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We present lattice QCD results for masses and magnetic polarizabilities of light and strange pseudoscalar
mesons, chiral condensates, decay constants of neutral pion, and neutral kaon in the presence of
background magnetic fields with eB ranging up to around 3.35 GeV2 (∼70M2

π) in the vacuum. The
computations were carried out in (2þ 1)-flavor QCD mostly on 323 × 96 lattices using the highly
improved staggered quark action with Mπ ≈ 220 MeV at zero temperature. We find that the masses of
neutral pseudoscalar mesons monotonously decrease as the magnetic field strength grows and then saturate
at a nonzero value, while there exists a nonmonotonous behavior of charged pion and kaon masses in the
magnetic field. We observe a qB scaling of the up and down quark flavor components of neutral pion mass,
neutral pion decay constant as well as the quark chiral condensates at 0.05≲ eB ≲ 3.35 GeV2. We show
that the correction to the Gell-Mann-Oakes-Renner relation involving the neutral pion is less than 6% and
the correction for the relation involving neutral kaon is less than 30% at eB ≲ 3.35 GeV2. We also derive
the Ward-Takahashi identities for QCD in the magnetic field in the continuum formulation including the
relation between integrated neutral pseudoscalar meson correlators and chiral condensates.
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I. INTRODUCTION

The properties of strongly interacting matter in the
external magnetic field have attractedmany studies in recent
years as strong magnetic fields appear in heavy-ion colli-
sions [1–3], the early Universe [4], and magnetars [5]. The
QCD thermodynamics in the presence of a background
magnetic field is of particular interest. At zero temperature, it
is found from lattice QCD studies using standard staggered
fermions that the order parameter of the transition, the chiral
condensate, increases with the magnetic field strength eB,
which is so-called magnetic catalysis (MC) [6,7]. The MC
suggests that the magnitude of the chiral symmetry breaking
becomes larger in the vacuum,which leads to an expectation
that the chiral crossover transition temperatureTpc increases
with themagnetic field strength eB. The increasing behavior
of Tpc with eB is also found in the lattice QCD studies in
two-flavor and three-flavor QCD using standard staggered
fermions at finite lattice cutoffs [6,8]. However, the surprise
came later thatTpc actually decreases with eB as found from

continuum extrapolated results in Nf ¼ 2þ 1 lattice QCD
studies using improved staggered (stout) fermions [9]. The
discrepancy of results in Ref. [6] from those in Ref. [9] is
most likely due to the large discretization errors in the
standard staggered fermions [8]. Accompanied with the
reduction of Tpc, a decreasing behavior of chiral condensate
in eB in the proximity of transition temperature, i.e., the so-
called inverse magnetic catalysis (IMC), is found in
Refs. [9,10]. The IMC has also been observed in further
lattice QCD studies using improved discretization schemes
[11–14]. Many model and theoretical studies have been
performed to understand the (inverse) magnetic catalysis,
reduction of Tpc, as well as their relations [7,15–26].
Recently it has been suggested from latticeQCDstudieswith
heavier-than-physical pions that the IMC is not necessarily
associated with the reduction of Tpc as a function of eB
[27,28], and it is more like a deconfinement catalysis [29].
Although the increase (reduction) of Tpc is often con-

nected with the increase (reduction) of chiral condensates,
which suggests the increase (reduction) of the magnitude of
the chiral symmetry breaking, the breaking of chiral
symmetry in QCD is also related to the Goldstone pions.
At vanishing magnetic field, the square of the Goldstone
pion mass is proportional to the product of a sum of quark
masses and quark condensates. The quark mass explicitly
breaks the chiral symmetry of the QCD Lagrangian, while
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the chiral condensate measures the strength of spontaneous
symmetry breaking. This is the well-known Gell-Mann-
Oakes-Renner (GMOR) relation [30], whose validity has
been confirmed on lattice QCD simulations at vanishing
magnetic field and in the vacuum [31,32]. The GMOR
relation has also been extended to the three-flavor case,
including a strange quark [33]. The next-to-leading order
chiral corrections to the GMOR relation have also been
studied at zero temperature and vanishing magnetic field
[34–36]. Extending to the case of low temperature and
vanishing magnetic field [37], weak magnetic field at zero
temperature [38], and in both low temperature and weak
magnetic field [39], it is found that the GMOR relation for
neutral pions holds true in the leading order chiral pertur-
bation theory (χPT) in the chiral limit of quark masses as
well. It is known that, at vanishing magnetic field, the
transition temperature decreases with lighter pions [40–46].
One may expect that the reduction of the transition temper-
ature in the magnetic field could be associated with a lighter
Goldstone boson, which can be a neutral pion.
Meson spectrum of QCD in the external magnetic field is

of important interest by itself [16,26,47–55]. Moreover, the
mass of a neutral pion in the external magnetic field may be
helpful to understand the reduction of Tpc given that neutral
pion is a Goldstone boson in the nonzero magnetic field.
Besides that, as implied from the QCD inequality [56], the
sum of masses Mπ0u

and Mπ0d
as obtained from the up and

down quark flavor components of contributions from
connected diagrams to neutral pion correlators is a lower
bound of the mass of a charged ρ meson. The condensation
of ρ meson is also of particular interest since it could signal
the transition of the QCD vacuum into a superconducting
state in a sufficiently strong magnetic field [57,58]. Most of
the lattice studies on the meson spectrum in external
magnetic fields have been performed in the quenched
approximation, e.g., in the quenched two-color QCD with
overlap fermions as valence quarks [59], quenched QCD
with Wilson fermions [56,60], and overlap fermions
[61,62] as valence quarks in the computation of meson
correlation functions. In the earlier studies, there exists a
discrepancy in the behavior of eB dependence of the neural
pion mass from lattice QCD studies in the quenched
approximation. It is found that the neutral meson mass
in lattice study using quenched unimproved Wilson fer-
mions first decreases and then increases as eB grows [56].
However, in the lattice study using quenched overlap
fermions, the neutral meson mass monotonously decreases
[61]. Later the discrepancy is resolved as it is pointed out in
Ref. [60] that the eB dependence of hopping parameter κ
has to be taken into account in the discretization scheme
using Wilson fermions, and a monotonous reduction of
neutral pion mass with increasing eB is finally established
in the quenched QCD [60]. For a charged pion, a
monotonous increase of its mass Mπ− with eB is found
in all the quenched QCD studies [56,60–62]. On the other

hand, lattice studies in full QCD on the eB dependence of
the mass spectrum focus only on the light pseudoscalar
mesons (π0;�) [9,60]. It is shown in Refs. [9,60] that the
behavior of masses of π0 and π� in external magnetic fields
obtained from (2þ 1)-flavor QCD using stout fermions
have similar trends as those from quenched QCD [60–62].
The similar decreasing trend of the neutral pion mass and

Tpc in the nonzero magnetic field shown in [60] might
indicate the connection between these two quantities given
that the GMOR relation holds in the nonzero magnetic
fields. As the chiral condensate measures the strength of
spontaneous chiral symmetry breaking, the validity of the
GMOR relation could imply that the mechanism for
explicit breaking of chiral symmetry by the light quark
mass is not changed by the magnetic field [39].
Furthermore, the Goldstone pion mass gives the strength
of both spontaneous and explicit breaking of chiral sym-
metry as seen in the GMOR relation. Thus, it is also
interesting to see whether the magnetic catalysis at zero
temperature and the reduction of Tpc, in other words, the
increase of chiral condensate and restoration of the chiral
symmetry at a lower temperature, could be reconciled as
implied from the GMOR relation. However, it is not known
yet whether the GMOR relation holds in a strong magnetic
field, although χPT suggests its validity in the weak
magnetic field. On the other hand, model studies suggest
that the GMOR relation holds for a neutral chiral pion at
nonzero magnetic field while it is violated for the charged
ones at eB≳ 0.2 GeV2 [63]. Studies on the GMOR relation
in the nonzero magnetic field are intricate due to the explicit
breaking of rational invariance caused by the magnetic field
[64]. Investigations on the charged pion decay constant
have been performed on the lattice [65]. It was found that a
further pion decay constant exists due to the possibility of a
nonzero pion-to-vacuum transition via the vector piece of
the electroweak current. Both charged and neutral pion
decay constants have been parametrized for the one-pion-
to-vacuum matrix elements of the vector and axial vector
hadronic currents in the background magnetic fields [66]
and studied in the Nambu-Jona-Lasinio model [52,67]. It is
worth noting that early studies on pion decay constants in,
e.g., Refs. [38,39,63,68] involve only the one for neutral
pion fields related to the axial vector current parallel to the
magnetic field.
In this paper, we focus on the chiral properties of QCD

vacuum by studying the light and strange meson masses in
the pseudoscalar channel, chiral condensates as well as the
neutral pion and kaon decay constants related to the axial
vector current in a wide range of magnetic field strength
from 0 to ∼3.35 GeV2 in Nf ¼ 2þ 1 QCD. We will
present a first lattice QCD study on the GMOR relation
in the external magnetic field, show a novel decreasing
behavior of charged pseudoscalar meson mass, and discuss
the magnetic polarizabilities of light and strange pseudo-
scalar mesons. We will also present the first observation of
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qB scaling of up and down quark flavor components of
neutral pion mass, neutral pion decay constant, and chiral
condensates. The results are obtained based on lattice QCD
simulations performed on 323 × 96 and 403 × 96 lattices at
a single lattice cutoff a ¼ 0.117 fm using highly improved
staggered fermions with a heavier-than-physical pion mass
of ∼220 MeV at zero temperature.
The paper is organized as follows. In Sec. II, we

introduce the basic quantities we are going to study. In
Sec. III, we will explain our simulation parameters in lattice
QCD and our methodology to extract the meson masses
and the amplitudes to compute the decay constants, show
the volume dependence of correlation functions, and
discuss the π − ρ mixing in the magnetic field via the
generalized Ward-Takahashi identities as well as the
extraction of infrared contributions from the chiral con-
densates. In Sec. IV, we will demonstrate the qB scaling,
and then present our results on masses of pseudoscalar
mesons, magnetic polarizabilities, chiral condensates, neu-
tral pion and kaon decay constants as well as corrections to
the GMOR relation as a function of eB. Finally, we will
summarize our results in Sec. V. In Appendix A we will
show the extended Ward-Takahashi identities in the non-
zero magnetic field, in Appendix B we will show the
GMOR relation for up and down quark components of
neutral pion at eB ¼ 0, and in Appendix C, we will show
the details of the implementation of the magnetic field in
the lattice QCD simulations using the highly improved
staggered fermions. Some of our previous results on the
masses of pseudoscalar mesons have been reported in
conference proceedings [69,70].

II. TEMPORAL CORRELATORS, MASSES
OF PSEUDOSCALAR MESONS, CHIRAL
CONDENSATES AND NEUTRAL PION

AND KAON DECAY CONSTANTS

Hadron spectrum in the vacuum can be extracted from
two-point temporal correlation functions in the Euclidean
space

GðτÞ ¼
Z

d3x⃗hMðx⃗; τÞðMð0⃗; 0ÞÞ†i; ð1Þ

where M ¼ ψ̄ðτ; x⃗ÞΓψðτ; x⃗Þ is a meson operator that
projects to a certain quantum channel Γ ¼ ΓD ⊗ ta with
Dirac matrices ΓD and a flavor matrix ta. For instance,
Γ ¼ γ5 and γμ correspond to the pseudoscalar and vector
channel, respectively. The angular brackets h� � �i stand for
the expectation value over the gauge field ensembles.
The temporal correlator decays exponentially at a large
distance τ

lim
τ→∞

GðτÞ ∼ e−mΓτ; ð2Þ

which defines the mass mΓ of the corresponding ground
state. In the case of staggered fermions, the corresponding
meson operators are of the form ψ̄ðxÞðΓD ⊗ Γ�

TÞψðxÞ with
ψðxÞ a 16-component hypercubic spinor and ΓD and ΓT
Dirac matrices in spin and taste space, respectively [71–73].
In our work, we consider local operators only, and the
meson operator thus reduces to M ¼ ζðx⃗Þχ̄ðx⃗Þχðx⃗Þ, where
ζðxÞ is the phase factor depending on the choice of
Γ ¼ ΓD ¼ ΓT and χðx⃗Þ is the staggered fermion field.
The connected part of the correlation function of the

staggered bilinear can thus be written as

GðτÞ¼−
X
x;y;z

ζðn⃗ÞTr½ðM−1ðx⃗;τ; 0⃗;0ÞÞ†M−1ðx⃗;τ; 0⃗;0Þ�; ð3Þ

where M−1ðx⃗; τ; 0⃗; 0Þ is the staggered propagator from
ð0⃗; 0Þ to ðx⃗; τÞ. In this work, we focus on the mesons in
the pseudoscalar channel built from q̄iqj flavor combina-
tions, where i; j ¼ u, d, s, and the phase factor for the
pseudoscalar channel is ζðn⃗Þ ¼ 1. Because of the presence
of the magnetic field, the isospin symmetry of up and down
quarks is broken by their different electric charges. The
neutral pion is not an isovector state anymore. The
computation of neutral pion correlation function at nonzero
magnetic fields, extending from the case at zero magnetic
fields, thus could include both connected and disconnected
parts of the correlation function and a mixing factor
between uūðπ0uÞ and dd̄ðπ0dÞ components of the connected
part.1 It has been shown in Ref. [62] that the quark-line
disconnected part in quenched QCD is negligible in the
nonzero magnetic fields. In our current study of neutral
pions, we thus neglect the disconnected contributions
which could be small as well (cf. discussions in Sec. III C).
A typical staggered meson correlator, for a fixed sepa-

ration (in lattice unit) between the source and sink, is an
oscillating correlator that simultaneously couples to two
sets of mesons with the same spin and opposite parities.
It thus can be parametrized as [71]

GðnτÞ ¼
XNnosc

i¼1

Anosc;i exp ð−Mnosc;inτÞ

− ð−1Þnτ
XNosc

i¼0

Aosc;i exp ð−Mosc;inτÞ; ð4Þ

where Nnosc (Nosc) is the number of nonoscillating (oscil-
lating) meson states whose masses are denoted by Mnosc;i

(Mosc;i), and nτ ¼ τ=a ∈ Z with lattice spacing a. Note that

1In the presence of the magnetic field, the operator for π0 could
be αūγ5u − βd̄γ5d with α2 þ β2 ¼ 1 [60]. To extract the mass of
π0 and neutral pion decay constant fπ0 from the neutral pion
correlation function, we assume α ¼ β ¼ 1=

ffiffiffi
2

p
as the case for

the vanishing magnetic field.
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both amplitudes, Anosc;i and Aosc;i, are positive. In the
current study, the mass Mnosc is the mass of the pseudo-
scalar meson we are interested in.
It is well known that the energy of a pointlike charged

particle in the nonzero magnetic field and at zero temper-
ature are the Landau levels,

E2
n ¼M2þð2nþ1ÞjeBj−gszqBþp2

z ; n∈Zþ
0 ; ð5Þ

where M is the mass of a charged particle at zero magnetic
field, q is the electric charge of the particle, sz is the spin
polarization in the z direction, and the magnetic field is
assumed to go along with the z direction. For pseudoscalar
mesons, the gyromagnetic ratio g ¼ 0 while for vector
mesons g ¼ 2. In the case of the lowest Landau level and
zero momentum along the z direction, i.e., n ¼ 0 and
pz ¼ 0, the mass of a charged pointlike pseudoscalar
meson in the external magnetic fields can be expressed as

M�
psðBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM�

psðB ¼ 0ÞÞ2 þ jeBj
q

: ð6Þ

While the charged particle becomes heavier with increas-
ing eB, a neutral particle is supposed to remain independent
of the magnetic field if it remains as a pointlike particle.
The lightest pseudoscalar mesons like pions are of par-
ticular interest as they are Goldstone bosons at the
vanishing magnetic field. And their masses are connected
to the quark chiral condensate in the vacuum known as the
Gell-Mann-Oakes-Renner relation [30]. The corrected
GMOR relation including a correction term δπ is expressed
as follows:

ðmu þmdÞðhψ̄ψiu þ hψ̄ψidÞ ¼ 2f2πM2
πð1 − δπÞ: ð7Þ

The above corrected GMOR relation in the two-flavor
theory has been extended to the three-flavor case including
a strange quark as follows [33]:

ðms þmdÞ ðhψ̄ψis þ hψ̄ψidÞ ¼ 2f2KM
2
Kð1 − δKÞ; ð8Þ

where mπ and mK are the masses of pion and kaon,
respectively, fπðfKÞ is the pion (kaon) decay constant,
mf¼u;d;s is the mass of up, down, and strange quarks, and
the corresponding quark chiral condensate is denoted by
hψ̄ψif¼u;d;s. The single flavor quark chiral condensate
hψ̄ψif is obtained as follows:

hψ̄ψif ¼ 1

4

1

V
∂ lnZ
∂mf

¼ 1

4

1

V
TrD−1

f ; ð9Þ

where Z is the partition function of QCD, V is the full
volume of space-time, and the factor 1=4 accounts for the
fourth root of the Dirac matrix Df in the staggered theory.
δπ and δK are the next-to-leading order chiral corrections,

and both of them are related to certain low-energy constants
and have a relation of δK ¼ M2

K=M
2
πδπ [33]. The estimates

on these two quantities using χPT combining with QCD
sum rules are δπ ¼ ð6.2� 1.6Þ% and δK ¼ ð55� 5Þ% at
the physical-mass point and the vanishing magnetic field
[35,36]. As δπ and δK go to zero, Eqs. (7) and (8) recover
the two-flavor and three-flavor GMOR relations obtained
from the leading order chiral perturbation theory.
As mentioned in the Introduction, some additional pion

decay constants related to the vector and axial vector
currents can be defined in the external magnetic field
[64–66]. In the current paper, we focus on the original
neural pion and kaon decay constants related only to the
axial vector current parallel to the magnetic field at zero
momentum. This decay constant has the same definition as
that at the vanishing magnetic field [64,66,73], which is
written as follows:

ffiffiffi
2

p
fπ0M

2
π0
¼ ðmuþmdÞ

D
0
��� 1ffiffiffi

2
p ðūγ5u− d̄γ5dÞ

���π0ðp¼ 0Þ
E
;

ð10Þ
ffiffiffi
2

p
fK0M2

K0 ¼ ðmd þmsÞh0jd̄γ5sjK0ðp ¼ 0Þi: ð11Þ

We also look into the up and down quark flavor compo-
nents of the connected part of the neutral pion correlation
functions which lead to decay constants (fπ0u and fπ0d ) and
masses (Mπ0u

and Mπ0d
), whose relations are expressed as

follows:

ffiffiffi
2

p
fπ0uM

2
π0u

¼ 2muh0jūγ5ujπ0uðp ¼ 0Þi; ð12Þ
ffiffiffi
2

p
fπ0dM

2
π0d

¼ 2mdh0jd̄γ5djπ0dðp ¼ 0Þi: ð13Þ

The corresponding GMOR relations

4muhψ̄ψiu ¼ 2f2
π0u
M2

π0u
ð1 − δπ0uÞ; ð14Þ

4mdhψ̄ψid ¼ 2f2
π0d
M2

π0d
ð1 − δπ0dÞ; ð15Þ

are derived from the Ward-Takahashi identity at zero
magnetic fields in Appendix B. Here, the corrections
δπ0u;d include contributions from the anomalous part as seen

from Eqs. (B7) and (B8). The matrix elements in Eqs. (10)–
(13) can be extracted from the correlation function of
the pseudoscalar meson at zero spatial momentum
hOSðτÞPWð0Þi [74]. The amplitude of the correlation
function can be written as

COSPW ¼ h0jOSjPðp⃗ ¼ 0ÞihPðp⃗ ¼ 0ÞjPW j0i
2MPVs

; ð16Þ

where Vs is the spatial lattice volume and P denotes the
operator for π0, K0, and π0u;d with MP the corresponding
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meson masses. By inserting the corresponding operator
(OS ¼ PW) into Eq. (16) and combining Eqs. (10)–(13),
the pion and kaon decay constants can be obtained as
follows [74]:

fPπ ¼ 2ml

ffiffiffiffiffiffi
Vs

4

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPπWPπW

M3
Pπ

s
; ð17Þ

fK0 ¼ðmd þmsÞ
ffiffiffiffiffiffi
Vs

4

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CK0

WK
0
W

M3
K0

s
; ð18Þ

where the factor of 1=
ffiffiffi
4

p
on the right-hand sides of the

above equations accounts for the case in staggered fer-
mions, ml ≡mu ¼ md, and Pπ denotes the cases for π0, π0u,
and π0d. The amplitudes CPπWP

π
W
and CK0

WK0
W
as well as the

masses MPπ and MK0 will be obtained from the mass fit
[cf. Eq. (4)] to the correlators in the pseudoscalar channel.
We emphasize that π0u and π0d are not physical states in the
sense that they do not directly correspond to real particles
like the neutral pion. However,Mπ0u

andMπ0d
, as determined

from the large-time behavior of up and down quark
components of the connected part of the neutral pion
correlator (i.e., ūγ5u and d̄γ5d correlators, respectively),
are useful quantities since their average provides a lower
bound of charged ρ mass due to the QCD inequality as
mentioned in Sec. I. On the other hand, fπ0u and fπ0d are

determined from ūγ5u and d̄γ5d correlators according to
Eq. (17), respectively.

III. NUMERICAL SETUPS

A. Lattice setup

Most of the previous lattice QCD studies for (2þ 1)-
flavor QCD in the external magnetic field were performed
using the stout staggered fermions. In our current simu-
lations, we use Nf ¼ 2þ 1 highly improved staggered
quarks (HISQ) [75]. At a given value of the lattice spacing,
the HISQ action achieves better taste symmetry than two-
stout actions [76]. The HISQ action is constructed by the
Kogut-Susskind one-link action and Naik improvement
term with smeared links. The smeared links are obtained in
the following way. First, level one smeared links Vμ are
constructed by fat-7 from thin SU(3) links Uμ. Next,
reunitarized links Wμ are constructed by projecting Vμ

on U(3). Finally, level two smeared links Xμ are constructed
by fat-7 from thin SU(3) links Wμ with the Lepage term.
The HISQ Dirac operator is built by the Kogut-Suskind
term with Xμ and the Naik term with Wμ. The magnetic
field only couples directly to quarks; thus, the implemen-
tation of the magnetic field is done just by replacing Xμ →
uμXμ in the Kogut-Susskind term and Wμ → uμWμ in the
Naik term [14]. Details about the implementation of

magnetic fields in the lattice QCD simulations using the
HISQ action are summarized in Appendix C.
The external magnetic field pointing along the z direc-

tion B⃗ ¼ ð0; 0; BÞ is described by a fixed factor uμðnÞ of the
U(1) field, and uμðnÞ is expressed as follows in the Landau
gauge [9,77],

uxðnx; ny; nz; nτÞ ¼
�
exp½−iqa2BNxny� ðnx ¼ Nx − 1Þ
1 ðotherwiseÞ

uyðnx; ny; nz; nτÞ ¼ exp½iqa2Bnx�;
uzðnx; ny; nz; nτÞ ¼ utðnx; ny; nz; nτÞ ¼ 1: ð19Þ

Here the lattice size is denoted as ðNx; Ny; Nz; NτÞ and
coordinates as nμ ¼ 0;…; Nμ − 1 (μ ¼ x, y, z, τ). The
external magnetic field applied along the z direction
B ¼ ð0; 0; BÞ is quantized in the following way:

qB ¼ 2πNb

NxNy
a−2; ð20Þ

where q is the electric charge of a quark, and Nx ðNyÞ is the
number of points in the xðyÞ direction on the lattice. Since
the quantization has to be satisfied for all the quarks in the
system, a greatest common divisor of the electric charge of
all the quarks, i.e., jqdj ¼ jqsj ¼ e=3 with e the elementary
electric charge, is chosen in our simulation. In practice, the
strength of the magnetic field eB is expressed as follows:

eB ¼ 6πNb

NxNy
a−2; ð21Þ

where Nb ∈ Z is the number of magnetic fluxes through a
unit area in the x-y plane. The periodic boundary condition
for U(1) links is applied for all directions except for the x
direction, as shown in Eq. (19). As limited by the boundary

condition, Nb is constrained in the range of 0 ≤ Nb <
NxNy

4
.

In our study Nσ ≡ Nx ¼ Ny ¼ Nz.
For the gauge part, we use a tree-level improved Symanzik

gauge action. The simulations have been performed on
lattices with temporal size Nτ ¼ 96 at zero temperature.
The inverse lattice spacing is a−1 ≃ 1.685 GeV, and strange
quark mass ms is tuned to its physical value by tuning the
mass of the η0s meson, Mη0s

≃ 684 MeV, which is based on

the leading order chiral perturbation theory relation Mη0s
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M2
K −M2

π

p
between masses of η0s , π, and K. The light

quark mass is then set to beml ¼ ms=10 corresponding to a
pion mass Mπ ≃ 220 MeV in the vacuum. Details on the
scale setting, which is extensively used by the HotQCD
Collaboration, can be found in Refs. [71,78]. In the HISQ
discretization scheme, so-called taste symmetry violations
give rise to a distortion of the light pseudoscalar (pion)meson
masses. These discretization effects are commonly expressed
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in terms of a root-mean-square (RMS) pion mass, which
approaches the Goldstone pion mass in the continuum limit.
The computational setupwith the three different lattice cutoff
values has been discussed in [78]. For the lattice spacing used
in our simulation, one findsMRMS ≈ 240 MeV for physical
quark masses [76,78].
In our simulations, 16 different values of Nb on 323 × 96

lattices have been chosen, i.e., 0, 1, 2, 3, 4, 6, 8, 10, 12, 16,
20, 24, 32, 40, 48, and 64, whose corresponding magnetic
field strength eB ranges from 0 to around 3.35 GeV2.
To check the volume effects, simulations with eB ≃
1.67 GeV2 on 403 × 96 have also been performed. If not
mentioned explicitly, most of the results shown in this
paper are obtained from 323 × 96 lattices. To have small
discretization errors for B, the magnetic field implemented
in the lattice simulations should be small in lattice units,
i.e., a2qdB ≪ 1 or Nb=N2

σ ≪ 1 [28]. In our work, the
largest number of magnetic fluxes Nmax

b ¼ 64 resulting in

Nmax
b =N2

σ ≈ 6%. Thus, the discretization errors for B should
be small. All configurations have been produced using the
rational hybrid Monte Carlo algorithm and saved by every
5 time units. The statistics for each Nb are about Oð103Þ
which are listed in Table I in detail.

B. Meson correlation functions

We show our results of correlation functions for π0uðuūÞ
and π0dðdd̄Þ as an example in the left and right plots of
Fig. 1, respectively. It can be seen clearly from the plots that
both correlation functions become larger with increasing
magnetic field strength eB, and the uū component of the
two-point correlation function increases faster. It may be
understood that the internal structure of pion is probed, and
the uū component is more affected due to the larger
absolute value of the electric charge of the u quark.
We then extract the mass of neutral and charged

pseudoscalar mesons by fitting to the corresponding

TABLE I. The statistics of analyzed 323 × 96 and 403 × 96 lattices with β ¼ 6.68 and a ≃ 0.117 fm (a−1 ≃ 1.685 GeV) produced
using the HISQ fermion action and a tree-level improved Symanzik gauge action in Nf ¼ 2þ 1 QCD. The light quark mass in lattice
spacing is tuned to be aml ¼ 0.00506 ¼ ams=10withms the physical strange quark mass. The resulting masses of the pion, η0s , K0, and
ρ at eB ¼ 0 are Mπ ¼ 220.61ð6Þ MeV, Mη0s ¼ 684.44ð6Þ MeV, MK ¼ 507.0ð7Þ MeV, and Mρ ¼ 779ð35Þ MeV, respectively.

eB [GeV2] 0 0.052 0.104 0.157 0.209 0.314 0.418 0.523
Nb 0 1 2 3 4 6 8 10
# of conf. 2548 2651 3135 2444 2224 3142 2935 3302

eB [GeV2] 0.627 0.836 1.045 1.255 1.673 2.09 2.510 3.345
Nb 12 16 20 24 32 40 48 64
# of conf. 3432 1993 3160 1994 2174 3385 2234 3263

Lattice size: 323 × 96

eB [GeV2] 1.673
Nb 50
# of conf. 1260

Lattice size: 403 × 96
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FIG. 1. Left: The uū component of the neutral pion correlation function Gπ0uðnτÞ at different values of Nb calculated using 12 corner
wall sources. Right: Same as the left one but for the dd̄ component Gπ0d

ðnτÞ. G shown here are rescaled with lattice spacing a such that
they are dimensionless quantities.
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temporal correlation functions with the ansatz [cf. Eq. (4)].
The nonoscillating states are the physical states we need,
and oscillating states are also necessary to be included in
the fit, particularly in the case of correlation functions for
charged particles. In the fits, we used various numbers of
nonoscillating as well as oscillating states, i.e., (Nnosc,Nosc)
has been set to (1,0), (1,1), (2,1). All the fits have been
performed in a given interval ½τmin; Nτ=2�, where τmin
ranges from 0 to Nτ=2 − 1. The final results are chosen
as the best fit from all different fit modes through the
corrected Akaike Information criterion (AICc) [79,80]

AICc ¼ 2k − lnðL̂Þ þ 2k2 þ 2k
n − k − 1

; ð22Þ

where k is the number of parameters, L̂ is the likelihood
function, and the last term is needed to correct overfitting if
the number of data points n is not much larger than k. We
then choose a plateau in the AICc selected results and
obtain the final mass and uncertainty from the plateau using
a Gaussian bootstrapping method [71].
The usage of a single point source in the computation of

correlation functions does not suppress the excited states

and could make the isolation of the ground state from
excited states difficult unless the states are well separated or
the lattice extent is large. The usage of smeared (extended)
sources can help to suppress the excited states and make the
extraction of ground state mass and amplitude more
reliable. We thus also compute correlation functions using
corner wall sources. When applying a corner wall source in
temporal correlators, a unit source is needed at the origin of
each 23 cube on a chosen z slice [71,81–83]. We further
improve the signal by putting 12 corner wall sources at
ð0; 0; 0; 0Þ; ð0; 0; 0; 8Þ; ...; ð0; 0; 0; 88Þ. The signal-to-noise
ratio δGðτÞ=hGðτÞi obtained using a single corner wall
source is reduced by a factor of 6 compared to the results
obtained using a single point source. The signal-to-noise
ratio obtained using multiple corner wall sources isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#of sources

p
times better than using a single corner wall

source. We provide a typical example of the fit results,
whose procedure was illustrated earlier, for the uū compo-
nent of a neutral pion correlation function at eB ¼
0.84 GeV2 measured using a single point source (top
two plots) and 12 corner wall sources (bottom two plots)
in Fig. 2. We find that the usage of the corner wall sources
yields a much better signal in the ground states than that of
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FIG. 2. Top: Mass (left) and its associated matrix element CPP multiplied by the spatial volume Vs (right) of π0u at Nb ¼ 16

(eB ¼ 0.84 GeV2) with there different fit modes: ðno: of nonoscillating states; no: of oscillating statesÞ ¼ ð1; 0Þ; ð1; 1Þ; ð2; 1Þ obtained
from the fits to correlation functions measured using a single point source. Bottom: Same as the top two plots but for fits to correlation
functions measured using 12 corner wall sources.
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the point source and has a longer plateau with much smaller
uncertainty. The value of ground state mass extracted using
the corner wall source is consistent with that extracted
using the point source. As seen from Fig. 2, the corner wall
source also works better for the extraction of the amplitude,
i.e., the amplitude obtained with the corner wall source is
about 3% larger than the amplitude obtained with the point
source while the relative error is reduced by ∼20 times. The
amplitude obtained from the corner wall sources is then
used in the calculation of decay constants in Sec. IV.
To check the volume dependence of masses and decay

constants of neutral pseudoscalar mesons we show the ratio
of correlation functions obtained on 403 × 96 lattices to
those obtained on 323 × 96 lattices at eB ≃ 1.67 GeV2 in
the left plot of Fig. 3. The correspondingMπV

1=3
s increases

from ≃2.6 on 323 × 96 lattices to ≃3.3 on 403 × 96 lattices.
One can see that the correlation function obtained in
a larger volume becomes larger at most by 1.5%. This

naturally leads to the negligible volume dependences of
Mπ0u;d;K

0;η0s as shown in the right plot of Fig. 3, and of related

decay constants as well. Because of the relation between
chiral condensates and corresponding correlation functions
as will be shown in the next subsection, chiral condensates
consequently also have mild volume dependences.
The charged pseudoscalar meson correlation function

receives contributions from both oscillating and nonoscil-
lating states, and generally has smaller signal-to-noise ratio
compared to the neutral one. As an example we show in the
left plot of Fig. 4 the extracted mass plateau of π− and K−

obtained from lattices with both Nσ ¼ 32 and 40 at
eB ≃ 1.67 GeV2. The 12 corner wall sources are also used
in the computation of correlation functions of π− and K−,
and the mass plateau is selected by the AICc using the same
procedures as mentioned before. One can observe that on
lattices with Nσ ¼ 40 a longer and more stable plateau
can be obtained, and Mπ− (MK−) extracted from lattices
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FIG. 3. Left: Ratio of correlation functions of neutral pseudoscalar mesons obtained from lattices with spatial extent Nσ ¼ 40 to those
with Nσ ¼ 32. Right: Pseudoscalar meson masses extracted from correlation functions obtained from lattices with two different
volumes. Both plots are obtained at eB ≃ 1.67 GeV2.
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FIG. 4. Left: Mass plateaus of π− and K− extracted from correlation functions obtained from lattices with spatial extent Nσ ¼ 40 and
32. Right: Ratio of correlation functions of π− and K− obtained from lattices with two different volumes. Both plots are obtained
at eB ≃ 1.67 GeV2.
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with two different volumes are consistent within errors
(cf. Fig. 3 right). The ratios of corresponding correlation
functions obtained using two volumes are shown in the
right plot of Fig. 4, and differ by less than 10% in the region
where mass plateaus are extracted.
Since the volume dependence of observables we are

interested in is mild, most of the results shown in the
following sections are obtained from 323 × 96 lattices if not
mentioned explicitly. More discussions on the volume
effects are presented in Sec. IVA.

C. Mixing of pion states and Ward-Takahashi
identities at eB > 0

Since the states of vector meson ρ with spin polarization
sz ¼ 0, i.e., ρsz¼0 has the same quantum number of the
states of π in the presence of a magnetic field, it is supposed
that the mixing between the pion and ρsz¼0 states is enabled
[60], i.e., neutral π0 mixes with neutral ρ0sz¼0 while charged

π� mixes with charged ρ�sz¼0.
2 This is to say that once the

mixing is enabled, correlation functions in the vector
channel and pseudoscalar channels receive mutual contri-
butions and their corresponding ground state masses should
be the same. The mixing has been investigated in detail in
quenched QCD in Ref. [60], and it was found that the
influence to the ground state of π is negligible. Here we
show evidence that the influence of mixing to neutral
pseudoscalar meson states as well as the contribution from
disconnected diagrams to the neutral pion correlation
function are mild. This can be seen as follows. At nonzero
magnetic fields, as derived in Appendix A, the following
Ward identity [cf. (A20)] also holds as that at eB ¼ 0:

2mlχ̃π0 ¼ hψ̄ψiu þ hψ̄ψid; ð23Þ

where χ̃π0 is the space-time sum of the neutral pion
correlation function which includes contributions from
both connected and disconnected diagrams. As the com-
putation of disconnected diagrams in the correlation func-
tion is beyond the scope of current paper, we rather look
into the up and down quark components of the connected
part of the neutral pion correlation function. In practice we
check whether two following relations hold true at nonzero
magnetic fields:

hψ̄ψiu ¼ muχπ0u ; hψ̄ψid ¼ mdχπ0d : ð24Þ

Here χπ0u (χπ0d ) is the space-time sum of the up (down) quark
component of the connected part of neutral pion correlation
function, and mu ¼ md in our setup. If the above two
relations held true at nonzero magnetic field, this leads to
χπ0u þ χπ0d ¼ 2χ̃π0 , which is the same as the case at eB ¼ 0.3

We show the ratios, hψ̄ψiu=ðmuχπ0uÞ and hψ̄ψid=ðmdχπ0dÞ,
as functions of eB in the left plot of Fig. 5. We found that
both ratios agreewith unitywith deviations less than 1.2% at
all the values of the magnetic field strength we studied.
This suggests that the summed contribution from the
anomalous part Δu;d

J and the disconnected diagram in π0u;d
is negligible [cf. Eq. (A24) and (A25)] at both zero and
nonzero magnetic fields. Since chiral condensates do not
contain any information of ρ, the influence of the mixing
of ρ to neutral pseudoscalar states should be negligible.
Moreover, hψ̄ψiu ≈muχπ0u and hψ̄ψid ≈mdχπ0d naturally
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FIG. 5. Left: Ratio hψ̄ψif=ðmfχps0f Þ as a function of eB for f as up (u), down (d) and strange (s) quark flavors. Here χps0f is the space-
time sum of the correlation function of neutral mesons consisting only the connected ff̄ component in the pseudoscalar channel,
χps0f ¼

P
Nτ−1
τ¼0 Gps0f

ðτÞ with f ¼ u, d and s quark flavors. For f ¼ u, d, and s, χps0f ¼ χπ0u , χπ0d , and χη0s , respectively. Right: Ratio

ðhψ̄ψid þ hψ̄ψisÞ=ððmd þmsÞχK0Þ as a function of eB. In both plots open points denote results obtained from 323 × 96 lattices, while
filled points shifted horizontally denote results at eB ≃ 1.67 GeV2 obtained from 403 × 96 lattices.

2Note that the mixing with sz ¼ �1 is not permitted due to the
conservation of angular momentum.

3Note that the disconnected diagram does not contribute to χ̃π0
at eB ¼ 0.

CHIRAL PROPERTIES OF (2þ 1)-FLAVOR QCD IN STRONG … PHYS. REV. D 104, 014505 (2021)

014505-9



lead to hψ̄ψiu þ hψ̄ψid ≈mlðχπ0u þ χπ0dÞ. Considering that

the contribution from disconnected diagrams to π0 is
negligible, one then has hψ̄ψiu þ hψ̄ψid ≈ 2mlχ̃π0 at both
vanishing and nonzero magnetic fields. This thus resembles
Eq. (23), indicating that the disconnected part can be
ignored in the integrated neutral pion correlation function.
Although it is found in the quenched QCD that the large
distance behavior of correlators arising from disconnected
diagrams is negligible in the determination of neutral pion
mass [62], the exact influence of the disconnected part to the
large distance behavior of the neutral pion correlation
function in full QCD requires further investigation, which
is beyond the scope of current study. We also check the
volume dependence at eB ≃ 1.67 GeV2, and the results
obtained from 403 × 96 lattices shown as filled points
(shifted horizontally) almost overlap with the results
obtained from 323 × 96 lattices.
We also check the Ward identities involving strange

quarks at nonzero magnetic fields [cf. (A21) and (A22) in
Appendix A],

hψ̄ψis þ Δs
J ¼ msχ̃η0s ; ð25Þ

hψ̄ψid þ hψ̄ψis ¼ ðmd þmsÞχK0 ; ð26Þ

where χ̃η0s and χK0 are the space-time sum of η0s and the
neutral kaon correlators. The former includes contributions
from both connected and disconnected diagrams. In our
study, we only investigate the connected contribution to χ̃η0s ,
which is denoted by χη0s. The ratios, hψ̄ψis=ðmsχη0s Þ and
ðhψ̄ψid þ hψ̄ψisÞ=ððmd þmsÞχK0Þ as functions of eB, are
shown in the left and right plot of Fig. 5, respectively.
The deviation from unity is less than 0.6% in eB ∈
½0; 3.35Þ GeV2. One can clearly see that for Eq. (25),
the overall contributions from Δs

J and the disconnected
diagrams are tiny at all the magnetic fields, while Eq. (26)
holds well with marginal deviations in the current window
of magnetic fields.

D. UV divergence of quark chiral condensates

To investigate the GMOR relation, we need to take care
of the UV divergence in the light and strange quark chiral
condensates at zero and nonzero magnetic fields. Since it
has been shown in Ref. [9] that the UV-divergence part of
the chiral condensate is independent of the magnetic field,
we can obtain the UV-free chiral condensate at nonzero
magnetic fields by subtracting the UV divergence in the
chiral condensate, i.e., hψ̄ψiUVf¼l;s obtained at the zero
magnetic field. To obtain hψ̄ψiUVl;s , we thus look into the
Dirac spectrum representation of the subtracted chiral
condensate at the zero magnetic field,

hψ̄ψisub ≡ hψ̄ψil −
ml

ms
hψ̄ψis

¼
Z

∞

0

2mlðm2
s −m2

l ÞρðλÞ
ðλ2 þm2

l Þðλ2 þm2
sÞ
dλ; ð27Þ

where ρðλÞ is the eigenvalue spectral density of fermion
matrix Df [cf. Eq. (9)], and the light (up or down) quark
and strange quark chiral condensate, hψ̄ψil and hψ̄ψis, are
connected to ρðλÞ through the following relation:

hψ̄ψil;s ¼
Z

∞

0

2ml;sρðλÞ
λ2 þm2

l;s

dλ: ð28Þ

The UV-divergence part of the quark chiral condensate
linear in quark mass is thus absent in hψ̄ψisub, while a
logarithm UV divergence in the light quark chiral con-
densate should be negligible. Thanks to the Chebyshev
filtering technique combined with the stochastic estimate
method [14,84–87], we can compute the complete Dirac
eigenvalue spectrum ρðλÞ and then reproduce hψ̄ψisub as
well as hψ̄ψil and hψ̄ψis through Eqs. (27) and (28),
respectively.4 In the Dirac eigenvalue spectrum, the
UV-divergence part should be represented by ρðλÞ with
λ ≥ λUVcut . Thus the UV-divergence part of the light quark
condensate can be expressed as

hψ̄ψiUVl;s ¼
Z

∞

λUVcut

2ml;sρðλÞ
λ2 þm2

l;s

dλ: ð29Þ

Given that the logarithm divergence in the quark mass is
negligible, the UV-divergence part in the strange quark
chiral condensate should bems=ml times as that in the light
quark chiral condensate, i.e., hψ̄ψiUVs ¼ 10hψ̄ψiUVl in our
case. Thus, hψ̄ψiUVl;s can be determined with the smallest
value of λUVcut which makes hψ̄ψiUVs =hψ̄ψiUVl ¼ 10.
To determine the value of λUVcut , we show the ratio

hψ̄ψiUVs =hψ̄ψiUVl as a function of λcut in the left plot of
Fig. 6. Here λcut is the lower limit in the integration of λ in
Eq. (29). We see that the ratio approaches 10 rapidly at
λcut ≲ 0.2 and then saturates at 10 at larger values of λcut.
We thus pick up a value of 0.24 to be λUVcut , which makes the
ratio start to approach 10 by less than 0.5%. As seen from
the inset in the left plot of Fig. 6, hψ̄ψiUVf ðλcutÞ itself is a
rapidly decreasing function of λcut. We also check the
uncertainty in the determination of λUVcut by looking to the
subtracted chiral condensate. We compute hψ̄ψisubðλcutÞ as
a function of λcut, where λcut is also the upper bound of the
integration variable λ in Eq. (27) and show the ratio of

4With the order of Chebyshev polynomials being 24000 and
the bin width of the Dirac eigenvalue spectrum in lattice spacing
being 0.002 hψ̄ψisub, hψ̄ψil and hψ̄ψis obtained from the
stochastic noise method [cf. Eq. (9)] are reproduced within an
accuracy of 1% via Eqs. (27) and (28).
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hψ̄ψisubðλcutÞ to hψ̄ψisubðλcut ¼ ∞Þ as a function λcut in the
right plot of Fig. 6. Thus, λUVcut should be the smallest value
of λcut at which hψ̄ψisubðλcutÞ=hψ̄ψisubðλcut ¼ ∞Þ ≃ 1. As
seen from the plot, the ratio approaches unity at very small
values of λcut, e.g., the ratio is 0.5% deviation from unity
at λcut ≃ 0.12.
The logarithm divergence in the quark mass is expected

to be less than about 1.25% of the UV part that is linear in
quark mass in the free case, which should be negligible in
our case. Here to study the uncertainty of the UV part in the
chiral condensate, we adopt a rather wide window for the
values of λUVcut from 0.12 to 0.36 with the central value 0.24
which gives hψ̄ψiUVs =hψ̄ψiUVl ≃ 10. Then the obtained
hψ̄ψiUVl ranges from about 32% to 27% of hψ̄ψil at
eB ¼ 0, while hψ̄ψiUVs ranges from about 83% to 71%
of hψ̄ψis at eB ¼ 0.

IV. RESULTS

A. Masses and magnetic dipole polarizabilities
of light and strange pseudoscalar mesons

We now present our results for masses of pseudoscalar
mesons calculated at 16 different values of eB ranging from
0 to ∼3.35 GeV2. In the left plot of Fig. 7, we show the
ratio of masses of neutral pseudoscalar mesons at nonzero
magnetic fields to those at a zero magnetic field as a
function of eB. We found that the masses of all neutral
mesons decrease with increasing eB and tend to saturate at
eB≳ 2.5 GeV2. By comparing the normalized masses of
π0u, π0d,K

0, ηs, it is obvious that the lighter hadrons are more
affected by the magnetic field. For instance, in the strongest
magnetic field (eB ≃ 3.35 GeV2) we have, it can be seen
that Mη0s

and Mπ0u
(Mπ0d

) are about 70% and 60% of their
values at B ¼ 0, respectively. The amount of reduction in
Mπ0u

andMπ0d
is roughly consistent with results presented in

SU(2) gauge theory [59] and SU(3) quenched QCD [60] as

well as in Nf ¼ 2þ 1 QCD with stout fermions and the
physical pion mass in the vacuum [9].5 In the former case
Mπ0u

in quenched QCD [60] decreases slower while the
latterMπ0u

in Nf ¼ 2þ 1 QCD [9,60] decreases faster with
eB compared to our current study. This could be partly due
to the fact that hadrons with larger masses are less affected
by the magnetic field, as the pion mass in the vacuum is
about 415 MeV in [60], while it is 135 MeV in [9,60].
Because of the presence of a nonzero magnetic field, the
SUVð2Þ symmetry is broken, and the mixture of the uū and
dd̄ flavor contents in the neutral pion could depend on eB
[60]. To determine the mixture coefficient is beyond the
scope of our current paper. However, as discussed in
Sec. III C, the mixture mostly likely is similar as that at
eB ¼ 0. For a demonstration we nevertheless show in the
left plot of Fig. 7 the ground state mass of π0 extracted from
the averaged correlation functions of uū and dd̄ in the
pseudoscalar channel, i.e., Gπ0 ¼ ðGπ0u

þGπ0d
Þ=2, assum-

ing that the contribution of the disconnected diagram is
negligible and the mixture coefficients are the same as the
B ¼ 0 case [62]. As seen from the plot, the ratio for π0 is
between those for π0u and π0d as expected.
As discussed in Sec. II, the mass of a neutral point

particle should be independent of the magnetic field due to
its zero electric charge. However, the mesons we studied
are composite particles consisting of two constituent
quarks. When the magnetic field is weaker than the inverse
meson size squared, mesons remain pointlike, which is the
case for charged pseudoscalar mesons at eB≲ 0.31 GeV2

as shown in Fig. 9. The eB dependence of neutral
pseudoscalar meson masses, on the other hand, suggests
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5The eB dependence of Mπ0u
obtained in Nf ¼ 2þ 1 QCD

using stout fermions is shown in Fig. 20 in Ref. [60], where the
determination of Mπ0u

using stout fermions is based on the gauge
ensembles produced in Ref. [9].
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that the internal constituents of these neutral mesons, i.e.,
constituent quarks, are probed by the magnetic field we
simulated. Thus, these neutral pseudoscalar mesons cannot
be considered as point particles in all the simulated
magnetic field strengths. Also, the different magnitudes
of the mass reduction between π0u and π0d may come from
the different electric charges of up and down quarks,
indicating that the meson’s inner structure has been
revealed. Since the internal structure of the neutral pion
is probed within our current window of magnetic field, we
intend to investigate the influence of the electric charge of
quarks on the mass of neutral pion. We thus show the ratio
ofMπ0u

toMπ0d
as a function of qB instead of eB in the right

plot of Fig. 7. We find for the first time to our knowledge
that, after rescaling the x axis from eB into qB,
Mπ0u

ðjquBujÞ is almost the same as Mπ0d
ðjqdBujÞ at jqBj ¼

jquBuj ¼ jqdBdj and differs at most by 2%. Here qu and qd
are the electric charges of u and d quarks, respectively, and
Bu;d stands for different magnetic field strengths that the
quark feels to make jqBj the same for up and down quarks.
We call this behavior the qB scaling.
The qB scaling should be exact in the quenched limit

where the eB (qB) only enters into the Dirac operator.
However, dynamical quarks could spoil the qB scaling as
they carry different electric charges and enter into the quark
action and affect the probability of different background
gauge fields in the path integral. The eB dependence ofMπ0u
and Mπ0d

has been obtained in quenched QCD, and a
qualitative consistency of the data with the qB scaling can
be read off from the top plot of Fig. 13 in Ref. [60] showing
the eB dependence of Mπ0u;d

. The mild deviation of

Mπ0u
ðjqBjÞ=Mπ0d

ðjqBjÞ from unity observed in our study
suggests that influences from dynamical quarks are neg-
ligible at MπðeB ¼ 0Þ ≃ 220 MeV. On the other hand, the
qB scaling observed in our study also supports that the
internal structure of the neutral pion is probed. This is due

to the fact that the neutral pion cannot be considered as a
point particle anymore and Mπ0u;d

are functions of the

electric charge of the quark (q) multiplied by the magnetic
field strength (B). Note that the weakest magnetic field we
simulated is eB ≈ 0.05 GeV2, which is about the value of
M2

πðeB ¼ 0Þ in our simulation. It is expected that eB needs
to be larger to probe the internal structure of a heavier
neutral pion to see the qB scaling behavior. We will come
back to this point in the discussion of the qB scaling of
chiral condensates in Sec. IV B.
In Fig. 8, we show the ratio of Gπ0u

ðτ; jquBujÞ to
Gπ0d

ðτ; jqdBdjÞ as a function of temporal distance nτ at
13 different values of jqBj. We found that at large distances,
i.e., nτ close to 48 (Nτ=2), the most relevant part for the
extraction of Mπ0u

ðMπ0d
Þ, the ratio deviates from unity at

most by 2%. This naturally explains that the origin of qB
scaling behavior shown in Mπ0u

ðMπ0d
Þ is the qB scaling

behavior of correlation function Gπ0u
ðGπ0d

Þ. We will see in
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Secs. IV B and IV C that according to Eqs. (17) and (25) the
qB scaling of correlation functions also naturally leads to
the qB scaling of ΣuðΣdÞ and fπ0u (fπ0d).
We now turn to the case of charged pseudoscalar mesons

π− and K−, and show the differences in their squared
masses from the case of a zero magnetic field, i.e.,
M2ðeBÞ −M2ðeB ¼ 0Þ in the left plot of Fig. 9.6 We
see that for both π− and K− the differences show a
nonmonotonous behavior in the magnetic field, i.e., they
first increase and then decrease with the magnetic field
strength eB, and tend to saturate at eB≳ 2.5 GeV2. In the
small magnetic field, i.e., eB≲ 0.31 GeV2 (Nb ≤ 6), the
differences, as labeled by blue circles and red triangles for
π− andK− respectively, can be well described by the lowest
Landau level (LLL) approximation [cf. Eq. (6)] shown as
the dashed line in the plot. At eB > 0.31 GeV2 (Nb > 6),
the masses start to deviate from the results of the LLL
approximation and then decrease with eB. The deviation of
Mπ− and MK− from the LLL approximation suggests that
π− and K− cannot be considered as point particles anymore
at eB≳ 0.31 GeV2. On the other hand, the decreasing
behavior ofM2ðBÞ −M2ðB ¼ 0Þ in eB at eB≳ 0.63 GeV2

is novel. In the quenched QCD, there exists no marked
decreasing behavior of πþ mass until eB ∼ 3.5 GeV2 [60],
while the charged pion mass obtained in the previous
Nf ¼ 2þ 1 QCD simulations do not possess a marked
decreasing behavior as well until the largest available
eB ∼ 0.4 GeV2 [9].
The decreasing behavior of charged pseudoscalar meson

masses at large eB, as observed in our study, might suffer
from the finite volume effects as the lightest meson π0

becomes lighter as eB grows. To understand the finite

volume effects, at a single point of eB ≃ 1.67 GeV2 lying
in the region where masses decrease with eB, we also show
the results of Mπ− and MK− obtained from lattices with a
larger volume ofNσ ¼ 40 (denoted as filled points) in Fig. 9.
As also shown in Fig. 4, we thus consider that the finite size
effects in our current study should bemild, because themass
of the lightest meson, i.e., the neutral pion, does not become
much smaller at stronger magnetic fields. Thus, the decreas-
ing behavior of charged pseudoscalar meson masses as eB
grows at strong magnetic fields should be robust, and it may
be due to the effects of dynamical quarks and strong
magnetic fields in our current study.
One can also observe that at large magnetic fields, the

mass of K− is less affected than π− by eB, which is
probably due to the fact that the mass of K− is larger than
π− in the vacuum as is the case for neutral mesons. In the
framework of the statistical hadron model [88], the mass
ratio of K− and π− could manifest itself in the difference of
yields produced in the peripheral heavy-ion collisions given
that the magnetic field lives sufficiently long. We further
show the ratio MK−ðBÞ=Mπ−ðBÞ in the right plot of Fig. 9.
At vanishing magnetic field, the mass of π− is about 40% of
K−. As the magnetic field strength eB increases,Mπ−=MK−

first increases as it reaches up to ∼0.9 at eB ∼ 0.8 GeV2,
and then slightly decreases and becomes flat at a value of
∼0.8 at eB≳ 2 GeV2.
As seen from Figs. 7 and 9, the neutral and charged

pseudoscalar mesons are not pointlike particles anymore in
the strong magnetic field and their internal structures could
be described by the magnetic dipole polarizability. In the
relativistic case, the energy squared of a pseudoscalar
meson has the following form [62]:

M2ðBÞ ¼ M2ðB ¼ 0Þ þ jqBj − 4πMðB ¼ 0ÞβmðeBÞ2
− 4πMðB ¼ 0Þβ1hm ðeBÞ4 þOððeBÞ6Þ; ð30Þ
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6Because of the parity in eB, the masses of their antiparticles
should be the same.
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where q is the electric charge of the meson, βm is the
magnetic dipole polarizability, and β1hm is the first-order
magnetic hyperpolarizability. In the weak magnetic field,
we thus fit the ratio of the neutral pseudoscalar meson mass
at nonzero magnetic fields to its value at a zero magnetic
field using the following ansatz [62]:

MðBÞ
MðB¼ 0Þ ¼ 1−

2πβm
MðB¼ 0Þ× ðeBÞ2

−
2π

MðB¼ 0Þðβ
1h
m þπðβmÞ2=MðB¼ 0ÞÞ× ðeBÞ4

þOððeBÞ6Þ: ð31Þ

We show MðBÞ=MðB ¼ 0Þ for the case of neutral
pseudoscalar mesons in a small magnetic field range in
the left plot of Fig. 10. A clear linear behavior in ðeBÞ2 can
be observed for π0d, K0, and η0s at ðeBÞ2 ≲ 0.03 GeV2

(Nb ≤ 3) while for π0u in a smaller window, i.e., at ðeBÞ2 ≲
0.02 GeV2 (Nb ≤ 2). We thus fit the data in the corre-
sponding range with the ansatz, Eq. (31), including only
the terms up to ðeBÞ2, and the fit results are denoted by
solid lines in the plot. The obtained magnetic dipole
polarizabilities βm are shown as red points in the right
plot of Fig. 10. To check the uncertainties of βm, we also
performed the fits to the data in a broader range of ðeBÞ2 <
0.1 GeV4 (Nb ≤ 6) by adding higher-order terms in the fit
ansatz. It can be seen from the left plot of Fig. 10 that the fit
ansatz, including terms up to ðeBÞ4 (denoted as dashed
lines), can describe the data for π0d, K

0, and η0s fairly well,
while an even higher-order term, i.e., ðeBÞ6, is needed to

describe the data for π0u (denoted as a dashed-dotted line).
The corresponding results of βm from fits, including terms
up to ðeBÞ4 and ðeBÞ6, are shown as blue and black points
in the right plot of Fig. 10, respectively. It can be seen that
the uncertainties of βm for π0d,K

0, and η0s are small while for
π0u they are relatively large. In the case of π0u, βm is about
0.167 obtained from the linear fit in ðeBÞ2 and drops
(increases) by about 15% (10%) obtained from fits includ-
ing terms up to ðeBÞ4 [ðeBÞ6]. The value of βm for π0u is thus
in the ballpark of 4 times the value of βm for π0d, which is
consistent with the qB scaling shown in the right plot of
Fig. 7 due to ðquÞ2 ¼ 4ðqdÞ2. The qB scaling can also be
seen from the values of the first order hyperpolarizabilities
for π0u and π0d, i.e., β

1h
m;π0u

≃ 16β1hm;π0d
, as seen from Table II

with the fit range Nb ≤ 6. We also show the results of π0

obtained using the same fit policy as that for π0d in Fig. 10
and Table II. The quality of the fit for π0 is similar to that for
π0d, and the obtained βm (β1hm ) of π0 from the best fit with
smallest χ2=d:o:f: is about 1.5 (5) times as those of both K0

and η0s . Note that χ2=d:o:f: of the fits to neutral mesons are
generally large which could be due to the fact that the
statistics errors of neutral meson masses are tiny, i.e., at the
order of ∼0.03%. This may suggest that even smaller
values of eB need to be included in the fits to extract
reliable magnetic polarizabilities for neutral mesons.
We move forward to show the results of magnetic

polarizabilities for charged pseudoscalar mesons, i.e., π−

and K−, based on a fit ansatz of Eq. (30) including terms
up to ðeBÞ4. We performed fits to M2ðBÞ using four
different fit ranges, i.e., Nb ≤ 12, 16, 20, and 24, and
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the corresponding fit results are denoted by lines with
Nmax

b ¼ 12, 16, 20, and 24 in Fig. 11, respectively.7 The
best fit is obtained with the narrowest fit range of
Nmax

b ¼ 12, whose χ2=d:o:f: is closest to unity as listed
in Table II. We find that the resulting βm is consistent with
zero for both π− and K−, while values of β1hm for π− and K−

are comparable to be around 0.3 GeV−7. As the fit range
becomes broader, the quality of the fit becomes worse, and
this indicates that higher-order hyperpolarizabilities are
needed to describe the data, which is beyond the scope of
the current paper.
We close this subsection by comparing our results of

magnetic polarizabilities (cf. Figs. 10 and 11 and Table II)
to previous computations of βm for light pseudoscalar
mesons in lattice QCD, which were done in quenched
QCD [60–62,89] and dynamical QCD [90]. In the
quenched QCD studies, the corresponding pion mass tuned
by the valence quark mass at a zero magnetic field is
generally large, e.g., MπðeB ¼ 0Þ≳ 512 MeV in [89],
MπðeB ¼ 0Þ≳ 320 MeV in [61,62], and MπðeB ¼ 0Þ ≳
400 MeV in [60]. On the other hand, electroquenched
computations in (2þ 1)-flavor QCD, where no background
magnetic field is present on the gauge field ensembles, are
performed withMπðeB ¼ 0Þ ranging from 702 to 296MeV

[90]. One difference to be noted is that in Ref. [60] βm for
πu is about twice that for πd, while in our case βm is about
four times as that for πd, which is consistent with the qB
scaling. This could be due to the fact that a sufficiently
small magnetic field needs to be used to extract βm and
relatively larger weakest magnetic fields are applied in [60].
As pointed in Ref. [60], the hopping parameter κ used in
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TABLE II. The magnetic dipole polarizability βm and the first-order hyperpolarizability β1hm of neutral mesons π0u, π0d, π
0, K0, and η0s as

well as charged mesons π− and K−, fit ranges and fit ansatz as well as χ2=d:o:f: obtained from fits shown in Figs. 10 and 11.

channel βm [GeV−3] β1hm [GeV−7] χ2=d:o:f: fit ansatz & range

π0u 0.167(6) � � � 31.3 up to OððeBÞ2Þ, Nb ∈ ½0; 2�
0.145(6) −1.07ð9Þ 410.3 up to OððeBÞ4Þ, Nb ∈ ½0; 6�
0.184(5) −2.7ð2Þ 25.1 up to OððeBÞ6Þ, Nb ∈ ½0; 6�

π0d 0.046(1) � � � 10.9 up to OððeBÞ2Þ, Nb ∈ ½0; 3�
0.048(1) −0.20ð1Þ 11.0 up to OððeBÞ4Þ, Nb ∈ ½0; 6�

π0 0.114(3) � � � 9.3 up to OððeBÞ2Þ, Nb ∈ ½0; 2�
0.108(4) −0.70ð6Þ 49.7 up to OððeBÞ4Þ, Nb ∈ ½0; 6�
0.125(3) −1.6ð1Þ 3.5 up to OððeBÞ6Þ, Nb ∈ ½0; 6�

K0 0.079(2) � � � 7.8 up to OððeBÞ2Þ, Nb ∈ ½0; 3�
0.083(1) −0.31ð2Þ 6.8 up to OððeBÞ4Þ, Nb ∈ ½0; 6�

η0s 0.083(1) � � � 9.5 up to OððeBÞ2Þ, Nb ∈ ½0; 3�
0.0878(8) −0.29ð1Þ 5.8 up to OððeBÞ4Þ, Nb ∈ ½0; 6�

π− −0.00ð5Þ 0.4(1) 1.3 up to OððeBÞ4Þ, Nb ∈ ½0; 12�
0.03(3) 0.25(5) 1.3 −, Nb ∈ ½0; 16�
0.08(2) 0.14(2) 1.9 −, Nb ∈ ½0; 20�
0.15(3) 0.06(3) 5.6 −, Nb ∈ ½0; 24�

K− −0.02ð2Þ 0.30(9) 1.9 up to OððeBÞ4Þ, Nb ∈ ½0; 12�
0.01(2) 0.16(4) 2.4 −, Nb ∈ ½0; 16�
0.05(2) 0.06(2) 4.2 −, Nb ∈ ½0; 20�
0.11(2) 0.00(2) 10.0 −, Nb ∈ ½0; 24�

7The reason we choose the smallest value of Nmax
b to be 12 is

that the data can be well described by the LLL approximation at
Nb ≤ 6 and at least three more data points are needed to
accommodate a two-parameter fit.
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the Wilson propagator needs to be along the line of constant
physics in the magnetic field, i.e., κ is eB dependent,
βm obtained from [89] with κ as a constant in eB might
become smaller when the eB dependence of κ was taken
into account as indicated from the study in [60]. On the
other hand, studies performed using overlap valence
quarks in quenched QCD on 184 and 204 lattices give a
negative value of βm for the charged pion, which is close to
the experimental results obtained from the COMPASS
Collaboration, i.e., βm¼ð−2.0�0.6stat�0.7systÞ×10−4 fm3

[91]. Note that the experiment value of βm is obtained under
the assumption that electric polarizability απ ¼ −βm [91].
However, the value of βm for the charged pion obtained in
both Ref. [90] and our study is not negative. Moreover,
the value of βm for the charged pion obtained from
the electroquenched computation is in the range of
0.003– 0.005 GeV−3 [90], and is significantly different
from our results. The discrepancies might be due to many
issues, e.g., effects from the interaction of dynamical
quarks with the magnetic field, a sufficiently weak mag-
netic field needed to compute the polarizability, etc. Thus,
further studies in full QCD with continuum extrapolations
at physical pion mass are crucially needed to have a better
determination of magnetic polarizabilities.

B. Light quark chiral condensates

As has been pointed out in Ref. [9], the presence of
the external magnetic field does not introduce any new
eB-dependent divergences. To take care of the additive
divergences as well as the multiplicative renormalization in
the chiral condensate, we investigate the following dimen-
sionless quantity [10]:

ΣlðBÞ¼
2ml

M2
πf2π

ðhψ̄ψilðB≠ 0Þ− hψ̄ψilðB¼ 0ÞÞþ1; ð32Þ

where ml ≡mu ≡md is the bare quark mass for up and
down quarks, and Mπ and fπ is the mass of pion and pion
decay constant, respectively, at eB ¼ 0. In our study,Mπ is
found to be 220.61(6) MeV while fπ is 96.93(2) MeV,
whose determination will be shown in Sec. IV C. In
Ref. [10], continuum extrapolated results of ðΣu þ ΣdÞ=2
and ðΣu − ΣdÞ have been obtained based on lattice simu-
lations of Nf ¼ 2þ 1 QCD using stout fermions with
lattice spacings of 0.29, 0.215, 0.15, 0.125, and 0.1 fm. It is
found that the results obtained at the two finest lattice
spacings are already quite close to the continuum limit [10].
We are working at one single lattice cutoff of a ¼ 0.117 fm
using the HISQ discretization scheme, which should also
be close to the continuum limit. Moreover, the HISQ
discretization scheme is expected to have a smaller taste
symmetry breaking effect than the stout discretization
scheme at the same lattice spacing [76,78]. Thus, the
discretization error should be under control in the current
computation of chiral condensates.
We show Σu and Σd as a function of eB in Fig. 12.

Because of different electric charges of up and down
quarks, up and down quark chiral condensates become
nondegenerate in the nonzero magnetic field. And the up
quark chiral condensate is more affected by the magnetic
field than that of the down quark chiral condensate,
probably due to jquj > jqdj. It is obvious to see that, at
large magnetic fields, both up and down quark chiral
condensates show linear behavior in eB. We performed
linear fits for these two condensates at ðeBÞ ≳ 0.5 GeV2,
and the corresponding fit results shown as dashed lines in
Fig. 12 describe the data fairly well. We find that the slope
for the up quark condensate obtained from the linear fit is
1.591(5), and it is about twice that for the down quark which
is 0.729(1). While the linear fit works for strong magnetic
fields, it is not the case anymore at eB≲ 0.5 GeV2. This
can be seen from the right plot of Fig. 12 as a blowup plot
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FIG. 12. Left: Renormalized up and down quark chiral condensates as a function of magnetic field strength eB. The left plot shows
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of the left one. At eB≲ 0.5 GeV2, both chiral condensates
increase faster than a linear behavior in eB. We thus adopt a
two-parameter power-law fit ansatz of hjeBjγ þ 1 to fit the
chiral condensates. We found that this fit ansatz can
describe the data at eB≲ 0.5 GeV2 well and the exponent
γ obtained from these two condensates are almost the same,
i.e., γ ¼ 1.62ð4Þ for the up quark chiral condensate while
γ ¼ 1.61ð4Þ for the down quark chiral condensate. We also
show the difference of up and down quark chiral con-
densates Σu − Σd in Fig. 13. Similar to the fits we showed
in Fig. 12, we performed two-parameter linear fits (shown
as the dashed line) at eB≳ 0.5 GeV2 and two-parameter
power-law fits (shown as the solid line) at eB≲ 0.5 GeV2.
It is expected that Σu − Σd possesses a linear behavior in
large eB and a power-law behavior with the same exponent
as that in Fig. 12 at eB≲ 0.5 GeV2.
We further show the ratio of Σu=Σd in Fig. 14. To better

understand the influence of the UV-divergence part of
the chiral condensate in the ratio, we also investigate the
following quantity:

ΣlðB;λUVcut Þ ¼
2ml

M2
πf2π

ðhψ̄ψilðBÞ− hψ̄ψiUVl ðB¼ 0;λUVcut ÞÞþ 1;

ð33Þ

where λUVcut is the lower limit of λ in the integration
in Eq. (29) which gives the UV-divergence part of the
chiral condensate, i.e., hψ̄ψiUVl ðB ¼ 0; λUVcut Þ. Apparently,
when λUVcut ¼ 0, Eq. (33) is the same as Eq. (32), i.e.,
ΣlðB; λUVcut ¼ 0Þ≡ ΣlðBÞ. To estimate the UV-divergence
contribution to hψ̄ψil, λUVcut ¼ 0.12 and 0.36 are adopted
as discussed in Sec. III D. In the left plot of Fig. 14, the ratio
Σu=Σd obtained using different values of λUVcut increases with
the increasing strength of the magnetic field eB, which is a
consequence that Σu − Σd increases faster in eB than Σd.
Keeping in mind the fact of qB scaling for Mπ0u

and
Mπ0d

, we also show the ratio of Σu and Σd at the same values

of jqBj ¼ jquBuj ¼ jqdBdj with three different λUVcut in
the right plot of Fig. 14. We find that the ratio
ΣuðjquBujÞ=ΣdðjqdBdjÞ with λUVcut ¼ 0.12 and 0.36 is very
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close to unity with deviation at most by 3% with qB up to
about 1.1 GeV2. We thus conclude that the qB scaling of
light quark chiral condensates holds within an accuracy of
3% in our current window of magnetic fields.
As we mentioned in Sec. IVA, the qB scaling of chiral

condensates should also hold exactly in the quenched
approximation and could be spoiled by the influence of
dynamical quarks in the full QCD. However, one can find
that the qB scaling of chiral condensates holds in Nf ¼
2þ 1 QCD with a physical pion mass by analyzing the
continuum extrapolated values of ðΣu þ ΣdÞ=2 and Σu − Σd
listed in Table I in Ref. [10]. For the case of Nf ¼ 2 QCD
with a much larger pion mass, one can find that the qB
scaling does not hold for up and down quark chiral
condensates [15] (cf. Table I in Ref. [15]). It is also
interesting to see in Ref. [15] that the difference between
up and down quark chiral condensates at the same values of
qB becomes smaller as eB grows. In Ref. [15], the so-called
valence quark contribution to the chiral condensate was
also presented in order to understand the magnetic cataly-
sis. It can be found that the qB scaling holds in the valence
contribution to the chiral condensate, which resembles the
case in the quenched limit [15]. Based on our current study
with MπðeB ¼ 0Þ ≃ 220 MeV, and also the results men-
tioned above obtained with MπðeB ¼ 0Þ ¼ 140 MeV in
Ref. [10] andMRMS

π ðeB ¼ 0Þ > 600 MeV in Ref. [15], it is
thus conceivable that the qB scaling does depend on the
mass of dynamical quarks, whose effects however are
negligible in our current study.8 We remark here that,

based on the observation in Refs. [10,15] and our study, a
sufficiently strong magnetic field, probably larger than the
pion mass squared, is needed to observe the qB scaling.
To compare with the results from χPT, we then show the

average of chiral condensates, i.e., Σavg ¼ ðΣu þ ΣdÞ=2, in
Fig. 15 together with the results from χPT. By comparing to
the one-loop χPT results extended to nonzero pion mass
(dashed lines in the plot), we find that the results from χPT
can only describe our lattice data at the weakest magnetic
field of eB ¼ 0.052 GeV2, which is already at the scale of
M2

πðeB ¼ 0Þ. While the two-loop χPT results are slightly
larger than those from the one-loop, it has large uncertain-
ties (denoted as the grey band) from the undetermined low-
energy constants. It is worth noting that our pion mass at
eB ¼ 0 is heavier than the physical one, and both one-loop
and two-loop chiral perturbation theories give slightly
smaller results for ðΣu þ ΣdÞ=2 with a larger pion mass.

C. Decay constants of neutral pion and kaon
and the GMOR relation

We start by showing decay constants of the neutral pion
and kaon in Fig. 16. At eB ¼ 0, we obtained the pion decay
constant fπ ¼ 96.93ð2Þ MeV and kaon decay constant
fK ¼ 112.50ð2Þ MeV, resulting in fK=fπ ¼ 1.1606ð3Þ.
The errors quoted here are purely statistical ones. These
three results are rather close to those obtained at the
physical-mass point in the continuum limit as quoted
in the latest FLAG review, i.e., fπ ¼ 92.1ð6Þ MeV,
fK ¼ 110.1ð5Þ MeV, and fK=fπ ¼ 1.1917ð37Þ [94].9 As
seen from the left plot of Fig. 16, all the decay constants
increase with eB. The decay constant from the up quark
flavor component of neutral pion fπ0u increases most rapidly
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8In Ref. [15], simulations with the standard unimproved
staggered fermions on lattices with a ≃ 0.3 fm were adopted.
The Goldstone pion mass is about 200 MeV in Ref. [15] and the
corresponding RMS pion mass in this setup should be larger than
600 MeV as inferred from, e.g., Fig. 1 in Ref. [76], where RMS
pion masses as a function of lattice spacing are shown for
improved staggered fermions and they are generally smaller
compared to the case of standard unimproved staggered fermions.

9Note that there is a factor of
ffiffiffi
2

p
difference in convention for

the decay constant in our paper and Ref. [94]. The numbers
shown here from Ref. [94] are already divided by

ffiffiffi
2

p
for

comparison to our results.
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with respect to eB while fK0 is the least. The neutral pion
decay constant fπ0 lies in between fπ0u and fπ0d , which was
extracted from the average of the correlation function Gπ0u
andGπ0d

in the sameway as we did forMπ0 in Sec. IVA. It is
also interesting to see that fK0 seems to degenerate with the
decay constant of the down quark flavor component of the
neutral pion fπ0d in the large magnetic field. We further
show the ratio of fK0 to the other three decay constants in
the right plot of Fig. 16. We see that the ratio fK0=fπ0d first
decreases with increasing eB and saturates to unity at
eB≳ 1.5 GeV2, while both fK0=fπ0u and fK0=fπ0 decrease
faster in eB as compared to fK0=fπ0d , and go below unity at

eB≳ 0.2 GeV2. In the large magnetic field, fK0=fπ0u and
fK0=fπ0 seem to saturate at ∼0.7 and ∼0.85, respectively.
While in the range of eB ∈ ð1.5; 2.5Þ GeV2, they slightly
increase by less than 5% at our largest value of eB.
Because of the qB scaling behavior of Mπ0u

ðMπ0d
Þ

and ΣuðΣdÞ shown in Figs. 7 and 14, we also wonder
about the case for the up and down quark flavor compo-
nents of the neutral pion decay constant. We show the ratio
fπ0uðjquBujÞ=fπ0dðjqdBdjÞ as a function of jqBj in Fig. 17.

It can be clearly seen that the ratio is very close to 1, and the
deviation is always less than 2% in our current window of
magnetic fields. Hence, the qB scaling behavior is also
found in the case of the neutral pion decay constant. This is
a natural consequence of the qB scaling of correlation
functions shown in Fig. 8 according to Eq. (17).
Since we have obtained the masses and decay constants

of neutral pseudoscalar mesons, light and strange quark
chiral condensates, we are now ready to check the validity
of the two-flavor and the three-flavor GMOR relations. We
show the corrections to the two-flavor and three-flavor
GMOR relations in a wide window of eB from 0 to
∼3.35 GeV2 in the left and right plots of Fig. 18, respec-
tively.10 In the left plot of Fig. 18, we show the correction
δπ0u;d [cf. Eq. (14) and Eq. (15)] for u and d quark flavor

components separately. To get a UV-free chiral condensate
as discussed in Sec. III D, we subtract the UV-divergence
part hψ̄ψiUVl with λUVcut ¼ 0.12 and 0.36 from the chiral
condensates hψ̄ψil. The results obtained using λUVcut ¼ 0.12
and 0.36 are shown as open and filled points, respectively.
At eB ¼ 0, the correction to the GMOR relation is about
6% at most. As the GMOR relation strictly holds in the
chiral limit of quarks at eB ¼ 0 from the leading order
chiral perturbation theory [cf. Eq. (7) without δπ], the next-
to-leading order chiral corrections to the two-flavor GMOR
relation at the physical pion mass Mπ is ð6.2� 1.6Þ%
[34,35]. Although pion mass is 220 MeV at eB ¼ 0 in our
study, the corrections to the GMOR relation at eB ¼ 0
shown in Fig. 18 are in the same ballpark. At large nonzero
magnetic fields, we see that the correction either decreases
or increases towards 0. And the value of jδπ0u;d j becomes
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10We remark here that these corrections obviously depend on
the lattice cutoff effects, magnetic effects, and quark masses as
the results shown in the current work are obtained from lattice
QCD simulations at nonzero magnetic fields with a single lattice
spacing and a single value of the pion mass without continuum
and chiral extrapolations.
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smaller at eB≳ 1.5 GeV2, compared to the case at eB ¼ 0.
This is to say that the deviation of δπ0u;d from zero is at most

6% in the whole range of magnetic field strength studied,
although the correction depends on λUVcut . We thus conclude
that in our study, the GMOR relation for the up and down
quark flavor components of π0 holds with an accuracy of
∼6% in eB ∈ ½0; 3.35Þ GeV2. While for π0, the correction
δπ0 was obtained by averaging up and down quark flavor
components of the correlation function without the dis-
connected part. We also see that the GMOR relation for
neutral pion π0 [cf. Eq. (7)] holds quite well in the range of
eB from 0 to 3.35 GeV2.
We then have a look at the correction δK0 to the three-

flavor GMOR relation [cf. Eq. (8)] shown in the right plot
of Fig. 18. The UV divergence of the strange quark chiral
condensate is taken care of in the same way as for the light
quark chiral condensate. At eB ¼ 0, the chiral correction
δK is much larger than δπ due to an enhancement factor
M2

K=M
2
π [33], and δK is about ∼32% using the values ofMπ

andMK in our setup. As seen from the right plot of Fig. 18
at eB ¼ 0, δK has the largest value of ∼30% with λUVcut ¼
0.12 and the smallest value of ∼2% with λUVcut ¼ 0.36
(cf. discussions at the end of Sec. III D). In the latter case,
the UV-divergence part of the chiral condensate is likely
underestimated. As eB increases, jδK0 j becomes smaller for
the case with λUVcut ¼ 0.12 and 0.24 and stays almost the
same with λUVcut ¼ 0.36.

V. CONCLUSIONS

In this paper, we investigated the masses and magnetic
polarizabilities of light and strange pseudoscalar mesons,
light quark chiral condensates, as well as neutral pion and
kaon decay constants in the presence of background
magnetic fields with eB≲ 3.35 GeV2 inNf ¼ 2þ 1 lattice
QCD at zero temperature. The simulation was performed
using HISQ fermions withmπ ≈ 220 MeV on 323 × 96 and
403 × 96 lattices at a single lattice cutoff a ¼ 0.117 fm.

Our main results include the eB dependence of pseudo-
scalar meson masses, the qB scaling of various chiral
observables, and the eB dependence of the corrections to
two- and three-flavor GMOR relations. We find the qB
scaling behavior of Mπ0u

ðMπ0d
Þ, ΣuðΣdÞ and fπ0u (fπ0d)

as well as Gπ0u
ðτÞðGπ0d

ðτÞÞ in the range of eB ∈
½0.05; 3.35Þ GeV2. Although the qB scaling should be
exact in quenched QCD and could be spoiled by dynamical
quarks, it is found that effects of dynamical quarks are
negligible in the case of MπðeB ¼ 0Þ ¼ 220 MeV from
our current study. The qB scaling can also be deduced
from lattice studies of Nf ¼ 2þ 1 QCD with Mπ ¼
140 MeV [10].
With a complete Dirac eigenvalue spectrum, we are able

to estimate the UV contribution to the quark chiral
condensate. This makes it possible for us to study the
two-flavor and three-flavor GMOR relations. We found that
the corrections to the two-flavor and three-flavor GMOR
relations are about 6% and 30% at eB ¼ 0, respectively, in
our setup. The correction to the two-flavor GMOR relation
for the neutral pion is less than 6% in the whole window of
magnetic fields we studied and becomes less than 2% at our
strongest magnetic field. Thus, the two-flavor GMOR
relation holds true with an accuracy of 6% at
eB ∈ ½0; 3.35Þ GeV2. The validity of the GMOR relation
thus suggests that the mechanism of “soft” breaking of
chiral symmetry by light quark masses in QCD is not
changed by the magnetic field [39]. It is known that at
eB ¼ 0 the lighter a Goldstone (neutral) pion mass is, the
easier it is to restore the chiral symmetry at a lower
temperature [40–46]. This makes the connection between
the reduction of Tpc and neutral pion mass in the nonzero
magnetic field more clear as the mass of neutral pion, still
being a Goldstone boson at eB ≠ 0, decreases as eB grows.
The GMOR relation also naturally reconciles the reduc-

tion of Tpc and the magnetic catalysis at zero temperature
thanks to the monotonous increasing decay constants in the
magnetic field. Since both decay constants and pion masses
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are encoded in the pion correlation functions, one can
further find that the reconciliation of magnetic catalysis and
reduction of pion mass intrinsically lies in the Ward identity
hψ̄ψiu;d ¼ mlχπ0u;d as shown in the left plot of Fig. 5. This is

because χπ0u;d is the sum of pion correlation functions which

decrease exponentially as expð−Mπ0u;d
τÞ at large distances τ.

Thus, a smaller value of Mπ0u;d
most likely leads to a larger

value of hψ̄ψiu;d. At a temperature proximate to Tpc where
the IMC is observed, one may expect a nonmonotonous
behavior in the pion screening mass.
It is also interesting to make a comparison with the case

of the vanishing magnetic field. When eB ¼ 0, both sides
of the GMOR relation have similar behavior in terms of
breaking fields, i.e., the quark mass. This is to say that all
the chiral observables, chiral condensates, pion decay
constants as well as the pion mass, decrease with lighter
quark mass at eB ¼ 0. On the other hand, when the quark
mass mq changes, the Ward identity hψ̄ψi ¼ mqχπ always
holds due to the intricate play betweenml and χπ at eB ¼ 0.
These details are obviously different from the case in the
nonzero magnetic field, where hψ̄ψi and fπ0 become larger
and Mπ0 becomes smaller as eB grows. However, in both
cases of eB ¼ 0 and eB ≠ 0 the mass of the Goldstone pion
is the key to understanding the reduction of Tpc, which
represents an overall effect in both spontaneously and
explicit breaking of chiral symmetry according to the
GMOR relation. In both cases, Mπ0 decreases either as
ml decreases or as eB grows.
Concerning the meson spectrum, we found that the mass

spectrum of lighter mesons are more affected by the
magnetic field for both charged and neutral pseudoscalar
mesons. For the neutral pseudoscalar mesons, their masses
monotonously decrease as the magnetic field strength
grows and then saturate at nonzero values of eB up to
∼3.35 GeV2. The nonzero values of (connected) neutral
pion mass thus disfavor an occurrence of a superconducting
phase in the current window of magnetic fields. For the
charged pion and kaon, their masses show a nonmonoto-
nous behavior in eB. They first increase in eB following the
LLL approximation, then slow down the increasing break-
ing away from the LLL approximation, and finally show a
turning point with subsequent decreasing behavior in eB.
The novel decreasing behavior of the charged pion and
kaon mass in eB could be due to the dynamical quark
effects and large magnetic field strength we simulated.
While the neutral pion cannot be considered as a pointlike
particle even at our smallest value of eB ∼ 0.05 GeV2 ∼
M2

πðB ¼ 0Þ, the charged pion remains pointlike until eB at
about 6M2

πðB ¼ 0Þ. The obtained magnetic polarizabilities
of charged and neutral pions from the eB dependence of
their masses are at odds with the results from quenched
QCD as well as the experimental measurements where the
magnetic polarizability is assumed to be the additive
inverse of the electric polarizability. Together with the

decreasing behavior ofMπ− at large eB, they leave plenty of
room for studies on the possible effects from dynamical
quarks as well as discretization effects on the lattice in the
weak and strong magnetic fields.
On the other hand, the pion and kaon decay constants

and their ratio are obtained as fπ ¼ 96.93ð2Þ MeV,
fK ¼ 112.50ð2Þ MeV, and fK=fπ ¼ 1.1606ð3Þ at eB ¼ 0

in our study. These results deviate by 5% from the state-of-
the-art lattice QCD results obtained at the physical-mass
point in the continuum limit. As eB increases, both the
neutral and kaon decay constants increase, and the ratios
between fK0 and the other three decay constants
(fπ0 ; fπ0u ; fπ0d ) monotonously decrease and then saturate

at nonzero values at large eB. Since we only deal with the
decay constants of neutral pseudoscalar mesons, which are
related to the axial vector current parallel to the magnetic
field at zero momentum, it would be interesting to study the
new decay constants at nonzero momentum and those
related to the vector current as well in the future. Because of
the single lattice cutoff used in our computations, it would
be interesting to perform computations towards the con-
tinuum limit to further confirm our findings presented in the
current paper.
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APPENDIX A: GENERALIZED
WARD-TAKAHASHI IDENTITIES IN
A BACKGROUND MAGNETIC FIELD

The axial and vector Ward-Takahashi identities in the
continuum QCD in the nonzero magnetic field have already
been derived in, e.g., Ref. [60]. In this Appendix, we will
further derive the Ward-Takahashi identity related to the
integrated pseudoscalar operator correlation functions with
chiral transformation in the presence of a magnetic field
interacting with two degenerate light quark flavors in the
continuumQCD. Themain results are shown in Eqs. (A20)–
(A22), which are discussed in Fig. 5 in Sec. III C.
We start by showing the Ward-Takahashi identity at a

vanishing magnetic field with our conventions. The expect-
ation value of an observable O in QCD is given by
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hOi ¼ 1

Z

Z
DGμDψ̄Dψe−SQCDO; ðA1Þ

where O ¼ Oðy1;…; ynÞ is a position dependent operator,
h1i ¼ 1, and SQCD is the Euclidean action,

SQCD ¼
Z

d4x

�
1

2
trGμνGμν þ ψ̄ðDþMÞψ

�
; ðA2Þ

and Gμν ¼ ∂μGν − ∂νGμ − ig½Gμ; Gν� where Gμ represents
the gluon field. M ¼ diagðmu;md; � � �Þ is a mass matrix.
ψ ¼ ðu; d; � � �Þ⊤ is a flavor multiplet of quarks, whose
spinor and color indexes are suppressed.Dμ ¼ ∂μ − igGμ is
the covariant derivative at the zero magnetic field.
The Ward-Takahashi identity [95,96] for a local

infinitesimal transformation ψ̄ 0ðxÞ → ψ̄ðxÞ þ αðxÞψ̄ðxÞλ̂;
ψ 0ðxÞ → ψðxÞ þ αðxÞλψðxÞ is written as�

O
δ logJ
δαðxÞ

�
−
�
O
δSQCD
δαðxÞ

�
þ
�

δO
δαðxÞ

�
¼ 0: ðA3Þ

Here, J is the Jacobian of the transformation, which
represents the anomaly and has the following form at
eB ¼ 0 [97]:

J ¼ exp

	
−2i

Z
d4xαðxÞ g2

32π2
tr½ϵμναβGμνGαβ�



: ðA4Þ

Here ϵμναβ is the completely antisymmetric tensor normal-
ized by the convention ϵ1234 ¼ 1 in the Euclidean metric.
Note that hereafter the super(sub) index α is different from
the infinitesimal quantity αðxÞ. λ and λ̂ are products of
matrices in Dirac and flavor spaces. The original relation
between renormalization factors in QED was derived in
[95], and it was generalized as a nonperturbative relation
from the symmetry argument [96].
In the case of nonzero magnetic fields, the covariant

derivative with the magnetic field thus becomes

Dμ → D̃μ ¼ ∂μ − igGμ − ieAμQ3; ðA5Þ

where Q3 is the charge matrix

Q3 ¼ 1

6
σ0 þ 1

2
σ3 ¼ 1

6
1þ t3; ðA6Þ

and σi is Pauli matrices with i ¼ 1, 2, 3 while ti ≡ σi=2,
and σ0 ¼ 1. And Q3 has the following commutation
relation with ti ≡ σi=2:

Q3ti ¼ tiQ3 − iT12
i ; ðA7Þ

where T12
i ¼ ðδi2t1 − δi1t2Þ. The Jacobian at eB ≠ 0 then

becomes

J ¼ exp

	
−2i

Z
d4xαðxÞ 1

32π2
tr½ϵμναβðg2GμνGαβ þ e2FμνFαβÞ�



; ðA8Þ

where Fμν ¼ ∂μAν − ∂νAμ.
Now we calculate the form of Ward identity under chiral

rotation. Let us introduce a scalar function αiðxÞ, which
represents an infinitesimal local transformation. The local
chiral rotation is then,

�
ψ̄ðxÞ → ψ̄ 0ðxÞ ¼ ψ̄ðxÞ þ αiðxÞψ̄ðxÞtiγ5;
ψðxÞ → ψ 0ðxÞ ¼ ψðxÞ þ αiðxÞtiγ5ψðxÞ:

ðA9Þ

In the following derivation, we assume a flavor sym-
metry M ¼ m1. We now derive the variation of the QCD
action under the chiral transformation at eB ≠ 0 as follows.
We focus on the traceless part, namely, we only take i¼1,

2, 3. With the help of Leibniz rule, δSQCD transformed as

δSQCD¼ ψ̄ðxÞγμð∂μα
iðxÞÞtiγ5ψðxÞþ2mαiðxÞψ̄ðxÞtiγ5ψðxÞ

−eαiðxÞAμψ̄ðxÞγμγ5T12
i ψðxÞ: ðA10Þ

In the last term, we use the Landau gauge for the
magnetic field Aμ pointing along the z (x3) direction in the
infinite volume, AμðxÞ ¼ ðA1; A2; A3; A4Þ ¼ ð0; Bx1; 0; 0Þ.

Using integrations by parts, the variational part from the
action is

δSQCD
δαiðxÞ ¼ −∂μðψ̄ðxÞγμtiγ5ψðxÞÞ þ 2mψ̄ðxÞtiγ5ψðxÞ

þ Δiðx; eBÞ; ðA11Þ

where

Δiðx; eBÞ ¼ −eAμðxÞψ̄ðxÞγμγ5T12
i ψðxÞ

¼ −eBx1ψ̄ðxÞγ2γ5ðδi2t1 − δi1t2ÞψðxÞ: ðA12Þ

Since the Dirac fields transform as ψ̄ðt; x⃗Þ → ψ̄ðt;−x⃗Þγ0,
ψðt; x⃗Þ → γ0ψðt;−x⃗Þ under the parity, while the bilinear
term transforms as the odd parity, x1ψ̄γ2γ5ψðt; x⃗Þ →
−x1ψ̄γ2γ5ψðt;−x⃗Þ. ThusΔiðx; eBÞ is an odd function of x1.
Next, we derive the variation of the pseudoscalar

operator under chiral rotation. The pseudoscalar operator
for the SU(2) case is PiðyÞ¼ψ̄ðyÞγ5tiψðyÞ, where i¼1, 2,
3. The variation reads off
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δPiðyÞ
δαjðxÞ ¼

δðψ̄ðyÞγ5tiψðyÞ þ 1
2
αiðyÞψ̄ðyÞψðyÞÞ

δαjðxÞ
¼ 1

2
ψ̄ðyÞψðyÞδðx − yÞδij: ðA13Þ

With the variations derived above, now we are ready to
derive the Ward-Takahashi identities for the nonanomalous
case, �

O
δSQCD
δαjðxÞ

�
¼

�
δO

δαjðxÞ
�
; ðA14Þ

for chiral rotations with pseudoscalar operator as follows in
the nonzero magnetic field. We choose an operator as
OðyÞ ¼ PjðyÞ ¼ ψ̄ðyÞγ5tjψðyÞ. By integrating over x on
the left-hand side (LHS), the first term in the right-hand
side (RHS) vanishes

Z
d4xLHS ¼

Z
d4xð−∂x

μhPjðyÞðψ̄ðxÞγμtiγ5ψðxÞÞi

þ 2mhPjðyÞψ̄ðxÞtiγ5ψðxÞi
þ hPjðyÞΔiðx; eBÞiÞ ðA15Þ

¼ 2m
Z

d4xhPjðyÞPiðxÞi

þ
Z

d4xhPjðyÞΔiðx; eBÞi: ðA16Þ

Integrating over x in the right-hand side of Eq. (A14) we
arrive at

Z
d4xRHS¼

Z
d4x

�
δPjðyÞ
δαiðxÞ

�
¼ 1

2
hψ̄ðyÞψðyÞiδij: ðA17Þ

Thus, the identity becomes

4m
Z

d4xhPjðyÞPiðxÞi þ 2

Z
d4xhPjðyÞΔiðx; eBÞi

¼ hψ̄ðyÞψðyÞiδij: ðA18Þ

After integrating over y and dividing by four-volume V,

4m
1

V

Z
d4yd4xhPiðyÞPjðxÞi

þ 2

V

Z
d4y

Z
d4xhPjðyÞΔiðx; eBÞi

¼ 1

V

Z
d4yhψ̄ðyÞψðyÞiδij: ðA19Þ

In our convention the right-hand side of the above identity
gives a two-flavor chiral condensate, i.e., hψ̄ψiu þ hψ̄ψid
with i ¼ j. At nonzero magnetic field the neutral pion
operator is ðαūγ5u − βd̄γ5dÞ with α2 þ β2 ¼ 1, thus in the
case of i ¼ j ¼ 3 and α ¼ β ¼ 1=

ffiffiffi
2

p
, the left-hand side of

the above identity is proportional to the correlation function
of the neutral pion. Note that when i ¼ 3, the magnetic
field related term Δiðx; eBÞ [cf. Eq. (A12)] vanishes. The
above identity thus becomes

2mlχ̃π0 ¼ hψ̄ψiu þ hψ̄ψid: ðA20Þ
Although the above relation was derived assuming the
flavor symmetry M ¼ m1 (ml ¼ mu ¼ md), it can also be
extended to the case of mu ≠ md, i.e., in the above relation
2ml needs to be replaced by mu þmd and there exist
contributions from disconnected diagrams to χ̃π0 even at
eB ¼ 0. Following same procedures, the above relation can
also be extended to the K0 meson with corresponding
operator d̄γ5s and the fictitious η0s meson with s̄γ5s,

msχ̃η0s ¼ hψ̄ψis þ Δs
J ; ðA21Þ

ðmd þmsÞχK0 ¼hψ̄ψid þ hψ̄ψis: ðA22Þ
Here χ̃π0 , χK0 , and χ̃η0s are the space-time sum of the two-
point correlation functions for neutral pion, neutral kaon,
and η0s with ml ¼ mu ¼ md and the corresponding oper-
ators P ¼ 1=

ffiffiffi
2

p ðūγ5u − d̄γ5dÞ, d̄γ5s, and s̄s, respectively.
Hereafter the superscript “χ̃” denotes that correlators in the
isosinglet channel includes contributions from both con-
nected and disconnected diagrams. The Δs

J -term, arising
from the flavor singlet transformation involving the first
term in Eq. (A3), has the following form:

Δs
J ¼ 1

V

Z
d4y

Z
d4x

�
ðs̄ðyÞγ5sðyÞÞ

�
−i
16π2

ϵμναβ½g2GμνðxÞGαβðxÞ þ ΔJ ;B�
��

; ðA23Þ

with ΔJ ;B ¼ e2FμνðxÞFαβðxÞ. ΔJ ;B vanishes in either zero magnetic field or zero electric field. In our current setup
ΔJ ;B ¼ 0 as AμðxÞ ¼ ð0; Bx1; 0; 0Þ. Similarly one can also obtain the following two relations:

muχ̃π0u ¼ hψ̄ψiu þ Δu
J ; ðA24Þ

mdχ̃π0d ¼ hψ̄ψid þ Δd
J ; ðA25Þ

with P ¼ ūγ5u and d̄γ5d, respectively. Δu
J and Δd

J have the following forms:
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Δu
J ¼ 1

V

Z
d4y

Z
d4x

�
ðūðyÞγ5uðyÞÞ

�
−i
16π2

ϵμναβ½g2GμνðxÞGαβðxÞ þ ΔJ ;B�
��

; ðA26Þ

Δd
J ¼ 1

V

Z
d4y

Z
d4x

�
ðd̄ðyÞγ5dðyÞÞ

�
i

16π2
ϵμναβ½g2GμνðxÞGαβðxÞ þ ΔJ ;B�

��
: ðA27Þ

It is obvious that the sum of Eqs. (A24) and (A25) at
eB ¼ 0 with mu ¼ md recovers Eq. (A20).
The identity (A20) at the zero magnetic field was also

obtained using a diagrammatic method [cf. Eq. (6.4) in
Ref. [73] ]. Since the magnetic field represented by the U(1)
field can be factored out from the gauge field, the extension
to nonzero magnetic fields remains the same, which can be
simply observed from the diagrammatic method in
Ref. [73]. As seen from Fig. 5 and the discussions in
Sec. III C, the identities (A20), (A21), and (A22) hold well
in the staggered discretization scheme.

APPENDIX B: GMOR RELATION FOR UP
AND DOWN QUARK COMPONENTS OF

NEUTRAL PION AT eB= 0

In this Appendix we show the derivation of the GMOR
relation for pure up and down quark components of neutral
pion at the vanishing magnetic field based on the Ward
identity, Eq. (A3).
According to Goldstone’s theorem, the pions are created

from the vacuum by a chiral SU(2) current,

h0jJ5iμ jπjðpÞi ¼ ipμfπe−ipxδij; ðB1Þ

where the coefficient fπ is the pion decay constant. On the
other hand, the divergence of the axial vector current relates
the pseudoscalar field through the axial Ward identity.
Together with the partially conserved axial vector current
relation, we have

M2
πfπh0jϕijπji ¼ h0j∂μJ5iμ jπji ¼ 2mh0jPijπji; ðB2Þ

where ϕi is one of renormalized physical pion field
components,Mπ is the pion mass, and m is the quark mass.
To decompose the neutral pion field to into up quark

component, we choose an operator Ou ¼ ψ̄Γuψ with

Γu ¼ λu ¼ λ̂u ¼ γ5
1

2
ðσ1 þ iσ2Þ 1

2
ðσ1 − iσ2Þ

¼ γ5

�
1 0

0 0

�
≡ γ5σ

u: ðB3Þ

The corresponding transformation is ψ̄ 0ðxÞ→ ψ̄ðxÞ þ
ψ̄ðxÞαðxÞλ̂u, ψ 0ðxÞ→ψðxÞþαðxÞλuψðxÞ. Now we consider

the up quark component of axial and pseudoscalar currents,
and Eqs. (B1) and (B2) thus become

h0jJ50μ jπ0ðpÞi ¼ ipμfπ0ue
−ipx;

M2
π0u
fπ0uh0jϕ0

ujπ0i ¼ h0j∂μJ50μ jπ0i ¼ 2muh0jPujπ0i; ðB4Þ

where Pu ¼ ūγ5u is the operator that leads to a ground
state mass of Mπ0 , and J50μ is defined such that
∂μJ50μ ¼ ∂μðψ̄γμγ5σuψÞ þ i

16π2
ϵμναβg2GμνGαβ. Thus, the

Ward identity, Eq. (A3), reads off

1

V
mu

Z
d4yd4xhPuðyÞPuðxÞi

¼ 1

V

Z
d4yhψ̄ðyÞψðyÞiu þ Δu

J : ðB5Þ

Inserting a complete set of states on the left-hand side of the
above equation and using Eq. (B4)

LHS ¼
f2
π0u
M4

π0u

4mu

Z
d4yd4xhϕ0

uðyÞϕ0
uðxÞi ¼

f2
π0u
M2

π0u

2mu
: ðB6Þ

This then leads to the GMOR relation involving only up
quark chiral condensate

2muðhψ̄ψiu þ Δu
J Þ ¼ f2

π0u
M2

π0u
: ðB7Þ

Similar procedures can be followed to obtain the GMOR
relation involving only down quark chiral condensate

2mdðhψ̄ψid þ Δd
J Þ ¼ f2

π0d
M2

π0d
: ðB8Þ

APPENDIX C: SIMULATIONS IN THE HISQ
DISCRETIZATION SCHEME

In this Appendix, we describe the implementation of
the magnetic field in the lattice QCD simulations using the
HISQ action, in particular, the procedure to compute
the fermion force. The HISQ action is constructed by
the Kogut-Susskind one-link actionDKS and Naik improve-
ment term DNaik with smeared links,
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DHISQ½XðUÞ;WðUÞ�
≡ c1000DKS½XðUÞ� þ c3000DNaik½WðUÞ�; ðC1Þ

where all coefficients are chosen at the vanishing magnetic
field [98] and

DKS½XðUÞ� ¼
X
μ

ημðnÞ½XμðnÞδnþμ;n0 − X†
μðn − μ̂Þδn−μ;n0 �;

ðC2Þ

and

DNaik½WðUÞ� ¼
X
μ

ημðnÞ½WμðnÞWμðnþ μ̂Þ

×Wμðnþ 2μ̂Þδnþ3μ;n0 −W†
μðn − μ̂Þ

×W†
μðn − 2μ̂ÞW†

μðn − 3μ̂Þδn−3μ;n0 �; ðC3Þ

where ημðnÞ is the staggered phase,X denotes level-two fat-
7 smeared links, and W denotes reunitarized links, which
are constructed by thin links U.
The magnetic field on the lattice is represented by U(1)

links in the Landau gauge for the electric charge q,

uxðnx; ny; nz; ntÞ ¼
�
exp½−iqB̂Nxny�; ðnx ¼ Nx − 1Þ
1 ðotherwiseÞ

uyðnx; ny; nz; ntÞ ¼ exp½iqB̂nx�;
uzðnx; ny; nz; ntÞ ¼ utðnx; ny; nz; ntÞ ¼ 1;

where B̂ ¼ a2B with the lattice spacing a. In the HISQ
action, the magnetic field can be realized by just replacing
all smeared links as

DHISQ½X;W� → DHISQ½uX; uW�; ðC4Þ

while keeping the bare links in the gauge action because
gluons do not carry electric charges. Note that we multiply
the magnetic field to the smeared links instead of bare links,
which could be different from the case in the implementa-
tion of imaginary chemical potential as the magnetic field
variable u depends on the coordinate. We suppress the Naik
term contribution for simplicity below, but the extension is
straightforward.
We employ the rational hybrid Monte Carlo algorithm

to generate gauge configurations. The fermion force is
defined as

FμðnÞ ¼
	
UμðnÞ

∂Sf ½X�
∂UμðnÞ



TA

ðno sumÞ; ðC5Þ

where Sf is a rationally approximated pseudofermion action,
and TA means removing trace and anti-Hermitianizing

operations. In the presence of magnetic fields, the force is
modified as

FμðnÞ ¼
	
UμðnÞ

∂Sf ½uX�
∂UμðnÞ



TA

ðno sumÞ: ðC6Þ

For the case of a zero magnetic field, the derivative with
respect to bare links can be calculated with the chain rule,
which can be symbolically expressed as

∂Sf ½X�
∂U ¼ ∂Sf ½X�

∂X
∂X
∂W

∂W
∂V

∂V
∂U ; ðC7Þ

where V is the level-one fat-7 link. The first term on the
right-hand side ∂Sf ½X�=∂X is formally the same function
form as the standard staggered force except that smeared
links are used instead of thin links. This term can be
symbolically written as

∂Sf ½X�
∂X ∼

X
k

ψ†
k ⊗ Ψk þ � � � ðC8Þ

whereΨk¼ðD†
HISQ½X�DHISQ½X�þβkÞ−1ϕ,ψk¼DHISQ½X�Ψk

and ϕ is a pseudofermion field and βk represents a rational
coefficient of order k. For the case of nonzero magnetic
fields, Eq. (C7) becomes

∂Sf ½uX�
∂U ¼ ∂Sf ½uX�

∂X
∂X
∂W

∂W
∂V

∂V
∂U : ðC9Þ

Since X, W, and V are dummy variables in the chain rule,
the above term can be rewritten as

∂Sf ½uX�
∂U ¼ ∂Sf ½X̃�

∂X̃
∂X̃
∂W

∂W
∂V

∂V
∂U ; ðC10Þ

where variables with tilde represent U(1) rotated variables
X̃ ¼ uX. Thus, the functional form of the first term on the
right-hand side of the equal sign is the same as that at a zero
magnetic field [cf. Eq. (C7)]. Moreover, in the second term,
the magnetic field is just factored out as ∂X̃=∂W ¼
u∂X=∂W due to the structure of fat-7 links. Finally, in
the presence of magnetic fields, the fermion force is

Fmag-HISQ
μ ðnÞ ¼ ½uμðnÞUμðnÞF �TA ðno sumÞ ðC11Þ

with

F ¼ ∂Sf
∂X

����
X→uX

∂X
∂W

∂W
∂V

∂V
∂U ; ðC12Þ

where ∂Sf∂X jX→uX means that the staggered force term has an
argument uX instead of X. Thus, the force calculation in the
molecular dynamics is summarized as follows:
(1) Prepare smeared links X, W and V from U.
(2) Multiply the U(1) variable u on the smeared links X.
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(3) Calculate a part of fermion force, Ψk¼
ðD†

HISQ½uX�DHISQ½uX�þβkÞ−1ϕ andψk¼DHISQ½X�Ψk

for all k for the rational approximation.

(4) Remove U(1) variable u from the smeared links uX.
(5) Construct F .
(6) Finalize the force Fmag-HISQ

μ ðnÞ.
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