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1 Introduction

Since the introduction of Heisenberg magnet by H. Bethe back in 1931, quantum integrable
spin chains have been intensively studied by many physicists and mathematicians using
various methods, and many spectacular results are produced. Recently, supersymmetric
extensions of quantum integrable spin chains have enjoyed a surge of interests, see e.g. [1–8]
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and references therein. They also appeared in a wide range of contexts such as condensed
matter physics [9, 10], integrable AdS/CFT [11], the N = 4 super-Yang-Mills (SYM)
theory [12] and two-dimensional N = (2, 2) supersymmetric gauge theories [13], etc. In this
paper, we study the quantum integrable models associated with the Lie superalgebra glm|n,
the XXX spin chains and Gaudin models, whose supersymmetric versions were introduced
in [14, 15] and [16], respectively. An important problem in the study of quantum integrable
systems is to find the eigenvectors and the corresponding eigenvalues of the Hamiltonians.
For instance, the constructions of eigenvectors are particularly related to the calculation of
correlators in N = 4 SYM which is actively being investigated, see e.g. [17–19].

Let m,n ∈ Z>0 and set N = m+ n. Let Tab(u), 1 6 a, b 6 N , be the RTT generating
series of the super Yangian Y(glm|n) associated with glm|n and T (u) =

∑N
a,b=1Eab ⊗ Tab(u)

the monodromy matrix. The integral of motions for XXX spin chains are given by the
quantum Berezinian (super-determinant) of a certain Manin matrix, see [20],

Ber(1− T †(u)Qe−∂u) = 1 +
∞∑
k=1

(−1)kTk,Q(u)e−k∂u ,

where Q = diag(Q1, . . . , QN ) is invertible and † : Eab 7→ (−1)|a||b|+|a|Eba is the super
transpose. The series Tk,Q(u), whose coefficients are elements in the super Yangian Y(glm|n),
are called transfer matrices. The subalgebra of Y(glm|n) generated by the coefficients of
Tk,Q(u) for all k > 0 is commutative and called the Bethe subalgebra, cf. [21].

Given a highest weight representation of Y(glm|n), we are interested in finding the
joint eigenvectors of transfer matrices. The same problem for diagonalizing the standard
transfer matrix T1,Q(u) has been studied in [1] using algebraic Bethe ansatz [22, 23] and
nested Bethe ansatz [24]. The main result of [1] indicates that if the sequence of parameters
t satisfies the Bethe ansatz equation, then one can construct a Bethe vector B(t) which
(if nonzero) is an eigenvector of T1,Q(u). Moreover, the corresponding eigenvalue can be
computed explicitly. Following [25], we extend the results of [1] to show that the Bethe
vector B(t) is indeed a joint eigenvector of all transfer matrices Tk,Q(u), k ∈ Z>0, and give
the explicit eigenvalue for each transfer matrix. Such eigenvalues of transfer matrices were
previously proposed in [26] using analytic Bethe ansatz, cf. [27]. However, the Bethe vector
is not discussed there.

Let us explain our results in more detail. Let M be a highest weight representation of
Y(glm|n) generated by a nonzero vector v such that Taa(u)v = ζa(u)v and Tab(u)v = 0 for all
1 6 b < a 6 N , where ζa(u) is an arbitrary power series of u−1 in 1 + u−1C[[u−1]]. Let ξ =
(ξ1, . . . , ξN−1) be a sequence of nonnegative integers and t = (t11, . . . , t1ξ1 ; . . . ; tN−1

1 , . . . , tN−1
ξN−1)

a sequence of complex numbers. Set ya(u) =
∏ξa

i=1(u− tai ), 1 6 a < N , and y0(u) = yN (u) =
1. Let κa = 1 if 1 6 a 6 m and κa = −1 if m < a 6 N . The Bethe ansatz equation for
XXX spin chain associated with glm|n is a system of algebraic equations in t,

− κaQa
κa+1Qa+1

ζa(tai )
ζa+1(tai )

ya−1(tai + κa)
ya−1(tai )

ya(tai − κa)
ya(tai + κa+1)

ya+1(tai )
ya+1(tai − κa+1) = 1,

for 1 6 a < N and 1 6 i 6 ξa, see (3.19). Suppose t satisfies the Bethe ansatz equation and
let Bvξ(t) ∈M be the corresponding (on-shell) Bethe vector, see e.g. (3.8), (3.18). Then the
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eigenvalues of the transfer matrices acting on Bvξ(t) can be compactly described as follows,

Ber(1−QT (u)e−∂u)Bvξ(t) = Bvξ(t)
−→∏

16a6N

(
1−Qaζa(u)ya−1(u+ κa)ya(u− κa)

ya−1(u)ya(u) e−∂u
)κa

,

see Corollaries 3.4, 3.6, which follows from the main technical results, Theorem 3.3. Such a
statement was previously established for the case n = 0 in [25], and for the case m = n = 1
in [7, Theorem 6.4] by a brute force computation. We show it for the case when M is a
tensor product of evaluation highest weight modules. Such a rational difference operator
also appeared in [26] when M is a tensor product of evaluation vector representations. Note
that the same approach also works for the full generality.

We prove Theorem 3.3 by induction on m. For the base case of gl0|n, it is essentially [25,
Theorem 5.2] by the correspondences between transfer matrices and Bethe vectors for
Y(glm|n) and Y(gln|m), see section 4.2. Then we perform the nested Bethe ansatz and use
induction hypothesis. Since our induction is on m, the first index is always even. Therefore
the procedure for nested Bethe ansatz turns out to be similar to the case of the nonsuper
case as in [25].

The Gaudin transfer matrices (higher Gaudin Hamiltonians) are elements of the
universal enveloping superalgebra U(glm|n[x]) of the current superalgebra glm|n[x] which
are again given by the quantum Berezinian, see [20, 28],

Ber(∂u −K − L†(u)) =
∞∑
r=0
Gr,K(u)∂m−n−ru ,

where L(u) is the generating matrix of glm|n[x] and K = diag(K1, . . . ,KN ).
By taking the classical limits, we obtain the corresponding statement for the Gaudin

models associated with glm|n. Explicitly, let M1, . . . ,M` be highest weight glm|n-modules
with highest weights Λ1, . . . ,Λ`, where Λi = (Λ1

i , . . . ,ΛNi ). Let z = (z1, . . . , z`) be a sequence
of pairwise distinct complex numbers. Let ξ, t, and ya(u), 0 6 a 6 N , be as before. The
Bethe ansatz equation for Gaudin models associated with glm|n is a system of algebraic
equations in t,

Ka −Ka+1 +
∑̀
j=1

κaΛaj − κa+1Λa+1
j

tai − zj
+
κay

′
a−1(tai )

ya−1(tai )

− (κa + κa+1)y′′a(tai )
2y′a(tai )

+
κa+1y

′
a+1(tai )

ya+1(tai )
= 0,

for 1 6 a < N and 1 6 i 6 ξa, see (5.4).
Suppose t satisfies the Bethe ansatz equation and let Fvξ(t) ∈ M1 ⊗ · · · ⊗M` be the

corresponding (on-shell) Bethe vector. Then the eigenvalues of the Gaudin transfer matrices
acting on Fvξ(t) can be compactly described as follows,

Ber(∂u −K − L†(u))Fvξ(t)

= Fvξ(t)
−→∏

16a6N

(
∂u −Ka − κa

( ∑̀
j=1

Λaj
u− zj

+
y′a−1(u)
ya−1(u) −

y′a(u)
ya(u)

))κa
,

see Theorem 5.2.
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Finally, we remark that the results can be generalized beyond the standard parity
sequence (root system). Indeed, for a super Yangian of type A whose first index is
odd, in (4.7) and (4.8), one can use symmetric power instead of anti-symmetric power.
Alternatively, one can introduce the shift parameter for the super Yangian. Changing
parity of the fundamental space is related to negating the shift parameter. An interesting
question is as follows: given a finite-dimensional irreducible representation M of Y(glm|n),
how a Bethe vector associated with a solution t corresponds to the Bethe vector associated
with another solution t̃ obtained from t by the fermionic reproduction procedure (odd
reflection), see e.g. [5, 29–31]. When the twisting matrix Q has simple spectrum, one
would expect that they are proportional. When the representation is the tensor product of
evaluation polynomial modules and Q is the identity matrix, they are related by a simple
Lie superalgebra action, see [29, Corollary 5.6]. For more general cases, the relation remains
unclear, see a related discussion in [29, section 8.3]. It is also well known that in general
Bethe eigenvectors obtained from this approach does not provide the full list of eigenvectors
of the Bethe subalgebra. A complete spectrum of the Bethe subalgebra should be described
using the (extended) Q-systems, see [5, 32, 33]. Results on the completeness of the Bethe
ansatz for supersymmetric XXX spin chains can be found in [7, 8]. A conjectural complete
spectrum of supersymmetric XXX spin chains is proposed in [6] using separation of variable
bases, see also [34] for a recent review of separation of variables.

The paper is a step toward understanding the completeness of Bethe ansatz (also called
perfect duality in the sense of [35] for more general settings) of supersymmetric spin chains,
see [8] for the case when the underlying Hilbert space is a tensor product of evaluation
vector representations. The corresponding statements for the even case were used to prove
the perfect duality for Gaudin models and XXX spin chains in [36, 37]. Once the perfect
duality is established, it ensures that the transfer matrices have simple spectrum (after
quotient by obvious symmetry) whenever they are simultaneously diagonalizable. Note
that the simplicity of spectrum is an important condition to implement certain methods in
mathematical physics. For instance, the condition [38] that the operator Bgood(u) has a
simple spectrum is necessary for the application of the separation of variables approach.

The paper is organized as follows. We recall the basics of the Lie superalgebra glm|n,
the corresponding Yangian, and the fusion procedure in section 2. Section 3 is devoted to
the study of XXX spin chains where the main results for XXX spin chains are given. We
prove the main technical result Theorem 3.3 in section 4. We discuss Gaudin models and
the corresponding main results in section 5. By taking the classical limits, we prove the
main results for Gaudin models in section 6.
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2 Preliminaries

2.1 Basics

Throughout this article we will use the following general conventions.
A vector superspace W = W0̄ ⊕W1̄ is a Z2-graded vector space. We call elements of

W0̄ even and elements of W1̄ odd. We write |w| ∈ {0̄, 1̄} for the parity of a homogeneous
element w ∈W . Set (−1)0̄ = 1 and (−1)1̄ = −1.

Let A be an associative superalgebra (namely a Z2-graded algebra). Define the super-
commutator [·, ·] on A by

[a, b] = ab− (−1)|a||b|ba
for homogeneous a, b ∈ A. Here and throughout, when we write for example |v| we always
implicitly assume v is homogeneous and extend the formula in question by linearity. The
supercommutator satisfies the super skew-symmetry property

[a, b] = −(−1)|a||b|[b, a]

and the super Jacobi identity

(−1)|a||c|[a, [b, c]] + (−1)|b||a|[b, [c, a]] + (−1)|c||b|[c, [a, b]] = 0.

Let A and B be associative superalgebras. Then their tensor product A⊗B is also an
associative superalgebra with the structure given by

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′(−1)|a′||b|, |a⊗ b| = |a|+ |b|,

whenever a, a′ ∈ A and b, b′ ∈ B are homogeneous.
For any Z2-graded modules V and W over A and B, respectively, the vector superspace

V ⊗W is a Z2-graded module over A⊗B with the structure given by

(a⊗ b)(v ⊗ w) = av ⊗ bw(−1)|b||v|, |v ⊗ w| = |v|+ |w|

provided that a ∈ A, b ∈ B, v ∈ V and w ∈W are homogeneous.
A superalgebra homomorphism α : A→ B is a linear map satisfying α(aa′) = α(a)α(a′)

for all a, a′ ∈ A. A superalgebra antihomomorphism β : A→ B is a linear map satisfying
β(aa′) = β(a′)β(a)(−1)|a||a′| for all a, a′ ∈ A.

We use the standard superscript notation for embeddings of tensor factors into tensor
products. If A1, . . . , Ak are unital associative superalgebras, and a ∈ Ai, then

a(i) = 1⊗(i−1) ⊗ a⊗ 1⊗(k−i) ∈ A1 ⊗ · · · ⊗ Ak. (2.1)

If a ∈ Ai and b ∈ Aj , then (a⊗ b)(ij) = a(i)b(j), etc. For example, if k = 2 and A1 = A2 = A,
then

a(1) = a⊗1, b(2) = 1⊗b, (a⊗b)(12) = a⊗b, (a⊗b)(21) = b⊗a(−1)|a||b|. (2.2)

For products of noncommuting factors, we use the following notation:
−→∏

16i6k
Xi = X1 · · ·Xk,

←−∏
16i6k

Xi = Xk · · ·X1,

−→∏
16i<j6k

=
−→∏

16i6k

−→∏
i<j6k

,
←−∏

16i<j6k
=
←−∏

16j6k

←−∏
16i<j

.
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2.2 Lie superalgebra glm|n

Fix m,n ∈ Z>0. Set N = m+ n and N = m− n. Let Cm|n be a complex vector superspace,
with dim(Cm|n)0̄ = m and dim(Cm|n)1̄ = n. Note that dim(Cm|n) = N and sdim(Cm|n) = N.
Choose a homogeneous basis va, 1 6 a 6 N , of Cm|n such that |va| = 0̄ for 1 6 a 6 m and
|va| = 1̄ for m < a 6 N . We call it the standard basis of Cm|n. Set |a| = |va|.

Denote Cm|n by V and consider elements of End(V) as (super)matrices with respect to
the standard basis of V. In particular, we have the matrix units Eab such that Eabvc = δbcva
for 1 6 a, b, c 6 N . Denote by Im|n the identity operator on V.

The Lie superalgebra glm|n is generated by elements eab, 1 6 a, b 6 N , with the
supercommutator relations

[eab, ecd] = δbcead − (−1)(|a|+|b|)(|c|+|d|)δadecb, (2.3)

and the parity of eab is given by |a| + |b|. We have the standard nilpotent subalgebras
of glm|n,

n+ =
⊕

16a<b6N
Ceab, n− =

⊕
16a<b6N

Ceba.

A vector v in a glm|n-module is a weight vector of weight (Λ1, . . . ,ΛN ) if eaav = Λav

for 1 6 a 6 N . A vector v is called a singular vector if eabv = 0 for any 1 6 a < b 6 N .
Let P =

∑N
a,b=1Eab ⊗ Eba(−1)|b| which is the super flip operator: P (v ⊗ w) =

(−1)|v||w|w ⊗ v. Clearly, we have X(21) = PXP for X ∈ End(V⊗2).
Let Sk be the symmetric group permuting {1, 2, . . . , k} with the simple permutation

σi = (i, i+ 1) for 1 6 i < k. The symmetric group acts on V⊗k by σi 7→ P (i,i+1). Let H{k},
A{k} ∈ End(V⊗k) be the symmetrizer and anti-symmetrizer, respectively,

H{k} = 1
k!
∑
σ∈Sk

σ, A{k} = 1
k!
∑
σ∈Sk

sign(σ)σ,

where σ is identified as the corresponding operator in End(V⊗k). Denote by V∧k the image
of A{k}.

For a vector superspace V with a subspace U, if X ∈ End(V) preserves U, then we denote
by X

∣∣
U the restriction of X on U. For any even matrix Q ∈ End(V), set Q∧k = Q⊗k

∣∣
V∧k

.
Moreover, one can also extend the definition by setting X

∣∣
V∧k

= A{k}XA{k} for arbitrary
X ∈ End(V⊗k).

The map glm|n → End(V), eab 7→ Eab defines a glm|n-module structure on V. We call
it the vector representation of glm|n. The space V∧k is also a glm|n-module with the action
eab 7→ (E(1)

ab + · · ·+ E
(k)
ab )

∣∣
V∧k

.
Define a supertrace str : End(V)→ C, which is supercyclic,

str(Eab) = (−1)|b|δab, str([Eab, Ecd]) = 0. (2.4)

Define the supertranspose †,

† : End(V)→ End(V), Eab 7→ (−1)|a||b|+|a|Eba.
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The supertranspose is an anti-homomorphism and respects the supertrace,

(AB)† = (−1)|A||B|B†A†, str(A) = str(A†), (2.5)

for all supermatrices A, B.

2.3 Super Yangian

Define the rational R-matrix R(u) = u Im|n ⊗ Im|n + P ∈ End(V⊗2) which satisfies the
Yang-Baxter equation

R(12)(u− v)R(13)(u)R(23)(v) = R(23)(v)R(13)(u)R(12)(u− v). (2.6)

The super Yangian Y(glm|n) is a unital associative superalgebra with generators T {s}ab

of parity |a|+ |b|, 1 6 a, b 6 N , s ∈ Z>0. Consider the generating series

Tab(u) = δab +
∞∑
s=1

T
{s}
ab u

−s

and combine the series into a linear operator T (u) =
∑N
a,b=1Eab ⊗ Tab(u) ∈ End(V) ⊗

Y(glm|n)[[u−1]]. The defining relations of Y(glm|n) are given by

R(12)(u− v)T (13)(u)T (23)(v) = T (23)(v)T (13)(u)R(12)(u− v). (2.7)

Alternatively, the defining relation (2.7) gives

(u− v)[Tab(u), Tcd(v)] = (−1)|a||c|+|a||d|+|c||d|
(
Tcb(v)Tad(u)− Tcb(u)Tad(v)

)
= (−1)|a||b|+|a||d|+|b||d|

(
Tad(u)Tcb(v)− Tad(v)Tcb(u)

)
.

(2.8)

The super Yangian Y(glm|n) is a Hopf superalgebra with a coproduct and an opposite
coproduct given by

∆ : Tab(u) 7→
N∑
c=1

Tcb(u)⊗ Tac(u), 1 6 a, b 6 N,

∆̃ : Tab(u) 7→
N∑
c=1

(−1)(|a|+|c|)(|c|+|b|)Tac(u)⊗ Tcb(u),

(2.9)

which have equivalent matrix forms

(id⊗∆)(T (u)) = T (13)(u)T (12)(u),

(id⊗ ∆̃)(T (u)) = T (12)(u)T (13)(u).
(2.10)

For any complex number z ∈ C, there is an automorphism

ρz : Y(glm|n)→ Y(glm|n), Tab(u)→ Tab(u− z), (2.11)

where (u− z)−1 is expanded as a power series in u−1. The evaluation homomorphism is
defined by the rule:

ε : Y(glm|n)→ U(glm|n), T
{s}
ba 7→ (−1)|a|δ1seab, (2.12)

– 7 –
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for s ∈ Z>0. The super Yangian Y(glm|n) contains U(glm|n) as a Hopf subalgebra via the
embedding given by eab 7→ (−1)|a|T {1}ba . By (2.8), one has

[T {1}ab , Tcd(u)] = (−1)|a||c|+|a||d|+|c||d|
(
δadTcb(u)− δcbTad(u)

)
. (2.13)

The relation (2.13) implies that the following equality in End(V)⊗Y(glm|n)[[u−1]]

[Eab ⊗ 1 + Im|n ⊗ eab, T (x)] = 0, (2.14)

for any 1 6 a, b 6 N , where Im|n in the first factor stands for the identity operator on V

while 1 in the second factor is the identity element in Y(glm|n).
For any glm|n-module M and z ∈ C, denote by M(z) the Y(glm|n)-module obtained by

pulling back of M through the homomorphism π(z) := ε ◦ ρz. The module M(z) is called
an evaluation module at the evaluation point z.

Let Y+(glm|n) be the left ideal of Y(glm|n) generated by the coefficients of the se-
ries Tba(u) for 1 6 a < b 6 N . Let θ be the canonical projection θ : Y(glm|n) →
Y(glm|n)/Y+(glm|n). For A,B ∈ Y(glm|n), we write A ' B if θ(A) = θ(B). In other words,
A ' B if A−B ∈ Y+(glm|n). The following lemma is straightforward by (2.8) and (2.9).

Lemma 2.1. For any 1 6 a, b 6 N , we have

1. the coefficients of the series [Taa(u), Tbb(v)] are in Y+(glm|n);

2. if Z ∈ Y+(glm|n), then the coefficients of [Z, Taa(u)] and ZTaa(u) are in Y+(glm|n);

3. the coefficients of ∆(Taa(u))− Taa(u)⊗ Taa(u) and ∆̃(Taa(u))− Taa(u)⊗ Taa(u) are
in Y+(glm|n)⊗Y(glm|n) + Y(glm|n)⊗Y+(glm|n).

We say that a vector v in a Y(glm|n)-module is a singular `-weight vector if Y+(glm|n)v =
0 and

Taa(u)v = λa(u)v, λa(u) ∈ 1 + u−1C[u−1].

In this case, we call λ(u) = (λ1(u), . . . , λN (u)) the `-weight of v.

2.4 Fusion procedure

We recall the R-matrices defined by fusion procedure and their properties which will be
used to define higher transfer matrices. Since the proofs of these statements are parallel
to the even case, see [25], [39, Propositions 1.6.2 & 1.6.3], and references therein, we shall
omit the details.

Lemma 2.2. We have

−→∏
16i<j6k

R(ij)(j − i) =
←−∏

16i<j6k
R(ij)(j − i) = H{k}

k∏
j=1

jk−j+1,

−→∏
16i<j6k

R(ij)(i− j) =
←−∏

16i<j6k
R(ij)(i− j) = A{k}(−1)k

k∏
j=1

(−j)k−j+1.
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By the Yang-Baxter equation (2.6) and Lemma 2.2, one has

A(1...k)
{k} A(k+1,...,k+l)

{l}

−→∏
16i6k

←−∏
16j6l

R(i,j+k)(u+ i− j − k + l)

=
( ←−∏

16i6k

−→∏
16j6l

R(i,j+k)(u+ i− j − k + l)
)
A(1...k)
{k} A(k+1,...,k+l)

{l} .

(2.15)

Define R∧k,∧l(u) acting on V∧k ⊗ V∧l by

R∧k,∧l(u) =
←−∏

16i6k

−→∏
16j6l

R(i,j+k)(u+ i− j − k + l)
∣∣
V∧k⊗V∧l ∈ End(V∧k)⊗ End(V∧l).

We have the following Yang-Baxter equation for these R-matrices as operators on the
superspace V∧k ⊗ V∧l ⊗ V∧`,(

R∧k,∧l(u− v)
)(12)(

R∧k,∧`(u)
)(13)(

R∧l,∧`(v)
)(23)

=
(
R∧l,∧`(v)

)(23)(
R∧k,∧`(u)

)(13)(
R∧k,∧l(u− v)

)(12)
,

where the superscripts 1, 2, 3 in the parenthesis correspond to the actions on V∧k,V∧l,V∧`,
respectively; see (2.1) and (2.2). Clearly, we also have[

R∧k,∧l(u− v), Q∧k ⊗Q∧l] = 0 (2.16)

for any even matrix Q ∈ End(V).
Let

R∧k,∧1(u) = u I∧k,∧1 +
N∑

a,b=1

k∑
i=1

(E(i)
ab )
∣∣
V∧k
⊗ Eba(−1)|b| ∈ End(V∧k)⊗ End(V),

R∧1,∧k(u) = (u+ k − 1) I∧1,∧k +
N∑

a,b=1

k∑
i=1

Eab ⊗ (E(i)
ba )
∣∣
V∧k

(−1)|b| ∈ End(V)⊗ End(V∧k),

where I∧k,∧1 and I∧1,∧k are identity operators on V∧k ⊗ V and V⊗ V∧k, respectively if we
use the canonical isomorphisms End(V∧k ⊗V) ∼= End(V∧k)⊗End(V) and etc. Alternatively,
one understands I∧k,∧1 = A{k} ⊗ Im|n and I∧1,∧k = Im|n ⊗ A{k}.

Lemma 2.3. We have

R∧k,∧1(u) = R∧k,∧1(u)
k−1∏
i=1

(u− i), R∧1,∧k(u) = R∧1,∧k(u)
k−2∏
i=0

(u+ i). �

Corollary 2.4. We have R∧k,∧1(u)
(
R∧1,∧k(−u)

)(21) = (u+ 1)(k − u).

Proof. This follows from the inversion relation of R-matrix,

R(u)R(21)(−u) = (1− u2)Im|n ⊗ Im|n.
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Consider the series T (k,k+1)(u) · · ·T (1,k+1)(u− k + 1) with coefficients in End(V⊗k)⊗
Y(glm|n). By (2.7) and Lemma 2.2, we have

A(1...k)
{k} T (1,k+1)(u− k + 1) · · · T (k,k+1)(u)

= T (k,k+1)(u) · · ·T (1,k+1)(u− k + 1)A(1...k)
{k} .

(2.17)

Hence the space V∧k is invariant under all coefficients of the series T (k,k+1)(u) · · ·T (1,k+1)(u−
k + 1). Denote T∧k(u) the restriction of this series to End(V∧k)⊗Y(glm|n):

T∧k(u) = T (k,k+1)(u) · · ·T (1,k+1)(u− k + 1)
∣∣(1...k)
V∧k

. (2.18)

Note that, T∧1(u) = T (u). Moreover, it follows from (2.7) and (2.15) that(
R∧k,∧l(u− v)

)(12)(
T∧k(u)

)(13)(
T∧l(v)

)(23)

=
(
T∧l(v)

)(23)(
T∧k(u)

)(13)(
R∧k,∧l(u− v)

)(12)
.

(2.19)

Clearly, by (2.10), we have

(id⊗∆)
(
T∧k(u)

)
=
(
T∧k(u)

)(13)(
T∧k(u)

)(12)
,

(id⊗ ∆̃)
(
T∧k(u)

)
=
(
T∧k(u)

)(12)(
T∧k(u)

)(13)
.

(2.20)

3 XXX spin chains

3.1 Higher transfer matrices

For any even matrix Q ∈ End(V), define the series

Tk,Q(u) = (strV∧k ⊗ id)
(
Q∧kT∧k(u)

)
, k ∈ Z>0, (3.1)

with coefficients in Y(glm|n). We call these series transfer matrices. By convention, we also
set T0,Q(u) = 1. Note that transfer matrices are even.

Lemma 3.1. Transfer matrices satisfy the following properties.

1. Transfer matrices commute, [Tk,Q(u),Tl,Q(v)] = 0.

2. If Q is the identity matrix, then coefficients of transfer matrices commute with the
subalgebra U(glm|n) in Y(glm|n).

3. If Q is a diagonal matrix, then the subalgebra (the Bethe subalgebra) of Y(glm|n)
generated by all coefficients of all transfer matrices commutes with U(h), where h is
the Cartan subalgebra of glm|n.

Proof. The proof of the first statement is parallel to that of [25, Proposition 4.5] us-
ing (2.16), (2.19), and the standard properties of supertrace. The proof of the second
statement is similar to that of [25, Proposition 4.7] using (2.14). Note that Q is diagonal,
we have

[Eaa ⊗ 1 + Im|n ⊗ eaa, QT (x)] = 0

for all 1 6 a 6 N . To obtain the last statement, one applies similar strategy of [25,
Proposition 4.7] and the previous equality.
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One can also define another family of transfer matrices associated to symmetrizers

Tk,Q(u) = (strV⊗k ⊗ id)
(
H(1...k)
{k} Q(1) · · ·Q(k)T (1,k+1)(u) · · ·T (k,k+1)(u−k+ 1)

)
, k ∈ Z>0.

Again, we set T0,Q(u) = 1.
Transfer matrices can be compactly combined into a generating series using quantum

Berezinian as follows, see [20] and cf. [40].
We follow the convention of [20]. Let A be a superalgebra. Consider the operators of

the form

K =
N∑

a,b=1
(−1)|a||b|+|b|Eab ⊗Kab ∈ End(V)⊗A, (3.2)

where Kab are elements of A of parity |a|+ |b|. We say that K is a Manin matrix if

[Kab,Kcd] = (−1)|a||b|+|a||c|+|b||c|[Kcb,Kad]

for all 1 6 a, b, c, d 6 N .
If K is invertible and has the form

K−1 =
N∑

a,b=1
(−1)|a||b|+|b|Eab ⊗K ′ab ∈ End(V)⊗A,

then we define the (quantum) Berezinian of K by

Ber(K) =
∑
σ∈Sm

sign(σ)Kσ(1)1 · · ·Kσ(m)m ·
∑
σ̃∈Sn

sign(σ)K ′m+1,m+σ̃(1) · · ·K
′
m+n,m+σ̃(n). (3.3)

Let e−∂u be the difference operator, (e−∂uf)(u) = f(u − 1) for any function f in u.
Let A be the superalgebra Y(glm|n)[[u−1, ∂u]], where ∂u is even. Here u and ∂u satisfy
the relations

∂u · u−s = u−s∂u − su−s−1, s ∈ Z>0.

Consider the operator ZQ(x, ∂u),

ZQ(u, ∂u) = T †(u)Q†e−∂u ∈ End(V)⊗Y(glm|n)[[u−1, ∂u]].

It follows from (2.7) or (2.8) that ZQ(u, ∂u) is a Manin matrix, see e.g. [20, Remark 2.12] and
cf. [41, Proposition 4]. Note that our generating series Tij(u) corresponds to zji(u) in [20].

Define the rational difference operator DQ(u, ∂u),

DQ(u, ∂u) = Ber(1− ZQ(u, ∂u)). (3.4)

Applying the supertransposition to all copies of End(V) and using cyclic property of
supertrace, see (2.5), it follows from [20, Theorem 2.13] that

DQ(u, ∂u) =
∞∑
k=0

(−1)kTk,Q(u)e−k∂u ,
(
DQ(u, ∂u)

)−1 =
∞∑
k=0

Tk,Q(u)e−k∂u . (3.5)

– 11 –



J
H
E
P
0
4
(
2
0
2
3
)
1
2
0

3.2 Universal off-shell Bethe vectors

In this section, we recall the supertrace formula of Bethe vectors and its properties
from [1, 3, 25].

Let ξ = (ξ1, . . . , ξN−1) be a sequence of nonnegative integers. Set ξ<a = ξ1 + · · ·+ ξa−1,
1 < a 6 N . In particular, we set |ξ| = ξ<N . Consider a series in |ξ| variables

t = (t11, . . . , t1ξ1 , . . . , t
N−1
1 , . . . , tN−1

ξN−1)

with coefficients in Y(glm|n),

B̂ξ(t) = (str⊗ id)
(
T (1,|ξ|+1)(t11) · · ·T (|ξ|,|ξ|+1)(tN−1

ξN−1)

×
−→∏

(a,i)<(b,j)
R(ξ<b+j,ξ<a+i)(tbj − tai )E

⊗ξ1

21 ⊗ · · · ⊗ E
⊗ξN−1

N,N−1 ⊗ 1
)
,

(3.6)

where the supertrace is taken over all factors and the pairs are ordered lexicographically,
namely (a, i) < (b, j) if a < b, or a = b and i < j. Moreover, the product is taken over the
set {(c, k) | 1 6 c < N, 1 6 k 6 ξc}. Note that Bethe vectors are obtained by applying
B̂ξ(t) to pseudovaccum vectors (singular `-weight vectors). Therefore, we call B̂ξ(t) (and
its renormalizations) a universal off-shell Bethe vector.

This supertrace formula is slightly different from the one in [1]. But it turns out that
they only differ by a scalar function in t, see [3, Propositions 3.2 & 3.3].

It is clear from the Yang-Baxter equation and the equality

R(u− v)Eab ⊗ Eab = (u− v + (−1)|a|)Eab ⊗ Eab

that B̂ξ(t) is divisible by
N−1∏
a=1

∏
16i<j6ξa

(taj − tai + (−1)|a+1|) (3.7)

in Y(glm|n)[t11, . . . , tN−1
ξN−1 ][[(t11)−1, . . . , (tN−1

ξN−1)−1]].
Recall the canonical projection θ : Y(glm|n)→ Y(glm|n)/Y+(glm|n).

Lemma 3.2. The series θ(B̂ξ(t)) is divisible by

N−2∏
a=1

N−1∏
b=a+2

ξa∏
i=1

ξb∏
j=1

(tbj − tai )

in (Y(glm|n)/Y+(glm|n))[t11, . . . , tN−1
ξN−1 ][[(t11)−1, . . . , (tN−1

ξN−1)−1]].

The lemma will be proved in section 4.1 after Proposition 4.3 where we recall the
recursion for the Bethe vector.

Set

Bξ(t) = B̂ξ(t)
N−1∏
a=1

∏
16i<j6ξa

1
taj − tai + (−1)|a+1|

∏
16a<b<N

ξa∏
i=1

ξb∏
j=1

1
tbj − tai

,

Bξ(t) = Bξ(t)
∏

16i<j6ξm

1
tmj − tmi − (−1)|m+1| ,

(3.8)
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see [3, equation (3.1) & Proposition 3.3]. Note that Bξ(t) corresponds to the Bethe vector
used in [3] which is symmetric in variables tai with the same superscript a for all 1 6 a < N ,
see [3, Proposition 3.2]. Examples of Bξ(t) for small N can be found in [3, section 3.1].

Here we shall mainly use Bξ(t) with t satisfying

tmj − tmi − (−1)|m+1| 6= 0, 1 6 i < j 6 ξm, (3.9)

due to the equality Tm+1,m(u)Tm+1,m(u− 1) = 0. Note that equation (3.9) always holds
after reordering tmi e.g. in increasing order with respect to the real parts. Moreover, Bξ(t)
is symmetric in variables tai with the same superscript a for all 1 6 a < N except when
a = m (the corresponding simple root is odd).

In general, Bξ(t) is a sum of the products

Ta1,b1(t11) · · ·Ta|ξ|,b|ξ|(t
N−1
ξN−1)p(t)

∏
16a<b<N

ξa∏
i=1

ξb∏
j=1

1
tbj − tai

(3.10)

with various a1, . . . , a|ξ|, b1, . . . , b|ξ| from {1, . . . , N} and polynomials p(t).

3.3 Main technical result

We use the same notation as in section 3.2. Following e.g. [29], introduce a sequence of
polynomials y = (y1, . . . , yN−1) associated to t and ξ,

ya(u) =
ξa∏
i=1

(u− tai ). (3.11)

By convention y0 = yN = 1. We also set κa = 1 for 1 6 a 6 m and κb = −1 for m < b 6 N .
From now on, we assume that Q =

∑N
a=1QaEaa is diagonal. Define the series

I
a,i
ξ,Q(t) = κaQaTaa(tai )ya−1(tai + κa)ya(tai − κa)ya+1(tai )

+ κa+1Qa+1Ta+1,a+1(tai )ya−1(tai )ya(tai + κa+1)ya+1(tai − κa+1)
(3.12)

for 1 6 a < N , 1 6 i 6 ξa.
Given the data: integers a1, . . . , a|ξ|+k−1, b1, . . . , b|ξ|+k−1, c ∈ {1, . . . , N} and i ∈

{1, . . . , ξc}, a sequence s1, . . . , s|ξ|+k−1 which is a permutation of the sequence u, . . . , u−k+1,
t1, . . . , t̂ci , . . . , t

N−1
ξN−1 , where the hat means that the corresponding variable tci is skipped, and

a polynomial p(u; t), consider

Ta1,b1(s1) · · ·Ta|ξ|+k−1,b|ξ|+k−1(s|ξ|+k−1)Ic,iξ,Q(t)p(u; t)

×
N−1∏
a=1

ξa∏
j=1

( 1
u− taj

∏
16j<l6ξa

1
taj − tal

)N−2∏
a=1

ξa∏
j=1

ξa+1∏
l=1

1
(ta+1
l − taj )2 .

(3.13)

Here the factors (u − taj )−1 are considered as power series in u−1. Denote by Iξ,t,k,Q the
C-span of all products (3.13) with all possible data. We also denote by Iξ,t,Q the sum of
Iξ,t,k,Q for k ∈ Z>0.
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For 1 6 a 6 N , define the series

Xaξ,Q(u; t) = QaTaa(u)ya−1(u+ κa)ya(u− κa)
ya−1(u)ya(u) , (3.14)

which are regarded as power series in u−1 with coefficients in Y(glm|n)[t11, . . . , tN−1
ξN−1 ].

Recall that for A,B ∈ Y(glm|n), we write A ' B if A − B ∈ Y+(glm|n), where
Y+(glm|n) is the left ideal of Y(glm|n) generated by the coefficients of the series Tba(u) for
1 6 a < b 6 N .

Theorem 3.3. Let Q be a diagonal matrix. Then we have

Tk,Q(u)Bξ(t) ' Bξ(t)
∑
a

k∏
r=1

κarX
ar
ξ,Q(u− r + 1; t) + Uξ,k,Q(u; t),

where the sum is taken over all k-tuples a = (1 6 a1 < · · · < ab < m + 1 6 ab+1 6 · · · 6
ak 6 N) for various 0 6 b 6 k and Uξ,k,Q(u; t) is in Iξ,t,k,Q.

The theorem is proved in section 4.3.
Note that, due to Lemma 2.1, the order of Xarξ,Q(u−r+1; t) in Theorem 3.3 is irrelevant.

Corollary 3.4. Let Q be a diagonal matrix. Then we have

DQ(u, ∂u)Bξ(t) ' Bξ(t)
−→∏

16a6N

(
1− Xaξ,Q(u; t)e−∂u

)κa + Uξ,Q(u; t),

where Uξ,Q(u; t) belongs to Iξ,t,Q and DQ(u, ∂u) is defined in (3.4).

Proof. Note that if a 6 m, then κa = 1; if a > m, then κa = −1 and we have(
1− Xaξ,Q(u; t)e−∂u

)κa =
∑
k>0

(
Xaξ,Q(u; t)e−∂u

)k
=
∑
k>0

( k∏
r=1

Xaξ,Q(u− r + 1; t)
)
e−k∂u .

(3.15)

Therefore
−→∏

16a6N

(
1− Xaξ,Q(u; t)e−∂u

)κa
=
−→∏

16a6m

(
1− Xaξ,Q(u; t)e−∂u

) −→∏
m<a6N

(
1− Xaξ,Q(u; t)e−∂u

)κa
=
∑
k>0

∑
a

k∏
r=1

(−κar)Xarξ,Q(u− r + 1; t)e−k∂u ,

where a is taken over all k-tuples a = (1 6 a1 < · · · < ab < m+ 1 6 ab+1 6 · · · 6 ak 6 N)
for various 0 6 b 6 k. Here the indices ai 6 m cannot repeat as the corresponding power in(
1− Xaξ,Q(u; t)e−∂u

)κa is κa = 1 while, due to (3.15), the indices ai > m can repeat.
Now the theorem follows from Theorem 3.3 and the first equality in (3.5) by comparing

the coefficients of e−k∂u .
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3.4 Main results for XXX spin chains

In this section, we shall obtain eigenvectors and eigenvalues of transfer matrices when the
underlying Hilbert spaces are tensor products of evaluation modules of the super Yangian
Y(glm|n), proving [42, Conjecture 5.15]. For more general highest weight representations of
Y(glm|n), [42, Conjecture 5.15] is proved similarly for generic situation.

Let ` be a positive integer. Note that ` here has nothing to do with ` in `-weight. Let
M1, . . . ,M` be glm|n-modules, z = (z1, . . . , z`) a sequence of complex numbers. Consider
the tensor product of evaluation Y(glm|n)-modules,

M(z) := M1(z1)⊗ · · · ⊗M`(z`).

Then, by (2.11) and (2.12), the operator

TMk,Q(u; z) = Tk,Q(u)
⌋
M(z) (3.16)

is a rational function in u, z with denominators
∏`
i=1

∏k−1
j=0(u−j−zi). Here and throughout,

the symbol X
⌋
M

should be understood as the linear operator corresponding to the action
of X on M . Note that

TMk,Q(u; z) = strV∧kQ∧k +O(u−1), u→∞.

We call the operators TMk,Q(u; z), k ∈ Z>0, the transfer matrices of the XXX spin chain on
M(z) associated with glm|n.

We are interested in the case when M1, . . . ,M` are highest weight glm|n-modules with
highest weights Λ1, . . . ,Λ`, where Λi = (Λ1

i , . . . ,ΛNi ), and highest weight vectors v1, . . . , v`,
respectively. By convention, we set Λ = (Λ1, . . . ,Λ`).

In this case, the vector v+ = v1 ⊗ · · · ⊗ v` is a singular `-weight vector of Y(glm|n) in
M(z) whose `-weight is given as follows,

Taa(u)v+ = v+ ∏̀
i=1

u− zi + κaΛai
u− zi

, 1 6 a 6 N. (3.17)

Recall Bξ(t) and the notations from section 3.2. Apply Bξ(t) to v+ and renormalize it
so that the function

Bv
+
ξ (t; z) = Bξ(t)v+

N−1∏
a=1

ξa∏
i=1

∏̀
j=1

(tai − zj)
N−2∏
a=1

ξa∏
i=1

ξa+1∏
j=1

(
ta+1
j − tai

)
(3.18)

is a polynomial in t, z, see Lemma 3.2 and (3.10). We call Bv+
ξ (t; z) the off-shell Bethe

vector for the XXX spin chain on M(z) associated with glm|n.
Recall that Q =

∑N
a=1QaEaa is diagonal and let y be the sequence of polynomials

associated to t and ξ. Consider the system of algebraic equations

− κaQa
∏̀
j=1

(
tai − zj + κaΛaj

)
ya−1 (tai + κa) ya (tai − κa) ya+1 (tai )

= κa+1Qa+1
∏̀
j=1

(
tai − zj + κa+1Λa+1

j

)
ya−1 (tai ) ya (tai + κa+1) ya+1(tai − κa+1),

(3.19)
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where 1 6 a < N , 1 6 i 6 ξa, y0 = yN = 1. We call (3.19) the Bethe ansatz equation. We
say that a solution t̃ = (t̃11, . . . , t̃N−1

ξN−1) of the Bethe ansatz equation (3.19) is off-diagonal if
t̃ai 6= t̃aj for any 1 6 a < N , 1 6 i < j 6 ξa and t̃ai 6= t̃a+1

j for any 1 6 a < N − 1, 1 6 i 6 ξa,
1 6 j 6 ξa+1 (also (3.9)).

When t̃ is an off-diagonal solution of the Bethe ansatz equation (3.19), we say that the
vector Bv+

ξ (t̃; z) is an on-shell Bethe vector.
For 1 6 a 6 N , define

Xaξ,Q(u; t; z; Λ) = Qa
ya−1(u+ κa)ya(u− κa)

ya−1(u)ya(u)
∏̀
i=1

u− zi + κaΛai
u− zi

, (3.20)

where y = (y1, . . . , yN−1) is the sequence of polynomials associated to t and ξ.

Theorem 3.5. Let Q be a diagonal matrix. If M1, . . . ,M` are highest weight glm|n-modules
with highest weights Λ1, . . . ,Λ` and t̃ is an off-diagonal solution of the Bethe ansatz equa-
tion (3.19), then we have

Tk,Q(u)Bv+
ξ (t̃; z) = Bv

+
ξ (t̃; z)

∑
a

k∏
r=1

κarX
ar
ξ,Q(u− r + 1; t̃; z; Λ),

where the sum is taken over all k-tuples a = (1 6 a1 < · · · < ab < m + 1 6 ab+1 6 · · · 6
ak 6 N) for various 0 6 b 6 k.

The proof of the theorem is given in section 4.3. The statement was shown in [25,
Theorem 5.4] for the general even case and conjectured in [42, Conjecture 5.15]. The
case of m = n = 1 was previously shown in [7, Theorem 6.1]. It can be thought as the
supersymmetric version of [43, Theorem 5.11] and [44, Theorem 7.5] for type A. When
k = 1, the statement was obtained in [1].

Corollary 3.6. Let Q be a diagonal matrix. If M1, . . . ,M` are highest weight glm|n-
modules with highest weights Λ1, . . . ,Λ` and t̃ is an off-diagonal solution of the Bethe ansatz
equation (3.19), then we have

DQ(u, ∂u)Bv+
ξ (t̃; z) = Bv

+
ξ (t̃; z)

−→∏
16a6N

(
1− Xaξ,Q(u; t̃; z; Λ)e−∂u

)κa
,

where DQ(u, ∂u)is defined in (3.4).

Note that the rational difference operator

DQ(u, ∂u; t̃; z; Λ) :=
−→∏

16a6N

(
1− Xaξ,Q(u; t̃; z; Λ)e−∂u

)κa
(3.21)

was introduced in [5, equation (5.6)], cf. [26, equations (2.13)].

Proposition 3.7. Let Q be the identity matrix. If M1, . . . ,M` are highest weight glm|n-
modules with highest weights Λ1, . . . ,Λ` and t̃ is an off-diagonal solution of the Bethe
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ansatz equation (3.19), then the on-shell Bethe vector Bv+
ξ (t̃; z) is a glm|n-singular vector

in M1 ⊗ · · · ⊗M` with weight(∑̀
i=1

Λ1
i − ξ1,

∑̀
i=1

Λ1
i + ξ1 − ξ2, . . . ,

∑̀
i=1

ΛNi + ξN−1
)
.

The proof of the proposition is given in section 4.3.

4 Proof of main results

We start with preparing a few statements which will be used in the proof.

4.1 Recursion for the Bethe vectors

Since we shall use the nested algebraic Bethe ansatz, many notations will be used for both
glm|n and glm−1|n. To simplify the notation, we use N and N − 1 to distinguish notations
for glm|n and glm−1|n, respectively. We also use 〈N〉 and 〈N − 1〉.

Set W = CN−1 = Cm−1|n. Let w1, . . . ,wN−1 be the standard basis of W and
v1, . . . ,vN of V = CN = Cm|n. Identify W with the subspace of V via the embedding
wa 7→ va+1, 1 6 a < N .

Let P 〈N−1〉 ∈ End(W⊗2) be the graded flip operator and R〈N−1〉(u) = u + P 〈N−1〉

be the rational R-matrix used to define the super Yangian Y(glN−1). The R-matrix R(u)
preserves the subspace W⊗2 ⊂ V⊗2 and the restriction of R(u) on W⊗2 coincides with
R〈N−1〉(u). Recall that W(x) is the evaluation Y(glN−1)-module with the corresponding
homomorphism π(x) : Y(glN−1)→ End(W),

π(x) : T 〈N−1〉(u) 7→ (u− x)−1R〈N−1〉(u− x). (4.1)

Define the embedding ψ : Y(glN−1) ↪→ Y(glN ) by the rule ψ(T 〈N−1〉
ab (u)) = Ta+1,b+1(u),

1 6 a, b 6 N − 1. Note that ψ(Y+(glN−1)) ⊂ Y+(glN ).
Define a map ψ(x1, . . . , xr) : Y(glN−1)→ Y(glN )⊗ End(W⊗r) by

ψ(x1, . . . , xr) = (ψ ⊗ π(xr)⊗ · · · ⊗ π(x1)) ◦ (∆̃〈N−1〉)(r), (4.2)

where (∆̃〈N−1〉)(r) : Y(glN )→ Y(glN )⊗(r+1) is the multiple opposite coproduct. Note that
here we use the opposite coproduct ∆̃ which is consistent with that in [1].

Define a map ψ̃ : Y(glN−1)→ Y(glN )⊗W⊗r by

ψ̃(x1, . . . , xr) = ψ(x1, . . . , xr)(1⊗w⊗r1 ).

The following lemmas are straightforward.

Lemma 4.1. We have ψ̃(x1, . . . , xr)(Y+(glN−1)) ⊂ Y+(glN )⊗W⊗r.

Similarly, define the embedding φ : Y(glN−2) ↪→ Y(glN−1) by the rule

φ(T 〈N−2〉
ab (u)) = T

〈N−1〉
a+1,b+1(u), 1 6 a, b 6 N − 2.

Recall the canonical projection θ : Y(glN )� Y(glN )/Y+(glN ).
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Lemma 4.2. We have (θ ⊗ id⊗r)ψ̃(x1, . . . , xr) ◦ φ = (θ ◦ ψ ◦ φ)⊗w⊗r1 .

Set ξ̄ = (ξ2, . . . , ξN−1) and t̄ = (t21, . . . , t2ξ2 ; . . . ; tN−1
1 , . . . , tN−1

ξN−1).

Proposition 4.3 ([1, Eq. (5.1)]). We have

Bξ(t) = B(1)(t11) · · ·B(ξ1)(t1ξ1)ψ̃(t11, . . . , t1ξ1)
(
B〈N−1〉
ξ̄

(t̄)
)

where B(u) = (T12(u), . . . , T1N (u)) =
∑N−1
a=1 E1,a+1 ⊗ T1,a+1(u) and its coefficients are

treated as elements in Hom(W,C)⊗Y(glm|n).

Proof of Lemma 3.2. By Lemma 4.2, Proposition 4.3, (4.1) and (4.2), the denominator of
θ(Bξ(t)) is at most

N−2∏
a=1

ξa∏
i=1

ξa+1∏
j=1

(
ta+1
j − tai

)
.

Then the lemma follows from (3.8).

4.2 Correspondence between Y(glm|n) and Y(gln|m)

For 1 6 a 6 N , set a′ = N + 1 − a. In the following, we use a′ and b′ for the indices
corresponding to the super Yangian Y(gln|m). Moreover, their parities should be the parities
inherited from Y(gln|m). We have the isomorphism

$ : Y(glm|n)→ Y(gln|m), Tab(u)→ T̃b′a′(u)(−1)|a′||b′|+|b′|.

Here and below, we shall use tilde to indicate the notations corresponding to Y(gln|m). Note
that $ maps Y+(glm|n) to Y+(gln|m).

We now describe the image of the rational difference operator (3.5) under the isomor-
phism $. Recall the transfer matrices associated to symmetrizers,

Tk,Q(u) = (strV⊗k ⊗ id)
(
H(1...k)
{k} Q(1) · · ·Q(k)T (1,k+1)(u) · · ·T (k,k+1)(u− k + 1)

)
,

for k ∈ Z>0.
Set Ṽ = Cn|m. There exists an odd isomorphism ℘ between V and Ṽ which sends va

to ṽa′ , 1 6 a 6 N . Here an odd isomorphism is a Z2-graded isomorphism that switching
parities. The isomorphism ℘ also induces an isomorphism between End(V) and End(Ṽ)
which we again denote by ℘,

℘ : End(V)→ End(Ṽ), Eab 7→ Ea′b′ . (4.3)

Clearly, we have strV = −str
Ṽ
◦ ℘, i.e.,

strV(Eab) = (−1)|a|δab = −(−1)|a′|δab = −str
Ṽ
(Ea′b′) = −(str

Ṽ
◦ ℘)(Eab).

Example 4.4. We have the following

℘ : Q =
N∑
a=1

QaEaa ∈ End(V) 7→ Q =
N∑
a=1

QaEa′a′ ∈ End(Ṽ). (4.4)

Due to (−1)|a| = −(−1)|a′| (i.e. κa = −κ̃a′), the R-matrix R(u) ∈ End(V⊗2) is sent to
−R̃(−u) ∈ End(Ṽ⊗2) under the map ℘ ⊗ ℘. In particular, by Lemma 2.2, the image of
H{k} on V⊗k under the isomorphism ℘⊗k is Ã{k} on Ṽ⊗k.
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Define the matrix

T̃(u) :=
(
T̃ (u)

)† =
N∑

a′,b′=1
Ea′b′ ⊗ T̃b′a′(u)(−1)|a′||b′|+|b′| ∈ End(Ṽ)⊗Y(gln|m)[[u−1]].

From now on, we always extend the isomorphism $ : Y(glm|n)→ Y(gln|m) by the rule

℘⊗k ⊗$ : End(V⊗k)⊗Y(glm|n)→ End(Ṽ⊗k)⊗Y(gln|m).

For brevity, we denote this map again by $. For instance, we have

$(T (u)) = T̃(u). (4.5)

Let Q be given as in (4.4).

Lemma 4.5. We have $(Tk,Q(u)) = (−1)kT̃k,Q(u) and $(Tk,Q(u)) = (−1)kT̃k,Q(u).

Proof. By Q† = Q,
(
Ã{k}

)† = Ã{k}, and the cyclicity of supertrace, we have

$(Tk,Q(u)) = (−1)k(str
Ṽ⊗k
⊗ id)

(
Ã(1...k)
{k} Q(1) · · ·Q(k)T̃(1,k+1)(u) · · · T̃(k,k+1)(u− k + 1)

)
= (−1)k(str

Ṽ⊗k
⊗ id)

(
T̃ (1,k+1)(u) · · · T̃ (k,k+1)(u− k + 1)Q(1) · · ·Q(k)Ã(1...k)

{k}

)
= (−1)k(str

Ṽ⊗k
⊗ id)

(
T̃ (1,k+1)(u) · · · T̃ (k,k+1)(u− k + 1)Ã(1...k)

{k} Q(1) · · ·Q(k)
)

= (−1)k(str
Ṽ⊗k
⊗ id)

(
Q(1) · · ·Q(k)T̃ (1,k+1)(u) · · · T̃ (k,k+1)(u− k + 1)Ã(1...k)

{k}

)
= (−1)kT̃k,Q(u).

The other one is similar.

In particular, by (3.5), we obtain

Corollary 4.6. We have $(DQ(u, ∂u)) =
(
D̃Q(u, ∂u)

)−1
.

We then consider the image of the universal off-shell Bethe vectors (3.6), (3.8) under
the isomorphism $. Let ξ = (ξ1, . . . , ξN−1) be a sequence of nonnegative integers,

t = (t11, . . . , t1ξ1 ; . . . ; tN−1
1 , . . . , tN−1

ξN−1)

a sequence of variables. Set ξ̄ = (ξN−1, . . . , ξ1) and t̄ = (tN−1
ξN−1 , . . . , t

N−1
1 ; . . . ; t1ξ1 , . . . , t11).

By the fact that (R(u))† = R(u) and Yang-Baxter equation (2.6), we have
( −→∏

(a,i)<(b,j)
R(ξ<b+j,ξ<a+i)(tbj − tai )

)†
=

−→∏
(a,i)<(b,j)

R(ξ<b+j,ξ<a+i)(tbj − tai ), (4.6)

where † is taken over all factors.

Lemma 4.7 (cf. [3, Lemma 5.1]). The image of Bξ(t) under the isomorphism $ equals to
B̃ξ̄(t̄) up to sign.
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Proof. Instead of working on Bξ(t), we apply $ to B̂ξ(t), see (3.6). Note that the image of
R(u) ∈ End(V⊗2) under the isomorphism ℘⊗ ℘ is −R̃(−u) ∈ End(Ṽ⊗2). In the following,
we use the symbol ∝ to denote the proportionality up to signs. Then we have

$(B̂ξ(t))
(4.5)
∝ (str⊗ id)

(
T̃(1,|ξ|+1)(t11) · · · T̃(|ξ|,|ξ|+1)(tN−1

ξN−1)

×
−→∏

(a,i)<(b,j)
R̃(ξ<b+j,ξ<a+i)(tai − tbj)E

⊗ξ1

2′1′ ⊗ · · · ⊗ E
⊗ξN−1

N ′,(N−1)′ ⊗ 1
)

(2.5)
∝ (str⊗ id)

((
E⊗ξ

1

1′2′ ⊗ · · · ⊗ E
⊗ξN−1

(N−1)′,N ′ ⊗ 1
)

×
−→∏

(a,i)<(b,j)
R̃(ξ<b+j,ξ<a+i)(tai − tbj)T̃ (1,|ξ|+1)(t11) · · · T̃ (|ξ|,|ξ|+1)(tN−1

ξN−1)
)
,

(2.4)
∝ (str⊗ id)

( −→∏
(a,i)<(b,j)

R̃(ξ<b+j,ξ<a+i)(tai − tbj)T̃ (1,|ξ|+1)(t11) · · ·

× T̃ (|ξ|,|ξ|+1)(tN−1
ξN−1)E⊗ξ

1

1′2′ ⊗ · · · ⊗ E
⊗ξN−1

(N−1)′,N ′ ⊗ 1
)
,

(2.7)
∝ (str⊗ id)

(
T̃ (|ξ|,|ξ|+1)(tN−1

ξN−1) · · · T̃ (1,|ξ|+1)(t11)

×
−→∏

(a,i)<(b,j)
R̃(ξ<b+j,ξ<a+i)(tai − tbj)E

⊗ξ1

1′2′ ⊗ · · · ⊗ E
⊗ξN−1

(N−1)′,N ′ ⊗ 1
)
,

∝ (−1)|ξ|(str⊗ id)
(
T̃ (1,|ξ|+1)(tN−1

ξN−1) · · · T̃ (|ξ|,|ξ|+1)(t11)

×
−→∏

(a,i)<(b,j)
R̃(|ξ|+1−ξ<b−j,|ξ|+1−ξ<a−i)(tai − tbj)E

⊗ξN−1

(N−1)′,N ′ ⊗ · · · ⊗ E
⊗ξ1

1′2′ ⊗ 1
)
,

where we applied conjugation by the operator in End(Ṽ⊗k) which reverse the order of tensor
factors. Now the statement follows from (3.6) and (3.8) for Y(gln|m).

Lemma 4.8. The isomorphism $ sends Iξ,t,Q for Y(glm|n) to Ĩξ̄,t̄,Q for Y(gln|m).

Proof. It suffices to check that $ maps Ia,iξ,Q(t) in (3.12) for Y(glm|n) to −Ĩa
′,j
ξ̄,Q(t̄) for Y(gln|m),

where j = ξa + 1− i. Observing that the sequence of polynomials associated to t̄ and ξ̄ is
ȳ = (yN−1, . . . , y1) and κa for the former case corresponds to −κ̃a′ for the later one, then
the lemma is straightforward.

4.3 Proof of theorem 3.3

We prove Theorem 3.3 by induction on m. We first establish the base case m = 0. By (3.5),
transfer matrices Tk,Q(u) associated to symmetrizers can be expressed in terms of transfer
matrices Tl,Q(u) associated to antisymmetrizers. Now Theorem 3.3 for the base case
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(m = 0) follows from the observations from section 4.2 by applying the isomorphism $

to [25, Theorem 5.4].
For the rest of the induction process, the procedure is almost parallel to that of [25,

section 11], cf. [1]. We provide the details for completeness.
Since V = Cv1 ⊕W and v1 is even, one obtains V∧k = (v1 ∧W∧(k−1))⊕W∧k, where

the first summand is spanned by vectors of the form v1 ∧ va1 ∧ · · · ∧ vak−1 with 2 6 a1 <

· · · < ab 6 m < ab+1 6 · · · 6 ak−1 6 N , while the second one is spanned by vectors of the
form va1 ∧ · · · ∧ vak with 1 6 a1 < · · · < ab 6 m < ab+1 6 · · · 6 ak 6 N , both for various b.
We also identify W∧(k−1) with (v1 ∧W∧(k−1)) by x 7→ v1 ∧ x.

The R-matrix R∧k,∧1(u), see section 2.4, as an operator on V∧k ⊗ V preserves
the subspaces

(v1 ∧W∧(k−1))⊕ Cv1,
(
(v1 ∧W∧(k−1))⊗W

)
⊕ (W∧k ⊗ Cv1), W∧k ⊗W.

Moreover, we have

R∧k,∧1(u)
∣∣
(v1∧W∧(k−1))⊕Cv1

= u+ 1, R∧k,∧1(u)
∣∣
W∧k⊗W = R

〈N−1〉
∧k,∧1 (u),

R∧k,∧1(u)
∣∣(

(v1∧W∧(k−1))⊗W
)
⊕(W∧k⊗Cv1)

=
(
R
〈N−1〉
∧(k−1),∧1(u) S̃t

S̃ u

)
,

(4.7)

where S̃((v1 ∧ x)⊗w) = (−1)|x||w|(w ∧ x)⊗ v1.
Regard T (u) and T∧k(u), see (2.18), as matrices over the super Yangian Y(glm|n)

and consider the block decomposition induced by the decompositions V = Cv1 ⊕W and
V∧k = (v1 ∧W∧(k−1))⊕W∧k,

T (u) =
(
A(u) B(u)
C(u) D(u)

)
, T∧k(u) =

(
Â(u) B̂(u)
Ĉ(u) D̂(u)

)
. (4.8)

For example, A(u) = T11(u), B(u) =
∑N
a=2E1a ⊗ T1a(u), D(u) =

∑N
a,b=2Eab ⊗ Tab(u).

We use the following convenient notations. Denote by HY(L,M) the superspace
Hom(L,M)⊗Y(glm|n) of matrices with noncommuting entries. Call L the domain of those
matrices. For instance, the coefficients of the series B, D, Â, B̂, D̂ belong to HY(W,C),
HY(W,W), HY(W∧(k−1),W∧(k−1)), HY(W∧k,W∧(k−1)), HY(W∧k,W∧k). In particular, if
k = 1, then X̂(u) = X(u) for X = A,B,C,D.

Renormalize R-matrices,

R(u) = 1
u
R〈N−1〉(u), R̃(u) = 1

u+ 1R
〈N−1〉
∧k,∧1 (u), R̂(u) = 1

u
R
〈N−1〉
∧k,∧1 (u)

and define an even linear map

S : W∧(k−1) ⊗W→W∧k, S(x⊗w) = (−1)|x||w|w ∧ x.

We have equalities

B̂[1](u)B̂[2](v) = u− v
u− v + 1B̂

[2](v)B̂[1](v)R̂(12)(u− v) (4.9)

Â(1)(u)B̂[2](v) = B̂[2](v)Â(1)(u)R̃(12)(u− v − 1) + 1
u− v

B̂(u)S[12]A(v), (4.10)

D̂(1)(u)B̂[2](v) = B̂[2](v)D̂(1)(u)R̂(12)(u− v)− 1
u− v

SB̂[1](u)D(2)(v), (4.11)
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in HY(W∧k ⊗W,W∧(k−1)), HY(W∧(k−1) ⊗W,W∧(k−1)), and HY(W∧k ⊗W,W∧k), respec-
tively, where the superscripts in brackets indicate which tensor factors are domains of the
corresponding matrices. In particular, if k = 1, we have

B[1](u)B[2](v) = u− v
u− v + 1B

[2](v)B[1](v)R(12)(u− v) (4.12)

A(1)(u)B(v) = u− v − 1
u− v

B(v)A(1)(u) + 1
u− v

B(u)A(v), (4.13)

D(1)(u)B[2](v) = B[2](v)D(1)(u)R(12)(u− v)− 1
u− v

B[1](u)D(2)(v), (4.14)

see also [1, equations (4.6)-(4.8)].
Let Ř(u) = (u+ (−1)|2|)−1P 〈N−1〉R〈N−1〉(u). For a function f(u1, . . . , ur) with values

in matrices with the domain W⊗r and a simple permutation (i, i+ 1), 1 6 i < r, set

(i,i+1)f(u1, . . . , ur) = f(u1, . . . , ui−1, ui+1, ui, ui+2, . . . , ur)Ř(i,i+1)(ui − ui+1). (4.15)

Note that the matrix Ř(u) satisfies Ř(u)Ř(−u) = 1 and

Ř(12)(u− v)Ř(23)(u)Ř(12)(v) = Ř(23)(v)Ř(12)(u)Ř(23)(u− v).

Due to this, (4.15) extends to an action of the symmetric group Sr on functions f(u1, . . . , ur)
with values in matrices with the domain W⊗r, f 7→ σf , σ ∈ Sr. Thanks to (4.12), the
expression B[1](u1) · · ·B[r](ur) is invariant under this action of Sr.

In general, for a function f(u1, . . . , ur) with values in matrices with the domain
W⊗r, define

RSymrf(u1, . . . , ur) =
∑
σ∈Sr

σf(u1, . . . , ur).

Proposition 4.9 ([25, Proposition 11.5]). We have

Â(0)(u)B[1](u1) · · ·B[r](ur)

= B[1](u1) · · ·B[r](ur)Â(0)R̃(0r)(u− ur − 1) · · · R̃(01)(u− u1 − 1)

+ 1
(r − 1)!B̂(u)RSymr

( 1
u− u1

r∏
i=2

u1 − ui − 1
u1 − ui

S[01]B[2](u2) · · ·B[r](ur)A(u1)
)
,

(4.16)

D̂(0)(u)B[1](u1) · · ·B[r](ur)

= B[1](u1) · · ·B[r](ur)D̂(0)R̂(0r)(u− ur) · · · R̂(01)(u− u1)

− 1
(r − 1)!SB̂

[0](u)RSymr

( 1
u− u1

B[2](u2) · · ·B[r](ur)

×D(1)(u1)R(1r)(u1 − ur) · · ·R
(12)(u1 − u2)

)
,

(4.17)

where the tensor products are counted by 0, 1, . . . , r.

We also need the following statements. Note that formulas here are slightly different
from those in [25] as we are using the opposite coproduct, see (4.2).
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Lemma 4.10 ([25, Lemma 11.6]). We have

D(0)(u)R(01)(u− ur) · · ·R
(0r)(u− u1) = ψ(u1, . . . , ur)

(
T 〈N−1〉(u)

)
,

D̂(0)(u)R̂(01)(u− ur) · · · R̂(0r)(u− u1) = ψ(u1, . . . , ur)
((
T 〈N−1〉(u)

)∧k)
. �

Recall that for A,B ∈ Y(glN ), we write A ' B if A−B ∈ Y+(glN ), where Y+(glN ) is
the left ideal of Y(glN ) generated by the coefficients of the series Tba(u) for 1 6 a < b 6 N .

Lemma 4.11 ([25, Lemma 11.7]). For any X ∈ Y(glN−1), we have

A(u)ψ(u1, . . . , ur)(X) ' ψ(u1, . . . , ur)(X)A(u), (4.18)

Â(0)(u)R̃(01)(u− ur − 1) · · · R̃(0r)(u− u1 − 1)ψ(u1, . . . , ur)(X)

'
r∏
i=1

u− ui − 1
u− ui

A(u)ψ(u1, . . . , ur)
((
T 〈N−1〉(u− 1)

)∧k
X
)
. (4.19)

Proof. Let Y×(glN ) be the left ideal of Y(glN ) generated by the coefficients of the series
Ta1(u) for 2 6 a 6 N . Note that Y×(glN ) is a subideal of Y+(glN ). It is clear from the
definition relations (2.8) that for any Z ∈ Y(glN−1) and C ∈ Y×(glN ), the coefficients of
[T 〈N〉11 (u), ψ(Z)] and Cψ(Z) belong to Y×(glN ). Therefore (4.18) follows from the fact that
A(u) = T

〈N〉
11 (u) and ψ(u1, . . . , ur)(X) ∈ ψ(Y (glN−1)).

It follows from [20, Proposition 2 & Remark 2.4] that the coefficients of entries of the
matrix Â(u)−A(u)D∧k−1(u− 1) are in Y×(glN ). Therefore, by Lemma 4.10, we have

Â(0)(u)R̃(01)(u− ur − 1) · · · R̃(0r)(u− u1 − 1)ψ(u1, . . . , ur)(X)

' A(u)
(
D∧k−1(u− 1)

)[0]
R̂(01)(u− ur − 1) · · · R̂(0r)(u− u1 − 1)ψ(u1, . . . , ur)(X)

' A(u)ψ(u1, . . . , ur)
((
T 〈N−1〉(u− 1)

)∧k−1)
ψ(u1, . . . , ur)(X)

r∏
i=1

u− ui − 1
u− ui

' A(u)ψ(u1, . . . , ur)
((
T 〈N−1〉(u− 1)

)∧k−1
X
) r∏
i=1

u− ui − 1
u− ui

.

Here we also used the fact ψ(u1, . . . , ur) is a homomorphism of superalgebras.

Now we are ready to finish the proof of Theorem 3.5. Let Q =
∑N
a=1QaE

〈N〉
aa ∈ End(V)

and Q =
∑N−1
a=1 Qa+1E

〈N〉
a+1,a+1 ∈ End(W). Set Q̃ = Q

∧(k−1) and Q̂ = Q
∧k. By the definition

of transfer matrices, see (3.1), we have

Tk,Q = Q1strW∧(k−1)(Q̃Â(u)) + strW∧k(Q̂D̂(u)). (4.20)
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Set r = ξ1 and ui = t1i , 1 6 i 6 r. We have

Tk,Q(u)B[1](u1) · · ·B[r](ur) (4.21)

=
−→∏

16i6r
B[i](ui)

(
Q1(strW∧(k−1) ⊗ id⊗r)

(
Q̃(0)Â(0)(u)

←−∏
16j6r

R̃(0j)(u− uj − 1)
)

+ (strW∧k ⊗ id⊗r)
(
Q̂(0)D̂(0)(u)

←−∏
16j6r

R̂(0j)(u− uj)
))

+ 1
(r − 1)!

RSym(1,...,r)
u1,...,ur

[ 1
u− u1

B
[1]
Q (u)

−→∏
26i6r

B[i](ui)
(
Q1

r∏
j=2

u1 − uj − 1
u− uj

A(u1)

−Q(1)
D(1)(u1)

←−∏
26j6r

R
(1j)(u1 − uj)

)]
,

where BQ(u) = (strW∧(k−1) ⊗ id)
(
Q
∧(k−1)

B̂(u)S
)
and the tensor factors for the products

under the traces are counted by 0, 1, . . . , r. Here we also used the equality

(strW∧k ⊗ id)
(
Q
∧kS(B̂(u)⊗ id)

)
= BQ(u)Q

which follows from the supercyclicity of the supertrace and the formula

Q
∧kS = S(Q∧(k−1) ⊗Q).

Note that BQ(u) = B(u) if k = 1.
For an expression f(v) set res

v=w
f(v) =

(
(v−w)f(v)

)∣∣
v=w if the substitution makes sense.

By Lemma 4.10 and the equality res
v=u1

(
R(v − u1)

)
= P 〈N−1〉, we have

Q
(1)
D(1)(u1)

←−∏
26j6r

R
(1j)(u1 − uj)

= res
v=u1

(
(strW ⊗ id)(Q(0)

D(0)(v)
←−∏

16j6r
R

(0j)(v − uj))
)

= res
v=u1

(
(strW ⊗ id)(Q(0)

D(0)(v)
←−∏

16j6r
R

(0,r+1−j)(v − uj))
)

= res
v=u1

(
ψ(u1, . . . , ur)

(
T
〈N−1〉
1,Q (v)

))
.

In the second equality, we used the super cyclicity of super trace which allows us to permute
factors by conjugating the product of super flip operators

−→∏
16i<j6r

(
P 〈N−1〉)(i,j). Similar

conjugations will also be used in the sequel which we shall not write explicitly.
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Therefore, for any X ∈ Y(glN−1), by Lemma 4.11 and (4.21), we have

Tk,Q(u)B[1](u1) · · ·B[r](ur)ψ(u1, . . . , ur)(X) (4.22)

'
−→∏

16i6r
B[i](ui)

(
ψ(u1, . . . , ur)

(
T
〈N−1〉
k−1,Q (u− 1)X

)
Q1A(u)

r∏
j=1

u− uj − 1
u− uj

+ ψ(u1, . . . , ur)
(
T
〈N−1〉
k,Q

(u)X
))

+ 1
(r − 1)!

RSym(1,...,r)
u1,...,ur

[ 1
u− u1

B
[1]
Q (u)

−→∏
26i6r

B[i](ui)

×
(
ψ(u1, . . . , ur)(X)Q1A(u1)

r∏
j=2

u1 − uj − 1
u− uj

− res
v=u1

(
ψ(u1, . . . , ur)

(
T
〈N−1〉
1,Q (v)X

)))]
.

Then we apply both sides of (4.22) to the vector w⊗r1 , set X = B〈N−1〉
ξ̄

(t̄), see Propo-
sition 4.3, and employ the induction assumption. The first step amounts to replacing
ψ(u1, . . . , ur) by ψ̃(u1, . . . , ur), see section 4.1, and changing RSym1,...,r

u1,...,ur to the ordinary
symmetrization Symu1,...,ur due to the fact that Ř(u)w1 ⊗w1 = w1 ⊗w1.

We discuss the next two steps. Recall that A(u) = T11(u), r = ξ1, and ui = t1i ,
1 6 i 6 r. By Lemma 2.1, 4.1, and

π(x)(T 〈N−1〉
aa (u)) =

(
1 + κ2δ1a

u− x

)
w1, 1 6 a 6 N − 1,

we have

ψ̃(t11, . . . , t1ξ1)(T 〈N−1〉
aa (u)) = Ta+1,a+1(u)⊗w⊗r1

ξ1∏
i=1

(
1 + κ2δ1a

u− t1i

)
, 1 6 a 6 N − 1. (4.23)

Then (4.22) becomes

Tk,Q(u)Bξ(t) (4.24)

' Bξ(t)
(
Q1T11(u)

ξ1∏
j=1

u− uj − 1
u− uj

∑
a

k∏
j=2

κajX
aj
ξ,Q(u− j + 1; t)

+
∑
b

k∏
j=1

κbjX
bj
ξ,Q(u− j + 1; t)

)
+ Uξ,k,Q(u; t)

where the sums are taken over all possible a = (2 6 a2 < · · · < ai < m+ 1 6 ai+1 6 · · · 6
ak 6 N) and b = (2 6 b1 < · · · < bj < m+ 1 6 bj+1 6 · · · 6 bk 6 N) for various 1 6 i 6 k
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and 0 6 j 6 k, respectively, and

Uξ,k,Q(u;t) (4.25)

'
−→∏

16i6t1
ξ1

B[i](t1i )
(
ψ̃(t11, . . . , t1ξ1)

(
U
〈N−1〉
ξ̄,k−1,Q(u−1; t̄)

)
Q1T11(u)

ξ1∏
j=1

u−t1j−1
u−t1j

+ψ̃(t11, . . . , t1ξ1)
(
U
〈N−1〉
ξ̄,k,Q

(u; t̄)
))

+ 1
(ξ1−1)!Sym(1,··· ,ξ1)

t11,...,t
1
ξ1

[
1

u−t11
B

[1]
Q (u)

−→∏
26i6ξ1

B[i](t1i )

×
(
ψ̃(t11, . . . , t1ξ1)(B〈N−1〉

ξ̄
(t))

×
(
Q1T11(t11)

ξ1∏
j=2

t11−t1j−1
t11−t1j

−κ2Q2T22(u)y1(t11+κ2)y2(t11−κ2)
y′1(t11)y2(t11)

)

− res
v=u1

(
ψ̃(t11, . . . , t1ξ1)

(
U
〈N−1〉
ξ̄,1,Q (v; t̄)

)))]
.

Here κ2 in y1(t11 + κ2) comes from (4.23). Finally, using the induction hypothesis that
the expressions U〈N−1〉

ξ̄,j,Q
(v; t̄) are contained in I〈N−1〉

ξ̄,j,Q
(v; t̄), Lemmas 2.1, 2.3, 4.1, 4.2, and

formulas (3.13), (4.1), (4.2), we conclude that there exists an element Uξ,k,Q(u; t) in Iξ,t,k,Q
satisfying (4.25), completing the proof of Theorem 3.3 from (4.24).

Proof of Proposition 3.7. Let C(u) =
∑N
a=2Ea1 ⊗ Ta1(u) be the left bottom block of T (u)

in (4.8). Let C(u) =
∑∞
s=1Csu

−s. Similar to the proof of [25, Proposition 6.2], we have

C1B(u)−B(u)C1 = κ1(A(u)−D(u)) = A(u)−D(u).

The rest is parallel to that of [25, Proposition 6.2] which we shall skip the detail.

5 Gaudin models

By taking the classical limits, we obtain the corresponding result for Gaudin models in this
section. We start with preparing notations for the Gaudin model case.

5.1 Current superalgebra

Let glm|n[x] be the Lie superalgebra glm|n ⊗ C[x] of glm|n-valued polynomials in x with the
point-wise supercommutator. Call glm|n[x] the current superalgebra of glm|n.

We write e{r}ab for eab ⊗ xr, r ∈ Z>0. A basis of glm|n[x] is given by e{r}ab , 1 6 a, b 6 N
and r ∈ Z>0. They satisfy the supercommutator relations

[e{r}ab , e
{s}
cd ] = δbce

{r+s}
ad − (−1)(|a|+|b|)(|c|+|d|)δade

{r+s}
cb .
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We identify glm|n with the subalgebra glm|n ⊗ 1 of constant polynomials in glm|n[x], that is
we identify eab in glm|n with e{0}ab in glm|n[x]. Denote by U(glm|n[x]) the universal enveloping
superalgebra of glm|n[x]. Let n±[x] be the corresponding subalgebras in glm|n[x], see (2.3).

We say that a vector in a glm|n[x]-module is called a weight singular vector if n+[x]v = 0
and v is an eigenvector for all e{s}aa , 1 6 a 6 N , s ∈ Z>0.

For any glm|n-module M and z ∈ C, we have the evaluation glm|n[x]-module MLzM at
the evaluation point z with the action given by e{s}ab

⌋
MLzM = zseab

⌋
M
.

Consider the generating series and generating matrix

Lab(u) = (−1)|b|
∞∑
s=0

e
{s}
ba u

−s−1 ∈ U(glm|n[x])[[u−1]], 1 6 a, b 6 N,

L(u) =
N∑

a,b=1
Eab ⊗ Lab(u) ∈ End(V)⊗U(glm|n[x])[[u−1]].

Note that the indices in the generating series are flipped and the signs in the generating
matrix are added so that it matches the evaluation map of super Yangian we used in (2.12).

5.2 Gaudin transfer matrices

To define Gaudin transfer matrices, we first recall basics about pseudo-differential operators.
Let A be a differential superalgebra with an even derivation ∂ : A → A. For r ∈

Z>0, denote the r-th derivative of a ∈ A by a[r]. Define the superalgebra of pseudo-
differential operators A((∂−1)) as follows. Elements of A((∂−1)) are Laurent series in ∂−1

with coefficients in A, and the product is given by

∂∂−1 = ∂−1∂ = 1, ∂ra =
∞∑
s=0

(
r

s

)
a[s]∂

r−s, r ∈ Z, a ∈ A,

where (
r

s

)
= r(r − 1) · · · (r − s+ 1)

s! .

Let

Am|n
u = U(glm|n[x])((u−1)) =

{
s∑

r=−∞
gru

r, gr ∈ U(glm|n[x]), s ∈ Z
}
.

Fix a matrix K = (Kab)16a,b6N ∈ End(V), then the operator in End(V)⊗A
m|n
u ((∂−1

u )),

ZK(u, ∂u) := ∂u −K − L†(u) =
N∑

a,b=1
Eab ⊗

(
δab∂u −Kab − Lab(u)(−1)|a||b|+|a|+|b|

)
is a Manin matrix, see [20, Lemma 3.1] and [28, Lemma 4.2].

Consider the quantum Berezinian Ber(ZK(u, ∂u)) and expand it as an element in
A
m|n
u ((∂−1

u )),

DK(u, ∂u) = Ber(∂u −K − L†(u)) =
∞∑
r=0
Gr,K(u)∂m−n−ru . (5.1)

We call the series Gr,K(u) ∈ A
m|n
u , r ∈ Z>0, the Gaudin transfer matrices.
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Note that this family of series are different from that in [20], see section 6.1. However,
the coefficients of these two family of series generate the same subalgebra of U(glm|n[x])
which we call the Bethe subalgebra of U(glm|n[x]), see [28, Proposition 4.4].

The following properties about Gaudin transfer matrices are known.

Lemma 5.1 ([20]). We have

1. [Gr,K(u),Gs,K(v)] = 0;

2. if K is the zero matrix, then the coefficients of Gr,K(u) commutes with the subalgebra
U(glm|n) of U(glm|n[x]).

5.3 Bethe vectors

LetM1, . . . ,M` be glm|n-modules, z = (z1, . . . , z`) a sequence of complex numbers. Consider
the tensor product of evaluation glm|n[x]-modules MLzM = M1Lz1M ⊗ · · · ⊗M`Lz`M. Then
we have

Lab(u)
⌋
MLzM = κb

∑̀
i=1

e
(i)
ba

u− zi

and the operator GMr,K(u; z) = Gr,K(u)
⌋
ML(zM), for each r ∈ Z>0, is a rational function in u, z

with the denominator
∏`
i=1(u− zi)r. We call the operators GMr,K(u; z) the transfer matrices

of the Gaudin model on MLzM associated with glm|n.
We are interested in the case when M1, . . . ,M` are highest weight glm|n-modules with

highest weights Λ1, . . . ,Λ`, where Λi = (Λ1
i , . . . ,ΛNi ), and highest weight vectors v1, . . . , v`.

Set Λ = (Λ1, . . . ,Λ`). In this case, the vector v+ = v1 ⊗ · · · ⊗ v` is a singular weight vector
of U(glm|n[x]) in MLzM,

Laa(u)v+ = v+κa

(∑̀
i=1

Λai
u− zi

)
, 1 6 a 6 N. (5.2)

Now we assume that K =
∑N
a=1KaEaa ∈ End(V) is diagonal and use similar notations

as in section 3.2.
Let ξ = (ξ1, . . . , ξN−1) be a sequence of nonnegative integers. Consider an expression

Fξ(t) in |ξ| variables t = (t11, . . . , t1ξ1 , . . . , t
N−1
1 , . . . , tN−1

ξN−1) with coefficients in U(glm|n[x])
which will be defined later in (6.10) of section 6.3. Here we only need to notice that Fξ(t)
is obtained from Bξ(t) by taking certain gradation, see Proposition 6.9. Apply Fξ(t) to v+

and renormalize it so that the function

Fv
+
ξ (t; z) = Fξ(t)v+

N−1∏
a=1

ξa∏
i=1

∏̀
j=1

(tai − z`)
N−2∏
a=1

ξa∏
i=1

ξa+1∏
j=1

(ta+1
j − tai ) (5.3)

is a polynomial in t, z, see section 6.3. We call Fv+
ξ (t; z) an off-shell Bethe vector for the

Gaudin model on MLzM associated with glm|n.
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Let y = (y1, . . . , yN−1) be the sequence of polynomials associated to t and ξ. The
system of algebraic equations in |ξ| variables t,

Ka −Ka+1 +
∑̀
j=1

κaΛaj − κa+1Λa+1
j

tai − zj
+
κay

′
a−1(tai )

ya−1(tai )

− (κa + κa+1)y′′a(tai )
2y′a(tai )

+
κa+1y

′
a+1(tai )

ya+1(tai )
= 0,

(5.4)

1 6 a 6 N − 1, 1 6 i 6 ξa, is called the Bethe ansatz equation, see [16, equation (4.2)],
which is usually written in the form,

Ka,iξ,K(t; z; Λ) = 0, (5.5)

where

Ka,iξ,K(t; z; Λ) = Ka −Ka+1 +
∑̀
j=1

κaΛaj − κa+1Λa+1
j

tai − zj
+
ξa−1∑
j=1

κa

tai − t
a−1
j

−
ξa∑

j=1,j 6=i

κa + κa+1
tai − taj

+
ξa+1∑
j=1

κa+1

tai − t
a+1
j

,

(5.6)

1 6 a < N , and 1 6 i 6 ξa. We always assume that for a solution t̃ = (t̃11, . . . , t̃N−1
ξN−1) of

system (5.5), any denominator appearing in (5.6) does not vanish unless the corresponding
numerator is zero. A solution t̃ of (5.4) is called isolated if there is a ball in C|ξ| about t̃
which contains no solutions to (5.4) other than t̃.

When t̃ is a solution of the Bethe ansatz equation (5.4), we say that the vector Fv+
ξ (t̃; z)

is an on-shell Bethe vector.

5.4 Main results for Gaudin models

For 1 6 a 6 N , define

Xaξ,K(u; t; z; Λ) = Ka + κa

(∑̀
j=1

Λaj
u− zj

+
y′a−1(u)
ya−1(u) −

y′a(u)
ya(u)

)
, (5.7)

where y = (y1, . . . , yN−1) is the sequence of polynomials associated to t and ξ.

Theorem 5.2. Let K be a diagonal matrix. If M1, . . . ,M` are highest weight glm|n-modules
with highest weights Λ1, . . . ,Λ` and t̃ is an isolated solution of the Bethe ansatz equation (5.5),
then we have

DK(u, ∂u)Fv+
ξ (t̃; z) = Fv

+
ξ (t̃; z)

−→∏
16a6N

(
∂u − Xaξ,K(u; t̃; z; Λ)

)κa ,
where DK(u, ∂u) is defined in (5.1).
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The theorem is proved in section 6.4. It is an analog of [45, Theorem 3] for supersym-
metric case in type A. Note that the condition for the solution being isolated in Theorem 5.2
can be removed. If the solution is not isolated, then the statements can be proved similarly
to [25, Theorems 8.6 & 9.2] as we have done for the XXX spin chain case in sections 3
and 4. The base case of the induction similar to the beginning of section 4.3 for Gaudin
models can be established using the results from section 6.5. The theorem for the case of
m = n = 1 was announced in [46, Theorem 4.11].

Note that the pseudo-differential operator

DQ(u, ∂u; t̃; z; Λ) :=
−→∏

16a6N

(
∂u − Xaξ,K(u; t̃; z; Λ)

)κa (5.8)

was introduced in [29, equation (6.5)].

Proposition 5.3 (cf. [16, Theorem 4.3]). Let K be the zero matrix. If M1, . . . ,M` are
highest weight glm|n-modules with highest weights Λ1, . . . ,Λ` and t̃ is an isolated solution of
the Bethe ansatz equation (5.5), then the on-shell Bethe vector Fv+

ξ (t̃; z) is a glm|n-singular
vector in M1 ⊗ · · · ⊗M` with weight

(∑̀
i=1

Λ1
i − ξ1,

∑̀
i=1

Λ1
i + ξ1 − ξ2, . . . ,

∑̀
i=1

ΛNi + ξN−1
)
.

The proposition is proved in section 6.4.

6 More on Gaudin models

6.1 More on transfer matrices

Recall that N = m − n which is the supertrace of identity operator on V and also the
super-dimension of V. Note that here N may be negative. In the rest of this paper, our
convention for ratios of factorials involving N is that we first assume N is a formal variable,
then cancel common factors, and finally plug in N = m− n.

Lemma 6.1. For any l > k, and any distinct i1, . . . , ik ∈ {1, . . . , l}, we have

(strV⊗l ⊗ id)
(
Q(i1) · · ·Q(ik)T (i1,l+1)(u) · · ·T (ik,l+1)(u− k + 1)A(1···l)

{l}

)
= k!(N − k)!

l!(N − l)! Tk,Q(u).

Proof. If l = k and ij = j for all 1 6 j 6 k, then the statement becomes

(strV⊗k ⊗ id)
(
A(1...k)
{k} Q(1) · · ·Q(k)T (1,k+1)(u) · · ·T (k,k+1)(u− k + 1)

)
= Tk,Q(u),

which trivially follows from (3.1). For general cases, using the equalities

P (ij)Q(i)T (i,l+1) = Q(j)T (j,l+1)P (ij), P (ij)A{l} = A{l}P (ij),
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the cyclicity of supertrace, and the formula

(id⊗k ⊗ strV⊗(l−k))A{l} = k!(N − k)!
l!(N − l)! A{k},

it reduces to show the particular case when l = k and ij = j for all 1 6 j 6 k.

Remark 6.2. Note that since k 6 l, the denominator would not be zero after cancellation.
However, unlike the even case, the number k!(N − k)!

l!(N − l)! can be zero for certain l and k ∈

{1, . . . , l}.

Define another family of difference operators in Y(glm|n)[[u−1, ∂u]], cf. [25, 40],

Dl,Q(u, ∂u) = (strV⊗l ⊗ id)
(( −→∏

16i6l

(
1−Q(i)T (i,l+1)(u)e−∂u

))
A(1···l)
{l}

)
(6.1)

for l ∈ Z>0. By Lemma 6.1, we have the following corollary.

Corollary 6.3. For l ∈ Z>0, we have

Dl,Q(u, ∂u) = 1
(N − l)!

l∑
k=0

(−1)k (N − k)!
(l − k)! Tk,Q(u)e−k∂u .

Remark 6.4. It follows from (2.17) and (A{l})2 = A{l} that

−→∏
16i6l

(
1−Q(i)T (i,l+1)(u)e−∂u

)
A(1···l)
{l}

= A(1···l)
{l}

−→∏
16i6l

(
1−Q(i)T (i,l+1)(u)e−∂u

)
A(1···l)
{l} ,

see also [20, Proposition 2.1].

There are also another family of Gaudin transfer matrices, see [20], defined as follows.
For each l ∈ Z>0, consider the formal differential operator,

Dl,K(u, ∂u) = (strV⊗l ⊗ id)
(( −→∏

16i6l

(
∂u −K(i) − L(i,l+1)(u)

))
A(1···l)
{l}

)
. (6.2)

Let Glk,K(u) ∈ U(glm|n[x])[[u−1]], l ∈ Z>0 and 1 6 k 6 l, be the coefficients of Gl,K(u, ∂u),

Dl,K(u, ∂u) =
l∑

k=0
(−1)kGlk,K(u)∂l−ku . (6.3)

Let w be a formal variable. It is known from [20, Theorem 2.13] that

Ber(1 + wZK(u, ∂u)) =
∞∑
k=0

wkDl,K(u, ∂u). (6.4)
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6.2 Filtration on Y(glm|n)

Consider a filtered superalgebra A with an ascending filtration · · · ⊂ As−1 ⊂ As ⊂ As+1 ⊂
· · · ⊂ A. Denote by grAs : As → As/As−1 the natural projection and identify the quotient
spaces with the corresponding homogeneous subspaces in the graded superalgebra

grA =
⊕
r∈Z

Ar/Ar−1.

Then grAs is regarded as a map from As to grA. We will simply write grs for grAs when the
superalgebra A is clear in the context. The superalgebra End(V)⊗A also has a filtration
induced from that on A.

The super Yangian Y(glm|n) has a degree function defined by deg T {s}ab = s − 1 for
1 6 a, b 6 N and s ∈ Z>0. Then Y(glm|n) is a filtered superalgebra with Y(glm|n)s being
the subspace spanned by elements whose degrees are at most s. It is well known that
gr(Y(glm|n)) = U(glm|n[x]) and grs−1(T {s}ab ) = (−1)|b|e{s}ba .

The filtration on Y(glm|n) can be extended to the superalgebra Y(glm|n)[[u−1, ∂u]]:
deg u−1 = deg ∂u = −1. Clearly, gr(Y(glm|n)[[u−1, ∂u]]) = U(glm|n[x])[[u−1, ∂u]]. The series
Tab(u)− δab ∈ Y(glm|n)[[u−1, ∂u]] has degree −1 and

gr−1(Tab(u)− δab) = Lab(u), gr−1(T (u)− 1) = L(u). (6.5)

We assume further that Q in (3.1) is a series in End(V)[[ζ]] instead of simply in End(V).
Then transfer matrices are power series in u−1 and ζ with coefficients in Y(glm|n). Hence we
consider transfer matrices are elements in Y(glm|n)[[u−1, ∂u, ζ]]. Results and construction
adapting to this new assumption naturally generalizes to the described setting. Extend
further the filtration on Y(glm|n)[[u−1, ∂u]] to Y(glm|n)[[u−1, ∂u, ζ]] by deg ζ = −1. Similarly,
in the Gaudin model case, we assume K to be an element in End(V)[[ζ]].

By convention, set T0,Q(u) = 1. For any k ∈ Z>0, set

Sk,Q(u) = 1
(N − k)!

k∑
i=0

(−1)k−i (N − i)!(k − i)! Ti,Q(u).

Equivalently, for k, l ∈ Z>0, Sk,Q(u) satisfy

l∑
k=0

(−1)k (N − k)!
(l − k)! Sk,Q(u)yl−k =

l∑
i=0

(−1)i (N − i)!(l − i)! Ti,Q(u)(y + 1)l−i, (6.6)

where y is a formal variale.

Proposition 6.5. Let deg(Q− 1) 6 −1 with K = gr−1(Q− 1). Then deg(Sk,Q(u)) = −k
for all k ∈ Z>0. Moreover, for any l ∈ Z>k, we have

gr−k(Sk,Q(u)) = Gkk,K(u), (N − k)!
(N − l)!(l − k)!gr−k(Sk,Q(u)) = Glk,K(u). (6.7)

In particular, we have
(N − k)!

(N − l)!(l − k)!Gkk,K(u) = Glk,K(u),

– 32 –



J
H
E
P
0
4
(
2
0
2
3
)
1
2
0

Dl,K(u, ∂u) = 1
(N − l)!

l∑
k=0

(−1)k (N − k)!
(l − k)! Gkk,K(u)∂l−ku .

Proof. Setting y = e∂u − 1 in (6.6), by Corollary 6.3, we have
l∑

k=0
(−1)k (N − k)!

(l − k)! Sk,Q(u)(e∂u − 1)l−k = (N − l)!Dl,Q(u, ∂u)el∂u . (6.8)

Then one has

(N − k)!Sk,Q(u) =
k∑
i=0

(−1)i (N − i)!(k − i)!Di,Q(u, ∂u)ei∂u(e∂u − 1)k−i (6.9)

by the standard identity
s∑
r=0

(−1)r

r!(s− r)! = 0, s > 1.

Note that deg(T (u)− 1) = deg(e∂u − 1) = −1 and deg(Q− 1) 6 −1, we conclude from (6.1)
that deg(Di,Q(u, ∂u)) = −i. Therefore, deg(Sk,Q(u)) = −k by (6.9).

Using gr−1(e∂u − 1) = ∂u and gr−1(T (u) − 1) = L(u), see (6.5), and computing
gr−l(Dl,Q(u, ∂u)) by (6.8) and (6.1), we obtain that

(N − l)!Dl,K(u, ∂u) =
l∑

k=0
(−1)k (N − k)!

(l − k)! gr−k(Sk,Q(u))∂l−ku ,

where we also used (6.2). Now (6.7) follows from (6.3). The rests are now obvious.

Remark 6.6. Note that the last two formulas can also be proved by using similar methods
used in Lemma 6.1 and Corollary 6.3.

6.3 Recurrence of Bethe vectors

In this section, we define similar maps

ψ, ψ(x1, . . . , xr), ψ̃(x1, . . . , xr)

for U(glm|n[x]). We shall use the same notations for the counterparts in section 4.1.
Define the embedding ψ : U(glN−1[x]) ↪→ U(glN [x]) by the rule

ψ(L〈N−1〉
ab (u)) = La+1,b+1(u), 1 6 a, b 6 N − 1.

Define a map ψ(x1, . . . , xr) : U(glN−1[x])→ U(glN [x])⊗ End(W⊗r) by

ψ(x1, . . . , xr)(L〈N−1〉
ab ) = La+1,b+1(u)⊗ 1⊗r

+
r∑
i=1

1⊗ 1⊗(i−1) ⊗ E〈N−1〉
ba ⊗ 1⊗(r−i)

u− xr+1−i
.

Define a map ψ̃ : U(glN−1[x])→ U(glN [x])⊗W⊗r by

ψ̃(x1, . . . , xr) = ψ̃(x1, . . . , xr) = ψ(x1, . . . , xr)(1⊗w⊗r1 ).

The following lemmas are straightforward.
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Lemma 6.7. We have ψ̃(x1, . . . , xr)(U(glN−1[x]n〈N−1〉
± [x]) ⊂ U(glN [x]n±[x])⊗W⊗r.

Similarly, define the embedding φ : U(glN−2[x]) ↪→ U(glN−1[x]) by the rule

φ(L〈N−2〉
ab (u)) = L

〈N−1〉
a+1,b+1(u), 1 6 a, b 6 N − 2.

Lemma 6.8. We have ψ̃(x1, . . . , xr) ◦ φ = (ψ ◦ φ)⊗w⊗r1 .

Recall that ξ̄ = (ξ2, . . . , ξN−1) and t̄ = (t21, . . . , t2ξ2 ; . . . ; tN−1
1 , . . . , tN−1

ξN−1). Define Fξ(t)
inductively by

Fξ(t) = F (1)(t11) · · ·F (ξ1)(t1ξ1)ψ̃(t11, . . . , t1ξ1)
(
F〈N−1〉
ξ̄

(
t̄)
)
, (6.10)

where F (u) = (L12(u), . . . , L1N (u)) =
∑N−1
a=1 E1,a+1 ⊗ L1,a+1(u) and its coefficients are

treated as elements in Hom(W,C)⊗U(glm|n[x]).
Recall from section 6.2 the degree function deg defined on Y(glm|n)[[u−1, ∂i, ζ]] by

deg u−1 = deg ∂u = deg ζ = −1. Extend the degree function to rational expressions in t
with coefficients in Y(glm|n)[[u−1, ∂i, ζ]] by setting deg tai = 1 and deg(tai − tbj)−1 = −1 for
all possible a, b, i, j. Note that the maps ψ, ψ(t11, . . . , t1ξ1

), and ψ̃(t11, . . . , t1ξ1
) respect the

degree function and the projections to the associated graded superalgebras. For instance, if
X ∈ Y(glm|n) and degX = k, then degψ(X) = k and ψ(grkX) = grk(ψ(X)).

Proposition 6.9. We have deg(B̃ξ(t)) = −|ξ| and gr−|ξ|(B̃ξ(t)) = Fξ(t).

Proof. The statements follow from Proposition 4.3, the equality (6.5), and the definition of
Fξ(t) by induction.

6.4 Proof of theorem 5.2

We show Theorem 5.2 by taking the classical limits of Corollary 3.6. We start with recalling
the objects we would like to compare between XXX spin chains and Gaudin models.

Let M1, . . . ,M` be highest weight glm|n-modules with highest weights Λ1, . . . ,Λ`, z =
(z1, . . . , z`) a sequence of complex numbers. Recall the tensor product of evaluation Y(glm|n)-
modulesM(z) = M1(z1)⊗· · ·⊗M`(z`), the rational difference operator DQ(u, ∂u) defined by
quantum Berezinian, see (3.4) and (3.5), and the off-shell Bethe vector Bv+

ξ (t; z), see (3.18).
Consider the rational functions

Q
a,i
ξ,Q(t; z; Λ) = Qa

Qa+1

∏̀
j=1

tai − zj + κaΛaj
tai − zj + κa+1Λa+1

j

ξa−1∏
j=1

tai − t
a−1
j + κa

tai − t
a−1
j

×
ξa∏

j=1,j 6=i

tai − taj − κa
tai − taj + κa+1

ξa+1∏
j=1

tai − t
a+1
j

tai − t
a+1
j − κa+1

,

for 1 6 a < N and 1 6 i 6 ξa, cf. the Bethe ansatz equation (3.19), the rational functions
Xaξ,Q(u; t; z; Λ), see (3.20), and the rational difference operator DQ(u, ∂u; t; z; Λ), see (3.21),
which encodes the eigenvalues of transfer matrices for XXX spin chains, see Corollary 3.6.
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Similarly, we have the corresponding objects for Gaudin models. Recall the tensor
product of evaluation glm|n[x]-modulesMLzM = M1Lz1M⊗· · ·⊗M`Lz`M, the pseudo-differential
operator DK(u, ∂u) defined by quantum Berezinian, see (5.1), and the off-shell Bethe vector
Fv+
ξ (t; z). Consider the rational functions Ka,iξ,K(t; z; Λ), see (5.6), the rational functions

Xaξ,Q(u; t; z; Λ), see (5.7), and the pseudo-differential operator DK(u, ∂u; t; z; Λ), see (5.8).
The objects associated to Gaudin models can be obtained from the corresponding

objects for the XXX spin chains by taking the following limit.
Note that M(z) and MLzM share the same space which we denote by M . Then the

following operators

TMab (u; z) := Tab(u)
⌋
M(z), LMab (u; z) := Lab(u)

⌋
MLzM,

DMQ (u, ∂u; z) = DQ(u, ∂u)
⌋
M(ε−1z), DM

Q (u, ∂u; z) := DQ(u, ∂u)
⌋
MLzM

can be regarded as operators on M depending on the corresponding parameters.
Set ε−1z = (ε−1z1, . . . , ε

−1z`) and ε−1t = (ε−1t11, . . . , ε
−1tN−1

ξN−1).

Proposition 6.10. Let Q = 1 + εK. As ε→ 0, we have

TMab (ε−1u;ε−1z) = δab+κbεLMab (u;z)+O(ε2), (6.11)

Q
a,i
ξ,Q(ε−1t;ε−1z;Λ) = 1+εKa,iξ,K(t;z;Λ)+O(ε2), (6.12)

DMQ (ε−1u,ε∂u;ε−1z) = εm−nDM
Q (u,∂u;z)+O(εm−n+1), (6.13)

Dl,Q(ε−1u,ε∂u;ε−1t;ε−1z;Λ) = εlDl,K(u,∂u;t;z;Λ)+O(εl+1), (6.14)

DQ(ε−1u,ε∂u;ε−1t;ε−1z;Λ) = εm−nDK(u,∂u;t;z;Λ)+O(εm−n+1), (6.15)

Bv
+
ξ (ε−1t;ε−1z)

∏̀
i=1

N−1∏
a=1

ξa∏
j=1

ε

taj−zi

N−2∏
a=1

ξa∏
i=1

ξa+1∏
j=1

ε

ta+1
j −tai

= ε|ξ|Fv
+
ξ (t;z)+O(ε|ξ|+1). (6.16)

Proof. The equalities (6.11) and (6.12) are straightforward. The formulas (6.13), (6.14),
(6.15) are proved similarly as in Theorem 6.5. The formula (6.16) essentially follows from
Proposition 6.9.

Now Theorem 5.2 and Proposition 5.3 follow from Corollary 3.6 and Proposition 3.7,
respectively, by taking the classical limit using the previous proposition.

6.5 Correspondence between U(glm|n[x]) and U(gln|m[x])

In this section, we discuss the symmetry between Gaudin models for glm|n and gln|m, cf.
section 4.2. We shall use similar conventions as in section 4.2.

We have the following isomorphism

ϑ : U(glm|n[x])→ U(gln|m[x]), Lab(u) 7→ L̃b′a′(u)(−1)|a′||b′|+|b′|.

For each l ∈ Z>0, consider another formal differential operator,

Dl,K(u, ∂u) = (strV⊗l ⊗ id)
(( −→∏

16i6l

(
∂u −K(i) − L(i,l+1)(u)

))
H(1···l)
{l}

)
. (6.17)
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It is known from [20, Theorem 2.13] that(
Ber(1 + wZK(u, ∂u))

)−1 =
∞∑
k=0

(−1)kwkDl,K(u, ∂u). (6.18)

Recall the isomorphism ℘ : End(V)→ End(Ṽ) from (4.3). Again, we always extend the
isomorphism ϑ : U(glm|n[x])→ U(gln|m[x]) by the rule

℘⊗k ⊗$ : End(V⊗k)⊗U(glm|n[x])→ End(Ṽ⊗k)⊗U(gln|m[x]).

For brevity, we denote this map again by ϑ. For instance, we have

ϑ(L(u)) = L̃(u) :=
N∑

a′,b′=1
Ea′b′ ⊗ L̃b′a′(u)(−1)|a′||b′|+|b′| ∈ End(Ṽ)⊗U(glm|n[x])[[u−1]].

We have the following analogous results whose proofs are similar to that of the super Yangian
case. For a diagonal matrix K =

∑N
a=1KaEaa ∈ End(V), set K =

∑N
a=1KaEa′a′ ∈ End(Ṽ),

i.e. K = ℘(K).

Lemma 6.11. We have

ϑ(Dl,K(u, ∂u)) = (−1)lD̃l,K(u, ∂u), ϑ(Dl,K(u, ∂u)) = (−1)lD̃l,K(u, ∂u).

Proof. The lemma is similar to that of Lemma 4.5 using the isomorphism ℘ and the fact
that supertranspose respects the supertrace.

Corollary 6.12. We have ϑ(Ber(1 + wZK(u, ∂u))) =
(
Ber(1 + wZ̃K(u, ∂u))

)−1.

Corollary 6.13. We have ϑ(Ber(ZK(u, ∂u))) =
(
Ber(Z̃K(u, ∂u))

)−1.

Proof. Recall that Am|n
u = U(glm|n[x])((u−1)). Let Am|n

u [∂u] ⊂ A
m|n
u ((∂−1

u )) be the subalge-
bra of differential operators,

Am|n
u [∂u] =

{
r∑
i=0

ai∂
i
u, r ∈ Z>0, ai ∈ Am|n

u

}
.

Define a linear map Φm|n : Am|n
u ((∂−1

u ))→ A
m|n
u [∂u],

Φm|n :
r∑

i=−∞
ai∂

i
u →

r∑
i=−∞

ai(w−1 + ∂u)i,

where the right hand side is expanded by the rule: (w−1 + ∂u)i =
∑∞
j=0

(i
j

)
∂juw

−i+j . Then
the map Φm|n is an injective homomorphism of superalgebras, see [28, Lemma 4.1]. It is
also clear that ϑ ◦ Φm|n = Φn|m ◦ ϑ. By the proof of [28, Proposition 4.4], we have

wm−nΦn|m(ϑ(Ber(ZK(u, ∂u)))) = ϑ(wm−nΦm|n(Ber(ZK(u, ∂u))))
= ϑ(Ber(1 + wZK(u, ∂u)))

=
(
Ber(1 + wZ̃K(u, ∂u))

)−1

=
(
wn−mΦn|m(Ber(Z̃K(u, ∂u))

)−1

= wm−nΦn|m((Ber(Z̃K(u, ∂u)))−1).

Now the claim follows from the injectivity of Φn|m.
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Lemma 6.14. The image of Fξ(t) under the isomorphism ϑ equals to F̃ξ̄(t̄) up to sign.

Proof. The statement follows from the fact that $ and ϑ preserve the degrees and
the equality

grn|m−|ξ| ◦$ = ϑ ◦ grm|n−|ξ|,

where grm|ns and grn|ms are the graded maps for Y(glm|n) and Y(gln|m), respectively.
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