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Abstract The ongoing experimental efforts to measure the
hyperfine transition in muonic hydrogen prompt an accu-
rate evaluation of the proton-structure effects. At the lead-
ing order in α, which is O(α5) in the hyperfine splitting
(hfs), these effects are usually evaluated in a data-driven
fashion, using the empirical information on the proton elec-
tromagnetic form factors and spin structure functions. Here
we perform a first calculation based on the baryon chiral
perturbation theory (BχPT). At leading orders it provides a
prediction for the proton polarizability effects in hydrogen
(H) and muonic hydrogen (μH). We find large cancellations
among the various contributions leading to, within the uncer-
tainties, a zero polarizability effect at leading order in the
BχPT expansion. This result is in significant disagreement
with the current data-driven evaluations. The small polar-
izability effect implies a smaller Zemach radius RZ, if one
uses the well-known experimental 1S hfs in H or the 2S
hfs in μH. We, respectively, obtain RZ(H) = 1.010(9) fm,
RZ(μH) = 1.040(33) fm. The total proton-structure effect
to the hfs at O(α5) is then consistent with previous evalu-
ations; the discrepancy in the polarizability is compensated
by the smaller Zemach radius. Our recommended value for
the 1S hfs in μH is 182.640(18) meV.
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1 Introduction

Muonic-atom spectroscopy has been successful at determin-
ing the charge radii of proton, deuteron, helion and alpha-
particle with unprecedented precision through Lamb shift
measurements [1–3]. It also holds the potential to impact
tests of ab-initio nuclear theories and bound-state QED [4].
The proton Zemach radius RZ has been extracted from a
measurement of the 2S hyperfine splitting (hfs) in muonic
hydrogen (μH) [5] with a 3.4% uncertainty:

RZ(μH) = 1.082(37) fm, (1)

by comparing to the theory prediction in Ref. [6] that relies
on a data-driven evaluation of the proton polarizability con-
tribution [7]:

Epol.
hfs (2S, μH) = 8.0(2.6)µeV. (2)
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Several collaborations are now preparing a measurement
of the ground-state (1S) hfs in μH with ppm precision:
CREMA [8], FAMU [9,10] and J-PARC [11] (see Ref.
[12] for a comparison of the different experimental meth-
ods). These future measurements hold the potential to
extract the Zemach radius with a sub-percent uncertainty,
thereby constraining the magnetic properties of the pro-
ton.

A precise theory prediction for the 1S hfs in μH is
essential for the success of the experimental campaigns.
Firstly, to narrow down the frequency search range, which
is important given the limited beam time available to
the collaborations at PSI, RIKEN-RAL and J-PARC. Sec-
ondly, for the interpretation of the results. One can either
extract the Zemach radius given a theory prediction for
the proton-polarizability effect in the μH 1S hfs, or vice
versa, extract the proton-polarizability effect with input
for the Zemach radius. Furthermore, one can combine
the precise measurements of the 1S hfs in H and μH to
disentangle the Zemach radius and polarizability effects,
leveraging radiative corrections as explained in Ref. [13],
and compare their empirical values to theoretical expecta-
tions.

The biggest uncertainty in the theory prediction comes
from proton-structure effects, entering through the two-
photon exchange (TPE). These contain the above-mentioned
Zemach radius and polarizability effects. Presently, they
are evaluated within a “data-driven” dispersive approach
[14–16]. While the dispersive method itself is rigorous,
it requires sufficient experimental data to map out the
proton spin structure functions g1(x, Q2) and g2(x, Q2)

as full functions of the Bjorken variable x and the pho-
ton virtuality Q2. This has been the aim of a dedicated
“Spin Physics Program” at Jefferson Lab [17–21] that
recently extended the previously scarce data for g2 [22,
23].

In this work, we use an entirely different approach –
the chiral perturbation theory (χPT) [24–26] – which has
been successfully used to give a prediction for the proton-
polarizability effect in the μH Lamb shift [27]. To be pre-
cise, we work in the framework of baryon chiral perturbation
theory (BχPT) – the manifestly Lorentz-invariant formula-
tion of χPT in the baryon sector [26,28,29] (see also [30,31]
for reviews). We show that the leading-order (LO) BχPT
prediction for the polarizability effect in the hfs is effectively
vanishing, thereby, in substantial disagreement with the data-
driven evaluations.

The paper is organized as follows. In Sect. 2, we dis-
cuss the forward TPE, and in particular, the polarizability
effect in the hfs. A new formalism where one splits into
contributions from the longitudinal-transverse and helicity-
difference photoabsorption cross sections of the proton, σLT

and σT T , is introduced in Eq. (12). It will be shown that

this decomposition is advantageous for both the dispersive,
as well as the effective field theory (EFT) calculations as
it gives a cleaner access to the uncertainties. More details
are given in Appendix A. In Sect. 3, we present our LO
BχPT prediction for the polarizability effect in the hfs of
H and μH, together with a detailed discussion of the uncer-
tainty estimate. In Sect. 4, we compare our results to data-
driven dispersive and heavy baryon effective field theory (HB
EFT) calculations. In Sect. 5, the Zemach radius is extracted
from H and μH spectroscopy based on our prediction for the
polarizability effect. In Sect. 6, we discuss the TPE effect
in the μH hfs in view of the forthcoming experiments. Full
details of the theoretical prediction for the 1S μH hfs are
collected in Appendix C. We finish with an outlook and con-
clusions.

2 Two-photon exchange in the hyperfine splitting

The (muonic-)hydrogen hfs receives contributions from
QED-, weak- and strong-interaction effects:

Ehfs(nS) = EF

n3

(
1 + �QED + �weak + �strong

)
, (3)

where the leading-order in α contribution is given by the
Fermi energy:

EF = 8Zα

3a3

1 + κ

mM
, (4)

with α the fine-structure constant, Z the charge of the nucleus
(in the following Z = 1 for the proton), m, M the lep-
ton and proton masses, κ the anomalous magnetic moment
of the proton, and a−1 = αmr the inverse Bohr radius,
with mr = mM/(m + M) the reduced mass. The strong-
interaction effects arise from the composite structure of the
proton. They begin to enter at O(α5), see for instance Ref.
[14], where they are split into the Zemach-radius, recoil, and
polarizability contributions:

�strong = �Z + �recoil + �pol. , (5)

which can all be attributed to the forward TPE shown in Fig. 1.
For a first comprehensive theory summary of the Lamb shift,
fine and hyperfine structure in μH, including proton-structure
dependent effects, we refer to Ref. [32]. The Zemach and
recoil terms (�Z and �recoil) are elastic contributions with a
proton in the intermediate state, see Fig. 1a. The diagram in
Fig. 1b contains excited intermediate states (πN , �-isobar,
etc.) represented by the ‘blob’. It generates the polarizability
effect (�pol.) that shall be evaluated in this work.

The forward TPE contribution to the hfs can be expressed
through the spin-dependent forward doubly-virtual Comp-
ton scattering (VVCS) amplitudes, S1 and S2, cf. Eq. (A2).
The latter can be related to the proton structure functions
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Fig. 1 Two-photon-exchange diagram in forward kinematics: a elastic contribution; b polarizability contribution. The horizontal lines correspond
to the lepton and the proton (bold), where the ‘blob’ represents all possible excitations. The crossed diagrams are not drawn

g1 and g2 in a dispersive approach, cf. Eqs. (A12) and
(A11). A full derivation of the well-known formalism for
the TPE contribution to the hfs can be found in Appendix
A.

The largest TPE effect is due to the Zemach radius con-
tribution:

�Z = −2αmr RZ. (6)

The recoil contribution is one order of magnitude smaller
[7], and will not be considered in this paper. It has been
recently updated in Ref. [33]. The hfs is therefore best suited
for a precision extraction of the Zemach radius, defined as
the following integral over the electric and magnetic Sachs
form factors GE (Q2) and GM (Q2) [32]:

RZ = − 4

π

∫ ∞

0

dQ

Q2

[
GE (Q2)GM (Q2)

1 + κ
− 1

]
, (7)

where q2 = −Q2 is the photon virtuality. Equivalently, we
can write:

RZ = 〈r〉E + 〈r〉M − 2

π2

∫ ∞

0

dt

t

Im GM (t)

1 + κ

×
∫ ∞

0

dt ′

t ′
Im GE (t ′)√
t + √

t ′
, (8)

where the linear electric and magnetic radii are defined as:

〈r〉E,M = 2

π

∫ ∞

0

dt

t3/2 Im G(t), (9)

with Im G(t) the imaginary part of the normalized electric
or magnetic Sachs form factor, GE,M (Q2)/GE,M (0). As
one can see from Eqs. (7) and (8), a measurement of the
Zemach radius gives access to the magnetic properties of the
proton.

The polarizability effect in the hfs is fully constrained by
empirical information on the proton spin structure functions
g1(x, Q2) and g2(x, Q2), and the Pauli form factor F2(Q2),
functions of Q2 and the Bjorken variable x = Q2/2Mν,
where ν is the photon energy in the lab frame. This is in
contrast to the Lamb shift, where the knowledge of a sub-

traction function, T1(0, Q2) or T1(i Q, Q2) [34], is needed.1

It reads:2

�pol. = �1 + �2 = αm

2π(1 + κ)M

(
δ1 + δ2

)
, (10a)

δ1 = 2
∫ ∞

0

dQ

Q

{
5 + 4vl

(vl + 1)2

[
4I1(Q

2) + F2
2 (Q2)

]

− 32M4

Q4

∫ x0

0
dx x2g1(x, Q

2)
1

(vl + vx )(1 + vx )(1 + vl)

×
(

4 + 1

1 + vx
+ 1

vl + 1

)}
, (10b)

δ2 = 96M2
∫ ∞

0

dQ

Q3

∫ x0

0
dx g2(x, Q

2)

(
1

vl + vx
− 1

vl + 1

)
,

(10c)

with x0 the inelastic threshold, vl = √
1 + 1/τl , vx =√

1 + x2τ−1, τl = Q2/4m2, τ = Q2/4M2, and the generalized
Gerasimov–Drell–Hearn (GDH) integral:

I1(Q
2) = 2M2

Q2

∫ x0

0
dx g1(x, Q

2) = Ī1(Q
2) − F2

2 (Q2)/4.

(11)

Here, Ī1 is the polarizability part of I1. For the origin of the
Pauli form factor in the above equations, see discussion in
Appendix A.

As we will show in Sect. 3.2, instead of decomposing
into �1 and �2, it is convenient to decompose into contribu-
tions from the longitudinal-transverse and helicity-difference
cross sections σLT and σT T :

�pol. = �LT + �T T + �F2

= αm

2π(1 + κ)M

(
δLT + δT T + δF2

)
, (12a)

where we define:

δLT = 4M

απ2

∫ ∞

0
dQ

∫ x0

0
dx

1

vl + vx

1

x2 + τ

1 See Ref. [35] for a recent proposal how the subtraction functions can
be related to integrals over photoabsorption cross sections.
2 Note that our notation largely follows Ref. [36]. It differs slightly
from other literature, where δi is usually denoted �i [37].
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×
[

1 − 1

(1 + vl)(1 + vx )

]
σLT (x, Q2), (12b)

δT T = 4M2

απ2

∫ ∞

0

dQ

Q

∫ x0

0

dx

x

1

1 + vl

×
[

2τ

x2 + τ
+ 1

(vl + vx )(1 + vx )

]
σT T (x, Q2),

(12c)

δF2 = 2
∫ ∞

0

dQ

Q

5 + 4vl

(vl + 1)2 F2
2 (Q2). (12d)

Or equivalently, in terms of the VVCS amplitudes, we can
write:

δLT = 8M

α

1

(2π)3

1

i

∫ ∞

−∞
dν

∫
dq

1

Q4 − 4m2ν2

{
S̄1(ν, Q2)

+ ν

M
S̄2(ν, Q2)

}

− 4

m2

∫ ∞

0
dQ Q (vl − 1) F2

2 (Q2), (13a)

δT T = 4M

α

1

(2π)3

1

i

∫ ∞

−∞
dν

∫
dq

× 1

Q4 − 4m2ν2

{
ν

M
S̄2(ν, Q2) − ν2

Q2 S̄1(ν, Q2)

}

− 2
∫ ∞

0

dQ

Q

1

(vl + 1)2 F2
2 (Q2). (13b)

Here, S̄i denotes the non-Born part of the amplitudes. An
advantage of the BχPT calculation in this work is that the
non-Born amplitudes can be calculated directly, and need
not be constructed through the dispersive formalism. Fur-
thermore, at the present order of our calculation in the BχPT
power counting, there are no contributions to the elastic form
factors, and thus, I1 in Eq. (11) is given by the polarizability
part only.

3 Chiral loops

Assuming BχPT is an adequate theory of low-energy
nucleon structure, it should be well applicable to atomic sys-
tems, where the relevant energies are naturally small. In Ref.
[27], the polarizability effect in the μH Lamb shift has been
successfully predicted at LO in BχPT. Here, we extend this
calculation to the polarizability effect in the hfs. This requires
the spin-dependent non-Born VVCS amplitudes, S̄1 and S̄2,
at chiral O(p3) in the BχPT power counting.

Figure 1 in Ref. [27] shows the leading polarizability effect
given by the TPE diagrams of elastic lepton-proton scat-
tering with one-loop πN insertions. For the Compton-like
processes, it is convenient to use the chirally-rotated lead-
ing BχPT Lagrangian for the pion πa(x) and nucleon N (x)

fields [38]:

L(1)
πN = N̄

(
i /∂ − MN − i

gA
fπ

MN τ aπaγ5 + g2
A

2 f 2
π

MNπ2

+g2
A − 1

4 f 2
π

τ aεabcπb /∂ πc
)
N + O(π3), (14)

where γ5 = iγ 0γ 1γ 2γ 3, gA � 1.27 [39] is the axial cou-
pling of the nucleon, fπ � 92.21 MeV is the pion-decay
constant, τ a are the Pauli matrices, MN � 938.27 MeV
and mπ � 139.57 MeV are the nucleon and pion masses.3

As described in Ref. [27], the Born part is separated from
the O(p3) VVCS amplitudes by subtracting the on-shell
pion-loop γ NN -vertex in the one-particle-reducible VVCS
graphs, see diagrams (b) and (c) in Figure 1 of Ref. [27].
For more details on the BχPT framework, we refer to Refs.
[40–42], where the complete next-to-next-to-leading-order
(NNLO) in the δ-expansion [43] BχPT calculation of the
spin-independent and spin-dependent nucleon VVCS ampli-
tudes can be found.4

In practice, most results here were obtained based on our
BχPT prediction for the πN -production channel in the struc-
ture functions gi , given in Ref. [42, Appendix B]. It has been
verified that the results agree with the calculation based on
the VVCS amplitudes S̄i .

3.1 Numerical results

Our LO BχPT prediction for the polarizability effect in the
1S hfs of H and μH amounts to:

E 〈LO〉 pol.
hfs (1S, H) = 0.69(2.03) peV, (15a)

E 〈LO〉 pol.
hfs (1S, μH) = 6.8(11.4)µeV. (15b)

The error estimate will be described and motivated in the
subsequent sections. The corresponding contributions to the
nS hfs are trivially obtained through a 1/n3 scaling, as can
be seen from Eqs. (3) and (4). Splitting into contributions
from the spin structure functions g1 and g2, we obtain:

E 〈LO〉 pol.
hfs (1S, H,�1) = 0.3(3.1) peV,

E 〈LO〉 pol.
hfs (1S, H,�2) = 0.4(1.0) peV, (16a)

E 〈LO〉 pol.
hfs (1S, μH,�1) = 5.2(16.5)µeV,

E 〈LO〉 pol.
hfs (1S, μH,�2) = 1.6(5.2)µeV. (16b)

Strikingly, the contributions from the longitudinal-transverse
and helicity-difference cross sections σLT and σT T :

E 〈LO〉 pol.
hfs (1S, H,�LT ) = 5.1(1.5) peV,

3 Note that isospin-breaking effects, such as differences in nucleon or
pion masses, are neglected in the loops.
4 See also Refs. [44–46] for nucleon VVCS studies in BχPT within the
ε-expansion power-counting scheme [47].
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E 〈LO〉 pol.
hfs (1S, H,�T T ) = −4.4(1.3) peV, (16c)

E 〈LO〉 pol.
hfs (1S, μH,�LT ) = 30.0(9.0)µeV,

E 〈LO〉 pol.
hfs (1S, μH,�T T ) = −23.2(7.0)µeV, (16d)

are one order of magnitude larger than the total, and differ
in their respective signs. This indicates a cancellation of LO
contributions between �LT and �T T .

Including in addition the correction due to electron vac-
uum polarization (eVP) in the TPE diagram, see Fig. 10 and
discussion in Appendix B, gives a negligible effect within
the present uncertainties:

E 〈LO〉 pol. + eVP
hfs (1S, H) = 0.72(2.07) peV, (17a)

E 〈LO〉 pol. + eVP
hfs (1S, μH) = 7.0(11.6)µeV. (17b)

Nevertheless, it is important in view of the anticipated 1
ppm accuracy (corresponding to ∼ 0.2µeV) of the μH
1S hfs measurement by the CREMA collaboration [8]. We
therefore include the additional �eVP

pol. (H) = 0.01 ppm and

�eVP
pol. (μH) = 1 ppm on top of �pol.(H) = 0.12(35) ppm

and �pol.(μH) = 37(62) ppm.
To understand why the contributions from σLT and σT T

largely cancel in �pol., we study the heavy-baryon (HB) limit
of the spin-dependent VVCS amplitudes [48]. Expanding the
LO BχPT expression for the S̄1 amplitude in μ = mπ/MN

while keeping the ratio of the light scales τπ = Q2/4m2
π fixed,

one obtains:

S̄1(0, Q2)
HB= −3 α g2

A

16 f 2
π

mπ

[
1 − (1 + τπ )

arctan
√

τπ√
τπ

]
.

(18)

We then take a closer look at the first term in the low-energy
polarizability expansion:

S̄1(0, Q2)

Q2

∣
∣∣
Q2→0

= MN

{
γE1M2 − 3αMN

[
P ′(M1,M1)1(0)

+P ′(L1,L1)1(0)
]}

. (19)

The HBχPT predictions for the proton polarizabilities [49–
54] entering Eq. (19) read:

γE1M2 = αg2
A

(4π fπ )2

1

m2
π

1

6

[
1 − 7π

4

mπ

MN

]
, (20a)

P ′(M1,M1)1(0) = g2
A

(4π fπ )2

1

m2
π

1

18M

[
−1 + 7π

4

mπ

MN

]
,

(20b)

P ′(L1,L1)1(0) = g2
A

(4π fπ )2

1

m2
π

1

9M

[
1 − 17π

8

mπ

MN

]
.

(20c)

We can see that the leading terms in the chiral expansion are
of O(1/m2

π ). They cancel among the different polarizabili-

ties, thus, Eq. (21) becomes a subleading contribution:

S̄1(0, Q2)

Q2

∣∣∣
Q2→0

HB= αg2
A

32 f 2
π

1

mπ

. (21)

Accordingly, one would expect the chiral loops in the hfs
to be small. Indeed, the LO BχPT prediction in Eq. (15) is
essentially vanishing, where the small number is mainly a
remnant of higher orders in the HB expansion. This has to
be taken into account in the uncertainty estimate.

Note that the HB expansion above has been introduced
for instructive purposes only, but is not entering our calcu-
lation of the polarizability effect. The HBχPT prediction of
the S1(0, Q2) amplitude, Eq. (18), raises with Q, thus, its
contribution to the hfs will be divergent. This can be seen
from Fig. 2, where we compare the chiral-loop contribution
to S̄1(0, Q2) as predicted by BχPT and HBχPT, respectively.

3.2 Uncertainty estimate

BχPT is a low-energy EFT of QCD describing strong interac-
tions in terms of hadronic degrees of freedom (pion, nucleon,
�(1232) resonance). An important requirement for a reli-
able BχPT prediction is that the contribution from beyond
the scale at which this EFT is safely applicable, i.e., Qmax >

mρ = 775 MeV, has to be small. For the LO BχPT predic-
tion of the polarizability effect in the μH Lamb shift [27], the
contribution from beyond this scale was less than 15%, thus,
within the expected uncertainty. Comparing the TPE master
formulas for Lamb shift and hfs, Eqs. (A8) and (A7), the
weighting function in the former has a stronger suppression
for large Q2. It is therefore important to verify that the same
quality criterion still holds for the hfs prediction presented
here.

Let us consider the polarizability effect as a running inte-
gral with a momentum cutoff Qmax, as shown in Fig. 3. The
convergence of the �1 (green line) contribution, as well as

Fig. 2 The amplitude S̄1(0, Q2) at LO in BχPT (blue) and HBχPT
(red). The dashed lines show the corresponding slope terms, i.e., the
first terms in the expansion in powers of Q2. The BχPT slope has
been calculated from the polarizabilities given in Ref. [55, Table I], the
HBχPT slope is given in Eq. (21)
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Fig. 3 Polarizability effect on the 1S hyperfine splitting in H (left panel) and μH (right panel): Cutoff dependence of the leading-order πN -loop
contribution. The total results, Eqs. (15a) and (15b), are indicated by the black arrows

of the total �pol. (black line), is poor. They display a sign
change of the running integral at energies above Qmax ≈ 2
GeV (μH) and ≈ 4 GeV (H), respectively. �2 (red line)
converges better. Its contributions from above Qmax = mρ

amount to 42% (H) and 26% (μH), respectively.
The bad high-momentum asymptotics indicated above are

merely an artefact of the conventional splitting into �1 and
�2. For the alternative splitting into �LT and �T T , intro-
duced in Eq. (12), the cut-off dependence improves consid-
erably. For �T T (blue line), the contribution from above
Qmax = mρ amounts to less than 4% for both hydrogens.
For �LT (orange line), the high-energy contributions are
less than 35% (μH) and 32% (H), respectively. In this way,
our results are in agreement with the natural expectation of
uncertainty for a LO prediction, 30% [� (M� − M)/GeV],
in BχPT with inclusion of the � resonance. Based on this
analysis, we decided to assign errors of 30% to the σLT and
σT T contributions, and propagate them to �1, �2 and �pol..
It is interesting to note that in this way the uncertainty of
�1 is larger than the uncertainty of �pol.. This can be under-
stood from the opposite signs of the �i, j contributions, where
i = 1, 2 and j = LT, T T , on the example of μH:

�1, LT = 227 ppm, �1, T T = −198 ppm, (22a)

�2, LT = −62 ppm, �2, T T = 71 ppm. (22b)

4 Comparison with other results

In this section, we compare our LO BχPT prediction for the
polarizability effect in the H and μH hfs to other available
evaluations. Furthermore, we study the contribution of the
S̄1(0, Q2) subtraction function and the scaling of the polar-
izability effect with the lepton mass.

4.1 Heavy-baryon effective field theory

Let us start by comparing our BχPT prediction to other
model-independent calculations using HB EFT [56–58].5

First results for the elastic and inelastic TPE effects on
the hfs in H and μH have been obtained in Ref. [56],
where the contribution of the leading chiral logarithms,
O(m3α5/M2 × [lnmπ , ln �, lnm]), was calculated in HB
EFT matched to potential NRQED. At this order in the chi-
ral expansion the polarizability effects in the hfs from pion-
nucleon and pion-delta loops cancel each other in the large-
Nc limit, while the � exchange cancels part of the point-
like corrections, see also Ref. [48]. The analytical results
presented in Refs. [56,59] motivate the relative size of the
Zemach and polarizability corrections.

Updated HB EFT predictions for the TPE effects on the
hydrogen spectra can be found in Refs. [57,58,60]. In Ref.
[58], the difference between the pion-loop polarizability con-
tributions in H and μH is quoted as

�c4 ≡ cμH
4,pol − cH

4,pol = 0.17(9), (23)

where c4 is a Wilson coefficient linked to the hfs in the fol-
lowing way:

Ehfs(nS) = EF

n3

3α

2π(1 + κ)

m

M
c4. (24)

For comparison, we can evaluate the analogue of �c4 from
other theory predictions for the polarizability contribution.
Within errors, our LO BχPT prediction agrees with this
result:

�c4 = 0.09(0.46). (25)

Here, the uncertainties of the H and μH predictions have
been combined in quadrature to estimate the error on their
difference. For comparison, from the data-driven dispersive

5 Full details on the BχPT framework used in here, and how it distin-
guishes from HB EFT, can be found in Ref. [27].

123



Eur. Phys. J. C (2023) 83 :762 Page 7 of 18 762

Fig. 4 Comparison of available results for the polarizability effect on
the hyperfine splitting in H and μH (upper and lower panel) [14–16]

evaluations of Carlson et al. [14], one can deduce:

�c4 = − 0.27(1.53), (26)

where we combined all errors quoted in Ref. [14] and esti-
mated the error on �c4 in the same way as done above.

4.2 Data-driven dispersive evaluations

There is a clear discrepancy between the BχPT prediction,
presented here, and the conventional data-driven dispersive
evaluations. The dispersive evaluations rely on empirical
information for the inelastic proton spin structure functions,
the elastic Pauli form factor and polarizabilities. The discrep-
ancy can be seen from Fig. 4, where our LO BχPT prediction
for the polarizability effect in the H andμH hfs is compared to
the available dispersive evaluations. Adding an estimate for
the next-to-leading-order (NLO) effect of the �(1232) reso-
nance [61], obtained from large-Nc relations for the nucleon-
to-delta transition form factors, to the model-independent LO
BχPT prediction will improve agreement for �2 but not for
�pol.

The origin of this discrepancy has to be understood in
order to give a reliable prediction of the TPE effect in the
μH hfs, needed for the forthcoming experiments. Part of the
discrepancy might be due to underestimated uncertainties.
An evaluation of the total polarizability effect suffers from
cancellations in two places: firstly, between contributions
from the cross sections σLT and σT T , secondly, between
the elastic Pauli form factor F2 and the inelastic structure
functions in the low-Q region. Each of these cancellations
reduces the result by an order of magnitude. In the calcu-
lation presented here, the former is taken into account by
estimating the uncertainty due to higher-order corrections in
the BχPT power counting based on the large σLT and σT T
contributions, see discussion in Sect. 3.2. In the dispersive
approach, it would be important to take into account corre-

lations between parametrizations of the g1 and g2 structure
functions, which both rely on measurements of σLT and σT T .
The latter cancellations in the low-Q region will be discussed
in the following subsection.

4.3 Low-Q region and contribution of the S̄1(0, Q2)

subtraction function

One major drawback of the data-driven dispersive evalua-
tions is that they require independent input for the inelastic
spin structure functions or related polarizabilities, and the
elastic Pauli form factor. Our notation in Eq. (10b) conve-
niently illustrates how the zeroth moment of the inelastic
spin structure function g1 and the elastic Pauli form factor
F2 combine in the subtraction function:

S̄1(0, Q2) = 2πα

M

[
F2

2 (Q2) + 4I1(Q
2)
]

= 8πα

M
Ī1(Q

2). (27)

At Q2 = 0, this is zero, because the Pauli form factor,
F2(0) = κ , and the generalized GDH integral, I1(0) =
−κ2/4, so the two terms cancel exactly. A NLO BχPT pre-
diction of the slope amounts to: [I 1]′(0) = 0.39(4) GeV−2

[42]. It can be expressed through a combination of lowest-
order spin [γE1M2] and generalized polarizabilities [P ′(M1,M1)1

(0) and P ′(L1,L1)1(0)], see Eq. (19). In the HBχPT expan-
sion, we showed that the leadingO(1/m2

π) terms cancel among
these individual polarizabilities, given in Eq. (20), turning the
result subleading in O(1/mπ ), see Eq. (21). We can conclude
that there is a strong cancellation between the elastic and
inelastic contributions, which continues for higher Q2.

The contribution of S̄1(0, Q2) to the hfs is given by:

E 〈S̄1(0,Q2)〉
hfs (nS) = EF

n3

αm

π(1 + κ)M

∫ ∞

0

dQ

Q

5 + 4vl

(vl + 1)2

×
[
4I1(Q

2) + F2
2 (Q2)

]
. (28)

Evaluations of this subtraction function contribution with
empirical parametrizations for g1(x, Q2) and F2(Q2) tend
towards larger values than the LO BχPT prediction. A partial
calculation of the TPE effect at NLO in BχPT, considering
only the one-loop box diagram with intermediate �(1232)-
excitation, will lower the theoretical prediction for the polar-
izability contribution from BχPT further, and in fact, turn
it into a negative contribution [61,62]. Any imprecision in
the empirical parametrizations, and thus in the cancellation
between the elastic and inelastic moments, is enhanced by
the 1/Q prefactor in the infrared region of the integral in
Eq. (28). Therefore, the BχPT calculation, where the polar-
izability effect can be accessed directly through the non-Born
part of the VVCS amplitudes and does not rely on input from
separate measurements, has a clear advantage in this regard.

To illustrate this further, we reproduce the estimate for �1

in the low-Q region from Ref. [14] (see references therein
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for the details on the input). In this region, no experimental
data from EG1 [63,64] exist and the integral is completed
by interpolating data between higher Q2 and Q2 = 0, mak-
ing use of empirical values for the static polarizabilities. For
Q2 ∈ {

0, Q2
max

}
with Q2

max = 0.0452 GeV2, the approxi-
mate formulas read [14]:

δ1(H) ∼

⎛

⎜⎜
⎝−3

4
κ2r2

Pauli
︸ ︷︷ ︸

→ −2.19

+ 18M2c1B︸ ︷︷ ︸
→ 3.54

⎞

⎟⎟
⎠ Q2

max = 1.35(90),

(29a)

δ1(μH) ∼

⎡

⎢
⎢
⎣−1

3
κ2r2

Pauli
︸ ︷︷ ︸

→ −1.45

+ 8M2c1︸ ︷︷ ︸
→ 2.13

−M2

3α
γ0

︸ ︷︷ ︸
→ 0.18

⎤

⎥
⎥
⎦

×
∫ Q2

max

0
dQ2β1(τμ) = 0.86(69), (29b)

where

β1(τμ) = −3τμ + 2τ 2
μ + 2(2 − τμ)

√
τμ(τμ + 1). (30)

Note that the formulas for H and μH differ, because one sets
me = 0. The first terms are related to the elastic Pauli form
factor, where rPauli = −6/κ d/dQ2 F2(Q2)|Q2=0 is the Pauli
radius. The other terms are related to the g1 contribution.
Considering the more general Eq. (29b), they are defined
through:

I1(Q
2) = M

∫ ∞

ν0

dν

ν2 g1(ν, Q2)

= −κ2/4 + 2M2c1Q
2 + O(Q4), (31a)

γ0 = 2α

M

∫ ∞

ν0

dν

ν4 g1(ν, 0). (31b)

The strong cancellation between elastic and inelastic contri-
butions, observed in Eq. (29), can be a source of uncertainty.

In addition, the quality of the low-Q approximation is
rather poor. We can test it at LO in BχPT. Recall that at this
order in the BχPT power counting, there is no contribution
to the elastic form factors. Therefore, only the inelastic struc-
ture function g1 enters. Our results are shown in Fig. 5. The
approximate formulas in Eq. (29) give a 50% (67%) larger
value for δ1 in the region of Q2 < 0.0452 GeV2 in the case
of μH (H). Therefore, in the data-driven dispersive approach
one has to properly account for the uncertainty introduced
by the approximate formulas, as well as from cancellations
between elastic and inelastic contributions.

4.4 Scaling with lepton mass

It is customary to use the high-precision measurement of the
1S hfs in H [65,66]:

E exp.
1S-hfs(H) = 1 420.405 751 768(1) MHz, (32)

Fig. 5 The polarizability contribution δ1 in the low-Q region for hydro-
gen (red) and muonic hydrogen (blue). The solid lines are the exact
results according to Eq. (10b) with an upper cut on the Q integration.
The dotted and dashed lines are evaluated with the approximate for-
mulas for hydrogen and muonic hydrogen, respectively, see Eq. (29)

to refine the prediction of the TPE in the μH hfs [16,58]
or the prediction of the total μH hfs [13]. We will do the
same in Sect. 6. The strategies in Refs. [13,16,58] are slightly
different, but all make statements about the scaling of various
contributions to the hfs in a hydrogen-like atom when varying
the lepton mass m�.

In Fig. 6, we study the scaling of the polarizability effect
based on our LO BχPT prediction. In the left panel, we
assume that the �i (with i = 1, 2, LT, T T and pol.) are scal-
ing with the reduced mass mr . In the right panel we assume
that the δi are independent of the lepton mass, thus, �i would
be scaling with m�. The curves in the upper (lower) panel are
normalized for H (μH), so they are fixed to 1 at m� = me

(m� = mμ). If the polarizability effect would scale accord-
ing to our assumptions, i.e., ∝ mr or ∝ m�, all curves would
be constantly 1. We can see that the scaling works best for
the contributions from σLT and σT T , which are large in their
absolute values. Considering the total, in which the contri-
butions from σLT and σT T cancel by about one order of
magnitude, the scaling violation is enhanced by about one
order of magnitude in relative terms. The same enhancement
of the scaling violation can be observed for the numerically
small contributions from g1 and g2. Comparing left and right
panels, the BχPT predictions seem to support the assump-
tion that �LT and �T T are scaling with mr . For �LT , the
scaling is nearly perfect. For �T T , we observe a violation of
the scaling that is increasing with lepton mass. The approx-
imation �T T (μH) ∼ mr (μH)/mr (H)�T T (μH) holds at
the level of 10%. The approximation holds on a similar level
after including an estimate for the NLO effect of the �(1232)

resonance [61].

5 Extraction of the Zemach radius from spectroscopy

The TPE, entering the hfs, can be decomposed into Zemach
radius, polarizability and recoil contributions, as described
in Eq. (5). On top of the O(α5) TPE, we consider the lead-

123



Eur. Phys. J. C (2023) 83 :762 Page 9 of 18 762

Fig. 6 Scaling of δi and �i/mr (with i = 1, 2, LT, T T and pol.), as a function of the lepton mass m�

ing radiative corrections given by eVP, see Fig. 10 and dis-
cussion in Appendix B. Our prediction for the polarizabil-
ity effect in the hfs, which is smaller than the conventional
results from data-driven dispersive evaluations, also implies a
smaller proton Zemach radius as previously determined from
spectroscopy, cf. Eq. (1). In the following, we will extract the
Zemach radius from the precisley measured 1S hfs in H, see
Eq. (32), and the 2S hfs in μH [5]:

E exp.
HFS(2S, μH) = 22.8089(51) meV. (33)

We use the theory predictions for the 1S hfs in H [13]:

Ehfs(1S, H) =
[

1 420 453.106(10)−54.430(7)

(
RZ

fm

)
+ EF

(
0.99807(13)�recoil + 1.00002 �pol.

)

︸ ︷︷ ︸
TPE including radiative corrections

]
kHz (34)

and the 2S hfs in μH [13]:

Ehfs(2S, μH) =
[

22.9584(8)−0.16319(2)

(
RZ

fm

)
+ EF

8

(
1.01580(4)�recoil + 1.00326 �pol.

)

︸ ︷︷ ︸
TPE including radiative corrections

]
meV, (35)

with the recently re-evaluated O(α5) recoil correction [33]:

�recoil(H) = 5.269 +0.017
−0.004 ppm, (36a)

�recoil(μH) = 837.6 +2.8
−1.0 ppm, (36b)

up to a factor 3 more precise than the previous best determina-
tion [67] based on the electromagnetic form factors obtained
from dispersion theory [68]. An itemized list of contribu-
tions to the 2S hfs in μH is given in Table 3 of Appendix C.
From the LO BχPT prediction for the polarizability effect,
including also the eVP in Eq. (17), we obtain:

RZ(H) = 1.010(9) fm, (37a)

RZ(μH) = 1.040(33) fm. (37b)
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Table 1 Determinations of the proton Zemach radius RZ, in units of fm

ep scattering μH 2S hfs H 1S hfs

Lin et al. ’21 [68] Borah et al. ’20 [69] Antognini et al. ’13 [5] LO BχPT Volotka et al. ’04 [75] LO BχPT

1.054+0.003
−0.002 1.0227(107) 1.082(37) 1.040(33) 1.045(16) 1.010(9)

Fig. 7 Correlation between the Zemach and charge radius of the pro-
ton. Our extractions based on LO BχPT are compared to results from
Lin et al. [68], Borah et al. [69], CREMA [5], Distler et al. [70], Kelly
[71], Bradford et al. [72], Arrington et al. [73], and Arrington and Sick
[74]

This can be compared to other determinations of the proton
Zemach radius collected in Table 1.6 The radii we find are
in agreement with the proton form factor analysis from Ref.
[69], which uses the proton charge radius from the μH Lamb
shift [5] as a constraint for their fit.

Figure 7 shows how the Zemach and charge radius of
the proton are correlated. It suggests that a “smaller” charge

radius, as seen initially in the μH Lamb shift by the CREMA
collaboration [5] (red line), comes with a “smaller” Zemach
radius. The dashed black curve is calculated with a dipole
form, G(Q2) ∝ (1 + Q2/�2)−2, for the electric and mag-
netic Sachs form factors, by varying �. The light red and
orange bands show RZ as extracted by us, Eq. (37), based
on the LO BχPT prediction for the polarizability effect in
the hfs.

6 Theory prediction for the ground-state hyperfine
splitting in µH

The upcoming measurements of the 1S hfs in μH [8–11] cru-
cially rely on a precise theory prediction. The limiting uncer-

6 Note that the chiral logarithm result for the Zemach radius [57], RZ =
1.35 fm, is substantially larger than all extractions from experiment.

Fig. 8 Two-photon-exchange effect on the 1S hyperfine splitting in
μH [14,16,58]

Fig. 9 Predictions for the 1S hyperfine splitting in μH [13,16,58],
compared to the projected uncertainty of the planned CREMA mea-
surement (red vertical line)

tainty is given by the TPE, which is conventionally split into
Zemach radius, polarizability and recoil contributions [13]:

Ehfs(1S, μH) =
[
183.797(7)−1.30653(17)

(
RZ

fm

)
+ EF

(
1.01656(4)�recoil + 1.00402 �pol.

)

︸ ︷︷ ︸
TPE including radiative corrections

]
meV, (38)

see Appendix C and Table 2 for an itemized list of the indi-
vidual contributions. As explained in Sect. 4.4, it is custom-
ary to refine the theory prediction of 1S hfs in μH with the
help of the high-precision measurement of the 1S hfs in H.
We do so by combining our BχPT prediction for the polar-
izability effect in the μH hfs, Eq. (17b), and the Zemach
radius extracted from H spectroscopy, Eq. (37a), based on
the same prediction for the polarizability effect in the H hfs.
We arrive at:

Ehfs(1S, μH) = 182.640(18) meV, (39a)

ETPE
hfs (1S, μH) = − 1.157(16) meV, (39b)

where ETPE
hfs corresponds to the TPE including radiative cor-

rections and recoil corrections from Ref. [33], as indicated
by the curly brace in Eq. (38).

In Figs. 8 and 9, we compare our predictions to results from
data-driven dispersive evaluations [14,16] and HB EFT [58].
While almost all available predictions for the total hfs in μH
are in agreement after the H refinement procedure, further
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improvements of the theory are required in order to compete
with the anticipated experimental accuracy.

7 Conclusions and outlook

We have presented the LO BχPT prediction for the O(α5)

polarizability effect on the hfs in H and μH, see Eq. (15).
Contrary to the data-driven evaluations, the BχPT prediction
is compatible with zero. This was expected from the HBχPT
limit of the VVCS amplitudes, in particular S̄1(0, Q2), which
partially display a cancellation of the leading order in the
chiral expansion of small mπ , see discussion in Sect. 3.1.
The small polarizability effect is then mainly a remnant of
higher orders in the HB expansion.

A new formalism where the polarizability effect is
split into contributions from the longitudinal-transverse and
helicity-difference cross sections, σLT and σT T , instead of
contributions from the spin structure functions, g1 and g2,
has been introduced in Eq. (12). It was shown that these
contributions, �LT and �T T , cancel by one order of mag-
nitude when combined into �pol.. Only �LT and �T T are
good observables in the BχPT framework, for which the con-
tributions from beyond the scale at which this EFT is safely
applicable, Qmax > mρ = 775 MeV, are within the expected
uncertainty. In addition, only �LT and �T T satisfy the con-
ventionally assumed scaling with the reduced mass mr of
the hydrogen-like system to 10% relative accuracy, while the
cancellations in �pol. enhance any violation in the scaling by
one order of magnitude.

As shown in Fig. 4, our model-independent LO BχPT pre-
diction is substantially smaller than the data-driven disper-
sive evaluations. An estimate for the effect of the �(1232)-
resonance [61], obtained from large-Nc relations for the
nucleon-to-delta transition form factors, shows that the dis-
crepancy is likely to increase at the NLO. The smaller polar-
izability effect, in turn, leads to a smaller Zemach radius as
extracted from the experimental 1S hfs in H and the 2S hfs
in μH, cf. Eq. (37). Therefore, resolving the present discrep-
ancy for the polarizability effect is crucial for the analysis of
the forthcoming measurements of the 1S hfs in μH and the
extraction of the Zemach radius.

The data-driven approach relies on empirical information
on the inelastic spin structure functions, or the measured cross
sections to be precise, as well as the elastic form factors
and polarizabilities at Q2 = 0. Due to the large cancella-
tions between σLT and σT T , as well as g1 and F2, precise
parametrizations of the former are needed, and the uncer-
tainty of the TPE evaluation has to be estimated with great
care, taking into account all correlations. Furthermore, due to
a lack of data at low Q, one uses interpolation from Q2 = 0
to the onset of data [14]. As we showed in Sect. 4.3 based
on LO BχPT, the quality of these approximations is rather

poor and is yet another source of uncertainty. New data from
the Jefferson Lab “Spin Physics Program” [17–21], includ-
ing also the substantially extended dataset for g2 [23], will
allow for a re-evaluation of the polarizability effect on the
hfs in H and μH.

An accurate theoretical prediction of the 1S hfs in μH is
crucial for the future measurement campaigns, since it allows
to reduce the search range for the resonance in experiment.
Thus, one might find the resonance faster and acquire more
statistics during the allocated beam time, see discussion in
Ref. [13]. The present discrepancy between predictions for
the polarizability effect can be mended, if the high-precision
measurement of the 1S hfs in H is implemented as a con-
straint. Applying this procedure, good agreement is found
between all theory predictions for the total 1S hfs in μH
hfs, see Fig. 9. Eventually, after a successful measurement
of the 1S hfs in μH, one can combine it with the 1S hfs in H
to disentangle the Zemach radius and polarizability effects,
leveraging radiative corrections as explained in Ref. [13].
The empirical polarizability effect, obtained in this way, can
reach a precision of ∼ 40 ppm [13]. That is sufficient to
discriminate between the presently inconsistent theoretical
predictions.
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Appendix A: Two-photon-exchange master formula and
dispersive approach

The proton-structure effects at O(α5) are described by TPE
in forward kinematics, i.e., by the diagram in Fig. 1 where
the momentum transfer between the initial and final parti-
cles is vanishing. The (forward) TPE can be related to the
amplitudes of (forward) VVCS off the proton, which in turn
can be expressed in terms of proton structure functions via
dispersion relations. A detailed review of the VVCS theory
can be found in Ref. [36, Section 5]. Even though the TPE
formalism is well-known, see for instance Ref. [7,14], we
will present here its derivation for the hfs.7

As implied above, it is customary to split the TPE into
leptonic and hadronic tensors (Lμν and Tμν):

M = 1

2

∫
d4q

i(2π)4

1

q4

[
ū(�)Lμν(�, q)u(�)

]

× [N̄ (p)Tμν(p, q)N (p)
]
, (A1)

where u(�) and N (p) are the lepton and proton Dirac spinors,
with �, p and q being the lepton, proton and photon four-
momenta (see Fig. 1), respectively. Here, a factor of 1/2 has
been introduced to avoid double counting when contracting
the crossing-invariant tensors.

Only the spin-dependent part of the forward VVCS will
contribute to the hfs. For the proton, it reads:8

Tμν
A (q, p) = − 1

M
γ μναqα S1(ν, Q2) + Q2

M2 γ μνS2(ν, Q2),

(A2)

where S1 and S2 are two independent scalar functions of the
photon lab-frame energy ν and the photon virtuality Q2 =
−q2 = q2 − ν2. Equivalently, one can write Eq. (A2) with
the help of the spin four-vector sα (satisfying s2 = −1 and
s · p = 0):9

Tμν
A (q, p) = i

M
εμναβ qαsβ S1(ν, Q2) + i

M3 εμναβ

×qα(p · q sβ − s · q pβ) S2(ν, Q2). (A3)

Since Tμν
A is antisymmetric in its indices, it is sufficient to

replace the lepton tensor with the antisymmetric part of the
tree-level QED amplitude of forward VVCS [in the struc-
tureless limit with the Dirac and Pauli form factors F1 → 1

7 An extensive discussion of the TPE formalism, considering in addition
the Lamb shift, can also be found in Ref. [62, Chapter 5].
8 We define γμν = 1

2

[
γμ, γν

]
and γμνα = 1

2 (γμγνγα − γαγνγμ).
9 The symmetric spin-independent part of forward VVCS reads:

Tμν
S (q, p) = −gμν T1(ν, Q2) + pμ pν

M2 T2(ν, Q2),

where terms vanishing upon contraction with the lepton tensor are not
shown.

and F2 → 0, cf. Eqs. (A2) and (A10)]:10

Lμν
A = −2πα Q2

(� · q)2 − 1
4 Q

4
γ μναqα. (A4)

The lepton and proton momenta are of typical atomic
scales, thus, much smaller than the other scales we are con-
sidering. Therefore, in the center-of-mass frame, we assume
both of them to be at rest, p = M/m � = (M, 0):11

[
ū(�)γμναq

α u(�)
] [

N̄ (p)γ μν N (p)
] = 8ν s · S,

[
ū(�)γμναq

αu(�)
] [

N̄ (p)γ μνβqβN (p)
] = 8

3
(ν2 − 2Q2) s · S,

(A5)

with the lepton and proton spin operators s and S, and � ·q =
mν.

The forward TPE generates a δ(r )-function potential:
V (r) = M δ(r ). Treated in perturbation theory, such kind
of potential generates an energy shift of the nS levels:
EnS = φ2

n M, where φ2
n = 1/(πa3n3) is the hydrogen wave

function at the origin. When acting on the wave functions,
the product of spin operators can be replaced by the atom’s
total angular momentum f [76]:

s · S nS level−−−−→ 1

2

[
f ( f + 1) − 3

2

]
. (A6)

Recalling that the nS hfs is defined as the splitting between
S levels with f = 1 and f = 0, we finally arrive at the
following master formula for the TPE contribution to the hfs
in terms of proton VVCS amplitudes:

ETPE
hfs (nS) = EF

n3

4m

1 + κ

1

i

∫ ∞

−∞
dν

2π

∫
dq

(2π)3

1

Q4 − 4m2ν2

×
{(

2Q2 − ν2
)

Q2 S1(ν, Q2) + 3ν

M
S2(ν, Q2)

}

.

(A7)

The Lamb shift analogue reads:

ETPE
nS = 8παm φ2

n
1

i

∫ ∞

−∞
dν

2π

∫
dq

(2π)3

×
(
Q2 − 2ν2

)
T1(ν, Q2) − (Q2 + ν2) T2(ν, Q2)

Q4(Q4 − 4m2ν2)
,

(A8)

10 The symmetric part of the tree-level QED amplitude of forward
VVCS, contributing to the Lamb shift, reads:

Lμν
S = 4πα

m

1

(� · q)2 − 1
4 Q

4

×
[
gμν(� · q)2−(qμ�ν +qν�μ) � · q− Q2lμlν

]
.

11 Averaging over the angles of q gives (q · s) (q · S) → 1/3 q2 (s · S)

and so on for other combinations.
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where T1 and T2 are the spin-independent forward VVCS
amplitudes.

The VVCS amplitudes can be split into Born and non-
Born parts:

S1(ν, Q2) = SBorn
1 (ν, Q2) + S̄1(ν, Q2), (A9a)

S2(ν, Q2) = SBorn
2 (ν, Q2) + S̄2(ν, Q2), (A9b)

where Born corresponds to the simplest tree-level diagrams
with a proton in the intermediate state, and non-Born corre-
sponds to everything else. The finite-size recoil and Zemach
radius effects are described by the well-known Born part of
the VVCS amplitudes [77]:

SBorn
1 (ν, Q2)

= 2πα

M

[
4M2Q2 GM (Q2)F1(Q2)

Q4 − 4M2ν2 − F2
2 (Q2)

]
,

(A10a)

SBorn
2 (ν, Q2) = − 8παM2ν

Q4 − 4M2ν2 GM (Q2)F2(Q
2),

(A10b)

where F1(Q2) and F2(Q2) are the Dirac and Pauli form fac-
tors of the proton, and GM (Q2) = F1(Q2) + F2(Q2) is the
magnetic Sachs form factor. The Zemach radius and its effect
on the hfs are defined in Eqs. (6) and (7). Exact formulas for
the TPE recoil contribution can be found for instance in Ref.
[7]. The polarizability effect is described by the non-Born
part of the VVCS amplitudes.

Using the general principles of analyticity, unitarity, cross-
ing symmetry and gauge invariance, one can conveniently
express the spin-dependent VVCS amplitudes through the
proton spin structure functions g1(x, Q2) and g2(x, Q2) by
means of the optical theorem:

Im S1(ν, Q2) = 4π2α

ν
g1(x, Q

2)

= Mν2

ν2 + Q2

[
Q

ν
σLT + σT T

]
(ν, Q2),

(A11a)

Im S2(ν, Q2) = 4π2αM

ν2 g2(x, Q
2)

= M2ν

ν2 + Q2

[
ν

Q
σLT − σT T

]
(ν, Q2),

(A11b)

and dispersion relations:

S̄1(ν, Q2) = 2πα

M

{ [
F2

2 (Q2) + 4I1(Q
2)
]

+ 32M4ν2

Q6

×
∫ x0

0
dx

x2g1(x, Q2)

1 − x2(ν/νel)2 − i0+

}
,

(A12a)

ν S̄2(ν, Q2) = 64παM4ν2

Q6

×
∫ x0

0
dx

x2g2(x, Q2)

1 − x2(ν/νel)2 − i0+ , (A12b)

with νel = Q2/2M and I1(Q2) defined in Eq. (11). As shown in
Eq. (A11), the spin structure functions correspond to certain
combinations of photoabsorption cross sections. Here, σLT

is the longitudinal-transverse photoabsorption cross section
describing a spin-flip of the proton, and σT T = 1/2 (σ1/2 −
σ3/2) is the helicity-difference cross section for transversely
polarized photons, where the subscripts on σ1/2 and σ3/2

denote the total helicity of the γ ∗N state.
To solve Eq. (A7) one uses a Wick rotation to imaginary

energies, and hyperspherical coordinates. Employing the dis-
persive representation from Eq. (A12), after the angular inte-
grations one obtains the polarizability effect as presented in
Eq. (10), where one conventionally splits into contributions
from g1 and g2. As we explain in our paper, in view of the
uncertainty estimate, it is favorable to consider instead a split-
ting into contributions from σLT and σT T , derived by us in
Eq. (12).

It is worth to discuss some subtleties entering the defini-
tion of the polarizability effect through the non-Born VVCS
amplitudes in the dispersive approach. Naively, one would
expect the Born and non-Born amplitudes to be expressed
entirely through elastic form factors and inelastic structure
functions, respectively. Instead, one finds:

Selastic
1 (ν, Q2) − SBorn

1 (ν, Q2)

= S̄1(ν, Q2) − Sinelastic
1 (ν, Q2) = 2πα

M
F2

2 (Q2), (A13a)

[νS2]elastic (ν, Q2) − νSBorn
2 (ν, Q2)

= ν S̄2(ν, Q2) − [νS2]inelastic (ν, Q2)

= −2πα F2(Q
2)GM (Q2), (A13b)

where Selastic
1 and [νS2]elastic are pure nucleon-pole terms. In

Eq. (A12a), the necessary conversion term to obtain the non-
Born amplitude, given on the right-hand side of Eq. (A13a),
is easily seen. Here, even though S1 satisfies an unsub-
tracted dispersion relation, we wrote a once-subtracted dis-
persion relation, with the subtraction term S̄1(0, Q2) defined
in Eq. (27). This is useful to emphasize the interplay of the
elastic Pauli form factor F2 and the inelastic spin structure
function g1, as explained in Sects. 2 and 4.3. For Eq. (A12b),
the applied conversion procedure is less obvious. Starting
from a dispersion relation for νS2:12

νS2(ν, Q2) = 2πα
2

τ

∫ 1

0
dx

g2(x, Q2)

1 − x2(ν/νel)2 − i0+ ,

12 The amplitude S2 does have a pole in the subsequent limit of Q2 → 0
and ν → 0.

123



762 Page 14 of 18 Eur. Phys. J. C (2023) 83 :762

Table 2 1S hfs in μH. All values in meV

Contribution Our Choice References

h1 Fermi energy, (Zα)4 182.44333

h2 Breit corr., (Zα)6 0.01457

h4 μ anomalous magnetic moment corr., α(Zα)4 0.21271

h5 eVP in 2nd-order PT, α2(Zα)4mr 0.73449 [79, Table 1 b)]

h7 Two-loop corr. to Fermi energy, α2(Zα)4mr 0.00556 [79, Table 2 c) and d)]

h8 One-loop eVP in 1γ int., α(Zα)4mr 0.37465 [79, Table 1 a)]

h9 Two-loop eVP in 1γ int., α2(Zα)4mr 0.00292 [79, Table 2 a) and b)]

h10 Further two-loop eVP corr. in 2nd and 3rd-order PT 0.00387 [79, Table 2 e), f) and g)]

h11 μVP 0.00729 ∼ EF α(Zα) 3/4

h13 Vertex, α(Zα)5 − 0.02484 ∼ EF α(Zα) [ln 2 − 13/4]

h14 Higher-order corr. α(Zα)6 − 0.00128 [80, Eq. 7.1]

h18 hVP, α6 0.00356 [81]

h19 Weak interaction contribution 0.00221 [82, Eq. 374]

h28 Recoil corr. with p AMM, α6 0.01752 [14, Eq. 22] and [83]

Fig. 10 Two-photon exchange with vacuum-polarization insertion at
O(α6).

(A14)

we separate the inelastic part (i.e., limit the integration to
x ∈ {0, x0}) and add the conversion term from the right-
hand side of Eq. (A13b). The latter then cancels the inelastic
part of the zeroth moment of the g2 structure function, due
to the Burkhardt–Cottingham (BC) sum rule [78]:

0 =
∫ 1

0
dx g2(x, Q2)

=
∫ x0

0
dx g2(x, Q2) − τ

2
F2(Q

2)GM (Q2), (A15)

leading to Eq. (A12b). Thus, splitting into Born and non-
Born amplitudes, the BC sum rule constraint is automatically
satisfied. In other words, we showed that:

νSBorn
2 (ν, Q2)

∣∣
ν→0 = ν S̄2(ν, Q2)

∣∣
ν→0 = 0. (A16)

Appendix B: Electron vacuum polarization correction

In this appendix, we consider the one-loop eVP correction to
the TPE, shown in Fig. 10. This amounts to multiplying the

integrand in Eq. (A7) with
[
1 − �

(1)
(Q2)

]−2
, where the VP

is given by:

�
(1)

(Q2) = �(1)(Q2) − �(1)(0)

= α

3π

[
2

(
1 − 1

2τe

)

×
(√

1+ 1

τe
arccoth

√

1+ 1

τe
−1

)

+ 1

3

]
, (B1)

with τe = Q2/4m2
e and me the electron mass. The resulting

corrections to the polarizability effect are given in Eq. (17).

Appendix C: Theory compilation for hyperfine splitting
in µH

In this appendix, we present the details of our theory compi-
lations for the 1S and 2S hfs in μH, shown in Eqs. (35) and
(38). All individual contributions, except the TPE, are listed
in Tables 2 and 3. The notation is the same as in Ref. [6].
The difference with Ref. [86] is in the inclusion of ##h10,
h14, h18, h19 and h21, as well as some additional radiative
corrections to the TPE evaluated in Ref. [13]. Compared to
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Table 3 2S hfs in μH. All values in meV

Contribution Our Choice References

h1 Fermi energy, (Zα)4 22.80542

h2 Breit corr., (Zα)6 0.00258

h4 μ anomalous magnetic moment corr., α(Zα)4 0.02659

h5 eVP in 2nd-order PT, α2(Zα)4mr 0.07447 [79, Table 1 b)]

h7 Two-loop corr. to Fermi energy, α2(Zα)4mr 0.00056 [79, Table 2 c) and d)]

h8 One-loop eVP in 1γ int., α(Zα)4mr 0.04828 [79, Table 1 a)]

h9 Two-loop eVP in 1γ int., α2(Zα)4mr 0.00037 [79, Table 2 a) and b)]

h10 Further two-loop eVP corr. in 2nd & 3rd-order PT 0.00037 [79, Table 2 e), f) and g)]

h11 μVP 0.00091 ∼ EF α(Zα) 3/4

h13 Vertex, α(Zα)5 − 0.00311 ∼ EF α(Zα) [ln 2 − 13/4]

h14 Higher-order corr. α(Zα)6 − 0.00013 [80, Eq. 7.1]

h18 hVP, α6 0.0006(1) [84]

h19 Weak interaction contribution 0.00028 [82, Eq. 374]

h21 Higher-order finite-size corr. to Fermi energy − 0.0022 r2
p + 0.0009 [85, Eq. 107]

≈ −0.00065

h28 Recoil corr. with p AMM, α6 0.00185 [58, Eqs. 1.3 and 2.13]

Refs. [6,84], we suggest to use Eq. (7.1) from Ref. [80]:13

E [α(Zα)6]
nS-hfs = α(Zα)2

π

EF

n3

{
−8

3
ln2 2n

Zα

+
[

37

36
+ 8

15
+ 7(n − 1)

]
ln

n

2Zα

+
[

22

3
ln 2 − 2π2

9
+ 18 − 457

2700

−
(

4 + 2993

8640

)
(n − 1)

]}
,

for the higher-order corrections of O(α(Zα)6) [#h14]. This
includes higher-order muon vacuum polarization corrections.
Previously included were only the logarithmically enhanced
terms [84]. The effect on the TPE from eVP corrections to the
wave function is given in Ref. [87, Eq. (B3)]. For the radius-
independent term, we are keeping the error estimate from
Ref. [58], which does take into account missing higher-order
recoil corrections.

Appendix D: Expansions in terms of polarizabilities

In the following, we will present two further low-energy
expansions of the polarizability effect in the hfs. Due to the
high-energy asymptotics of the TPE contribution to the hfs,
these formulas will merely serve illustrative purposes, while
their approximation of the full result is rather poor. Up to

13 Note that some terms in Eqs. (C5) and (C9) of that reference appear
to be missing the Fermi energy factor.

and including second moments of the structure functions,
Eq. (10) can be written as [62]:

δ1 = 2
∫ ∞

0

dQ

Q

1

(vl + 1)2

{
4(5 + 4vl) Ī1(Q

2) − 11 + 9vl

(vl + 1)

×
[
M2Q2

2α
γ0(Q

2) + 32Z2M6

Q6

∫ x0

0
dx x4 g2(x, Q

2)

]}
,

(D1a)

δ2 = −24
∫ ∞

0

dQ

Q

1

(vl + 1)2

{
M2Q2

2α

[
δLT (Q2) − γ0(Q

2)
]

−32Z2M6

Q6

∫ x0

0
dx x4 g2(x, Q

2)

}
, (D1b)

where γ0(Q2) and δLT (Q2) are the forward spin and
longitudinal-transverse polarizabilities of the proton,

γ0(Q
2) = 16αM2

Q6

∫ x0

0
dx x2

[
g1 − x2τ−1g2

]
(x, Q2)

= 1

2π2

∫ ∞

ν0

dν

ν3 σT T (ν, Q2), (D2a)

δLT (Q2) = 16Z2αM2

Q6

∫ x0

0
dx x2[g1 + g2

]
(x, Q2)

= 1

2π2

∫ ∞

ν0

dν

Qν2 σLT (ν, Q2). (D2b)

The first term in this expansion, corresponds to the S̄1(0, Q2)

subtraction term already discussed in Sect. 4.3.
Analogously to Ref. [27, Eq. (12)], we try to find an

approximation for the hfs master formula assuming that the
photon energy in the atomic system is small compared to
all other scales. Thus, we expand the numerator of Eq. (A7)
around ν = 0. The resulting approximate formula for the
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Fig. 11 Polarizability effect on the 2S hyperfine splitting in μH: Com-
parison of exact result (10) (black dashed line) and approximate formula
(D3) (gray solid line)

polarizability contribution to the hfs we call Ẽ :

Ẽ(nS) = EF

n3

4α

πmM

1

1 + κ

∫ ∞

0
dQ Q (vl − 1) Ī1(Q

2).

(D3)

For BχPT, it gives:

Ẽ(1S, H) = 3.0 peV, (D4a)

Ẽ(1S, μH) = 19.0µeV. (D4b)

In Fig. 11, we show Eq. (D3) as a running integral with cut-
off Qmax (gray line), this time for the 2S hfs in μH. In addi-
tion, we show the contributions of the longitudinal-transverse
(orange line) and helicity-difference (blue line) cross sections
to Eq. (D3), and the exact result from Eq. (10). One can eas-
ily see that the quality of the approximation is indeed rather
poor.
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