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The presence of dark matter overdensities surrounding a black hole can influence the evolution of a
binary system. The gravitational wave signals emitted by a black hole binary offer a promising means to
probe the dark matter environments near a black hole. The dense region of dark matter can lead to the
dephasing of gravitational waveforms, which can be detected by upcoming experiments such as the Laser
Interferometer Space Antenna (LISA). The dark matter density profile around the black hole can vary for
different dark matter models. Our study specifically investigates the impact of the ultralight self-interacting
scalar dark matter (SIDM) on the gravitational wave signals emitted by black hole binaries. A distinctive
characteristic of SIDM surrounding a black hole, as opposed to collisionless dark matter, is the formation of
a soliton core. We perform a Fisher matrix analysis to estimate the size of the soliton and the corresponding
SIDM parameter space that future LISA-like gravitational wave experiments can explore.
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I. INTRODUCTION

A wealth of compelling experimental data, such as the
galaxy rotation curves and gravitational lensing observa-
tions, firmly supports the existence of dark matter
(DM) [1–5]. In pursuit of unraveling the nature of dark
matter, extensive attempts have been undertaken including
direct and indirect searches [6–8] as well as collider
studies [9]. However, despite these significant efforts,
precise properties of DM such as its mass and interactions
remain largely unknown. This enduring challenge of
understanding DM stands as one of the longstanding
conundrums in modern physics [10]. Even though the
cold dark matter (CDM), which serves as a fundamental
component in the highly successful ΛCDM model, has
played a remarkable role in elucidating a large-scale

structure of the Universe [11], it encounters challenges such
as the too-big-to-fail problem and the core-cusp problem
when scrutinizing smaller scales ≲1 kpc [12–20]. The null
results from DM search experiments, combined with the
presence of those unsettled small-scale structure issues, have
spurred investigations into alternative avenues beyond the
conventional CDM paradigm.
We study one such possible DM candidate, the ultralight

self-interacting scalar dark matter, which is dubbed as
SIDM for brevity [21–44]. A prominent characteristic of
such SIDM is a capability to form a stable configuration
consisting of condensed bosonic fields, and the presence of
such soliton cores can alleviate the tensions on small-scale
structures. By analyzing observations which can be affected
by the existence of such a soliton, one can expect to extract
valuable information about its fundamental properties. As a
concrete example for such astrophysical observations, we
explore a black hole binary system in the presence of SIDM
and corresponding gravitational wave (GW) signals. Our
goal is to investigate how future GW satellite experiments
can be utilized to probe the properties of SIDM such as its
mass and coupling.
For concreteness, our discussions focus on an inter-

mediate mass black hole (IMBH) (typical mass range of
order ∼102M⊙–10

5M⊙ which is the mass situated between
stellar-mass black holes and supermassive black holes).
The DM concentration in a vicinity of the IMBH is often
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referred to as “minispike” in contrast to the DM “spike”
profile around a supermassive black hole (SMBH) at the
center of a galaxy. IMBHs could form, for instance, in the
centers of dwarf galaxies and globular clusters, and many
IMBHs can well exist inside a single galaxy [45,46].
Compared to SMBHs at the centers of galaxies, IMBHs
are less likely to experience major mergers because of
their association to smaller halos and galaxy masses, and
yet surrounding DM profiles can be sufficiently dense to
withstand tidal disruptions. The minispikes around IMBHs
may hence well persist until the present epoch, which is a
topic of active research. As an observational probe of such
DM environments, we estimate GW signals originating
from a black hole binary involving an IMBH. The GW
frequency from the binary system depends on a mass ratio,
and a stellar mass black hole orbiting the IMBH is of
particular interest because the GW signals fall within the
frequency band sensitive to planned space-based interfer-
ometers such as LISA (∼0.1 mHz–1 Hz) [47].
The waveform of GWs is intricately linked to the

properties of surrounding DM environments. In our
investigation, we specifically focus on studying the effects
of SIDM surrounding an IMBH. Notably, the presence of a
solitonic core within a minispike marks this scenario as
distinct from the vacuum case as well as from the conven-
tional collisionless DM scenarios. The dynamics of a
stellar black hole spiraling through such a DM environ-
ment are influenced by a dynamical friction and an
accretion. These interactions result in accumulated phase
shifts in gravitational waveforms, deviating from the
predictions of the vacuum case. Such effects on the
gravitational waveforms have been investigated actively
for the collisionless DM spike profile surrounding a central
black hole which an accompanying black hole moves
through [48–59]. More recently, the effect of a SIDM
cloud has also been studied when a black hole binary
system transverses through it, performing the waveform
analysis in the time domain [60]. Deviations in the speed of
GWs that pass through the SIDM halo have also been
studied to probe the mass and self-interaction [61]. Further
exploration and analysis of various DM models and
configurations would provide an additional motivation
for future GW experiments, enabling us to gain a deeper
understanding of the nature of dark matter.
The aim of our study is to demonstrate that future GW

experiments, such as LISA, have the potential to identify
SIDM through its distinctive stable self-bounded structure
in the central region of a black hole binary system. This
study would contribute to shed light on the nature of dark
matter and explore the unique signatures it may imprint on
GW observations.
Our paper is structured as follows. Section II overviews a

soliton core formation around a black hole, which sets up
the model to be investigated for the GW signal estimation.

Section III then describes the evolution of a binary system
in the presence of the SIDM soliton core. We discuss
how a stellar black hole spiraling around a central IMBH
can be affected by a dynamical friction and an accretion.
Section IV presents our main results of the gravitational
signal analysis. We clarify the SIDM parameter space
which the planned satellite experiments such as LISA
can probe, along with the accuracy of the DM parameter
estimation from a Fisher matrix analysis. Section V is
devoted to a discussion/conclusion.

II. SELF-INTERACTING DARK MATTER
AROUND A BLACK HOLE

In this work, we consider a real scalar field ϕ SIDM
model based on the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ −

m2

2
ϕ2 −

λ

4
ϕ4

�
; ð1Þ

where m is a mass of the scalar field, and λ denotes a
coupling constant responsible for a quartic self-interaction.
We assume that λ is positive so that the interaction is
repulsive which can counterbalance the gravity to form a
soliton inside a halo. The volume factor d4x

ffiffiffiffiffiffi−gp
is

invariant under a general coordinate transformation where
g ¼ detðgμνÞ denotes a determinant of the Friedmann–
Lemaître–Robertson–Walker (FLRW) metric in Newtonian
gauge

ds2 ¼ ð1þ 2ΦÞdt2 − ð1 − 2ΦÞaðtÞ2δijdxidxj: ð2Þ

Here, aðtÞ is a cosmological scale factor, and Φ denotes a
scalar perturbation neglecting the contribution of an aniso-
tropic stress tensor. We set c ¼ ℏ ¼ 1 in this section for the
notational brevity.
In the nonrelativistic limit where the momentum of

particles is of negligible magnitude, jp⃗j ≪ m, we can
rewrite the real scalar field ϕ in terms of a slowly varying
complex field ψ and a fast-varying phase e�imt:

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p �
e−imtψ þ eimtψ��: ð3Þ

The time and momentum variances of ψ are much smaller
than m, i.e., ψ̇=ψ ≪ m and ∇ψ=ψ ≪ m.
Substituting Eqs. (2) and (3) into Eq. (1), and neglecting

fast oscillatory terms e�2imt that average out to zero,
we have

Sϕ ¼
Z

d4xa3
�
i
2
ðψ̇ψ� − ψψ̇�Þ − 1

2ma2
∂iψ∂

iψ�

−mΦjψ j2 − 3λ

8m2
jψ j4

�
; ð4Þ
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where we have kept the terms up to the first order, and the
superscript “·” denotes a differentiation with respect to
time t. The equation of motion for ψ gives the nonlinear
Schrödinger equation in the FLRW spacetime,

iψ̇ ¼ −
3

2
Hiψ −

∇2ψ

2ma2
þmðΦþΦselfÞψ ; ð5Þ

where H ¼ ȧ=a denotes a Hubble parameter. The non-
linear term arises from the self-interaction potential Φself
defined by

Φself ≡ 3λjψ j2
4m3

: ð6Þ

On galactic scales, we assume that the system of scalar
fields has been completely decoupled from the background
evolution of the Universe, in which case we can neglect the
scale factor and the Hubble parameter to rewrite Eq. (5) as

iψ̇ ¼ −
∇2ψ

2m
þmðΦþΦselfÞψ : ð7Þ

When a high density medium of scalar fields condensates
into the lowest momentum state, it behaves like a single
macroscopic fluid exhibiting a superfluidity. The many-
particle system of Eq. (7) that involves a multitude of scalar
fields is generically difficult to solve. Therefore, we pursue
the macroscopic analysis of the superfluid [62–66], by
using a mean-field approximation,

ψðr⃗; tÞ ¼ ψ̂ðr⃗; tÞ þ δψ̂ðr⃗; tÞ; ð8Þ

where ψ̂ðr⃗; tÞ denotes a wave function of the condensate,
and δψ̂ðr⃗; tÞ is a small perturbation of the system. Then the
density of the condensate is given by nðr⃗; tÞ ¼ jψ̂ðr⃗; tÞj2.
This approach leads to the reduction of the many-body
problem to one single field ψ̂ðr⃗; tÞ averaging out the effects
of all other particles. In this description, we can decompose
the condensate wave function using the Madelung trans-
formation [67]

ψ̂ ¼ jψ̂ðr⃗; tÞjeisðr⃗;tÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðr⃗; tÞ

p
eisðr⃗;tÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρðr⃗; tÞ
m

r
eisðr⃗;tÞ; ð9Þ

where ρðr⃗; tÞ ¼ nðr⃗; tÞm and s denote an amplitude and a
phase respectively. Plugging Eqs. (8) and (9) into Eq. (7)
and taking imaginary and real parts result in hydrodynam-
ical equations

ρ̇þ∇ · ðρv⃗Þ ¼ 0; ð10Þ

v⃗þ ðv⃗ ·∇Þv⃗ ¼ −∇ðΦþΦself þΦQPÞ; ð11Þ

where we have defined v⃗ ¼ ∇s
m . The term ΦQP ¼ − ∇2 ffiffi

ρ
p

2m2 ffiffi
ρ

p

represents a quantum pressure arising from the fact that a
system cannot be of infinitesimal size due to the Heisenberg
uncertainty principle. We will work in the regime where
the quantum pressure is negligibly smaller than the self-
interaction potential

Φself ¼
3λρ

4m4
≫ ΦQP: ð12Þ

We consider a halo system comprised of a black hole
(BH) of massMBH at the center surrounded by the conden-
sate of scalar fields (i.e., dressed BH). In the Newtonian
limit, the metric perturbation can be written as

Φ ¼ ΦBH þΦdress; ð13Þ

where ΦBH ¼ − rS
2r denotes a BH potential with

Schwarzschild radius rS ¼ 2GMBH, and Φdress represents
a potential generated by a gravitational interaction of the
scalar fields satisfying a Poisson equation

∇2Φdress ¼ 4πGρ: ð14Þ

When a repulsive pressure due to the self-interaction
balances out a gravity, the system can form a stable
configuration with vanishing velocity v⃗ ¼ 0, in which case
Eq. (11) reduces to

∇ðΦþΦselfÞ ¼ 0: ð15Þ

Taking a divergence on both sides and assuming a spheri-
cally symmetric solution for ρ, we find

d2ρ
dr2

þ 2

r
dρ
dr

þ 1

r2c
ρ ¼ 0; ð16Þ

where rc denotes a characteristic radius of a soliton
defined by

rc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3λ

16πGm4

r
: ð17Þ

Changing a variable x ¼ r=rc gives a spherical Bessel
equation of order l ¼ 0,

d2ρ
dx2

þ 2

x
dρ
dx

þ ρ ¼ 0; ð18Þ

where there are two independent solutions, jl¼0 ¼ sin x=x
and nl¼0 ¼ cos x=x. The final density profile of a
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soliton is given by a linear combination of these two
solutions [25,27,41,68]:

ρsolitonðrÞ ¼ ρsin
sinðr=rcÞ
r=rc

þ ρcos
cosðr=rcÞ

r=rc
; ð19Þ

where ρsin and ρcos are constants to be determined. The
second term dominates for a small r where the gravitational
pull from the black hole is significant.
Outside of a soliton (r > rc), on the other hand, the

scalar fields start to behave like the collisionless CDM. To
facilitate a smooth transition of a density profile from the
outer to the inner region, we will use a continuity condition
and a mass conservation to match profiles in adjoint
sectors.
First, in the outermost region of halo, we consider the

Navarro-Frenk-White (NFW) density profile [69]:

ρNFWðrÞ ¼
ρ0

ðr=rscÞð1þ r=rscÞ2
; ð20Þ

ρ0 ¼
ρcritΔ
3

c3

lnð1þ cÞ − c=ð1þ cÞ ; ð21Þ

where the concentration parameter c≡ rvir=rsc is a ratio
between a virial radius and a scale radius, and the halo
density is ρcritΔ at the virial radius. We take Δ ¼ 200 and
adopt the scaling relation between the concentration and
the halo mass (c −M relation) given by Ref. [70] for
concreteness. The critical density of the Universe today
ρcrit ¼ 2.775h2 × 1011M⊙ and the reduced Hubble constant
h ¼ H0=ð100 km=s=MpcÞ with H0 ¼ 67.4 km=s=Mpc
inferred from the CMB [11].
Second, as they approach closer to the center, due to the

influence of the central BH, the scalar fields are redistrib-
uted to form a spike profile [71,72]

ρspikeðrÞ ¼ ρsp

�
rsp
r

�
γsp
; ð22Þ

where ρsp denotes a density at a reference radius rsp, and γsp
is a slope of the spike. Assuming an adiabatic growth of the
spike in the presence of the central BH with an initial slope
of γi, it acquires a final slope of γsp ¼ ð9 − 2γiÞ=ð4 − γiÞ.
For instance, γi ¼ 1 for the NFW and then γsp ¼ 7=3. The
two undetermined parameters ρsp and rsp are obtained by a
continuity condition and a mass conservation

ρNFWðrspÞ ¼ ρspikeðrspÞ; ð23Þ
Z

5rsp

rmin

ρDMðrÞ4πr2dr ¼ 2MBH; ð24Þ

where rmin ¼ 3rS denotes an innermost stable circular
orbit (ISCO), and the upper limit of the integral 5rsp is

empirically obtained such that the resulting integral gives
twice the mass of a BH [49].1 The integrand ρDM is
defined by

ρDMðrÞ ¼
	
ρspikeðrÞ; rmin ≤ r < rsp;

ρNFWðrÞ; rsp ≤ r:
ð25Þ

Third, since the innermost region of halo is described by
the soliton configuration in Eq. (19), we again use the
continuity condition and the mass conservation to fix the
parameters ρsin and ρcos,

ρsolitonðrcÞ ¼ ρspikeðrcÞ; ð26Þ
Z

rc

rmin

ρsolitonðrÞ4πr2dr ¼
Z

rc

rmin

ρspikeðrÞ4πr2dr: ð27Þ

To sum up, the final density profile of a halo is composed
of three layers,

ρhaloðrÞ ¼

8><
>:

ρsolitonðrÞ; rmin ≤ r < rc;

ρspikeðrÞ; rc ≤ r < rsp;

ρNFWðrÞ; rsp ≤ r:

ð28Þ

Figure 1 shows the density profile of a halo around a
104M⊙ BH in the CDM model and SIDM model with
different characteristic soliton radii for illustration. One can
find that densities of soliton cores in the SIDM model are
smaller than the density in the CDMmodel. This is because
a greater repulsive self-interaction leads to a larger soliton
core rc which reduces densities of solitons.
In Sec. III, we will utilize this profile to compute a

dynamical friction and an accretion rate for a stellar-mass
BH moving through an IMBH minispike.
In addition to the solitonic profile, another characteristic

feature of SIDM to be compared with the collisionless DM
is the effective sound speed due to the pressure caused by
the self-interaction. Our analysis employs an effective
model where the SIDM system reacts to a moving object
by generating phononlike sound waves as follows.
Perturbations of the condensate are manifested by the

excitation in the SIDM superfluid. They stand for sound

1For a standard collisionless cold DM around a BH, the DM
would not maintain a stable orbit within rmin (e.g., spiral into the
BH), and the DM density can vanish inside r≲ 3rS. Taking
account of the relativistic effects, it may be more appropriate to
set ρ ¼ 0 for r≲ 2rS [73–75]. Moreover, a repulsive self-
interaction in the scalar field may make rmin closer to the BH
due to the additional outward force it provides, though it still
should be bigger than the event horizon scale rmin > rS. These
alterations in the factor of a few for rmin however do not have a
noticeable impact on our results for the parameter accuracy
estimation from expected gravitational wave signals. We
hence simply take ρ ¼ 0 for r < 3rS for concreteness in our
discussions.
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waves that travel through the condensate. To obtain a sound
speed at which it travels [65,66], we substitute Eq. (8) into
Eq. (7) with neglecting the contributions of the gravity and
the perturbation

i ˙̂ψ ¼ −
∇2ψ̂

2m
þ gnψ̂ ; ð29Þ

where g ¼ 3λ
4m2. The stationary solution which represents a

ground state of the condensate takes the following form:

ψ̂ðr⃗; tÞ ¼ ψ̂ sðr⃗Þe−iμt; ð30Þ

where μ is a coefficient to be determined. Plugging this
ansatz into Eq. (29) and neglecting the kinetic term give

μ ¼ 3λ

4m2
n: ð31Þ

The excited states can be found from seeking a solution of
the form

ψ̂ðr⃗; tÞ ¼ �
ψ̂ sðr⃗Þ þ δψ̂ sðr⃗; tÞ

�
e−iμt; ð32Þ

where

δψ̂ sðr⃗; tÞ ¼ uðr⃗Þe−iwt − v�ðr⃗Þeiwt: ð33Þ

Plugging this ansatz into Eq. (29), and taking the Fourier
transformation give

�
k2

2m
− wþ gn

�
ûðk⃗Þ − gnv̂ðk⃗Þ ¼ 0; ð34Þ

�
k2

2m
þ wþ gn

�
v̂ðk⃗Þ − gnûðk⃗Þ ¼ 0: ð35Þ

Combining these equations gives the dispersion relation in
k space,

w2 ¼ k4

ð2mÞ2 þ c2sk2; ð36Þ

where the sound speed is defined by

c2s ≡ 3λ

4m3
n ¼ 3λρ

4m4
: ð37Þ

The sound speed originates from the self-interaction, and it
changes the energy spectrum of exited states.
In the small k limit (long-range), the first term in Eq. (36)

dominates

w ≃ csk ¼ 3λρ

4m4
k: ð38Þ

This implies that the repulsive interaction (λ > 0) results in
an oscillating solution. However, the attractive interaction
(λ < 0) gives either a growing or a decaying mode,
indicating that it cannot form a stable condensate.2

We also utilize this derived sound speed in Sec. III in
studying the evolution of stellar-mass BHs traversing
through a soliton core.

III. BLACK HOLE BINARY EVOLUTION

In the previous section, we have discussed the DM halo
which surrounds a BH with a mass m1ð≡MBHÞ. When a
stellar-mass BH with a massm2 is caught gravitationally by
such a BH, the formed binary system can produce the
observable GWs. The GWs from such a binary system
carry the information of a surrounding DM halo; thus one
can probe the property of the DM environment with these
GWs [48,49]. In this work, we focus on the case with
q≡m2=m1 ≪ 1 which can emit GWs in the frequency
range of LISA.
With the density profile of the DM halo, one can derive

dynamical equations of the binary system. The equation of
motion in a radial direction is

ṁ2ṙ2 −m2r2ω2
s þm2 ̈r2 ¼ −G

M1m2

r2
; ð39Þ

where r2 is the distance between a stellar-mass BH and the
barycenter of the system, r is the relative distance of two
objects, ωs is the angular velocity, and M1 is the total mass
inside the orbit given by

M1 ¼
	m1; r < rmin;

m1 þ
R
r
rmin

ρhaloðr0Þ4πr02dr0; rmin ≤ r;
ð40Þ

FIG. 1. The DM density profile around a 104M⊙ black hole in
the CDM model and SIDM model with different soliton char-
acteristic radii.

2See Refs. [26,38] for the case of the attractive interaction to
form a stable soliton.
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which includes the contributions from the central BH and
the surrounding DM halo.
Since the mass ratio q is much less than 1, the orbit can

be regarded as a quasicircular orbit, and the DM halo can be
considered unperturbed.3 In this approximation, both ṙ2
and ̈r2 vanish, and we obtain

ωs ¼
ffiffiffiffiffiffiffiffi
GM
r3

r
; ð41Þ

where M ≡M1 þm2 is a total mass of the system.
In addition to the gravitational pull of DM inside the

orbit, the DM halo can also affect the evolution of the
binary system by a dynamical friction and an accretion.
Since we consider a small stellar-mass BH orbiting a large
central BH with its own unperturbed DM halo, only the
dynamical friction and the accretion affecting the dynamics
of the stellar-mass BH are taken into account.
The combined effects of GW emissions, the dynamical

friction, and the accretion decrease the orbital energy and
reduce the relative distance of the binary. The evolution of
relative distance reads as

ṙ ¼ −ðFGW þ FDF þ FAcÞ
�
2μωs þ μr

dωs

dr

�
−1
; ð42Þ

where μ≡M1m2=M denotes a reduced mass, and the back-
reaction force due to the emission of GWs is given by [76]

FGW ¼ 1

v
32G4μ2M3

5c5r5
; ð43Þ

where v≡ rωs is the velocity of a stellar-mass BH.
The dynamical friction of a stellar-mass BH orbiting

inside the SIDM medium takes the form [77]

FDF ¼
4πðGm2Þ2ρhalo

v2
IðM;ΛÞ; ð44Þ

where the function I is defined by

IðM;ΛÞ ¼
(

1
2
ln
�
1þM
1−M

�
−M; M < 1;

1
2
ln ð1 −M−2Þ þ lnΛ; M > 1;

ð45Þ

where Λ≡ vt=rmin with t denoting the time for which the
stellar-mass BH has traveled. The Coulomb logarithm lnΛ
incorporates the minimum and maximum impact parame-
ters of the stellar mass BH. The Mach number M≡ v=cs
parametrizes how fast the stellar-mass BH moves through
the medium with respect to the sound speed cs defined
by Eq. (37),

c2s ¼
3λρhalo
4m4

; ð46Þ

with substituting the density profile with Eq. (28). For the
supersonic expression, in the limit M ≫ 1, we recover the
conventional steady state collisionless dark matter result
I → lnðvt=rminÞ with the replacement of vt → rmax. Here
we use the Coulomb logarithm lnΛ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
which

is commonly adopted in the literature [55,78,79].4 In the
subsonic limit M ≪ 1, on the other hand, the dynamical
friction exerted by the collisionless medium is larger than
the SIDM partly due to the self-interacting repulsive force
that hinders the accumulation of the DM in the wake.
The FAc denotes the accretion drag force

FAc ¼ μ̇v; ð47Þ

where μ̇ ¼ ṁ2ð1þ qÞ−2, and ṁ2 denotes the accretion rate.
For the SIDM medium, we adopt the Bondi-Hoyle-
Lyttleton accretion rate [51,82–85]

ṁ2 ¼
4πðGm2Þ2ρhalo
ðc2s þ v2Þ3=2 ; ð48Þ

while for the collisionless medium we use the form

ṁ2 ¼
16πðGm2Þ2ρhalo

c2v

�
1þ v2

c2

�
: ð49Þ

In the transonic regime v ∼ cs ≪ c, for example, the
accretion rate in the SIDM medium is much larger than
the collisionless case

ṁ2;CDM

ṁ2;SIDM
∼
v2

c2
≪ 1: ð50Þ

Such an enhancement can arise from “funneling effect,” in
which the particles tend to funnel into inward-spiraling
trajectories [85]. The collisions and interactions among the
particles redistribute their angular momenta, and, combined

3References [55,58] discussed the halo feedback in a similar
setup but focused on the CDM case.

4Such a choice of lnΛ would suffice for our purpose of
demonstrating the potential gravitational signals, partly because
of its weak logarithmic dependence and also other relevant
uncertainties such as the modeling of GW detector noise and
sensitivity. The exact value of the Coulomb term Λ is not well
known and is usually obtained numerically in the literature. For
instance, rmin can be estimated by demanding that the numeri-
cally calculated force should match the analytically estimated
one [80]. The value of rmax can be, for instance, the radius under
the influence of BH gravity (Roche radius or Hill radius) or the
soliton radius. Different authors use different values for the
Coulomb term, and we refer the readers to the existing literature
(e.g., [42,55,60,77,80,81]) for more detailed discussions on the
dynamical friction in the presence of the gaseous medium and
collisional DM.
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with the gravitational influence of the BH, the particles tend
to follow more radial trajectories toward the accreting BH.
The relative magnitude of the accretion drag force and

the dynamical friction for the collisionless medium is

FDF;CDM

FAc;CDM
∼
c2

v2
≫ 1; ð51Þ

and for the SIDM case, in the supersonic limit v ≫ cs,

FDF;SIDM

FAc;SIDM
≳ 1: ð52Þ

In comparison to the binary in the vacuum, the binary in
the DM halo can be also affected by the dynamical friction
and accretion. These effects accelerate the loss of orbit
energy of the binary; thus the number of orbital cycles
before the coalescence Ncyc gets smaller.
In Fig. 2, we show the evolution of forces contributed by

GWs, dynamical frictions, and accretions respectively
where τ≡ tjr¼rISCO − t is the time to ISCO, and benchmark
parameters of the binary system are given by the set 1 in
Table I. One can find that, in the final stage of inspiral

which is relevant for GWobservations, the force due to the
emission of GWs is dominant for both CDM and SIDM
halos; thus the orbital decay of the binary is still mainly
determined by the emission of GWs, rather than by the
dynamical friction or accretion.
Figure 3 demonstrates the corresponding difference

of Ncyc compared to the binary in the vacuum, ΔNcyc ¼
NcycðvacuumÞ − NcycðwithDMhaloÞ. One can find that
ΔNcyc is primarily contributed by the dynamical friction
(represented by dot-dashed lines), while the contribution
from the accretion (dashed lines) is subdominant. Even
though the force due to the GW emission is significant
and hence can affect how quickly the stellar-mass BH
approaches toward the central BH, its contribution to the
accumulated phased shift in the waveform is negligible.

IV. GRAVITATIONAL WAVE ANALYSIS

The waveform of GWs produced from the inspiral of a
binary system is given by [76]

hþðtÞ ¼
4

DL

�
GMc

c2

�
5=3

�
πfðtretÞ

c

�
2=3 ð1þ cos2ιÞ

2

× cos½ΨðtretÞ�; ð53Þ

h×ðtÞ ¼
4

DL

�
GMc

c2

�
5=3

�
πfðtretÞ

c

�
2=3

cos ι

× sin½ΨðtretÞ�; ð54Þ

where DL is a luminosity distance to a source, Mc ¼
μ3=5M2=5 denotes a chirp mass, tret ¼ t −DL=c is a
retarded time, ι is the angle between an orbital angular
momentum axis of a binary and a direction to a detector,
f is a frequency of GWs which is given by f ¼ ωGW=ð2πÞ
with ωGW ¼ 2ωs, and Ψ is a phase of GWs.

FIG. 2. The evolution of the forces contributed by GWs,
dynamical frictions, and accretions in the CDM model and the
SIDM model with different soliton characteristic radii. τ is the
time to reach the ISCO. The force due to the gravitational wave
emission is dominant, and three GW curves are indistinguishable
among different parameter sets in this figure (represented by the
top dotted curve).

TABLE I. The benchmark parameter sets we use in the analysis.
The mass m2 changes with time due to the accretion, and the
values here are given when r ¼ rISCO.

Set m2=M⊙ m1=M⊙ M200=M⊙

1 1 104 108

2 10 104 108

3 10 105 1010

FIG. 3. The difference in the number of orbital cycles compared
with the binary in the vacuum, ΔNcyc ¼ NcycðvacuumÞ −
Ncycðwith DM haloÞ, as a function of the time τ to reach
the ISCO.
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Figure 4 shows the difference in the phase of GWs,

ΔΨ ¼ ΨðvacuumÞ − ΨðwithDMhaloÞ; ð55Þ

for different DM parameter sets compared with the vacuum
case, and the parameters of the binary system are given by
the set 1 in Table I. One can find the phase of the GW
waveform is affected, the so-called dephasing effect, by the
DM environment. Over the inspiral period, this phase shift
effect can accumulate and result in observable signals of
sufficient magnitude to probe the characteristics of the dark
matter environment.
Even though the dephasing effect is calculated with a

numerical approach in our quantitative discussions, it
would be informative to provide an analytical assessment
to see how it is affected by our model parameters. The
conservation of energy gives

−
dEorb

dt
¼ PGW þ PDF þ PAc; ð56Þ

where the orbital energy of the binary is

Eorb ¼ −ðG2M5
cω

2
GW=32Þ1=3; ð57Þ

and the power of energy loss due to the GW emission,
the dynamical friction, and the accretion are respectively
given by

PGW ¼ 32

5

c5

G

�
GMcωGW

2c3

�
10=3

; ð58Þ

PDF ¼ vFDF; ð59Þ

PAc ¼ vFAc: ð60Þ

To make a rough estimation, we consider the supersonic
regime v ≫ cs, neglecting the dependence of a sound
speed in the FDF and FAc. We also assume that ρhalo is
a constant. With using v ¼ rωs and Eq. (41), we can rewrite
Eq. (56) as

−
dy
dx

¼ AGWy11=3 þ ADF þ AAc; ð61Þ

with

AGW ¼ 27=6q

15
ffiffiffi
3

p ð1þ qÞ5=3 ; ð62Þ

ADF ¼ 162 × 21=3π qð1þ qÞ5=3 r
3
Sρhalo
m1

I; ð63Þ

AAc ¼ 162 × 21=3π qð1þ qÞ−1=3 r
3
Sρhalo
m1

: ð64Þ

Here the dimensionless quantities y and x are defined as

y≡ ωGW

ωGW;ISCO
; ð65Þ

x≡ τωGW;ISCO; ð66Þ

with

ωGW;ISCO ¼ c3

3
ffiffiffi
6

p
GM

: ð67Þ

The difference in the phase of GWs can be written as

ΔΨðτÞ ¼
Z

τ

0

dτ0


ωGWðτ0; vacuumÞ

− ωGWðτ0;withDMhaloÞ�
¼

Z
x

0

dx0


yðx0; vacuumÞ − yðx0;withDMhaloÞ�

≃
3ðADF þ AAcÞ

19A2
GW

	
4

3
A2
GWx

2 þ AGWx − 1

þ
��

1þ 8

3
AGWx

��
−3=8

�
: ð68Þ

The LISA is in a heliocentric orbit and consists of an
equilateral triangle formed by three spacecrafts, each
separated by a distance of 2.5 million kilometers from
one another. The center of mass for the constellation,
known as the guiding center, is in a circular orbit at 1 AU
and 20° behind the Earth. Choosing the polar coordinate
system with the Sun at its origin, the strain of GWs in a
detector is given by [86]

FIG. 4. The dephasing of the gravitational waveform for our
example parameter sets with respect to the vacuum case, ΔΨ ¼
ΨðvacuumÞ − Ψðwith DM haloÞ as a function of the GW fre-
quency. The vertical dashed line denotes the frequency at the
ISCO. The corresponding τ (the time to reach the ISCO) at each
frequency is also shown.
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hðtÞ ¼ hþðt − ΔtÞFþðϑ;φ; χ; t − ΔtÞ
þ h×ðt − ΔtÞF×ðϑ;φ; χ; t − ΔtÞ; ð69Þ

where Fþ and F× are the detector response functions, ϑ and
φ are the latitude and longitude of the binary in the polar
coordinate system, and χ is the polarization angle. Here, Δt
is the delay between the arrival time of GWs at the Sun and
the arrival time at the detector, which is given by

Δt ¼ −
1 AU
c

sin ϑ cosðα − φÞ: ð70Þ

The detector response functions are given by

Fþ ¼ 1

2
½Dþ cos 2χ −D× sin 2χ�; ð71Þ

F× ¼ 1

2
½Dþ sin 2χ þD× cos 2χ�; ð72Þ

with

Dþ ¼
ffiffiffi
3

p

64



−36sin2ϑ sinð2α− 2βÞ

− 4
ffiffiffi
3

p
sin 2ϑ


sinð3α− 2β − φÞ − 3 sinðα− 2βþ φÞ�

þ ½cos2ϑþ 3�cos2φð9 sin 2β − sinð4α− 2βÞÞ
þ sin2φðcosð4α− 2βÞ− 9 cos 2βÞ��; ð73Þ

D× ¼ 1

16


 ffiffiffi
3

p
cos ϑ


9 cosð2β − 2φÞ − cosð4α − 2β − 2φÞ�

− 6 sinϑ

cosð3α − 2β − φÞ þ 3 cosðα − 2β þ φÞ��:

ð74Þ

Here, α ¼ 2πt=yr þ α0 is the orbital phase of the guiding
center, and β ¼ 2πn=3þ β0 (with n ¼ 0; 1; 2 for three
spacecrafts) is the relative phase of the spacecraft within
the constellation. The parameters α0 and β0 give the initial
ecliptic longitude and orientation of the constellation.
In the limit of a large signal-to-noise ratio (SNR), the

posterior probability distribution of the source parameters
can be approximated by a multivariate Gaussian distribu-
tion centered around the true values. The corresponding
covariance can be estimated by the inverse of the Fisher
information matrix. For a network includingN independent
detectors, the Fisher matrix can be written as

Γij ¼
�
∂dðfÞ
∂θi

;
∂dðfÞ
∂θj

�
θ¼θ̂

; ð75Þ

where d is given by

dðfÞ ¼
�

h̃1ðfÞffiffiffiffiffiffiffiffiffiffiffi
S1ðfÞ

p ;
h̃2ðfÞffiffiffiffiffiffiffiffiffiffiffi
S2ðfÞ

p ;…;
h̃NðfÞffiffiffiffiffiffiffiffiffiffiffiffi
SNðfÞ

p �
T
; ð76Þ

and θ denotes the parameter vector with true value θ̂. Here
SiðfÞ is the noise power spectral density for the ith detector
and h̃iðfÞ is the Fourier transformation of the time domain
signal. The bracket operator ðA; BÞ for two functions AðtÞ
and BðtÞ is defined as

ðA;BÞ ¼ 2

Z
fmax

fmin

df

ÃðfÞB̃�ðfÞ þ Ã�ðfÞB̃ðfÞ�; ð77Þ

where A� is its complex conjugate. The total SNR is given
by

ffiffiffiffiffiffiffiffiffiffiffiðd; dÞp
.

The root-mean-squared (1σ) errors of parameters and the
correlation coefficients among parameters can be estimated
by the inverse of the Fisher matrix Σ ¼ Γ−1, which can be
written as

σθi ¼
ffiffiffiffiffiffi
Σii

p
; ð78Þ

and

cθi;θj ¼
Σij

σθiσθj
: ð79Þ

For the binary with SIDM halo, the parameter vector is
θ ¼ frc;m1; m2; DL; ι; χ;ϑ;φ;ϕISCO; tISCOg, where ϕISCO
and tISCO are the source phase and time respectively at
ISCO. We consider the binary system with masses given in
Table I, fι; χ; ϑ;φg are set to be π=4, fϕISCO; tISCOg are set
to be 0, and DL is set to vary the SNR. Figure 5 shows the

FIG. 5. Probability distribution of frc; m1; m2g assuming a half
year observation with LISA. The one-dimension marginalized
likelihood and 1-, 2-, 3-σ confidence ellipses are shown. The
fiducial values of parameters are f100rS; 104M⊙; 1M⊙g, and the
gravitational wave SNR is 100.
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probability distribution of frc; m1; m2g with the fiducial
parameter values θ̂ given by set 1 in Table I and
rc ¼ 100rS. The tilded parameter is defined as the value
with respect to the fiducial value adopted in the Fisher
matrix analysis θ̃ ¼ θ=θ̂. The dotted vertical lines in the
one-dimensional likelihood function marginalized over the
other parameters indicate the 1σ interval for the parameters.
Two-dimensional ellipses are the 1-, 2-, and 3-σ confidence
contour plots. The correlation values defined by Eq. (79)
are also shown in the figure, and rc is highly correlated with
m1 and anticorrelated with m2. This correlation arises
because the increase in rc results in the decrease in the
soliton density amplitude, and such an effect on the GW
signals can be compensated by the increase (decrease) of
the central (accompanying) BH mass.
Focusing on the DM related parameters, the error of

rcð∝
ffiffiffi
λ

p
=m2Þ is shown in Fig. 6. The existence of the

soliton core is the characteristic feature of SIDM, and the
SIDM parameter space for which the error on rc is small
enough is of our particular interest. For the parameter
range of our interest, the stellar BH is at a radius around
Oð1 ∼ 10ÞrS a half year before it reaches the ISCO. For
instance, for fm1=M⊙; m2=M⊙g ¼ f104; 1g illustrated in
Fig. 6, a half year observation of LISA corresponds to
receiving the signals when the stellar BH moves though the
SIDM soliton from r ∼ 18rS to r ∼ 3rS. The stellar BH is
hence well inside the soliton core during the observation,
and a bigger soliton core density leads to a bigger dyna-
mical friction and accretion. We can hence expect that the
signal can be more sensitive to the parameter space which
leads to a bigger soliton core density. Our modeling of the
DM profile around a central BH in Sec. II has led to a

bigger soliton density for a smaller soliton radius, and the
accuracy is indeed better for a smaller soliton size rc.
Figure 6 shows that a half year of LISA observation is

expected to measure the characteristic radius of soliton rc
within 1% (10%) accuracy when rc ≲ 444rS (rc ≲ 2700rS).
The binary with a smaller total mass M and a larger mass
ratio q increases the expected accuracy for a given rc=rS
because it results in a bigger dephasing effect.
We can also argue how the black hole masses affect the

estimated parameter accuracy illustrated in Fig. 6 by
looking at their effects on the dephasing. The analytical
expression of Eq. (68) also helps in understanding the
behaviors of Fig. 6. The difference in dephasing with
different values of m2 is partly due to the difference in the
dynamical friction which becomes bigger for a bigger m2

when the central IMBH mass is fixed. The dynamical
friction is also sensitive to the velocity of the stellar mass
BH and equivalently to the frequency of the orbit. Such a
dependence of the dynamical friction on the frequency is
significant as inferred from v−2 dependence in Eq. (44).
Consequently, the dephasing for the m1 ¼ 105M⊙ example
becomes smaller compared with the m1 ¼ 104M⊙ exam-
ples in Fig. 6 because a larger central mass leads to a larger
initial orbital radius and slower orbital motion.
Based on the results in Fig. 6, we can obtain a detectable

region (orange hatched) in the parameter space of fm; λg
by requiring σrc=rc < 1 in Fig. 7. The dashed purple line
corresponds to the limit where the characteristic soliton
scale is larger than the de Brogile wavelength rc ≫ λdB to
avoid the effect of quantum pressure [42]. The dashed
blue line corresponds to the bullet cluster constraint σ=m≲
1 cm2=g. To form enough subgalaxy scale structures,

FIG. 6. 1σ uncertainty of the SIDM soliton radius σrc as a
function of rc (x axis is scaled to the Schwarzschild radius, and y
axis is scaled to a given fiducial value in the Fisher matrix
analysis). The SNR is set to 100 and 10 for illustration, and a half
year of observation by LISA is assumed. To illustrate the soliton
size of interest, the gray dotted lines indicate the relative accuracy
of 0.1 and 0.01.

FIG. 7. The detectable region (orange hatched) in the parameter
space of fm; λg from a half year LISA observation of the binary
system by requiring σrc=rc < 1. The dashed purple line corre-
sponds to the limit rc ≫ λdB, and the bullet cluster constraint
σ=m≲ 1 cm2=g is represented by the dashed blue line. The
dashed green line represents the Jeans scale bound rJ ≲ 1 kpc.
Further information is provided in the main text.
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we demand a Jeans length should not exceed 1 kpc scale
rJ ≲ 1 kpc (dashed green line) [24]. The Jeans length of the
SIDM model with a quartic self-interaction is determined
by a characteristic soliton scale rJ ¼ rc (which is obtained
by balancing the self-interacting repulsive force and the
gravitational attraction force) [24,40].
Therefore, our gravitational probes on the SIDM model

will be able to shed light on the uncharted area of the
parameter space that has not been surveyed by other
measurements. However, the limiting factor of our study
is the presence of a degeneracy between two parameters λ
and m arising from their underlying connection to
rcð∝

ffiffiffi
λ

p
=m2Þ. To break this degeneracy, one would need

other probes which possess different dependence on the
DM parameters, for instance, the observables which are not
directly linked to the height of a soliton profile. Such an
inquiry is left for future work.

V. CONCLUSIONS

We have studied how SIDM can be probed by forth-
coming GW experiments. It would be ideal to identify a
region with a large DM density for effective DM explora-
tion, and the overdense region surrounding a BH provides
a promising environment for studying DM properties.
Through the Fisher matrix analysis, we have demonstrated
that SIDM scenarios can be distinguished from the vacuum
scenario, and we clarified the previously unexplored SIDM
parameter space which can be probed by the planned GW
experiments. The future space-borne GW detectors hence
would offer a promising means to study and identify DM,
which can complement ongoing terrestrial DM search
experiments. While we focused on the LISA specifications
in our analysis, it has been proposed that space-based GW
detectors, such as LISA and Taiji, can form an observation
network [87]. With the aid of such a network in the future,
the observable parameter space can be further enlarged.
The anticipated data from future GW experiments hold

great promise in shedding light on the nature of DM and
providing insights into the properties of SIDM.
Before concluding our discussions, it is worth mention-

ing that a more precise estimation of the dynamical friction
and accretion processes in the presence of SIDM around a
BH deserves further exploration beyond the simplified
estimation used in our current modeling. Additionally,
investigating the DM profile of SIDM around a BH, which
extends beyond the scope of our modeling presented in this
paper, represents an intriguing topic for future research.
For instance, in our study, we employed the Schrödinger-
Poisson equations to describe the DM profile around the
BH, treating it as a source of fixed, external gravitational
potential. This approach provides a reasonable starting
point for exploring GW probes, especially considering that
the dephasing of the waveform predominantly originates
from the radius farther away from the Schwarzschild radius
due to the larger number of orbital cycles experienced by
the stellar BH. However, further investigations with more
precise treatments, such as utilizing the Einstein-Klein-
Gordon equations, are warranted and left for future work.
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