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Universality in anomaly flow by an Aharonov–Bohm phase θH is shown in the flat M4 ×
(S1/Z2) spacetime and in the Randall–Sundrum (RS) warped space. We analyze the SU(2)
gauge theory with doublet fermions. With orbifold boundary conditions the U(1) part of
the gauge symmetry remains unbroken at θH = 0 and π . Chiral anomalies smoothly vary
with θH in the RS space. It is shown that the anomaly coefficients associated with this
anomaly flow are expressed in terms of the values of the wave functions of the gauge fields
at the UV and IR branes in the RS space. The anomaly coefficients depend on θH, the warp
factor of the RS space, and the orbifold boundary conditions for fermions, but not on the
bulk mass parameters of fermions.
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1. Introduction
In gauge–Higgs unification (GHU), gauge symmetry is dynamically broken by an Aharonov–
Bohm (AB) phase, θH, in the fifth dimension [1–7]. It has been shown recently that chiral
anomalies [8–11] in GHU flow with θH, i.e. anomaly coefficients smoothly change with θH in
the Randall–Sundrum (RS) warped space [12]. In the GUT-inspired SO(5) × U(1)X × SU(3)C

GHU models in the RS space, chiral quarks and leptons at θH = 0 are transformed to vector-like
fermions at θH = π [13]. As θH varies from 0 to π , SU(2)L × U(1)Y × SU(3)C gauge symmetry is
converted to SU (2)R × U (1)Y ′ × SU (3)C gauge symmetry. Chiral fermions appearing as zero
modes of fermion multiplets in the spinor representation of SO(5) at θH = 0 become massive
fermions having vector-like gauge couplings at θH = π . The chiral anomaly induced by each
quark or lepton at θH = 0 smoothly changes and vanishes at θH = π .

In the RS space, each fermion multiplet is characterized by its own dimensionless bulk mass
parameter c which controls the mass and wave function of the fermion. In Ref. [12] it was
recognized by numerical evaluation that the anomaly coefficients depend on θH, but not on the
bulk mass parameter c. This fact leads to a puzzle. How can the θH dependence of the anomaly
coefficients be determined and expressed independently of the details of the fermion field? This
is the main theme addressed in this paper. We show that the anomaly coefficients at general θH

are expressed in terms of the values of the wave functions of gauge fields at the UV and IR
branes in the RS space. The anomaly coefficients depend on θH, the warp factor zL of the RS
space, and the boundary conditions of the fermion field, but not on the bulk mass parameter
c. The universality of the anomaly flow is observed.

We stress that the universal behavior is highly nontrivial. In GHU in the RS space the gauge
couplings of each fermion mode depend on θH, zL, and c. To find the total anomaly coefficients
one needs to sum all contributions coming from triangle loop diagrams in which all possible
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Kaluza–Klein (KK) excited modes of fermions are running. The universality of the anomaly
flow is established only when all the contributions are taken into account.

The phenomenon of anomaly flow is different from that of anomaly inflow in which anoma-
lies and fermion zero modes on defects such as strings and domain walls or on the boundary of
spacetime are intertwined and related to each other [14–16]. In orbifold gauge theory the gauge
couplings of fermion modes vary with the AB phase θH in the fifth dimension, and anomalies
also vary with θH. We are going to show that the θH dependence of the anomalies is expressed
by a holographic formula involving the values of the wave functions of gauge fields.

In this paper we analyze SU(2) GHU models in the flat M4 × (S1/Z2) spacetime and in the RS
warped space with orbifold boundary conditions which break SU(2) to U(1). The U(1) gauge
symmetry survives at θH = 0 and π . Fermion doublet multiplets have zero modes at θH = 0
or π , depending on their boundary conditions. Chiral anomalies appear in various combina-
tions of KK modes of the gauge fields. In the flat M4 × (S1/Z2) spacetime all four-dimensional
(4D) gauge couplings are determined analytically, but the KK mass spectrum of the gauge and
fermion fields exhibits level crossings as θH varies. In the RS space no level crossing occurs in
the spectrum, and all gauge couplings vary smoothly with θH. The flat-spacetime limit of the
RS space gives rise to singular behavior of the anomalies as functions of θH, reproducing the
known result in the flat spacetime.

In Sect. 2, SU(2) GHU models are introduced in both the flat M4 × (S1/Z2) spacetime and
in the RS space. In Sect. 3, chiral anomalies are evaluated and expressed in a simple form
which involves the values of the wave functions of gauge fields at the UV and IR branes and
the boundary conditions of fermion fields. In Sect. 4, conditions for anomaly cancellation are
derived. Section 5 is devoted to a summary and discussions.

2. SU(2) GHU
We consider SU(2) GHU in the flat M4 × (S1/Z2) spacetime with coordinate xM (M = 0, 1, 2,
3, 5, x5 = y) whose action is given by

Iflat =
∫

d4x
∫ L

0
dyLflat,

Lflat = −1
2

Tr FMNF MN + �γ MDM�, (1)

where Lflat(xμ, y) = Lflat(xμ, y + 2L) = Lflat(xμ, −y). Here, AM = 1
2

∑3
a=1 Aa

Mτ a, where the τ a

are Pauli matrices, and FMN = ∂MAN − ∂NAN − igA[AM, AN]. We adopt the metric ηMN =
diag (−1, 1, 1, 1, 1). � is an SU(2) doublet and DM = ∂M − igAAM; � = i�†γ 0. Orbifold
boundary conditions are given, with (y0, y1) = (0, L), by(

Aμ

Ay

)
(x, y j − y) = Pj

(
Aμ

−Ay

)
(x, y j + y)P−1

j ,

�(x, y j − y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+Pjγ
5�(x, y j + y) (type 1A),

−Pjγ
5�(x, y j + y) (type 1B),

(−1) jPjγ
5�(x, y j + y) (type 2A),

(−1) j+1Pjγ
5�(x, y j + y) (type 2B),

P0 = P1 = τ 3. (2)
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The SU(2) symmetry is broken to U(1) by the boundary conditions in Eq. (2). A3
μ, A1,2

y are
parity even at both y0 and y1, and have constant zero modes. The zero mode of A3

μ is the 4D
U(1) gauge field, and the 4D gauge coupling is given by

g4 = gA√
L

. (3)

We denote the doublet field as � = (u, d)t. In type 1A (1B), uR and dL (uL and dR) are parity
even at both y0 and y1, and have zero modes, leading to chiral structure.

The zero modes of A1,2
y may develop nonvanishing expectation values. Without loss of gen-

erality one may assume that 〈A1
y〉 = 0. An AB phase θH along the fifth dimension is given by

P exp
{

igA

∫ 2L

0
dy〈Ay〉

}
= eiθH τ 2 =

(
cos θH sin θH

− sin θH cos θH

)
,

θH = g4L〈A2
y〉. (4)

The AB phase θH is a physical quantity. It couples to fields, affecting their mass spectrum.
One can change the value of θH by a gauge transformation, which also alters the boundary
conditions. Under a large gauge transformation given by

ÃM = 
AM
−1 + i
gA


∂M
−1, �̃ = 
�,


 = exp
(

i
2
θ (y)τ 2

)
, θ (y) = θH

(
1 − y

L

)
, (5)

θ̃H = 0, and the boundary condition matrices become

P̃j = 
(y j − y)Pj

−1(y j + y),

P̃0 =
(

cos θH − sin θH

− sin θH − cos θH

)
, P̃1 = τ 3. (6)

Although the AB phase θ̃H vanishes, the boundary conditions become nontrivial; the physics
remains the same. This gauge is called the twisted gauge [17,18].

Fields in the twisted gauge satisfy free equations. KK expansions for Ã1
μ and Ã3

μ are given
by

(
Ã1

μ(x, y)
Ã3

μ(x, y)

)
=

∞∑
n=−∞

B(n)
μ (x)

1√
πR

⎛
⎜⎜⎜⎝

sin
[

ny

R
− θ (y)

]

cos
[

ny

R
− θ (y)

]
⎞
⎟⎟⎟⎠, (7)

where L = πR. In the original gauge they become

(
A1

μ(x, y)
A3

μ(x, y)

)
=

∞∑
n=−∞

B(n)
μ (x)

1√
πR

⎛
⎜⎜⎜⎝

sin
ny

R

cos
ny

R

⎞
⎟⎟⎟⎠. (8)

The mass of the B(n)
μ (x) mode is mn(θH ) = R−1

∣∣n + θH
π

∣∣. The spectrum is periodic in θH with
period π .

Similarly, the fermion field � in the twisted gauge,

�̃ =
(

ũ
d̃

)
=

(
cos 1

2θ (y) sin 1
2θ (y)

− sin 1
2θ (y) cos 1

2θ (y)

)(
u
d

)
, (9)
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satisfies free equations in the bulk region 0 < y < L. The KK expansion of �̃ in type 1A is
given by

(
ũR(x, y)
d̃R(x, y)

)
=

∞∑
n=−∞

ψ
(n)
R (x)

1√
πR

⎛
⎜⎜⎜⎝

cos
[

ny

R
− 1

2θ (y)
]

sin
[

ny

R
− 1

2θ (y)
]
⎞
⎟⎟⎟⎠,

(
ũL(x, y)
d̃L(x, y)

)
=

∞∑
n=−∞

ψ
(n)
L (x)

1√
πR

⎛
⎜⎜⎜⎝

− sin
[

ny

R
− 1

2θ (y)
]

cos
[

ny

R
− 1

2θ (y)
]

⎞
⎟⎟⎟⎠. (10)

In the original gauge it becomes

type 1A :

(
uR(x, y)
dR(x, y)

)
=

∞∑
n=−∞

ψ
(n)
R (x)

1√
πR

⎛
⎜⎜⎜⎝

cos
ny

R

sin
ny

R

⎞
⎟⎟⎟⎠,

(
uL(x, y)
dL(x, y)

)
=

∞∑
n=−∞

ψ
(n)
L (x)

1√
πR

⎛
⎜⎜⎜⎝

− sin
ny

R

cos
ny

R

⎞
⎟⎟⎟⎠. (11)

ψ
(n)
R and ψ

(n)
L combine to form the ψ (n)(x) mode, whose mass is given by mn(θH ) = R−1

∣∣n + θH
2π

∣∣.
The spectrum is periodic in θH with period 2π . The KK expansion for type 1B is obtained by
interchanging the left-handed and right-handed components in Eq. (11).

For � in type 2A the KK expansion is

type 2A :

(
uR(x, y)
dR(x, y)

)
=

∞∑
n=−∞

ψ
(n+ 1

2 )
R (x)

1√
πR

⎛
⎜⎜⎜⎝

cos
(n+ 1

2 )y

R

sin
(n+ 1

2 )y

R

⎞
⎟⎟⎟⎠,

(
uL(x, y)
dL(x, y)

)
=

∞∑
n=−∞

ψ
(n+ 1

2 )
L (x)

1√
πR

⎛
⎜⎜⎜⎝

− sin
(n+ 1

2 )y

R

cos
(n+ 1

2 )y

R

⎞
⎟⎟⎟⎠. (12)

ψ
(n+ 1

2 )
R and ψ

(n+ 1
2 )

L combine to form the ψ (n+ 1
2 )(x) mode, whose mass is given by mn+ 1

2
(θH ) =

R−1
∣∣n + 1

2 + θH
2π

∣∣. The KK expansion for type 2B is obtained by interchanging the left-handed
and right-handed components in Eq. (12).

Next, we examine SU(2) GHU in the RS space whose metric is given by [19]

ds2 = e−2σ (y)ημνdxμdxν + dy2, (13)

where ημν = diag( − 1, +1, +1, +1), σ (y) = σ (y + 2L) = σ ( − y), and σ (y) = ky for 0 ≤ y ≤ L.
It has the same topology as M4 × (S1/Z2). In the fundamental region 0 ≤ y ≤ L the metric can
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be written, in terms of the conformal coordinate z = eky, as

ds2 = 1
z2

(
ημνdxμdxν + dz2

k2

)
(1 ≤ z ≤ zL = ekL). (14)

zL is called the warp factor of the RS space. The action in RS is

IRS =
∫

d5x
√

− det GLRS,

LRS = −1
2

TrFMNF MN + �D(c)�,

D(c) = γ AeA
M
(

DM + 1
8
ωMBC[γ B, γC]

)
− cσ ′, (15)

where σ ’(y) = k for 0 ≤ y ≤ L. Note that LRS(xμ, y) = LRS(xμ, −y) = LRS(xμ, y + 2L). The
fields AM and � satisfy the same boundary conditions, Eq. (2), as in the flat spacetime. The di-
mensionless bulk mass parameter c in D(c) controls the mass and wave function of the fermion
field. The KK mass scale is given by

mKK = πk
zL − 1

, (16)

which becomes 1/R in the flat-spacetime limit k → 0.
In the KK expansion in the z coordinate, Aa

z (x, z) = k−1/2 ∑
Aa(n)

z (x)hn(z), the zero mode

A2(0)
z has a wave function h0(z) =

√
2/(z2

L − 1)z. In the y-coordinate, A2(0)
y has a wave function

v0(y) = kekyh0(z) for 0 ≤ y ≤ L, and v0( − y) = v0(y) = v0(y + 2L). The AB phase θH in Eq. (4)
becomes

θH = 〈A2(0)
z 〉
fH

, fH = 1
g4

√
2k

L(z2
L − 1)

. (17)

The twisted gauge [17,18], in which θ̃H = 0, is related to the original gauge by a large gauge
transformation,


(z) = eiθ (z)τ 2/2, θ (z) = θH
z2

L − z2

z2
L − 1

. (18)

In the y-coordinate it becomes


(y) = exp

{
iθH

√
2

z2
L − 1

∫ L

y
dyv0(y) · τ 2

2

}
. (19)

In the twisted gauge Ã1,3
μ (x, z) satisfy free equations in 1 ≤ z ≤ zL and the boundary conditions

in Eq. (6). The mass spectrum {mn(θH) = kλn(θH)} (λ0 < λ1 < λ2 < ···) is given by

Z(n)
μ : SC′(1; λn) + λn sin2

θH = 0, (20)

where S(z; λ) and C(z; λ) are expressed in terms of Bessel functions and are given by Eq. (A1).
The KK expansions in the twisted gauge in the region 1 ≤ z ≤ zL are written as1(

Ã1
μ(x, z)

Ã3
μ(x, z)

)
= 1√

L

∞∑
n=0

Z(n)
μ (x)h̃n(z), h̃n(z) =

(
h̃n(z)
k̃n(z)

)
, (21)

1Note the change in the normalization of mode functions: h̃n(z) in the present paper corresponds to√
kLh̃n(z) in Ref. [12].
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Fig. 1. The mass spectrum of the gauge fields Z(n)
μ and fermion fields χ (n) (type 1A) in the RS warped

space, The warp factor is zL = 100 and the bulk mass parameter of � is c = 0.25. There is no level
crossing in the spectrum.

where the mode functions h̃n(z) are given in Eq. (B1). In the original gauge the KK expansions
of A1,3

μ (x, y) become

(
A1

μ(x, y)
A3

μ(x, y)

)
= 1√

L

∞∑
n=0

Z(n)
μ (x)

(
hn(y)
kn(y)

)
,

(
hn(y)
kn(y)

)
=

(
−hn(−y)
kn(−y)

)
=

(
hn(y + 2L)
kn(y + 2L)

)

=
(

cos θ (z) sin θ (z)
− sin θ (z) cos θ (z)

)(
h̃n(z)
k̃n(z)

)
for 0 ≤ y ≤ L. (22)

For a fermion field �(x, z) it is most convenient to express its KK expansion for �̌(x, z) =
z−2�(x, z). The equations of motion in the region 1 ≤ z ≤ zL become

−kD−(c)�̌R + σμ∂μ�̌L = 0, −kD+(c)�̌L + σ̄ μ∂μ�̌R = 0,

σμ = (I2, �σ ), σ̄ μ = (−I2, �σ ), D±(c) = ± ∂

∂z
+ c

z
. (23)

In the presence of gauge fields, ∂M is replaced by ∂M − igAAM. The Neumann boundary con-
ditions at z = (z0, z1) = (1, zL), corresponding to even parity, for left- and right-handed com-
ponents are given by D+(c)�̌L

∣∣
z j

= 0 and D−(c)�̌R
∣∣
z j

= 0.
The spectrum of the KK modes of the fermion field � is determined by

χ (n) :

{
SLSR(1; λn, c) + sin2 1

2θH = 0, for type 1A/B,

SLSR(1; λn, c) + cos2 1
2θH = 0, for type 2A/B,

(24)

where the functions SL/R(z; λ, c) are given in Eq. (A4). The spectrum is periodic in θH with
period 2π . A massless mode appears at θH = 0 for type 1A and 1B, whereas it appears at θH =
π for type 2A and 2B. There is no level crossing in the spectrum except for the case c = 0. The
spectra of the gauge fields in Eq. (20) and fermion fields in Eq. (24) are displayed in Fig. 1.
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The KK expansion of the fermion field � in the twisted gauge in the region 1 ≤ z ≤ zL is
expressed as (

˜̌uR(x, z)
˜̌dR(x, z)

)
=

√
k

∞∑
n=0

χ
(n)
R (x)f̃Rn(z), f̃Rn(z) =

(
f̃Rn(z)
g̃Rn(z)

)
,

(
˜̌uL(x, z)
˜̌dL(x, z)

)
=

√
k

∞∑
n=0

χ
(n)
L (x)f̃Ln(z), f̃Ln(z) =

(
f̃Ln(z)
g̃Ln(z)

)
. (25)

The mode functions f̃Rn(z) and f̃Ln(z) for type 1A are given in Eq. (B2). In the original gauge
the expansions of ǔ(x, y) and ď (x, y) become(

ǔR(x, y)
ďR(x, y)

)
=

√
k

∞∑
n=0

χ
(n)
R (x)

(
fRn(y)
gRn(y)

)
,

(
ǔL(x, y)
ďL(x, y)

)
=

√
k

∞∑
n=0

χ
(n)
L (x)

(
fLn(y)
gLn(y)

)
, (26)

where

type 1A :

(
fRn(y)
gRn(y)

)
=

(
fRn(−y)

−gRn(−y)

)
=

(
fRn(y + 2L)
gRn(y + 2L)

)

=
(

cos 1
2θ (z) − sin 1

2θ (z)
sin 1

2θ (z) cos 1
2θ (z)

)(
f̃Rn(z)
g̃Rn(z)

)
for 0 ≤ y ≤ L,

(
fLn(y)
gLn(y)

)
=

(
− fLn(−y)
gLn(−y)

)
=

(
fLn(y + 2L)
gLn(y + 2L)

)

=
(

cos 1
2θ (z) − sin 1

2θ (z)
sin 1

2θ (z) cos 1
2θ (z)

)(
f̃Ln(z)
g̃Ln(z)

)
for 0 ≤ y ≤ L;

type 2A :

(
fRn(y)
gRn(y)

)
=

(
fRn(−y)

−gRn(−y)

)
=

(
− fRn(y + 2L)
−gRn(y + 2L)

)
,

(
fLn(y)
gLn(y)

)
=

(
− fLn(−y)
gLn(−y)

)
=

(
− fLn(y + 2L)
−gLn(y + 2L)

)
. (27)

For type 1B (2B), the parity of fR/Ln, gR/Ln is reversed compared to type 1A (2A).

3. Anomalies
Doublet fermions in type 1A or 1B are chiral at θH = 0. Massless modes appear for right-
handed u and left-handed d (left-handed u and right-handed d) for type 1A (1B). They become
massive as θH varies, and their gauge couplings become purely vector-like at θH = π . Chiral
anomalies exist at θH = 0, smoothly vary as θH in the RS space, and vanish at θH = π . This
phenomenon is called the anomaly flow by an AB phase [12].

Chiral anomalies arise from triangular loop diagrams. Gauge couplings of fermions have
been obtained in Ref. [12]. Substituting the KK expansions in Eqs. (22) and (26) into

gA

∫ zL

1

dz
k

{
�̌

†
Rσ̄ μAμ�̌R − �̌

†
LσμAμ�̌L

}
, (28)
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one finds that the couplings in

g4

2

∞∑
n=0

∞∑
�=0

∞∑
m=0

Z(n)
μ (x)

{
tR
n�mχ

(�)
R (x)†σ̄ μχ

(m)
R (x) + tL

n�mχ
(�)
L (x)†σμχ

(m)
L (x)

}
(29)

are given by

tR
n�m =

∫ zL

1
dz

{
h̃n(z)

(
f̃ ∗

R�(z)g̃Rm(z) + g̃∗
R�(z) f̃Rm(z)

) + k̃n(z)
(

f̃ ∗
R�(z) f̃Rm(z) − g̃∗

R�(z)g̃Rm(z)
)}

= k
2

∫ 2L−a

−a
dyeσ (y)

{
hn(y)

(
f ∗

R�(y)gRm(y) + g∗
R�(y) fRm(y)

) + kn(y)
(

f ∗
R�(y) fRm(y)

− g∗
R�(y)gRm(y)

)}
,

tL
n�m = −

∫ zL

1
dz

{
hn(z)

(
f ∗

L�(z)gLm(z) + g∗
L�(z) fLm(z)

) + kn(z)
(

f ∗
L�(z) fLm(z) − g∗

L�(z)gLm(z)
)}

= −k
2

∫ 2L−a

−a
dyeσ (y)

{
hn(y)

(
f ∗

L�(y)gLm(y) + g∗
L�(y) fLm(y)

) + kn(y)
(

f ∗
L�(y) fLm(y)

− g∗
L�(y)gLm(y)

)}
. (30)

The couplings tR
n�m and tL

n�m are gauge invariant. In the integral formulas in the y-coordinate the
constant a is arbitrary as the integrands are periodic functions with period 2L. It is convenient
to take 0 < a < L in the following discussions. We note that the couplings tR/L

n�m depend not only
on θH and zL, but also on the bulk mass parameter c of the fermion field �.

The anomaly coefficient associated with the three legs of Z(n1 )
μ1 Z(n2 )

μ2 Z(n3 )
μ3 is given by

an1n2n3 = aR
n1n2n3

+ aL
n1n2n3

,

aR
n1n2n3

= TrT R
n1

T R
n2

T R
n3

, (T R
n )m� = tR

nm�

aL
n1n2n3

= TrT L
n1

T L
n2

T L
n3

, (T L
n )m� = tL

nm�. (31)

The anomaly coefficient an1n2n3 depends on θH, exhibiting the anomaly flow. It was observed
by numerical evaluation in Ref. [12] that an1n2n3 does not depend on the bulk mass parameter
c, though aR

n1n2n3
and aL

n1n2n3
do depend on c. We show here that an1n2n3 (θH , zL) is expressed in

terms of the values of the wave functions knj (y) at y = 0 and y = L.
To see this, we insert the formulas for tR/L

n�m in Eq. (30) into Eq. (31), and rearrange the traces:

an1n2n3 =
(

k
2

)3 ∫ ∫ ∫ 2L−a

−a
dy1dy2dy3eσ (y1 )+σ (y2 )+σ (y3 )

×
[
k1k2k3

{
AR(1, 2)AR(2, 3)AR(3, 1) − BR(1, 2)BR(2, 3)BR(3, 1)

+ BL(1, 2)BL(2, 3)BL(3, 1) − AL(1, 2)AL(2, 3)AL(3, 1)
}

+ k1h2h3
{
AR(1, 2)BR(2, 3)AR(3, 1) − BR(1, 2)AR(2, 3)BR(3, 1)

+ BL(1, 2)AL(2, 3)BL(3, 1) − AL(1, 2)BL(2, 3)AL(3, 1)
}

+ h1k2h3
{
AR(1, 2)AR(2, 3)BR(3, 1) − BR(1, 2)BR(2, 3)AR(3, 1)

+ BL(1, 2)BL(2, 3)AL(3, 1) − AL(1, 2)AL(2, 3)BL(3, 1)
}

+ h1h2k3
{
BR(1, 2)AR(2, 3)AR(3, 1) − AR(1, 2)BR(2, 3)BR(3, 1)

+ AL(1, 2)BL(2, 3)BL(3, 1) − BL(1, 2)AL(2, 3)AL(3, 1)
}]

, (32)
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where

kj = knj (y j ), h j = hnj (y j ),(
AR/L( j, k)
BR/L( j, k)

)
=

(
AR/L

BR/L

)
(y j, yk) =

∞∑
n=0

(
fR/Ln(y j ) f ∗

R/Ln(yk)
gR/Ln(y j )g∗

R/Ln(yk)

)
. (33)

Equations (25) and (26) along with the orthonormality relations of the mode functions imply
that (

ǔR/L(x, y)
ďR/L(x, y)

)
= k

2

∫ 2L−a

−a
dy′eσ (y′ )

(
AR/L CR/L

DR/L BR/L

)
(y, y′)

(
ǔR/L(x, y′)
ďR/L(x, y′)

)
,

(
CR/L

DR/L

)
(y, y′) =

∞∑
n=0

(
fR/Ln(y)g∗

R/Ln(y′)
gR/Ln(y) f ∗

R/Ln(y′)

)
. (34)

We made use of the relation CR/L = DR/L = 0 in deriving Eq. (32). With the choice of the AB
phase θH in Eq. (17), all mode functions {fRn(y)} etc. can be taken to be real so that AR/L(y, y′) =
AR/L(y′, y) and BR/L(y, y′) = BR/L(y′, y).

In addition to the relation in Eq. (34), AR/L and BR/L must satisfy the parity relations and
boundary conditions of the mode functions. With (y0, y1) = (0, L),

type 1A :

⎛
⎜⎜⎜⎝

AR

BR

AL

BL

⎞
⎟⎟⎟⎠(y j − y, y′) =

⎛
⎜⎜⎜⎝

AR

−BR

−AL

BL

⎞
⎟⎟⎟⎠(y j + y, y′),

(
D̂−(c)AR(y, y′)
D̂+(c)BL(y, y′)

)
y=ε,L−ε

= 0, D̂±(c) = ± ∂

∂y
+ ck,

BR(y j, y′) = AL(y j, y′) = 0;

type 2A :

⎛
⎜⎜⎜⎝

AR

BR

AL

BL

⎞
⎟⎟⎟⎠(y j − y, y′) =

⎛
⎜⎜⎜⎝

(−1) jAR

(−1) j+1BR

(−1) j+1AL

(−1) jBL

⎞
⎟⎟⎟⎠(y j + y, y′),

(
D̂−(c)AR(y, y′)
D̂+(c)BL(y, y′)

)
y=ε

=
(

D̂−(c)BR(y, y′)
D̂+(c)AL(y, y′)

)
y=L−ε

= 0,

BR(0, y′) = AR(L, y′) = AL(0, y′) = BL(L, y′) = 0. (35)

The conditions for type 1B (2B) are obtained by interchanging R (right-handed) and L (left-
handed) in those for type 1A (2A). For c �= 0, parity-even components of AR/L and BR/L func-
tions exhibit the cusp behavior at y, y′ = 0, ±L, · · · .

It is not easy to explicitly write down the AR/L(y, y′) and BR/L(y, y′) functions for c �= 0 which
satisfy the relations in both Eqs. (34) and (35). In Ref. [12] it was recognized that the anomaly
coefficient an1n2n3 in Eq. (32) is independent of c. With this observation we now derive an analyt-
ical expression for an1n2n3 by evaluating it in the case c = 0. We confirm later that the numerically
evaluated an1n2n3 for c �= 0 agrees with the analytical formula.

Fermion wave functions for c = 0 are expressed in terms of trigonometric functions;
they are summarized in Appendix B.3. Inserting the wave functions in Eq. (B5) into
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AR(z, z′) = ∑
fRn(z) f ∗

Rn(z′), for instance, one finds for type 1A that, for 1 ≤ z, z′ ≤ zL,

AR(z, z′)c=0 = 1
zL − 1

∞∑
n=−∞

cos
(

nπ
z − zL

zL − 1
+ α(z)

)
cos

(
nπ

z′ − zL

zL − 1
+ α(z′)

)

= δ2(zL−1)(z − z′) cos
{
α(z) − α(z′)

} + δ2(zL−1)(z + z′ − 2) cos
{
α(z) + α(z′)

}
= δ2(zL−1)(z − z′) + δ2(zL−1)(z + z′ − 2),

α(z) = 1
2

{
θH

z − zL

zL − 1
+ θ (z)

}
, α(1) = α(zL) = 0. (36)

Here, δL(x) = ∑
nδ(x − nL). With the extension in Eq. (27) in the y-coordinate and similar

manipulation, one finds that

type 1A, c = 0 : AR(y, y′) = BL(y, y′) = e−σ (y)

k

{
δ2L(y − y′) + δ2L(y + y′)

}
,

BR(y, y′) = AL(y, y′) = e−σ (y)

k

{
δ2L(y − y′) − δ2L(y + y′)

}
, (37)

The formulas for type 1B are obtained by interchanging R and L.
For fermions in type 2A, one finds, for 1 ≤ z, z′ ≤ zL, that

AR(z, z′)c=0 = 1
zL − 1

∞∑
n=−∞

sin
(

nπ
z − zL

zL − 1
+ β(z)

)
sin

(
nπ

z′ − zL

zL − 1
+ β(z′)

)

= δ2(zL−1)(z − z′) cos
{
β(z) − β(z′)

} − δ2(zL−1)(z + z′ − 2) cos
{
β(z) + β(z′)

}
,

β(z) = 1
2

{
(θH + π )

z − zL

zL − 1
+ θ (z)

}
, β(1) = −1

2
π , β(zL) = 0. (38)

Noting the relations in Eq. (27), one finds in the y-coordinate that

type 2A, c = 0 : AR(y, y′) = BL(y, y′) = e−σ (y)

k

{
δ̂2L(y − y′) + δ̂2L(y + y′)

}
,

BR(y, y′) = AL(y, y′) = e−σ (y)

k

{
δ̂2L(y − y′) − δ̂2L(y + y′)

}
,

δ̂2L(y) = δ4L(y) − δ4L(y − 2L). (39)

The formulas for type 2B are obtained by interchanging R and L.
We insert the expressions in Eqs. (37) or (39) into Eq. (32). The products of three delta func-

tions appear in the integrand. Take 0 < a < L. Then, in the integration range −a ≤ y1, y2, y3 ≤
2L − a, the products of the delta functions reduce to

δ2L(y1 − y2)δ2L(y2 − y3)δ2L(y3 + y1)
δ2L(y1 + y2)δ2L(y2 + y3)δ2L(y3 + y1)

}
⇒ 1

2

{
δ(y1)δ(y2)δ(y3) + δ(y1 − L)δ(y2 − L)δ(y3 − L)

}
,

δ̂2L(y1 − y2)δ̂2L(y2 − y3)δ̂2L(y3 + y1)
δ̂2L(y1 + y2)δ̂2L(y2 + y3)δ̂2L(y3 + y1)

}
⇒ 1

2

{
δ(y1)δ(y2)δ(y3) − δ(y1 − L)δ(y2 − L)δ(y3 − L)

}
.

(40)
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Fig. 2. The anomaly coefficients a000, a111, a222, and a012 as functions of θH for type 1A fermions
for zL = 10. The blue curves represent the universal curves given by Eq. (41). The red dots rep-
resent the values determined from the gauge couplings tR/L

n�m (0 ≤ �, m ≤ �0) in Eq. (30) and then
taking the traces of the (�0 + 1)-dimensional matrices in Eq. (31) for fermions with c = 0.25 and
�0 = 10.

As hn(0) = hn(L) = 0, only the terms proportional to k1k2k3 in Eq. (32) survive. We find the
formula for the anomaly coefficients:

an�m(θH , zL) = Q0kn(0)k�(0)km(0) + Q1kn(L)k�(L)km(L),

(Q0, Q1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(+1, +1) (type 1A),
(−1, −1) (type 1B),
(+1, −1) (type 2A),
(−1, +1) (type 2B).

(41)

The anomaly coefficients are determined by the values of the wave functions of the gauge fields
at the UV and IR branes and the parity conditions of the fermion fields.

The formula in Eq. (41) is strikingly simple. The wave function kn(y) depends on θH and zL.
The sum of the chiral anomalies arising from all possible fermion KK modes are summarized
in terms of kn(0) and kn(L). The c-independence of those anomalies is confirmed numerically.
The anomaly coefficients an�m given by Eq. (41) are compared with those determined by first
evaluating the gauge couplings tR/L

n�m (0 ≤ �, m ≤ �0) in Eq. (30) and then taking the traces
of the (�0 + 1)-dimensional matrices in Eq. (31). In Fig. 2 the results for a000, a111, a222, and
a012 are shown for type 1A fermions with c = 0.25, �0 = 10, and zL = 10. One sees that the
numerically evaluated values for c = 0.25 fall on the universal curves given by Eq. (41). We have
checked that the numerically evaluated values for other values of c fall on the universal curves as
well.
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Fig. 3. The values of the gauge wave functions kn(y; θH) (n = 0, 1, 2, 3) at y = 0 (blue curves) and y = L
(red curves) for zL = 10.

Some kn(0; θH) and kn(L; θH) are plotted in Fig. 3. Note that for n = 1, 3, 5, …, |kn(L;
θH)| is much larger than |kn(0; θH)| for zL ≥ 10. Massless gauge bosons (Z(0)

μ ) exist at θH = 0
and π . k0(0; 0) = k0(L; 0) = 1 and k0(0; π ) = −k0(L; π ) = 1, so that a000(θH = 0) = 2 and
a000(θH = π ) = 0 for type 1A fermions and a000(θH = 0) = 0 and a000(θH = π ) = 2 for type 2A
fermions. The anomaly flow is reflected in the behavior of the wave functions of the gauge fields
at y = 0 and L.

The dependence of the anomaly coefficients an�m on fermion types has a simple pattern:
an�m(θH )type1A = −an�m(θH )type1B and an�m(θH )type2A = −an�m(θH )type2B. Further, an�m(θH +
π )type1A = an�m(θH )type2A or an�m(θH )type2B (see Fig. 4). This follows from the property that
[kn(0), kn(L)]θH +π = [kn(0), −kn(L)]θH or [−kn(0), kn(L)]θH .

Formulas in the flat M4 × (S1/Z2) spacetime simplify. With the KK expansions in Eqs. (8),
(11), and (12), the gauge couplings are written as

g4

2

∞∑
n=−∞

∞∑
�=−∞

∞∑
m=−∞

B(n)
μ (x)

{
sR

n�mψ
(�)
R (x)†σ̄ μψ

(m)
R (x) + sL

n�mψ
(�)
L (x)†σμψ

(m)
L (x)

}
(42)

for type 1A and 1B fermions. For type 2A and 2B fermions, ψ
(m)
R/L(x) should be replaced by

ψ
(m+ 1

2 )
R/L (x). The anomaly coefficient associated with the three legs of B(n1 )

μ1 B(n2 )
μ2 B(n3 )

μ3 is given
by

bn1n2n3 = bR
n1n2n3

+ bL
n1n2n3

,

bR
n1n2n3

= TrSR
n1

SR
n2

SR
n3

, (SR
n )m� = sR

nm�,

bL
n1n2n3

= TrSL
n1

SL
n2

SL
n3

, (SL
n )m� = sL

nm�. (43)
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Fig. 4. The dependence of the anomaly coefficients a000, a111, a002, and a012 on fermion types is shown
for zL = 10. One sees that an�m(θH + π )type1A = an�m(θH )type2A or an�m(θH )type2B.

Applying the same argument as in the case of the RS space, one finds that

bn�m = Q0kflat
n (0)kflat

� (0)kflat
m (0) + Q1kflat

n (L)kflat
� (L)kflat

m (L), (44)

where Q0 and Q1 are given in Eq. (41). Since kflat
n (y) = cos(nπy/L) from Eq. (8), one finds that

bn�m = Q0 + (−1)n+�+mQ1, (45)

which agrees with the result in Ref. [12]. The formula in Eq. (45) also results in the flat-spacetime
limit of Eq. (41). In the flat spacetime the level-crossing in the mass spectrum of gauge fields
occurs at θH = 0, ± 1

2π, ±π, . . .. For this reason the flat-spacetime limit of Eq. (41) becomes
singular, as shown in Ref. [12].

4. Anomaly cancellation
The universality of the anomaly flow, expressed in Eq. (41), has a profound implication in model
building, particularly in the GHU scenario. Chiral anomalies associated with gauge currents
must be cancelled for the consistency of the theory in four dimensions [20,21]. The fact that
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the anomaly coefficients are independent of the bulk mass parameters of fermions implies that
anomaly cancellation can be achieved among various distinct fermions in the theory. In this
section we examine this problem in the SU(2) model.

Let us first recall that the equations following from the action IRS in Eq. (15) are, at the
classical level,

1√− det G
∂M

(√− det GF MN) − igA[AM, F MN ] + JN = 0,

D(c)� = 0,

JN = JNa τ a

2
, JNa = −igA�γ AeA

N τ a

2
�. (46)

The current in five dimensions is covariantly conserved:

1√− det G
∂N

(√− det GJN) − igA[AN, JN ] = 0. (47)

Note that the derivative term in the fifth coordinate generates mass terms in four dimen-
sions when expanded in the KK modes. At the quantum level an anomaly term arises on the
right-hand side of Eq. (47). The four-dimensional current jμ(n)(x) which couples with Z(n)

μ (x)
is

jμ(n)(x) =
∫ L

0
dy

√
− det G

{
hn(y)Jμ1 + kn(y)Jμ3}

= g4

2

∞∑
�=0

∞∑
m=0

{
tR
n�mχ

(�)
R (x)†σ̄ μχ

(m)
R (x) + tL

n�mχ
(�)
L (x)†σμχ

(m)
L (x)

}
. (48)

The divergence ∂μ jμ(n) picks up an anomalous term janomaly
(n) given by

janomaly
(n) = −

(g4

2

)3 ∞∑
�=0

∞∑
m=0

an�m

32π2
εμνρσ Z(�)

μνZ(m)
ρσ , (49)

where Z(�)
μν = ∂μZ(�)

ν − ∂νZ(�)
μ .

The conditions for the cancellation of the gauge anomalies are simple. Let the numbers of
doublet fermions of types 1A, 1B, 2A and 2B be n1A, n1B, n2A, and n2B, respectively. It follows
from Eq. (41) that the anomalies are cancelled if

n1A = n1B, n2A = n2B. (50)

In the presence of brane fermions, namely fermions living only on the UV or IR brane, the
conditions are generalized. Suppose that there are n̂R right-handed and n̂L left-handed doublet
brane fermions on the UV brane at y = 0. As the Z(n)

μ coupling of each brane fermion is given
by (g4/2)kn(0), the anomaly cancellation conditions become

n1A − n1B + n2A − n2B + n̂R − n̂L = 0,

n1A − n1B − n2A + n2B = 0. (51)

We stress that the conditions in Eqs. (50) and (51) do not depend on θH and zL. Furthermore,
the conditions guarantee that not only the zero mode anomaly a000 but also all other anomalies
an�m are cancelled at once.
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Fermion multiplets in the triplet representation do not contribute to anomalies in the SU(2)
gauge theory, as is easily confirmed. The anomaly cancellation is achieved by the condition in
Eqs. (50) or (51), namely by the condition for the numbers of doublet fermions with four types
of orbifold boundary conditions. It does not depend on the AB phase θH, namely the vacuum
expectation value of Ay. The situation is very similar to the anomaly cancellation condition in
the Standard Model (SM).

5. Summary and discussions
We have examined the anomaly flow by the AB phase θH in the SU(2) gauge theory in the
RS space and in the flat M4 × (S1/Z2) spacetime. The anomaly coefficients an�m(θH, zL) in-
duced by a fermion field in the bulk smoothly change in θH in the RS space. Although the
gauge couplings of the fermion, tR/L

n�m (θH , zL, c), nontrivially depend on the bulk mass parame-
ter c of the fermion, the total anomaly coefficients an�m are independent of c. We have shown
that those anomaly coefficients an�m are expressed in terms of the values of the wave functions
of the gauge fields at the UV and IR branes. The holographic formula in Eq. (41) manifestly
exhibits the c-independence. We have confirmed that the values of the anomaly coefficients nu-
merically evaluated directly from tR/L

n�m (θH , zL, c) fall precisely on the curves given by Eq. (41).
It has been left for future investigation to find an analytic proof of the c-independence of
Eq. (32).

As has been mentioned in the previous section, universality in anomaly flow is critically im-
portant in the construction of realistic models of particle physics. GHU models have been
proposed to unify the 4D Higgs boson with gauge fields in the framework of gauge the-
ory on five-dimensional orbifolds in which the gauge hierarchy problem is naturally solved
[5,7,22–34]. In particular, SO(5) × U(1)X × SU(3)C GHU in the RS space with θH ∼
0.1 and zL = 105 ∼ 1010 has been shown to reproduce nearly the same phenomenology
at low energies as the SM [31,33]. As in the case of the SM, all chiral anomalies associ-
ated with gauge currents must be cancelled. Generalization of the argument on universal-
ity to the group SO(5) × U(1)X × SU(3)C is necessary. Further, the technology developed
in the present paper can be applied to the evaluation of anomalies of global currents such
as baryon and lepton numbers. The phenomenon of anomaly flow may possibly be related
to Chern–Simons terms in five dimensions [35–37]. These issues will be clarified in separate
papers.
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Appendix A. Basis functions
Wave functions of gauge fields and fermions are expressed in terms of the following basis func-
tions. For gauge fields we introduce

C(z; λ) = π

2
λzzLF1,0(λz, λzL),

S(z; λ) = −π

2
λzF1,1(λz, λzL),

C′(z; λ) = π

2
λ2zzLF0,0(λz, λzL),

S′(z; λ) = −π

2
λ2zF0,1(λz, λzL),

Fα,β (u, v) ≡ Jα(u)Yβ (v) − Yα(u)Jβ (v), (A1)

where Jα(u) and Yα(u) are Bessel functions of the first and second kind. They satisfy

−z
d
dz

1
z

d
dz

(
C
S

)
= λ2

(
C
S

)
,

C(zL; λ) = zL, C′(zL; λ) = 0,

S(zL; λ) = 0, S′(zL; λ) = λ,

CS′ − SC′ = λz. (A2)

To express wave functions of KK modes of gauge fields, we make use of

Ŝ(z; λ) = N0(λ)S(z; λ), Ĉ(z; λ) = N0(λ)−1C(z; λ),

Š(z; λ) = N1(λ)S(z; λ), Č(z; λ) = N1(λ)−1C(z; λ),

N0(λ) = C(1; λ)
S(1; λ)

, N1(λ) = C′(1; λ)
S′(1; λ)

. (A3)

For fermion fields with a bulk mass parameter c, we define(
CL

SL

)
(z; λ, c) = ±π

2
λ
√

zzLFc+ 1
2 ,c∓ 1

2
(λz, λzL),

(
CR

SR

)
(z; λ, c) = ∓π

2
λ
√

zzLFc− 1
2 ,c± 1

2
(λz, λzL). (A4)

These functions satisfy

D+(c)

(
CL

SL

)
= λ

(
SR

CR

)
,

D−(c)

(
CR

SR

)
= λ

(
SL

CL

)
, D±(c) = ± d

dz
+ c

z
,

CR = CL = 1, SR = SL = 0 at z = zL,

CLCR − SLSR = 1. (A5)
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Also, CL(z; λ, −c) = CR(z; λ, c) and SL(z; λ, −c) = −SR(z; λ, c). To express wave functions of
KK modes of fermion fields, we make use of

ŜL(z; λ, c) = NL(λ, c)SL(z; λ, c), ĈL(z; λ, c) = NR(λ, c)CL(z; λ, c),

ŜR(z; λ, c) = NR(λ, c)SR(z; λ, c), ĈR(z; λ, c) = NL(λ, c)CR(z; λ, c),

ŠL(z; λ, c) = NR(λ, c)−1SL(z; λ, c), ČL(z; λ, c) = NL(λ, c)−1CL(z; λ, c),

ŠR(z; λ, c) = NL(λ, c)−1SR(z; λ, c), ČR(z; λ, c) = NR(λ, c)−1CR(z; λ, c),

NL(λ, c) = CL(1; λ, c)
SL(1; λ, c)

, NR(λ, c) = CR(1; λ, c)
SR(1; λ, c)

. (A6)

Appendix B. Wave functions in RS
B.1 Gauge fields Z(n)

μ

The mode functions of the gauge fields Z(n)
μ (x) in Eq. (21) are given by

h̃0(z) = h̄a
0(z),

h̃2�−1(z) = (−1)�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h̄a
2�−1(z) (− 1

2π < θH < 1
2π ),

h̄b
2�−1(z) (0 < θH < π ),

−h̄a
2�−1(z) ( 1

2π < θH < 3
2π ),

−h̄b
2�−1(z) (π < θH < 2π ),

h̄a
2�−1(z) ( 3

2π < θH < 5
2π ),

(� = 1, 2, 3, . . .),

h̃2�(z) = (−1)�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h̄b
2�

(z) (− 1
2π < θH < 1

2π ),
−h̄a

2�
(z) (0 < θH < π ),

−h̄b
2�

(z) ( 1
2π < θH < 3

2π ),
h̄a

2�
(z) (π < θH < 2π ),

h̄b
2�

(z) ( 3
2π < θH < 5

2π ),

(� = 1, 2, 3, . . .),

h̄a
n(z) = 1√

ra
n

(
−sH Ŝ(z; λn)
cHC(z; λn)

)
, h̄b

n(z) = 1√
rb

n

(
cH S(z; λn)
sHČ(z; λn)

)
,

sH = sin θH , cH = cos θH ,

rn = 1
kL

∫ zL

1

dz
z

{|ĥn(z)|2 + |k̂n(z)|2} for

(
ĥn(z)
k̂n(z)

)
. (B1)

Ŝ and Č are given in Eq. (A3). In the above formulas, the two expressions given in an overlapping
θH region are the same. The connection formulas are necessary as one of them fails to make
sense at the boundary in θH.
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B.2 Fermion fields χ
(n)
R/L

The mode functions of the fermion fields χ
(n)
R/L(x) in Eq. (25) are given, for type 1A and c > 0,

by

type 1A : f̃R,2�(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄a
R,2�

(z) (−π < θH < π ),
f̄b
R,2�

(z) (0 < θH < 2π ),
−f̄a

R,2�
(z) (π < θH < 3π ),

−f̄b
R,2�

(z) (2π < θH < 4π ),
f̄a
R,2�

(z) (3π < θH < 5π ),

(� = 0, 1, 2, . . .),

f̃R,2�−1(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄c
R,2�−1(z) (−π < θH < π ),

f̄d
R,2�−1(z) (0 < θH < 2π ),
−f̄c

R,2�−1(z) (π < θH < 3π ),
−f̄d

R,2�−1(z) (2π < θH < 4π ),
f̄c
R,2�−1(z) (3π < θH < 5π ),

(� = 1, 2, 3, . . .),

f̃L0(z) = f̄a
L0(z),

f̃L,2�−1(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄a
L,2�−1(z) (−π < θH < π ),

f̄b
L,2�−1(z) (0 < θH < 2π ),
−f̄a

L,2�−1(z) (π < θH < 3π ),
−f̄b

L,2�−1(z) (2π < θH < 4π ),
f̄a
L,2�−1(z) (3π < θH < 5π ),

(� = 1, 2, 3, . . .),

f̃L,2�(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄c
L,2�

(z) (−π < θH < π ),
f̄d
L,2�

(z) (0 < θH < 2π ),
−f̄c

L,2�
(z) (π < θH < 3π ),

−f̄d
L,2�

(z) (2π < θH < 4π ),
f̄c
L,2�

(z) (3π < θH < 5π ),

(� = 1, 2, 3, . . .). (B2)

Here,

f̄a
Rn(z) = 1√

ra
n

(
c̄HCR(z; λn, c)

−s̄H ŜR(z; λn, c)

)
, f̄b

Rn(z) = 1√
rb

n

(
s̄HCR(z; λn, c)
c̄H ŠR(z; λn, c)

)
,

f̄c
Rn(z) = 1√

rc
n

(
s̄HĈR(z; λn, c)
c̄H SR(z; λn, c)

)
, f̄d

Rn(z) = 1√
rd

n

(
−c̄HČR(z; λn, c)
s̄H SR(z; λn, c)

)
,

f̄a
Ln(z) = 1√

ra
n

(
s̄H ŜL(z; λn, c)
c̄HCL(z; λn, c)

)
, f̄b

Ln(z) = 1√
rb

n

(
−c̄H ŠL(z; λn, c)
s̄HCL(z; λn, c)

)
,

f̄c
Ln(z) = 1√

rc
n

(
c̄H SL(z; λn, c)

−s̄HĈL(z; λn, c)

)
, f̄d

Ln(z) = 1√
rd

n

(
s̄H SL(z; λn, c)
c̄HČL(z; λn, c)

)
,

c̄H = cos 1
2θH , s̄H = sin 1

2θH ,

rn =
∫ zL

1
dz

{| f̂n(z)|2 + |ĝn(z)|2} for

(
f̂n(z)
ĝn(z)

)
. (B3)

The functions ŜR/L, ŠR/L, etc. are defined in Eq. (A6). In Eq. (B2), two expressions in an over-
lapping region in θH are the same.
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B.3 Fermion fields χ
(n)
R/L for c = 0

For c = 0, CR/L(z; λ, 0) and SR/L(z; λ, 0) reduce to trigonometric functions:(
CL

SL

)
(z; λ, 0) =

(
cos λ(z − zL)
sin λ(z − zL)

)
,

(
CR

SR

)
(z; λ, 0) =

(
cos λ(z − zL)

− sin λ(z − zL)

)
. (B4)

The spectrum and wave functions in 1 ≤ z = eky ≤ zL in the original gauge for type 1A are:

type 1A : λn = 1
zL − 1

∣∣nπ + 1
2θH

∣∣ (−∞ < n < ∞),

(
fRn(y)
gRn(y)

)
= 1√

zL − 1

⎛
⎜⎜⎜⎝

cos
{

(nπ + 1
2θH )

z−zL

zL−1
+ 1

2θ (z)
}

sin
{

(nπ + 1
2θH )

z−zL

zL−1
+ 1

2θ (z)
}
⎞
⎟⎟⎟⎠,

(
fLn(y)
gLn(y)

)
= 1√

zL − 1

⎛
⎜⎜⎜⎝

− sin
{

(nπ + 1
2θH )

z−zL

zL−1
+ 1

2θ (z)
}

cos
{

(nπ + 1
2θH )

z−zL

zL−1
+ 1

2θ (z)
}

⎞
⎟⎟⎟⎠, (B5)

and for type 2A:

type 2A : λn = 1
zL − 1

∣∣(n + 1
2 )π + 1

2θH
∣∣ (−∞ < n < ∞),

(
fRn(y)
gRn(y)

)
= 1√

zL − 1

⎛
⎜⎜⎜⎝

− sin
{

(nπ + 1
2π + 1

2θH )
z−zL

zL−1
+ 1

2θ (z)
}

cos
{

(nπ + 1
2π + 1

2θH )
z−zL

zL−1
+ 1

2θ (z)
}

⎞
⎟⎟⎟⎠,

(
fLn(y)
gLn(y)

)
= 1√

zL − 1

⎛
⎜⎜⎜⎝

cos
{

(nπ + 1
2π + 1

2θH )
z−zL

zL−1
+ 1

2θ (z)
}

sin
{

(nπ + 1
2π + 1

2θH )
z−zL

zL−1
+ 1

2θ (z)
}
⎞
⎟⎟⎟⎠. (B6)

Note that the expressions in Eqs. (B5) and (B6) reduce, up to normalization factors, to the
expressions in Eqs. (11) and (12) in the flat-spacetime limit, respectively. For other regions in y,
the wave functions are defined by Eq. (27).
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