020

SNe +BAO 0.438+0.087
−0.153 0.074+0.088

−0.058 0.303+0.113
−0.077 24.936+0.022

−0.022

SNe +OHD+BAO 0.431+0.077
−0.131 0.069+0.078

−0.048 0.274+0.112
−0.076 24.952+0.017

−0.018
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Fig. 1 The contour map of matter creation model using data from SNe with marginalized probability for the parameters. The associated 1σ(68.3%)

and 2σ(95.4%) confidence contours are shown. In Fig. the symbols e0, e1 and e2 denote the model parameters α, β and γ , respectively

error bars of free parameters are relatively large in the case
of SNe data.

Figure 5 shows the evolution of the scale factor for best-
fit values of model parameters. The trajectory of the best-fit
values show that the Universe starts its expansion with accel-
erated rate at very early times. The dots denote the transition
point where the transition from decelerated phase to accel-
erated phase occurs. Using the best-fit values, the transition
scale factor, atr and the corresponding redshift transition val-
ues, ztr are listed in Table 2. It is observed that the value of
ztr = 2.8619 obtained from SNe and ztr = 1.0147 from
SNe+ BAO for the model are substantially higher than the
values of ztr from SNe+OHD, SNe+OHD+ BAO and
ΛCDM model.

The evolution of the deceleration parameter, q with red-
shift for best-fit values is shown in Fig. 6. The deceleration
parameter is a monotonically increasing function of z. It is
observed that there is a sign change in each trajectory of q(z)
from positive to negative showing that the universe transits
from decelerated phase to accelerated phase (positive values
of q indicate decelerating expansion while negative values
indicate an accelerating evolution). We find that the model
transits at around ztr = 0.8386 and ztr = 0.8633 through
joint analysis of SNe + OHD and SNe + OHD + BAO ,

respectively. These results are in good agreement with the
concordance of Λ cosmology [43]. The present-day value of
q0 and the transition redshift ztr are listed in Table 2. The
values of q0 lie in range −1 ≤ q0 < 0 through each obser-
vational data set.

The effective equation of state parameter (EoS), ωe f f can
be obtained using the standard relation [44]

ωe f f = −1 − 1

3

2a

h

dh

da
, (32)

where h = H/H0 is the weighted Hubble parameter. Using
(16) into (32), we get

ωe f f = −1

+ 2(1 − α − β − γ )

(2 − 3γ )

[
1 + α

1−β−γ

(
(1 + z)−

3(1−β−γ )
2−3γ − 1

)] .

(33)

As z → −1, (a → ∞), we get ωe f f → −1, which can
also be observed from Fig. 7. This can also be obtained if we
take α + β + γ = 1. It means that the model corresponds
to ΛCDM in future time. The EoS parameter does not cross
the phantom divide line ω ≤ −1 which shows that the matter
creation model is free from big-rip singularity.
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Fig. 2 The contour map of matter creation model based on joint analysis of SNe+OHD showing contours of 1σ(68.3%) and 2σ(95.4%) regions
with marginalized probability for the parameters. In Fig. the symbols e0, e1 and e2 denote the model parameters α, β and γ , respectively

The present value (h = 1) of ωe f f is found to be

ωe f f (z = 0) = −1 + 2(1 − α − β − γ )

(2 − 3γ )
. (34)

The present value of ωe f f are listed in Table 2 using different
observational data set. These values are comparatively higher
than that predicted by the joint analysis of WMAP+BAO+
H0 + SNe data which is around −0.93 [45].

Let us calculate the age of the universe using best-fit values
of parameters. The age of the universe in terms of redshift is
given by t (z) = T (z)/H0, where

T (z) =
∫ ∞

z

dz′

(1 + z′)(H(z′)/H0)
. (35)

For ΛCDM model, the age parameter is [46]

T (z) =
∫ ∞

z

dz′

(1 + z′)[Ωm0(1 + z′)3 + (1 − Ωm0)]1/2 (36)

Using (19) into (35), the trajectory of the age of the universe
with redshift for the best estimates of model parameters is
shown in Fig. 8. The current age of the universe is t0 
 13.9
Gyr while the transition point is located at atr 
 0.58 (hence
at redshift ztr 
 0.72. The ages of the universe corresponding
to SNe + OHD and SNe + OHD + BAO are found to

be 13.9 Gyr. So, the age predicted by the present model is
agreeing with the age deduced from ΛCDM model.

We compare our model with the ΛCDM model with the
error bar plots of Hubble dataset in the range z ∈ (0, 2) as
shown in Fig. 9. Although at the low redshifts, the cosmo-
logical evolution is practically independent on the best-fit
values, but at higher redshifts there is a significant effect
of the parameter values on the cosmic expansion as can be
observed from Fig. 6. The cosmic expansion of SNe+OHD
and SNe+OHD+ BAO differ appreciably in case of SNe
and SNe+BAO . It is possible to get good fit using joint sta-
tistical analysis of SNe+OHD and SNe+OHD+ BAO .
The Hubble function is a monotonically increasing function
of the redshift (monotonically decreasing function of time)
for all best-fit values of parameters.

Now, we present our analysis on comparing the present
model with other standard models of DE. Sahni et al. [47]
proposed a geometrical diagnostic tool, known as statefinder
parameters {r, s} which allow us to compare the goodness
of several DE models with the ΛCDM model. The {r, s} is
defined as

r = ˙̈a
aH3 and s = r − 1

3
(
q − 1

2

) , (37)
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Fig. 3 The contour map of matter creation model based on joint analysis of SNe+ BAO showing contours of 1σ(68.3%) and 2σ(95.4%) regions
with marginalized probability for the parameters. In Fig. the symbols e0, e1 and e2 denote the model parameters α, β and γ , respectively

where a, H and q have their usual meanings. From (37), we
can see parameters (r, s) are just associated with the scale
factor a and its higher derivatives. The ΛCDM model cor-
responds to the fixed point (r, s) = (1, 0). For our model,
{r, s} are given by

r = 1 + 9(1 − α − β − γ )2

(2 − 3γ )2 e
6αH0(t−t0)

2−3γ

+9(1 − α − β − γ )(−1 − β + 2γ )

(2 − 3γ )2 e
3αH0(t−t0)

2−3γ

, (38)

s =
2(1−α−β−γ )

[
(1+β−2γ )−(1−α−β−γ ) e

−3αH0(t−t0)

2−3γ

]

(2−3γ )

[
(2−3γ ) e

3αH0(t−t0)

2−3γ −2(1−α−β−γ )

] .

(39)

From the above equations, we observe that as (t − t0) →
∞, {r, s} → {1, 0} which coincide with the ΛCDM model.
This can also be achieved by assuming α +β +γ = 1 which
gives the de Sitter behaviour. The s−r plane trajectory of the
model for best estimated values of parameters obtained by
observational data set are shown in Fig. 10. The direction of
trajectories is shown by the arrows. The trajectory obtained
through SNe lies in the region r < 1, s > 0, which is
the general behavior of any quintessence model. The other

trajectories from SNe + OHD, SNe + BAO and SNe +
OHD + BAO start from the Chaplygin gas region (r >

1, s < 0) at early time and in intermediate time pass through
quintessence and then ultimately approach to ΛCDM in late
time.

The {r, q} trajectory of the model is shown in Fig. 11. The
SCDM model and steady state (SS) model correspond to
fixed points {r, q} = {1, 0.5} and {r, q} = {1,−1}, respec-
tively. The horizontal line at r = 1 corresponds to the time
evolution of ΛCDM model. Our model approaches to the
standard model like ΛCDM and quintessence model (Q-
model) [48] in late time.

TheOm is another diagnostic approach to distinguish dark
energy. It is defined as [48]

Om(z) = h2(z) − 1

(1 + z)3 − 1
, (40)

For ΛCDM model, the value ofOm(z) is a constant indepen-
dent of the redshift. Therefore, ifOm(z) is variable, it possibly
leads to an alternative dark energy or modified gravity model.
TheOm(z) is sensitive to EoS of DE, namely, a positive slope
of Om(z) suggests a phase of phantom (w < −1) while a
negative slope of Om(z) represents quintessence (w > −1).

Using (19) into (40), we can write the expression ofOm(z).
Figure 12 exhibits the evolution of different trajectories of the
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Fig. 4 The contour map of matter creation model based on joint analysis of SNe+OHD+BAO , showing contours of 1σ(68.3%) and 2σ(95.4%)

regions with marginalized probability for the parameters. In Fig. the symbols e0, e1 and e2 denote the model parameters α, β and γ , respectively

function Om(z) with respect to the redshift z, corresponding
to different best-fit values of model parameters. The negative
slope of each trajectory shows that the model behaves like
quintessence.

5 Model selection

Reduced chi-squared is a very popular method for model
assessment, model comparison, convergence diagnostic, and
error estimation in astronomy. If ν is the number of degrees
of freedom, the reduced χ2 is then defined as

χ2
red = χ2

min

ν
. (41)

If N is the data points and d is the free parameters, the number
of degree of freedom ν = N − d. If a model is fitted to data

and the resulting χ2
red is larger than one, it is considered a

“bad” fit, whereas if χ2
red is less than one, it is considered

an overfit. The fit model is that one whose value of χ2
red is

closest to one.
We also use two information criteria, namely the Akaike

Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) to assess the model. For a cosmological
model with d degrees of freedom in which N number of data
points have been used to fit the model, the AIC parameter is
defined through the relation [52]

AIC = −2 lnLmax + 2d, (42)

where Lmax = e−χ2
tot/2 is the maximum likelihood obtained

for the cosmological model. The “preferred model” for
this criterion is the one with the smaller value of AIC .
To compare the model k with the model l, we calculate
ΔAICkl = AICk − AICl , which can be interpreted as “evi-
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H t

Fig. 5 The scale factor as a function of time. The trajectories show
the accelerated expansion after early deceleration for the best-fit val-
ues of model parameters obtained from different individual/combined
observational data set. The trajectory (dotted curve) is also shown for a
matter-dominated model in the absence of matter creation which shows
decelerated expansion. A dot denotes the transition point where the
transition from decelerated phase to accelerated phase occurs

dence in favor” of the model k compared to the model l. For
0 ≤ ΔAICkl < 2 we have“strong evidence in favor” of
model k, for 2 < ΔAICkl < 4, we have “average evidence
in favor” of model k, for 4 < AICkl ≤ 7 there is “less evi-
dence in favor” of the model k, and for ΔAICkl > 10 there
is basically “no evidence in favor” of model k [53].

On the other hand, the Bayesian criterion is defined
through the relation [54]

BIC = −2 lnLmax + d lnN , (43)

where N is the number of data points. Similar to ΔAICkl ,
ΔBICi j = BICi − BIC j can be interpreted as “evi-
dence favor” the model i compared to the model j . For
0 ≤ ΔBICi j < 2 there is “not enough evidence against” the
model i , for 2 ≤ ΔBICi j < 6 there is “evidence against” the
model i and for 6 ≤ ΔBICi j < 10 there is “strong evidence
against” model i [53].

Table 3 shows the χ2
mins, χ2

reds, AICs, BICs of the mat-
ter creation model with consideration of the ΛCDM as the
referring model. It can be observed that the values of χ2

min ,
AIC and BIC for matter creation model are very close to
the values of ΛCDM model. Thus, the observational data
strongly favor and support the matter creation model from

Fig. 6 The deceleration parameter as a function of redshift for best-fit
values of model parameters obtained from observational data. A dot
denotes the current value of q (hence q0)

w e
ff

Fig. 7 The variation effective EoS parameter as a function of redshift
for best-fit values of model parameters

AIC and BIC . The reduced χ2
red also shows that it is very

close to the values of ΛCDM model, which is less than one
(the model is “over fitting” the data).

6 Thermodynamics analysis

In this section, we find the condition of the thermodynamic
stability for the present particle creation model. In [49], it has
been demonstrated that cosmological apparent horizons are
also endowed with thermodynamic properties. It can relate

Table 2 The numerical values
of atr , ztr , q0, we f f (z = 0) and
t0 using best-fit results of model
parameters

Data atr ztr q0 we f f (z = 0) t0 (Gyr)

SNe 0.2589 2.8619 −0.356 −0.5712 16.4

SNe +OHD 0.5438 0.8386 −0.457 −0.6382 13.8

SNe +BAO 0.4963 1.0147 −0.424 −0.6608 14.5

SNe +OHD+BAO 0.5366 0.8633 −0.491 −0.6162 13.98
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Fig. 8 The age of universe as a function of redshift for best-fit values
of model parameters

Fig. 9 Variation of the Hubble function as a function of the redshift z
for the best-fit values of the model. The observational 43 H(z) points
are shown with error bars (grey colour). The variation of the Hubble
function in the standard ΛCDM model is also represented as the solid
curve

Fig. 10 The trajectory of {r, s} in s − r plane corresponds to best
fitted parameters. The arrow shows the direction of the evolution of the
trajectory

Fig. 11 The trajectory of {r, q} in q−r plane for the best fitted param-
eters. The arrow shows the direction of the evolution of the trajectory

z

z

Fig. 12 The trajectory of Om(z) for the best fitted parameters

temperature and entropy to the apparent horizon like to the
black hole event horizon.

According to the generalized second law (GSL) of ther-
modynamic, the total entropy S is the sum of entropy of
all sources. Therefore, in this model the total entropy is
contributed from the entropy of the apparent horizon (Sh)
and entropy of fluid (S f ) inside the apparent horizon, i.e.,
S = Sh + S f . The entropy of apparent horizon is given by
Sh = κB A/4l2pl [50], where κB is the Boltzmann’s constant,

A = 4πr2
h is the area of horizon in which rh = H−1 is the

horizon radius for flat FRW universe and l pl is the Planck’s
length.

Differentiating Sh with respect to cosmic time and using
(19), we obtain

Ṡh = −2πκB

l2pl

Ḣ

H3

= 6πκB

l2pl H
2

H0(1 − α − β − γ )

(2 − 3γ )
a− 3(1−β−γ )

(2−3γ ) . (44)

It is observed from the above equation that Ṡh ≥ 0 for (α +
β + γ ) ≤ 1 and γ < 2/3.
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Now, the Gibb’s equation for the fluid is written as

TdS f = d(ρV ) + pdV = V ρ̇ + ρV̇ + pdV, (45)

where V = 4πr3
h/3 is the spatial volume enclosed by the

horizon and T is the fluid temperature. Note that we are
studying matter-dominated model p = 0. Using (19), the
above equation gives

Ṡ f = 24π2H0

H2

(1 − α − β − γ )

(2 − 3γ )
a− 3(1−β−γ )

2−3γ , (46)

where T = Th = 1/2πrh , i.e., if the temperature of the fluid
becomes equal to that of the temperature of the horizon [51].
For Ṡ f ≥ 0, we must have (α + β + γ ) ≤ 1 and γ < 2/3.

Thus, from (44) and (46), we observe that Ṡ = Ṡh + Ṡ f ≥
0 for (α + β + γ ) ≤ 1 and γ < 2/3. So, the entropy of
the horizon plus fluid is an increasing function of the cosmic
time.
Differentiating (44) again with respect to cosmic time, we
get

S̈h = 18πκBH0

l2pl

(1 − α − β − γ )

(2 − 3γ )2 a− 3(1−β−γ )
2−3γ

×
[

2H0

H2 a− 3(1−β−γ )
2−3γ − (1 − β − γ )

H

]
. (47)

Similarly, differentiating (46) with respect to cosmic time,
we get

S̈ f = 72π2H0
(1 − α − β − γ )

(2 − 3γ )2 a− 3(1−β−γ )
2−3γ

×
[

2H0

H2 a− 3(1−β−γ )
2−3γ − (1 − β − γ )

H

]
. (48)

Adding (47) and (48), one obtains

S̈ = S̈h + S̈ f

=
(

18πκB

l2pl
+ 72π2

)
(1 − α − β − γ )H0

(2 − 3γ )2H
a− 3(1−β−γ )

2−3γ

×
[

2H0

H
a− 3(1−β−γ )

2−3γ − (1 − β − γ )

]
. (49)

The sign of S̈ is determined by last bracket in (49) and α +
β + γ < 1. Therefore, we find that the generalized second
law of thermodynamics is always valid and hence the model
is stable under the above constrains.

It is also interesting to discuss the model with adiabatic
matter creation like irreversible process. In adiabatic process,
the total entropy S increases, but, the specific entropy (per
particle), σ = S/N , remains constant, i.e., σ̇ = 0 which
implies that

Ṡ

S
= Ṅ

N
. (50)

Using (12) into (10), we get

N = N0a
3β(ȧ)3γ e3αH0(t−t0), (51)

where N0 is the present number of particles. Now, from (50),
we get

S = S0a
3β(ȧ)3γ e3αH0(t−t0), (52)

where S0 is the present entropy of matter fluid. It is to be
noted that if α = β = γ , i.e., if there is no particle creation,
we get S = S0, i.e., the standard conserved quantities are
recovered.

7 Conclusion

We have discussed the matter-dominated model with matter
creation cosmology as an alternative to explain the cosmic
acceleration. As matter creation models are phenomenolog-
ical and the literature contains a variety of models, so a gen-
eralized model could be a better choice to start for any study.
Hence, in the present paper we have generalized the form of
matter creation rate assumed by Lima et al. [31].

The assumption Γ = 3βH [13] always gives accelerat-
ing model for β > 1/3 or decelerating for β < 1/3, that is,
there is no transition redshift from a decelerating to an accel-
erating regime as required by observational data. In another
paper, Abramo and Lima [20] proposed the form of Γ as
Γ = 3βH2, however it also gives no transition redshift. In
order to cure such a difficulty, a constant term is added to this
expression, i.e., Γ = 3αH0 + 3βH [31] to get the transition
redshift. Basilakos and Lima [55] have also used the same
form to constraints the model. They observed that the age of
the Universe to be t0 ∼ 14.8 Gyr while the inflection point
is located atr 
 0.44 which corresponds to ztr 
 1.26. They
have found that this form of matter creation rate is endowed
with severe difficulties even for the set of background tests
because it is unable to adjust simultaneously the observa-
tional data at low and high redshift.

In this work, we have generalized the form of Γ in order
to produce a clear image about the matter creation models
aiming to realize the early physics and its compatibility with
the current astronomical data. It covers different matter cre-
ation rate, for instance, Γ ∝ H0, Γ ∝ H and Γ ∝ ä/ȧ.
Lima et al. [31] have performed best-fit of the free parame-
ters using only SNe data and best -fit values are β = 0 and
α = 0.65. We have performed the fitting of free parameters
using joint observational data of SNe, OHD and BAO in
which none free parameters is zero. However, In our model,
the age of universe is found to be 13.8 Gyr from SNe+OHD
and SNe + OHD + BAO , but it is higher with SNe and
SNe + BAO . Also, the transition redshift is less than one
with SNe + OHD and SNe + OHD + BAO , which are
good fit with ΛCDM model. Our model also generalizes the
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Table 3 Summary of the
reduced χ2

red , ΔAIC and
ΔBIC for ΛCDM model and
matter creation model

Model Data set χ2
min χ2

red AIC BIC ΔAIC ΔBIC

ΛCDM SNe 17.027 0.587 21.027 23.894 0 0

SNe+OHD 27.901 0.387 31.907 36.509 0 0

SNe+BAO 18.131 0.518 22.131 25.352 0 0

SNe+OHD+BAO 30.443 0.385 34.443 39.232 0 0

Matter creation model SNe 17.417 0.622 23.417 27.718 2.390 3.824

SNe+OHD 27.521 0.387 33.512 40.433 1.614 3.924

SNe+BAO 17.416 0.512 23.416 28.249 1.285 2.897

SNe+OHD+BAO 29.766 0.381 35.766 42.950 1.323 2.718

work of above references and it can be observed from the
observational tests that our model gives best -fit values from
joint observation of SNe with OHD, and OHD and BAO and
fit the data very well with ΛCDM model. We have investi-
gated the model analytically and numerically in which the
matter creation process provides the late-time accelerating
phase of the cosmic expansion without the need of any dark
energy.

We have obtained the exact solutions for the scale factor,
Hubble parameter and deceleration parameter. These results
have then contrasted with the ones obtained at the background
level to find the model parameters. For the background tests
we have used SNe in combination with OHD and BAO
at different redshifts. The nature of the cosmological evo-
lution is strongly dependent on the numerical values of the
model parameters. The best-fit values of model parameters
have been listed in Table 1. Figures 1, 2, 3 and 4 show the
confidence regions of parameters α, β and γ for different
sets of jointly observational data. It has been found that the
results of SNe and SNe+ BAO data are little different from
other two data. However, the joint analysis of SNe+ OHD
and SNe + OHD + BAO constraint the model parameters
very well and are in good agreement with observational data
of ΛCDM model. In what follows we summarize the results:

– The evolutions of the scale factor for best-fit values of
model parameters have been plotted in Fig. 5. It has been
observed that the model predicts early deceleration and
late-time acceleration. The transition points atr where the
universe transits from decelerated phase to accelerated
phase have been listed in Table 2.

– Figure 6 plots the evolution of deceleration parame-
ter with redshift for best-fit values obtained from inde-
pendent/combined analysis of observational data. The
present-day value of q and transition redshift ztr have
been listed in Table 2. The best-fit values of parameters
obtained from different observational data give q0 in the
range of −1 ≤ q0 < 0. In general, q → −1 as z → −1,
which corresponds to the de Sitter universe. The deceler-
ation parameter is time dependent and hence shows the
transition from positive to negative. The evolution of the

universe begins from higher redshift, from a decelerat-
ing phase, with q > 0. The expansion of the Universe
accelerates, and at a finite value of z it reaches the value
q = 0, corresponding to the transition to the accelerated
phase. The evolution of q is strongly dependent on the
numerical values of the model parameters.

– We have obtained the EoS parameter to discuss the evo-
lution of the model. Figure 7 plots the evolution of EoS
parameter with redshift for best-fit values of parameters.
It has been observed that the EoS does not cross the
phantom-divide line ω = −1. Irrespective of the values
of parameters, ωe f f → −1 as z → −1 which shows that
the model behaves like ΛCDM in late time. The present
values of ω obtained from independent/combined obser-
vational data are listed in Table 2. These values are com-
paratively higher than that predicted by the joint analysis
of WMAP + BAO + H0 + SNe data which is around
−0.93.

– We have discussed the age of the universe by plotting the
trajectory with best-fit values of parameters as shown in
Fig. 8. The trajectory shows that the age of the universe
obtained by SNe + OHD and SNe + OHD + BAO
data are found to be approximately 13.9 Gyr. So, the age
predicted by the present model is agreeing with the age
deduced from ΛCDM model.

– The Hubble function with the error bar fits in to the
ΛCDM model for best-fit values has been plotted in
Fig. 9. It has been observed that the curves coincide at low
redshifts and differ appreciably at high redshifts. How-
ever, it is possible to get good fit using joint analysis of
SNe + OHD and SNe + OHD + BAO .

– We have studied two diagnostics parameters, namely,
statefinder and Om(z) parameters to compare our model
with ΛCDM model. In Fig. 10, the trajectories of {r, s}
have been plotted in s−r plane for best-fit values obtained
from different observational data set. The model corre-
sponds to ΛCDM model in late-time. The model also
approaches to the standard model in late time as shown
in q−r plane (Fig. 11). The trajectory ofOm(z) in Fig. 12
shows that the model behaves like quintessence.
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– We have performed the information criterion of AIC and
BIC to discriminate our model with ΛCDM model. The
values of reduced Chi-square, ΔAIC and ΔBIC are cal-
culated and have listed in Table 3. The analyses based on
the AIC and BIC indicate that there is positive sup-
port for the matter creation model when compared to the
ΛCDM model. The reduced χ2

red is less than one in each
data points which shows that the model gives the best-fit
values of model parameters and good support to ΛCDM
model.

– We have discussed the thermodynamic behavior of the
model by calculating the total entropy for the matter cre-
ation. We have established the general conditions for any
matter creation model that ensure the validity of the gen-
eralized second law of thermodynamics.

In concluding remarks, the most remarkable feature of this
model is that the description of the present acceleration of
the universe does not need any dark energy fluid or modified
gravity theories. However, this theory is also model depen-
dent. Thus, in this paper, we have proposed a new matter
creation model which generalizes the existing models in the
literature and constrain them using observational data set.
Our analysis shows that the model is close to the standard
ΛCDM model.

Acknowledgements The authors express their sincere thanks to the
reviewer for his constructive suggestions to improve the manuscript in
the present form. One of the author, AK would like to thank University
Grant Commission, New Delhi for providing Senior Research Fellow-
ship under UGC-NET Scholarship.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: All data (numbers
and plots) generated in our study have been included in this paper. We
do not have additional data to show.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. A.G. Riess et al., Astron. J. 116, 1009 (1998)
2. S. Perlmutter et al., Nature 391, 51 (1998)
3. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

4. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005)
5. M. Tegmark et al., Phys. Rev. D 74, 123507 (2006)
6. E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011)
7. I. Prigogine, J. Geheniau, Proc. Natl. Acad. Sci. USA 83, 6245

(1986)
8. I. Prigogine et al., Proc. Natl. Acad. Sci. USA 85, 7428 (1988)
9. M.O. Calvao, J.A.S. Lima, I. Waga, Phys. Lett. A 162, 223 (1992)

10. J.A.S. Lima, A.S. Germano, Phys. Lett. A 170, 373 (1992)
11. J.A.S. Lima, J.S. Alcaniz, Astron. Astrophys. 348, 1 (1999)
12. J.S. Alcaniz, J.A.S. Lima, Astron. Astrophys. 349, 72 (1999)
13. J.A.S. Lima, A.S. Germano, L.R.W. Abramo, Phys. Rev. D 53,

4287 (1996)
14. W. Zimdahl, J. Triginer, D. Pavón, Phys. Rev. D 54, 6101 (1996)
15. V.B. Johri, K. Desikan, Astrophys. Lett. Commun. 33, 287 (1996)
16. C.P. Singh, A. Beesham, Astrophys. Space Sci. 336, 469 (2011)
17. C.P. Singh, Astrophys. Space Sci. 338, 411 (2012)
18. W. Zimdahl, D.J. Schwarz, A.B. Balakin, D. Pavón, Phys. Rev. D

64, 063501 (2001)
19. Q. Yaun, J. Tong, Y. Ze-Long, Astrophys. Space Sci. 311, 407

(2007)
20. L.R.W. Abramo, J.A.S. Lima, Class. Quantum Gravity 13, 2953

(1996)
21. G. Steigman, R.C. Santos, J.A.S. Lima, JCAP 06, 033 (2009).

arXiv:0812.3912
22. J.A.S. Lima, S. Basilakos, F.E.M. Costa, Phys. Rev. D 86, 103534

(2012). arXiv:1205.0868
23. J.A.S. Lima, L.L. Graef, D. Pavón, S. Basilakos, JCAP 10, 042

(2014)
24. R.O. Ramos, M.V.D. Santos, I. Waga, Phys. Rev. D 89, 083524

(2014). arXiv:1404.2604
25. S. Pan, B.K. Pal, S. Pramanik, Int. J. Geom. Methods Mod. Phys.

15, 1850042 (2018)
26. J. de Haro, S. Pan, Class. Quantum Gravity 33, 165007 (2016).

arXiv:1512.03100
27. S. Pan, S. Chakraborty, Adv. High Energy Phys. 201, 654025

(2015)
28. L.R.W. Abramo, J.A.S. Lima, Class. Quantum Gravity 13, 2953

(1996)
29. E. Gunzig, R. Maartens, A.V. Nesteruk, Class. Quantum Gravity

15, 923 (1998)
30. S. Pan, J. de Haro, A. Paliathanasis, R.J. Slagter, Mon. Not. R.

Astron. Soc. 460, 1445 (2016)
31. J.A.S. Lima, F.E. Silva, R.C. Santos, Class. Quantum Gravity 25,

205006 (2008)
32. P.A.R. Ade et al., Astron. Astrophys. 594, 13 (2016)
33. M. Betouleet et al., Astron. Astrophys. 22, 568 (2014)
34. S.L. Cao, H.Y. Teng, H.Y. Wan, H.R. Yu, T.J. Zhang, Eur. Phys. J.

C 78, 313 (2018)
35. N. Padmanabhan et al., Mon. Not. R. Astron. Soc. 427, 2132 (2012)
36. F. Beutler et al., Mon. Not. R. Astron. Soc. 416, 3017 (2011)
37. L. Andersonet et al., Mon. Not. R. Astron. Soc. 441, 24 (2014)
38. C. Blakeet et al., Mon. Not. R. Astron. Soc. 425, 405 (2012)
39. P.A.R. Adeet et al., Astron. Astrophys. 594, 13 (2016)
40. R. Giostri et al., J. Cosmol. Astropart. Phys. 1203, 027 (2012)
41. G. Hinshawet et al., Astrophys. J. Suppl. 208, 19 (2013)
42. D. Foreman-Mackey, D. Hogg, D. Lang, J. Goodman, Publ. Astron.

Soc. Pac. 125, 306 (2012)
43. M. Kowalski et al., Astrophys. J. 686, 749 (2008)
44. P. Praseetha, T.K. Mathew, Int. J. Mod. Phys. D 23, 1450024 (2014)
45. E. Komatsu et al., WMAP Collaboration, Astrophys. J. Suppl. 192,

18 (2011)
46. C.J. Feng, X.Z. Li, Phys. Lett. B 680, 355 (2009)
47. V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam, JETP Lett. 77,

201 (2003)
48. V. Sahni, A. Shafieloo, A.A. Starobinsky, Phys. Rev. D 78, 103502

(2008). arXiv:0807.3548

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/0812.3912
http://arxiv.org/abs/1205.0868
http://arxiv.org/abs/1404.2604
http://arxiv.org/abs/1512.03100
http://arxiv.org/abs/0807.3548


Eur. Phys. J. C (2020) 80 :106 Page 15 of 15 106

49. R.G. Cai, L.M. Cao, Y.P. Hu, Class Quantum Gravity 26, 155018
(2009). arXiv:0809.1554

50. D. Bak, S.J. Rey, Class. Quantum Gravity 17, L83 (2000)
51. M. Akbar, R.G. Cai, Phys. Rev. D 75, 084003 (2007)
52. H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974)

53. A.R. Liddle, Mon. Not. R. Astron. Soc. 377, L74 (2007)
54. G. Schwarz, Ann. Stat. 6, 461 (1978)
55. S. Basilakos, J.A.S. Lima, Phys. Rev. D 82, 023504 (2010)

123

http://arxiv.org/abs/0809.1554

	Quintessence behavior via matter creation cosmology
	Abstract 
	1 Introduction
	2 Model with matter creation and solution
	3 Observational tests: SNe, OHD and BAO data
	4 Results and discussion
	5 Model selection
	6 Thermodynamics analysis
	7 Conclusion
	Acknowledgements
	References




