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Using a recently proposed method [Y. Meng, C. Liu, and K. L. Zhang, arXiv:1910.11597v3], we study
the two-photon decay rate of ηc using two Nf ¼ 2 twisted mass gauge ensembles with lattice spacings
0.067 fm and 0.085 fm. The results obtained from these two ensembles can be extrapolated in a naive
fashion to the continuum limit, yielding a result that is consistent with the experimental one within two
standard deviations. To be specific, we obtain the results for two-photon decay of ηc as Bðηc → 2γÞ ¼
1.29ð3Þð18Þ × 10−4 where the first error is statistical and the second is our estimate for the systematic error
caused by the finite lattice spacing. It turns out that Ward identity for the vector current is of vital
importance within this new method. We verify that the Ward identity is violated for local current with a
finite lattice spacing, however it will be restored after the continuum limit is taken.

DOI: 10.1103/PhysRevD.102.034502

I. INTRODUCTION

The charmonium two-photon decay process ηc → 2γ has
long been an ideal testing ground for the understanding of
nonperturbative nature of quantum chromodynamics
(QCD) [1] due to the medium energy scale of charmonium
systems in strong interactions [2]. On one hand, it offers an
access to the strong coupling constant at the charmonium
scale within the framework of perturbative QCD. On the
other hand, it also provides a sensitive test for the
application of effective field theories such as nonrelativistic
QCD (NRQCD) [3], which plays an important role in the
treatment of quarkonium spectrum, decay and production.
For the reasons given above, this question has been
addressed extensively in the literature from both experi-
ments [4–7] and various theoretical methods, notably
NRQCD and lattice QCD studies [8–11].
Combining the experimental results in recent years, the

latest Particle Data Group (PDG) lists the branching
fraction for this process as Bðηc → 2γÞ ¼ ð1.57� 0.12Þ ×
10−4 [12]. Despite the significant effort on the theoretical
side over the years, the progress has been slow so far.
Namely, none of the existing results come even close to the
experimental values, to the best of our knowledge. For
example, within the framework of NRQCD factorization,

the authors in Ref. [11] have computed the next-to-next-to-
leading order QCD corrections to this process, yielding a
value for Bðηc → 2γÞ that is about twice the one quoted by
PDG. In some sense, this discrepancy might indicate that
NRQCD breaks down for such processes due to substantial
nonperturbative effects.
It is then natural to turn to genuine nonperturbative

methods such as lattice QCD (LQCD). With the proposal
and realization of photon hadronic structure on lattice in
Refs. [13], such an idea has been widely applied to photon
structure functions [14], radiative transition [15], two-
photon decays in charmonia [8–10], and neutral pion
two-photon decay [16]. The first quenched LQCD calcu-
lation of ηc → 2γ was presented in 2006 [8] and
unquenched results followed in recent years [9,10]. All
these available lattice results have been summarized in
Table I as well. As a comparison, we also list the results of
NRQCD and the PDG value. It is evident that none of these
existing theoretical results can explain the PDG value
satisfactorily so far.
In previous lattice calculations of charmonia double

gamma decay, the relevant hadronic matrix elements are
decomposed into form factors which are functions of
photon virtualities Q2

i ; i ¼ 1, 2. Via an appropriate fitting
of matrix element at different Q2

i with a specific functional
form, one obtains the complete off-shell form factors. Then,
the physical decay width can be obtained by setting all
virtualities to the on-shell values, namely Q2

i ¼ 0, yielding
the final decay rate. However, the large deviations between
the experiments and lattice results in Refs. [8–10] indicate
that such methods might suffer from rather severe lattice
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artifacts and the decomposition itself might also be
troublesome on the lattice with finite lattice spacings.
This is understandable in a way since, for such processes,
the photons in the final state are rather energetic (typically
1.5 GeV in physical unit) in lattice units for commonly used
lattice spacings.
Therefore, it is of great significance to explore new lattice

methods. In a recent work [17], we have proposed a new
method to compute the three-photon decay rate of J=ψ on the
lattice directly with all polarizations of the initial and final
states summed over. Such a method is originally put forward
to avoid the complicated decomposition of the matrix
element MðJ=ψ → 3γÞ. In this paper, we would apply this
new method to two-photon decay of ηc, which is in fact the
simplest case that one could imagine. If we are only
interested in the physical decay width, i.e., on-shell matrix
elements, we can simply sum over all polarizations of the
initial and final particles. It should be emphasized that the
Ward identities associatedwith the vector currents are crucial
for this summation process. In the continuum Minkowski
space, the summation over photon polarizations always
yields the Minkowski metric, e.g.,

P
λi
ðϵλiμ ðqiÞϵλi;�μ0 ðqiÞ ⇒

−gμμ0 due to Ward identities. Generally speaking, Ward
identity is broken for a finite lattice spacinga. Hence, one has
to consider the so-called Ward identity breaking (WIB)
corrections when summing over the photon polarizations
on lattice. Nevertheless, as we will see below, one can still
stick to this substitution as long as the summation over all
polarizations of initial and final particles is performed. This
comes from the fact that the WIB effects for on-shell matrix
element eventually vanish after taking the continuum
limit a → 0.
The rest of this paper is organized as follows. In Sec. II,

we give a detailed derivation of the matrix element for the
case of two-photon decay of ηc. In Sec. III, we compare the
new method that has been proposed in Ref. [17] with the
conventional approaches and explain how the decay width
can be obtained directly without the decomposition of the
relevant form factor. In Sec. IV, details of simulations are
provided and the main results are presented. This section is
divided into three parts: in Sec. IVA, the lattice dispersion

relation for ηc is checked; in Sec. IV B, the current
renormalization constant is calculated; in Sec. IV C,
numerical results of the matrix element squared and the
corresponding WIB corrections are provided. These results
are eventually converted into the two-photon decay width
of ηc. A naive continuum extrapolation is then performed
and the final results are compared with the PDG value. It is
found that our result is consistent with the PDG value
within two standard deviations. Finally, we conclude
in Sec. V.

II. APPROACH TO DECAY AMPLITUDE ON
LATTICE

In this section, we recapitulate on the general method
utilized in previous lattice studies on the two-photon decay
width of ηc [8–10]. We start by expressing the decay matrix
element of ηc → 2γ in terms of the appropriate three-point
function using Lehmann-Symanzik-Zimmermann reduc-
tion formula in Minkoswki space and integrating out the
photon fields perturbatively. It then follows that the relevant
matrix element reads

M ¼ hγðq1; λ1Þγðq2; λ2ÞjηcðpÞi

¼
Z

d4x
Z

d4yHμνðx; yÞQμνðx; yÞ; ð1Þ

where the two functionsHμνðx; yÞ andQμνðx; yÞ, which will
be called the hadronic and the nonhadronic part of thematrix
element respectively, will be defined shortly. For later
convenience, we reverse the operator time ordering and
the decay amplitude M on finite lattice can be written as

M ¼ 1

V · T

Z
d4x

Z
d4yHμνðx; yÞQμνðx; yÞ ð2Þ

where V ¼ L3, L is the space length and T is time length of
the lattice. The factor V · T arises from the four-momentum
conservation δ-function in a finite space-time volume. In the
following, we will fix the meson at time slice tf, and denote
the first photon with four-momentum q1 ¼ ðω1; q1Þ at
time slice ti and the other one at time slice t with four-
momentum q2 ¼ ðω2; q2Þ.

A. The hadronic part Hμν

The hadronic part of the matrix element, namely
Hμνðx; yÞ, is explicitly defined as

Hμνðx; yÞ ¼ hηcðpÞjTfjνðyÞjμðxÞgj0i; ð3Þ

where j0i and jηcðpÞi stands for the QCD vacuum state and
the state with a single ηc meson with four-momentum p,
respectively. The conserved vector current operator jμðxÞ ¼
q̄fðxÞγμqfðxÞ comes in for various quark flavors f with
f ¼ u, d, s, c. However, if we were to consider only the

TABLE I. Results of Bðηc → 2γÞ obtained with different
theoretical methods. The uncertainties in the table include both
the statistical and systematic errors added in quadrature whenever
available. The latest Particle Data Group (PDG) result is also
given for comparison.

Methods Value × 10−4 Uncertainty × 10−4 References

Quenched
Wilson

0.83 0.50 [8]

Nf ¼ 2 twisted
mass

0.351 0.004 [9]

NRQCD 3.1 ∼ 3.2 [11]
PDG 1.57 0.12 [12]
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connected contributions, only the charm quark contribution
(i.e., f ¼ c) needs to be taken into account. To produce the
meson ηc with three-momentum p from the QCD vacuum,
we introduce the interpolating field operator Ôηcðz; tfÞ in
coordinate space that carries the quantum number of ηc,

jηcðpÞi ¼
X
z

eip·zÔηcðz; tfÞj0i: ð4Þ

We can substitute this into Eq. (3) and insert the following
completeness relation

1 ¼ 1

V

X
n;p

1

2EnðpÞ
jn; pihn; pj; ð5Þ

where jn; pi stands for the eigenstate of QCD Hamiltonian.
Here p indicates the meson three-momentum and n the
corresponding energy level. For large enough tf, the
ground state with n ¼ 0 dominates the resulting expression.
For simplicity, we denote E0ðpÞ as Ep and the final
expression for the hadronic part Hμνðx; yÞ reads,

Hμνðx; yÞ ¼
X

tf→−∞

2Ep

ZηcðpÞ
eEptf

×

�
0

����T
�X

z

e−ip·zÔηcðz; tfÞjνðyÞjμðxÞ
�����0

�
;

ð6Þ

with ZηcðpÞ being the ground state amplitude

hηcðpÞjÔηcð0Þj0i.

B. The nonhadronic part Qμν

Similarly, the nonhadronic, or to be more precise, the
photonic part is given by

Qμνðx; yÞ ¼ − lim
q0
1
→q1

q0
2
→q2

e2q021 q
02
2 ϵ

λ1
μ0 ðq1Þϵλ2ν0 ðq2Þ

Z
d4w

Z
d4v

× e−iq
0
1
w−iq0

2
vDμμ0 ðx; wÞDνν0 ðy; vÞ; ð7Þ

where ϵλiμ0 ðqiÞ denotes the photon polarization vector with
arbitrary four-momentum qi and helicity λi. It can be
obtained by an appropriate Lorentz transformation from
the standard basis ϵ1μ0 ¼ ð0; 1; 0; 0Þ and ϵ2μ0 ¼ ð0; 0; 1; 0Þ.
The free photon propagator Dμμ0 ðx; wÞ is given by

Dμμ0 ðx; wÞ ¼ −igμμ0
Z

d4k
ð2π4Þ

e−ik·ðx−wÞ

k2 þ iϵ
; ð8Þ

which cancels out the inverse propagator outside the
integral in Eq. (7) in momentum space. As explained in
Ref. [13], the resulting expression for Qμν can then be
analytically continued fromMinkowski to Euclidean space.
This process introduces the photon virtualities given by
Q2

i ¼ jqij2 − ω2
i , which are not too timelike to produce any

on-shell vector hadrons. To be specific, one needs to ensure
that Q2

i ¼ jqij2 − ω2
i > −M2

V where MV is mass of the
lightest vector meson in question. Assuming that the above
conditions are satisfied and substituting the expression of
the free photon propagator into Eq. (7), we finally obtain
the following expression for Qμνðx; yÞ in Euclidean space,

Qμνðx; yÞ ¼ e2ϵλ1μ ðq1Þϵλ2ν ðq2Þe−ω1ti−ω2teiq1·xþiq2·y ð9Þ

where the standard Wick rotation ti → −iti, t → −it has
been carried out.
Combining the results in Eqs. (2), (6), and (9), the final

result of the matrix element then has the form as
M ∼ 1

T

R
dt

R
dtið� � �Þ. In real lattice simulations, the inte-

gral over the time slices ti and t are replaced by discrete
summations. For quantities that develops plateau behaviors
in t, which is the case in our study, this second summation
average can be replaced by its corresponding pleateau
value. Eventually, the decay amplitude can be written as

Mðt; tiÞ ¼ lim
tf−t→∞

e2
ϵλ1μ ðq1Þϵλ2ν ðq2Þ

V·Zηc ðpÞ
2Eηc ðpÞ e

−Eηc ðpÞðtf−tÞ

Z
dtie−ω1jti−tj

×

�
0

����T
�X

z

e−ip·zÔηcðz; tfÞ
Z

d3yeiq2·yjνðy; tÞ
Z

d3xeiq1·xjμðx; tiÞ
�����0

�
: ð10Þ

The correlation function appearing in above equation can
be calculated by lattice QCD in terms of quark propagators.
In the following, we denote the matrix element in Eq. (10)

as M ¼ ϵμϵνMμν. Each Mμν can be computed on the
lattice by searching for a plateau behavior in t, as long as
tf − t is large enough. In principle, the current operators in
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above equation contain all flavors of quarks weighted by
their corresponding charges. However, since the light
quarks can only enter the question by disconnected dia-
grams which are ignored in this study. In this simulation,
the local current jμðxÞ ¼ c̄ðxÞγμcðxÞ is adopted for the
charm quark which can be renormalized by a multiplicative
factor ZV. The integrals of ti in Eq. (10) are also replaced by
corresponding trapezoidal summation. Note that it is
usually impossible to exactly put both photons with
discrete momenta qi on shell because of the energy-
momentum conservation, hence the matrix element Mμν

calculated on the lattice is always slightly off-shell with
some nonvanishing photon virtualities Q2

i ; i ¼ 1, 2.

III. NEW APPROACH TO THE DECAY WIDTH ON
THE LATTICE

In this section, we first discuss the relationship between
amplitude M and decay width Γ with conventional method
[8–10], and then introduce the new method that has been
put forward in Ref. [17].
In conventional simulations, the matrix element Mμν is

parametrized in terms of a form factor FðQ2
1; Q

2
2Þ as,

Mμν ¼ 2

�
2

3
e

�
2

m−1
ηc FðQ2

1; Q
2
2Þϵμνραqρ1qσ2: ð11Þ

The physical on-shell decay width Γ for ηc decaying to two
physical photons is related to the form factor at
Q2

1 ¼ Q2
2 ¼ 0,

Γ ¼ πα2em

�
16

81

�
mηc jFð0; 0Þj2; ð12Þ

where αem ≃ ð1=137Þ is the fine structure constant in
quantum electrodynamics (QED). Such decomposition is
valid under the assumption of full Lorentz invariance and
Bose symmetry. However, when evaluated on a hypercubic
lattice with finite lattice spacing, the matrix element Mμν

has less symmetry. Strictly speaking, this decomposition
can only be utilized onlywhen the relevantmomenta, namely
the components of q1 and q2, are small in lattice units. This
might become problematic since the typical momentum of
each photon in the final state is roughly mηc=2.
In this paper we proceed in another way as advocated in

Ref. [17]. To this end, we define

T ≡ jMj2 ¼
X
λ1;λ2

X
μν

jϵλ1μ ðq1Þϵλ2ν ðq2ÞMμνj2

¼
X
μν

jMμνj2; ð13Þ

which will be called the T -function in the following. In the
above equation, Ward identity of the vector currents has

been utilized, i.e., the summation over photon polarizations
yields the Minkowski metric, e.g.,

X
λi

ϵλiμ ðqiÞϵλi;�μ0 ðqiÞ ⇒ −gμμ0 : ð14Þ

In actual simulations, all possible jMμνj2’s are summed
over. The physical decay width of ηc → 2γ in the center of
mass frame can be expressed as

Γðηc → 2γÞ ¼ 1

2!

1

2mηc

Z
d3q1

ð2πÞ32ω1

d3q2
ð2πÞ32ω2

× ð2πÞ4δ4ðp − q1 − q2ÞjMj2

¼ 1

16πmηc

T : ð15Þ

In the last line, the T -function needs to be on-shell for a
physical decay width.
As we already mentioned above, due to the discreteness

of the three-momenta on the lattice, it is impossible to
exactly impose the on-shell condition for all final particles,
making the on-shell quantity T not directly accessible on
finite lattices. However, a counterpart of it with small
nonvanishing virtualities can be computed directly on the
lattice. We denote this as T ðQ2

1; Q
2
2Þ. This differs from the

on-shell T -function only because of the fact that some of
the photons are still off-shell. The on-shell quantity T ð0; 0Þ
can be obtained by the following fitting formula,

T ðQ2
1; Q

2
2Þ ¼ T ð0; 0Þ þ const ×

X
i

Q2
i þ higher orders

ð16Þ

for jQ2
i j ≪ 1 where everything is measured in lattice units.

We expect such behavior since the final two photons are
identical.
Another issue is the breaking of the conventional Ward

identities on the lattice. As we have seen, when performing
the summation over polarizations of the photons, Ward
identity plays a crucial role. On a finite lattice, however,
Ward identity is usually violated. This is due to various
reasons. First of all, the local vector current that we are
using is not strictly conserved on the lattice. However,
when renormalized by a multiplicative factor ZV, it will be
conserved in the continuum limit. Second, our photons are
not strictly on-shell, represented by nonvanishing virtual-
ities of the two photons. All of these will spoil the
conventional Ward identity. The corresponding corrections
to T -function will be called Ward identity breaking (WIB)
corrections in this paper. With WIB corrections included,
the summation over polarizations of the photons should be
modified as [18]
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X
λi

ϵλiμ ðqiÞϵλi;�μ0 ðqiÞ ⇒ −gμμ0 þ ΔðiÞ
μμ0 ; ð17Þ

where ΔðiÞ
μμ0 ¼ ðqiμq̄iμ0 þ q̄iμqiμ0 Þ=2ω2

i and q̄iμ ¼ ðωi; qiÞ.
Then, the T -function with WIB corrections can be
expressed as

T ðΔÞ ¼ T þ δT ðΔÞ; ð18Þ

where

δT ðΔÞ ¼ ðΔð1Þ
μμ0Δ

ð2Þ
νν0 − gνν0Δ

ð1Þ
μμ0 − gμμ0Δ

ð2Þ
νν0 ÞMμνM�

μ0ν0 ð19Þ

represents the WIB correction term. In principle, one
expects that δT ðΔÞ approaches to zero in the continuum
limit, which is also verified numerically in our simulations.

IV. SIMULATIONS AND RESULTS

Our simulations are performed using two Nf ¼ 2 flavor
twisted mass gauge field ensembles generated by the
Extended Twisted Mass Collaboration (ETMC) with lattice
spacing a ≃ 0.067 fm and 0.085 fm, respectively. The
corresponding physical pion masses are 300 MeV and
315 MeV. The most important advantage of these setups is
so-called automatic OðaÞ improvement for the physical
quantities with twisted mass quark action at maximal twist
[19]. In Table II, we list all ensembles used in this study
together with other relevant parameters.
For the valence sector, we employ the Osterwalder-Seiler

setup where two extra twisted doublets are introduced,
namely, ðu; dÞ and ðc; c0Þ with twisted mass aμl and aμc
[20–22]. For each doublet, the Wilson parameters have
opposite signs (r ¼ −r0 ¼ 1). The quark fields in physical
basis ðq; q0Þ are closely related to ones in twisted basis
ðχq; χq0 Þ, via an axial transformation, i.e.,

�
q

q0

�
¼ expðiωγ5τ3=2Þ

�
χq

χq0

�
ð20Þ

where ω is the twist angle, and ω ¼ π=2 corresponds to the
maximal twist. In this simulation, we determine the heavy
quark mass aμc by the physical ηc mass with the corre-
sponding meson operator ÔηcðzÞ ¼ c̄ðzÞγ5cðzÞ in physical
basis and the explicit values are 0.2550 and 0.2018 for
Ens.I and Ens.II, respectively.

A. The dispersion relation of ηc
It is crucial to verify the discrete dispersion relation in

Eq. (21) by calculating the energies of ηc at a series of
three-momenta, since this particular discrete dispersion
relation enters our simulations and is to be utilized to
obtain the photon energy ωi with given virtuality Q2

i
(basically replacing mηc by iQi) and three momentum
qi. The discrete dispersion relation for the meson ηc is

4 sinh2
EðpÞ
2

¼ 4 sinh2
mηc

2
þ Zlatt · 4

X
i

sin2
�
pi
2

�
: ð21Þ

In Fig. 1, our results for the dispersion of ηc are shown
for two ensembles. It is found that the constant Zlatt is
almost 1, indicating that such discrete dispersion relation is
well satisfied in our simulation. In this study, 4 sets of
suitable momenta with corresponding virtualities Q2

i are
chosen for the purpose of reaching an on-shell T -function.

B. ZV and ZηcðpÞ
To determinate current renormalization factor ZV which

is introduced to renormalize the photon current operator
jμðxÞ ¼ c̄γμcðxÞ, we calculate a ratio of the two-point
function over the three-point function [15] as given by

ZðμÞ
V ðtÞ ¼ pμ

EηcðpÞ
1
2
Γð2Þ
ηcηcðp; tf; tiÞ

Γð3Þ
ηcγμηcðp; tf; t; tiÞ

; ð22Þ

where the factor 1=2 accounts for the equal contribution to
the two-point function of the source at time slice 0 and the
image of the source at time slice T. For the particle in its

TABLE II. Parameters for the gauge ensembles used in this
study.

Ensemble β aðfmÞ V=a4 aμsea mπðMeVÞ Nconf

I 3.9 0.085 243 × 48 0.004 315 60
II 4.05 0.067 323 × 64 0.003 300 60

0 0.1 0.2 0.3 0.4

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

FIG. 1. The dispersion relation of meson ηc on two different
volumes L ¼ 24ðredÞ and L ¼ 32ðblueÞ, respectively.
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rest frame, one has μ ¼ 0 and p ¼ 0. Thus, in the follow-

ing, the index μ of ZðμÞ
V will be omitted. Therefore, the two-

point function Γð2Þ
ηcηc and the three-point function Γð3Þ

ηcγμηc

have such explicit forms as follows,

Γð2Þ
ηcηc ¼

X
x;y

hOηcðx; T=2ÞO†
ηcðy; 0Þi ð23Þ

Γð3Þ
ηcγμηc ¼

X
x;y;z

hOηcðx; T=2Þc̄γμcðz; tÞO†
ηcðy; 0Þi: ð24Þ

where we have fixed tf ¼ T=2 and ti ¼ 0.
The plateau behavior of Zð0Þ

V ðtÞ across different time slice
t then yields the value of the renormalization factor ZV. As
an illustration, this is shown in Fig. 2 where the data points
with errors are from our simulation and the horizontal bars
indicate the intervals from which ZV are extracted. The
final values of ZV are 0.6237(2), 0.6523(1) for L ¼ 24 and
L ¼ 32, respectively.
The value of ZηcðpÞ can be extracted directly from the

two-point function,

Γð2Þ
ηcηcðtÞ ¼

X
x;y

hOηcðx; tÞO†
ηcðy; 0Þi

⟶
t≫1 V · jZηc j2

Eηc

e−Eηc
T
2 cosh

	
Eηc

�
T
2
− t

�

ð25Þ

where Zηc ¼ Zηcð0Þ, Eηc ¼ Eηcð0Þ. In this simulation, the
ηc meson is fixed at the time slice tf ¼ T=2 and the wall-
source is adopted.

C. The decay width of ηc → 2γ

The conventional sequential method has been adopted to
calculate the three-point function in Eq. (10). We put the
sequential source on one current with time slice ti, and the
contraction is performed on the other current at time slice t.
After the integration (summation) of ti, the matrix element
Mμν, being a function of t, can be obtained on the lattice.
The input parameters include photon momenta qi ¼ 2π

L ni,
virtualities Q2

i and energies ωi. For each set of photon
momenta, a series ofMμν can be computed by varying Q2

i .
Such a strategy has been outlined in Refs. [8–10]. In fact,Q2

2

is uniquely dependent on Q2
1 due to energy-momentum

conservation. In this simulation, we proceed in another
way where two photons share the same virtualities
Q2

1 ¼ Q2
2 ¼ Q2

m, which is determined by

Eηc ¼ 4 sinh−1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

sin2ðqi=2Þ − sinh2ðQm=2Þ
vuut

1
CA; ð26Þ

with q≡ q1 ¼ −q2 and i being the spatial component index.
For each set of momenta, we calculate 16 matrix elements
Mμν, including all polarizations of the twophotons. InFig. 3,
typical plateau behaviors for the three-point function Mμν

are shown in the case of μ ¼ 1, ν ¼ 2.
After the summation of 16 matrix elements Mμν, the

T -function T ðQ2
m; tÞ can be obtained immediately and the

results are shown in Fig. 4 for nq ¼ ð0; 2; 2Þ. The on-shell
T -function can be extracted by a fitting to Eq. (16) where
two variablesQ2

1; Q
2
2 are utilized. In the case ofQ

2
m, the on-

shell fitting formula reduces to

T ðQ2
mÞ ¼ T ð0Þ þ a ×Q2

m þ b ×Q4
m ð27Þ

with T ð0Þ and a and b being the fitting parameters. Ones
can also include WIB terms and estimate its effect on the
two-photon decay width of ηc. Note that the WIB effects
only result from the nonconservation of the local current
with a finite lattice spacing.
In the following, we denote T W as the T -function with

WIB corrections included while T being the one without
these corrections. Similar notations are applied for the decay
widths ΓW and Γ. Both the on-shell T W and T under two
spacings are shown in the left panel of Fig. 5 and the
corresponding values are also summarized in Table III.
Eventually, we obtain the two-photon decay widths of ηc
for two ensembles with/without WIB corrections, respec-
tively,

ΓðIÞ ¼ 2.939ð32Þ keV; ΓðIÞ
W ¼ 2.724ð29Þ keV

ΓðIIÞ ¼ 3.404ð27Þ keV; ΓðIIÞ
W ¼ 3.228ð25Þ keV ð28Þ

The errors here only account for the statistical ones estimated
bybootstrapmethod arising from the current renormalization

FIG. 2. The current renormalization constant ZðμÞ
V calculated by

Eq. (22) for Ens.I (red points) and Ens.II (blue points), respec-
tively.
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factor ZV, ground state amplitude Zηc and on-shell fitting
process as suggested in Eq. (27).
As seen from the results in Eq. (28), there exist

discrepancies between Γ and ΓW in both ensembles at

finite lattice spacings. These differences can be viewed as
an estimate of the finite lattice spacing error. Therefore, we
take the difference between Γ and ΓW as the estimate of the
systematic error due to finite lattice spacings and the
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8 10-3 L=32

FIG. 3. The decay matrix elements Mμν obtained by summation over ti for three-point function Mμνðti; tÞ with different volumes
L ¼ 24 (left) and L ¼ 32 (right). As an example, only matrix elements with μ, ν ¼ 1, 2 are shown under four different sets of photon
momenta nq.
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FIG. 4. The T -function T ðQ2
m; tÞ as a function of t in case of photon momenta nq ¼ ½0; 2; 2� and virtuality Q2

m under two different
volumes L ¼ 24 (left) and L ¼ 32 (right), respectively. The red/blue data points correspond to T -function with/without WIB
corrections included given by the Eq. (19).
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average of the two as the final decay width Γ̄. Finally, we
have

Γ̄ðIÞ ¼ 2.832ð31Þð215Þ keV
Γ̄ðIIÞ ¼ 3.316ð26Þð176Þ keV ð29Þ

where the first error is statistical and the second represents
the estimate of the systematic error due to finite lattice
spacing.
We now turn to a naive continuum extrapolation. For the

study of charmonium with Nf ¼ 2 configurations, one can
assume an Oða2Þ errors for the lattice results for the decay
widths obtained above. This allows us to connect the two
results for Γ, ΓW , and Γ̄ at two lattice spacings and obtain
the corresponding results at a ¼ 0. We call this the naive
continuum extrapolation. since it is not a well-controlled
continuum extrapolation. For that purpose, one needs at
least three or more different lattice spacings. Taking the
average of Γ and ΓW , namely Γ̄ as our final result, the decay
width for the ηc → 2γ is found to be

Γ̄ðηc → 2γÞ ¼ 4.11ð9Þð58Þ keV: ð30Þ

Here the first error is statistical and the second is the
estimate of the systematic error due to finite lattice spacing.
These quantities are illustrated in Fig. 5. In the left panel,

the on-shell fitting for T and T W under two different
spacings are performed. Obviously, the difference caused
by the WIB effects is dependent on the lattice spacing, as
expected. The finer the lattice spacing, the smaller the
discrepancy. This is understandable since the breaking of
the Ward identity is caused by finite lattice spacing. In the
right panel of Fig. 5, we illustrate the naive continuum
extrapolations for the decay width Γðηc → 2γÞ and
ΓWðηc → 2γÞ, respectively. In this limit, Γ and ΓW are
well consistent with each other as expected. Besides, the
average of the Γðηc → 2γÞ and ΓWðηc → 2γÞ, namely Γ̄ is
also shown. As is seen, with the finite lattice spacing errors
included, the naive continuum extrapolated result is con-
sistent with the experimental one within two standard
deviations.
We emphasize that, all the continuum extrapolations,

whether for Γ and ΓW , or Γ̄, are still preliminary due to
the limited number of lattice spacings. Still, our final result
for the decay width of ηc → 2γ is encouraging. This is the
first lattice result which is consistent with the experiments
within 2σ level. There are also other sources of systematic
error: finite volume effects, pion mass which is still away
from physical value and the contribution of disconnected
diagrams. However, we think that finite lattice spacing errors
are by far the most relevant one at present. Future lattice
studies should aim to improve on this byutilizingmore lattice
ensembles which will substantially reduce this error.
The branching fraction, if the uncertainty of ηc total width

ignored, is given by Bðηc → 2γÞ ¼ 1.29ð3Þð18Þ × 10−4,

-0.6 0.6 0.8-0.4 0.4-0.2 0.20

5

5.5

4.5

6

6.5

7

7.5

8

8.5
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FIG. 5. Left panel: on-shell fitting for T -function T ðQ2
mÞ and T WðQ2

mÞ under four sets of momenta for the two ensembles with
L ¼ 24, 32, respectively. The black points are the on-shell results fitted using Eq. (27) and other 4 colored points from left to right
correspond to the momenta nq2 ¼ 5, 6, 8, 9; Right panel: a naive continuum extrapolation for two-photon decay width Γ, ΓW and Γ̄
under two different lattice spacings a ≃ 0.067ðfmÞ; 0.085ðfmÞ. The errors for Γ̄ have included both statistical and estimated systematic
errors. The green points of Γ̄ have been shifted a bit horizontally to avoid overlap with other data points.

TABLE III. T ð0Þ without WIB corrections and T Wð0Þ with
WIB corrections are fitted with Eq. (27).

T ð0Þ × 10−5 χ2=d:o:f T Wð0Þ × 10−5 χ2=d:o:f

Ensemble I 8.165(82) 0.259 7.567(75) 0.057
Ensemble II 5.868(43) 0.242 5.565(42) 0.773
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where the first error is statistical and the second is our
estimates for the systematics due to finite spacing. The result
is consistent with the experiment result Bexpðηc → 2γÞ ¼
1.57ð12Þ × 10−4 [12] within two standard deviations.
Compared to the previous much smaller ones obtained with
traditional method of the form factor parametrizations, our
results seem to indicate that the continuum form of para-
metrizations might fail drastically for the calculation of the
hadronic decays on the lattice.

V. CONCLUSIONS

In this paper, we calculate the two-photon decay rate of
ηc with all polarizations of the final photon states summed
over, which is first proposed in Ref. [17]. Using two Nf ¼
2 twisted mass gauge ensembles with different lattice
spacings, we have obtained the branching fraction Bðηc →
2γÞ ¼ 1.29ð3Þð18Þ × 10−4 where the first error is statistical
and the second is our estimated systematic error due to
finite lattice spacing. This result is consistent with the
experimental one quoted by PDG within two standard
deviations. An improved result would be expected in the
future if more lattice spacings are utilized.
Furthermore, we have demonstrated that Ward identity

for the current, which is essential for our method to work, is

in fact violated with a finite lattice spacing a for a local
current. After a detailed comparison between the decay
width of ηc → 2γ with Ward identity breaking (WIB)
effects included and excluded, we have shown that such
a discrepancy vanishes in the continuum limit. This
indicates that we can always replace the summation of
photon polarizations safely by the Minkowski metric when
we calculate the decay width of multiphoton final states as
long as the continuum limit is taken in the end.
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