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The geodesic deviation of a pair of test particles is a natural observable for the gravitational memory
effect. Nevertheless in curved spacetime, this observable is plagued with various issues that need to be
clarified before one can extract the essential part that is related to the gravitational radiation. In this paper
we consider the anti–de Sitter (AdS) space as an example and analyze this observable carefully. We show
that by employing the Fermi normal coordinates around the geodesic of one of the particles (i.e., the
standard free falling frame attached to this particle), one can elegantly separate out the curvature
contribution of the background spacetime to the geodesic deviation from the contribution of the
gravitational wave. The gravitational wave memory obtained this way depends linearly and locally on
the retarded metric perturbation caused by the gravitational wave, and, remarkably, it takes on exactly the
same formula as in the flat case. To determine the memory, in addition to the standard tail contribution to
the gravitational radiation, one needs to take into account the contribution from the reflected gravitational
wave off the AdS boundary. For general curved spacetime, our analysis suggests that the use of a certain
coordinate system adapted to the local geodesic (e.g., the Fermi normal coordinates system in the AdS case)
would allow one to dissect the geodesic deviation of test particles and extract the relevant contribution to
define the memory due to gravitational radiation.
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I. INTRODUCTION

Passage of a gravitational wave (GW) can induce a
permanent displacement in the relative separation of a pair
of test particles which serves as a gravitational wave
detector. This phenomenon is known as the gravitational
memory effect [1]. In a flat background, the net relative
displacement ΔDμ between the test particles, after passage
of the gravitational radiation, is given by

ΔDμ ¼
1

2
ΔhTTμν Dν; ð1Þ

whereDν is the initial separation of the pair of test particles,
and ΔhTTμν is the net change in the metric perturbations in
the transverse-traceless gauge. In flat spacetime, the
memory formula (1) is simple. The gravitational memory
ΔDμ is determined entirely in terms of the metric

perturbation, which, in linearized gravity, can be solved
in terms of the retarded Green function GR. Schematically,
without going into details about gauge fixing and decom-
position into irreducible components, the retarded Green
function GR satisfies

□xGRðx; x0Þ ¼ −δð4Þðx; x0Þ; ð2Þ

where □ is a second order differential operator in
which the linearized Einstein equation can be written as
□xhμν ¼ −16πGTμν. As a result, we have

hμνðxÞ ¼ 16πG
Z

d4x0GRðx; x0ÞTμνðx0Þ ð3Þ

and the study of the properties of the memory effect can be
phrased entirely in terms of the properties of the retarded
Green function. For gravitational wave generated by a
source in a localized region of spacetime, ΔhTTμν is of
Coulomb type [2], i.e., ΔhTTμν ∼ 1=r at large distance r of
the detector from the source. For example, the collision or
explosion of a collection of freely moving particles pro-
duces the perturbation [2,3]
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ΔhTTμν ¼ 1

r
Δ
�XN
A¼1

4MAffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2A

p �
vAμvAν

1 − vA cos θA

�
TT
�
; ð4Þ

where MA and vA are the mass and the velocity of each
freely moving massive body, respectively, and θA is the
angle between the source and the detector. TT denotes the
transverse-traceless part of the expression. Memory effect
in flat space and its properties as produced by various kinds
of massive and massless particle sources were recently
discussed in [4–8]. Detectability of the memory effect from
gravitational wave signals associated with binary black
hole mergers was discussed in [3,9]. Recent discussions
about the detectability with LISA, pulsar timing arrays or
LIGO can be found in [10–13].
We are interested in the memory effect in curved

spacetime. There are various motivations for this interest.
First, our Universe is curved and not flat. It was de Sitter–
like at the time of inflation. Currently it is described by a
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time. One can imagine that the observation of gravitational
memory effect may provide valuable information on the
structure of the Universe at various stages of its develop-
ment. Theoretically, gravitational memory effect in flat
space is related to the asymptotic Bondi-Metzner-Sachs
(BMS) symmetry [14,15] and the infrared properties of
gravity [16,17]. It is interesting to understand how much of
this story may carry through in a curved background
spacetime.
While the memory effect in de Sitter (dS) and FLRW

spacetimes has been extensively studied, memory effect in
anti–de Sitter (AdS) space has been considered much less
in the literature (see, e.g., [18–25]; also [26] for a study of
the memory effect in gauge theory). Although the memory
effect in AdS space is currently less motivated from an
observational point of view than that in dS and FLRW
spacetimes, theoretically it is an interesting subject. First, as
we will demonstrate in this paper, the study of memory
effect in the AdS spacetime gives us useful insights on
better ways to think about and analyze the memory effect in
general curved spacetime. Besides, the existence of boun-
dary in AdS also offers an interesting opportunity to study
how the reflected gravitational wave may affect the
gravitational memory. Moreover, the study of AdS memory
is potentially related to the other gravitational phenomena
such as asymptotic symmetries of spacetime and AdS=CFT
correspondence [27]. These are some of the reasons behind
that form the main motivations of this work.
The study of gravitational memory in curved spacetime

is however much more complicated and a number of effects
not occurring in the flat spacetime needed to be taken into
account.
(1) In curved spacetime, the simple result (1) no longer

holds and the net change ΔDμ in the geodesic
separation of test particles has to be obtained from
solving the geodesic derivation equation. Due to the

presence of nontrivial spacetime curvature, ΔDμ

generally involves integration over the history of
the motion of the particles and takes a much more
complicated nonlocal form compared to (1). In
spacetime without boundary, one can gain huge
simplification by making the observation at large
distance and at large time so that a local unintegrated
expression for ΔDμ is obtained.

1 This however does
not work for the AdS space due to the presence of
boundary, and it seems that the expression of the
memory in AdS space will necessarily be much
more complicated.

(2) In a curved spacetime, the geodesic separation
between the pair of particles gets contributions from
both the background curvature (backscattering by the
gravitational potential created by the background
curvature) as well as the gravitational wave. There-
fore in order to have a proper definition of memory
due to gravitational wave, it is important to separate
the contribution of the background curvature from the
contribution of the gravitational wave. In this work,
we show that the above two issues can be resolved
elegantly by adopting a particular choice of coor-
dinate system to make the observation of memory.

(3) Another subtlety in curved spacetime is the presence
of the tail term in the retarded Green function, i.e.,
propagation of gravitational waves less than the
speed of light, besides the propagation of gravita-
tional waves at the speed of light which we will call
the direct term. Let us comment on these contribu-
tions to the memory in various spacetime such as the
dS spacetime [18,20], decelerating FLRW spacetime
with future null infinity [21], spatially flat FLRW
cosmologies [22], and the ΛCDM cosmologies [23]
that have been considered in the literature. For the
spatially flat FLRW spacetime [22] with localized
source, the authors proposed to continue to use the
flat space criteria of the presence of a derivative of a
delta function in the Riemann curvature as a way to
characterize the gravitational memory for the spa-
tially flat FLRW spacetime. By construction, the tail
contribution was excluded in this characterization of
the memory. For the decelerating FLRW spacetime
[21], it was found that the tail term in the retarded
potential is subleading in the 1=r expansion at the
future null infinity and the memory effect is given
entirely by the direct term [21]. In these two cases,
the direct term contribution to the memory effect is
simple and can be written in the same form as the flat
case up to an multiplicative factor of an inverse
power of the scale factor aðτÞ at the time of detection

1See e.g., [19] for the dS case to see how the nonlocal
expression [Eq. (5) there] can be reduced to a local expression
[Eq. (6)] there at large time.
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when the source and the detector are placed at the
same proper distance as that in flat space at the time of
gravitational wave emission. On the other hand, for
the de Sitter space, it was found that for even
dimensions higher than 2 [19,24,25], the gravitational
wave tail contributes significantly to the memory
effect.2 Note that in this case the retarded potential is
expanded in terms of the conformal time η, instead of
1=r, in order to approach the future infinity [25]. At
η ¼ 0, the tail anddirect contributions are equal in size
but opposite in sign and thus they cancel out each
other, leaving the higher order terms inH, in the future
infinity. From these results, one can learn the lesson
that both the direct term and the tail termdepend rather
sensitively on the asymptotic geometry of the space-
timewhere the observation of the memory is made. In
this regard, AdS spacetime has a boundary and its
asymptotics is completely different. The determina-
tion of both the direct and the tail contributions at
generic finite location in AdS space is another
motivation of this work.

(4) AdS space is also special since it has a boundary and
reflection may occur, and the reflected wave may
affect the observed memory effect in a significant
way. We will show in this paper that, depending on
the location of the detector, the reflected gravita-
tional wave may make a significant contribution to
the observed gravitational memory.

In this work, we study memory effect on four-
dimensional AdS space in the Poincaré coordinates. We
restrict ourselves to the linear order of metric perturbation
around the vacuum AdS space. As the background space-
time is nontrivial, the geodesic separation Dμ is a gauge
dependent quantity and it is necessary to specify an
observer which made the result of memory as transparent
physically as possible. We find that by employing the Fermi
normal coordinates around the geodesic of one of the
particles, one can elegantly separate out the curvature
contribution of the background spacetime from those of
the gravitational wave. Remarkably, the obtained gravita-
tional wave memory takes on exactly the same formula (1)
as in the flat case and has a simple local and factorized
dependence on the retarded metric perturbation caused by
the gravitational wave. This simple formula allows us to
determine the memory entirely in terms of the waveform of
the retarded gravitational radiation. As we mentioned
above, in AdS space the retarded propagator of metric
perturbation contains a tail term. Aside from the tail term,
AdS space has a distinctive feature that the gravitational
waves reach the infinity (AdS boundary) in a finite time and
then get reflected back to the bulk spacetime. As a
consequence, in addition to the original gravitational wave,

there will also be a gravitational wave reflected at the AdS
boundary, each accompanied by its respective tail term. The
net memory is given by the sum of all these contributions.
For general curved spacetime, our analysis suggests

that the use of a certain coordinate system that is adapted
to the local geodesic (e.g., the Fermi normal coordinates
system in the AdS case) would allow one to dissect the
geodesic deviation of test particles and extract the relevant
contribution to define the memory effect due to gravita-
tional radiation. This is an interesting direction to further
explore [28].
The organization of this article is as follows. As

advertised, the retarded metric perturbation plays an
important role in determining the memory in AdS space,
therefore we will first start in Sec. II with the construction
of the retarded solution for the linear metric perturbation in
AdS spacetime. Following Wald and Tolish [7], we will
consider the localized energy source as an example and
work out the retarded wave solution. In Sec. III A, we
consider the use of the Fermi normal coordinates and find
that the background curvature contribution to the geodesic
deviation can be easily disentangled and subtracted away.
The remaining part of the geodesic deviation (67) depends
on the retarded gravitational wave linearly and locally, and
in fact takes on exactly the same form (1) as in the flat case.
This is true for any finite time. This is quite remarkable and
is one of the main results of this work. In Sec. III B, we take
into account the tail term and the reflected wave and
analyze the memory effect. As the reflected wave plays an
important role, the effect of memory depends crucially on
whether the detector is receiving the reflected wave or not.
We show that for an observer that receive the reflected
wave, the memory effect got canceled out completely.
Hence it is interesting that memory effect is different for
different locations of the gravitational wave detector in the
AdS spacetime. In Sec. III C, we consider the asymptotic
form of the memory near the AdS boundary and find that it
has a delta function singularity localized on the light cone
from the source. In Secs. III D and III E, we construct the
AdS shock wave by taking a certain limit of our perturbed
metric. We find that the velocity memory for the AdS shock
wave picks up a kink contribution uθðuÞ in addition to the
jump θðuÞ and pulse term δðuÞ which are present in the flat
case. Section IV contains our conclusion and some dis-
cussions. Some of the more technical details of the analysis
are contained in the Appendixes.

II. LINEAR PERTURBATION IN AdS SPACE

Consider an n-dimensional AdS space. In the Poincaré
coordinates, the line element is given by

ds2 ¼ ḡμνdxμdxν ¼
L2

y2
ð−dt2 þ ðdxiÞ2 þ dy2Þ;

ḡμν ¼
L2

y2
ημν; ð5Þ2It is known that the tail term vanishes for odd dimensional

de Sitter spacetime.
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with −∞ < t; xi < ∞, 0 < y < ∞. Here the subscripts
i; j ¼ 1;…; n − 2 and μ; ν ¼ 0;…; n − 2; y, and L is the
AdS radius. The AdS boundary is located at y ¼ 0 and the
AdS horizon is at y ¼ ∞. Below we will use the notation
for indices such that a; b ¼ 0;…; n − 2 and r; s ¼ 1;…;
n − 2; y.

A. Retarded solution

We consider perturbation γμν around the background
AdS metric,

gμν ¼ ḡμν þ γμν: ð6Þ

It is convenient to introduce the perturbation ψμν from γμν
as defined by

ψμν ¼ γμν −
1

2
ḡμνγ; γ ≔ ḡμνγμν: ð7Þ

We impose the following gauge conditions analogous to the
one adopted in de-Sitter space [29]

∇̄νψ
ν
μ ¼ −

2

y
ψy

μ; ð8Þ

where ∇̄μ is the covariant derivative with respect to ḡμν.
In terms of ψν

μ, the linearized Einstein equation with a
source is

∂2ψν
μ −

n − 2

y
∂yψ

ν
μ þ

1

y2
ððn − 2Þðδνyψy

μ þ δyμψ
ν
yÞ

− 2δνyδ
y
μψÞ ¼ −

16πGL2

y2
Tν

μ; ð9Þ

where ψ ≔ ḡμνψμν, ∂2 ¼ ηρσ∂ρ∂σ , G is the Newton
constant and Tν

μ stands for perturbative matter energy-
momentum tensor.
It is convenient to introduce a rescaled perturbation

where its indices are raised and lowered by ημν,

χμν ≔
y2

L2
ḡμρψρ

ν ¼ ημρψ
ρ
ν; χ ≔ ημνχμν; ð10Þ

and in which the original perturbation γμν can be written as

γμν ¼
L2

y2

�
χμν −

1

2
ημνχ

ρ
ρ

�
: ð11Þ

χμν satisfies the linearized Einstein equation,

∂2χμν −
n − 2

y
∂yχμν þ

1

y2
ððn − 2Þðηyνχμy þ ημyχyνÞ

− 2ηyνημyχÞ ¼ −
16πGL2

y2
Tν

μ: ð12Þ

Defining χ̃ ¼ χρρ − ðn − 2Þχyy, Eq. (12) can be decom-
posed into three independent equations:

∂2χab −
n − 2

y
∂yχab ¼ −

16πGL2

y2
Tab; ð13Þ

∂2χya−
n−2

y
∂yχyaþ

1

y2
ðn−2Þχya ¼−

16πGL2

y2
Tya; ð14Þ

∂2χ̃ −
n − 2

y
∂yχ̃ þ

2

y2
ðn − 3Þχ̃ ¼ −

16πGL2

y2
T̃; ð15Þ

where T̃≔Tρ
ρ−ðn−2ÞTyy and the subscript a;b¼ 0;…;

n−2. In this paper we are interested in the n ¼ 4 dimen-
sional AdS spacetime. In this case, the retarded solutions to
(13)–(15) are given by

χabðxÞ ¼ 16πG
Z

d4x0
L2

y02
Gν¼3=2

R ðx; x0ÞTabðx0Þ; ð16Þ

χyaðxÞ ¼ 16πG
Z

d4x0
L2

y02
Gν¼1=2

R ðx; x0ÞTyaðx0Þ; ð17Þ

χ̃ðxÞ ¼ 16πG
Z

d4x0
L2

y02
Gν¼−1=2

R ðx; x0ÞT̃ðx0Þ;

T̃ ¼ ημνTμν − 2Tyy; ð18Þ

where the retarded propagator Gν
R satisfies the differential

equations:

�
∂2 −

2

y
∂y

�
Gν¼3=2

R ðx; x0Þ ¼ −
y2

L2
δð4Þðx − x0Þ; ð19Þ

�
∂2−

2

y
∂yþ

2

y2

�
Gν¼�1=2

R ðx;x0Þ ¼−
y2

L2
δð4Þðx−x0Þ: ð20Þ

Here the retarded propagator in AdS4 with index ν is given
by [30]

Gν
Rðw;w0Þ¼−

θðt− t0− jx−x0jÞ
4πL2

×

�
d

dzþ
ððθð1−zþÞ−θð−1−zþÞÞPν−1=2ðzþÞÞ

þ2cosðνπÞ d
dz−

ðθðz−−1ÞQν−1=2ðz−ÞÞ
�
; ð21Þ

where Pν−1=2ðzþÞ and Qν−1=2ðz−Þ are the Legendre func-
tions of the first and second kind respectively, and z� are
given by

z� ¼ �−ðt − t0Þ2 þ jx − x0j2 þ y2 þ y02

2yy0
;

jx − x0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þiðx − x0Þi

q
: ð22Þ
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For ν ¼ 3=2 and ν ¼ �1=2, cosðνπÞ ¼ 0 and we get the
simple expressions

Gν¼3=2
R ðw;w0Þ ¼ θðt− t0− jx−x0jÞ

2πL2

×

�
yy0ðδððt− t0Þ2− r2Þþδððt− t0Þ2− r̃2ÞÞ

−
1

2
ðθððt− t0Þ2−r2Þ−θððt− t0Þ2− r̃2ÞÞ

�
;

ð23Þ

Gν¼�1=2
R ðw;w0Þ ¼ yy0θðt − t0 − jx − x0jÞ

2πL2
ðδððt − t0Þ2 − r2Þ

− δððt − t0Þ2 − r̃2ÞÞ; ð24Þ

where

r2¼jx−x0j2þðy−y0Þ2; r̃2¼jx−x0j2þðyþy0Þ2: ð25Þ

B. Retarded potential for massless particle scattering

As a simple example of localized energy-momentum
source, let us consider a scattering event of point particles
[7,22]. The energy-momentum tensor for a particle scatter-
ing which occurs at a spacetime point xμ0 ¼ ðt0; z0Þ is
written as

Tμν ¼
X
j;in

TðjÞ
μν þ

X
n;in

TðnÞ
μν þ

X
i;out

TðiÞ
μν þ

X
m;out

TðmÞ
μν ; ð26Þ

where TðjÞ
μν is the energy-momentum tensor for the jth

incoming massive particle,

TðjÞ
μν ¼ MðjÞ

in u
ðjÞ
μ uðjÞν δð3Þðx − zðjÞðtÞÞ dτ

ðjÞ

dt
θðt0 − tÞffiffiffiffiffiffi

−ḡ
p ;

uðjÞμ ¼ ḡμν
dxνðjÞ

dτðjÞ
; ð27Þ

TðiÞ
μν is that for the ith outgoing massive particle,

TðiÞ
μν ¼ MðiÞ

outu
ðiÞ
μ uðiÞν δð3Þðx − zðiÞðtÞÞ dτ

ðiÞ

dt
θðt − t0Þffiffiffiffiffiffi

−ḡ
p ;

uðiÞμ ¼ ḡμν
dxνðiÞ

dτðiÞ
; ð28Þ

TðnÞ
μν is that for the nth incoming massless particle,

TðnÞ
μν ¼ kðnÞμ kðnÞν δð3Þðx − zðnÞðtÞÞ dλ

ðnÞ

dt
θðt0 − tÞffiffiffiffiffiffi

−ḡ
p ;

kðnÞμ ¼ ḡμν
dxνðnÞ

dλðnÞ
; ð29Þ

and TðmÞ
μν is that for the mth outgoing massless particle,

TðmÞ
μν ¼ kðmÞ

μ kðmÞ
ν δð3Þðx − zðmÞðtÞÞ dλ

ðmÞ

dt
θðt − t0Þffiffiffiffiffiffi

−ḡ
p ;

kðmÞ
μ ¼ ḡμν

dxνðmÞ

dλðmÞ : ð30Þ

Here MðjÞ
in and MðiÞ

out are the rest masses of the incoming
and the outgoing massive particles, respectively. τðj;iÞ
denotes the proper time of the massive particles
while λðn;mÞ denotes the affine parameter for the null
geodesics. zðj;i;n;mÞðtÞ satisfy zðj;i;n;mÞðt ¼ t0Þ ¼ z0. Terms
proportional to δðt − t0Þ in DμTμ

ν ¼ 0 imply the energy-
momentum conservation at the interaction point xμ0,X

j

MðjÞ
in u

ðjÞ
μ þ

X
n

kðnÞμ ¼
X
i

MðiÞ
outu

ðiÞ
μ þ

X
out

kðmÞ
μ : ð31Þ

In order to evaluate the retarded gravitational potential
explicitly, we consider a simple scattering process as shown
in Fig. 1, where the scattering takes place in the x1 − x2

plane with a fixed y ¼ y0, where two incoming massless
particles collide at xμ0 ¼ ðt0; t0; t0; y0Þ and results in two
outgoing massless particles. By adopting a suitable Lorentz
transformation, we can assume without loss of generality
that the outgoing particles move along the x1 and x2

directions orthogonally. For completeness, we list some
basic materials about the geodesic motion of a point particle
in AdS space in Appendix A.
Note that one can consider more general scattering

processes in which both massless and massive particles
are involved. In a flat background, one can think of a

FIG. 1. A massless scattering in the x1 − x2 plane.
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massive particle at rest and its decay into a massive and a
massless particle. It would be one of the most simple
examples for a particle scattering source which gives rise to
both ordinary and null memory due to the emission of the
massive and massless particle [7]. In AdS space, evaluation
of the retarded potential for a decay of a massive particle
that is freely moving along the geodesic could be done
explicitly but the final expression would be a complicated
one and would not be as illuminating as that for a decay of a
massive particle at rest in flat space. On the other hand,
geodesic motion of a massless particle in AdS space is as
simple as that in flat space and this is the reason why we
focus on a massless scattering source here. Although we
will not consider the effect of massive particles on the
retarded potential in AdS space, we expect that there will be
no qualitative differences between the behavior of the
retarded potential for massless scattering sources and that
for massive sources, and the example investigated in this
section would suffice to capture the characteristics of the
retarded potential for a particle scattering source.
The energy-momentum tensor for the massless scattering

is given by

TμνðxÞ¼kinμ kinν δðx1−x1inÞδðx2−x2inÞδðy−y0Þ
dλin
dt

θðt0− tÞffiffiffiffiffiffi
−ḡ

p

þ k̄inμ k̄inν δðx1− x̄1inÞδðx2− x̄2inÞδðy−y0Þ
dλ̄in
dt

θðt0− tÞffiffiffiffiffiffi
−ḡ

p

þkoutμ koutν δðt−x1Þδðx2− t0Þδðy−y0Þ
dλout
dt

θðt− t0Þffiffiffiffiffiffi
−ḡ

p

þ k̄outμ k̄outν δðx1− t0Þδðt−x2Þδðy−y0Þ
dλ̄out
dt

θðt− t0Þffiffiffiffiffiffi
−ḡ

p ;

ð32Þ

where we set

x1inðtÞ ¼
1ffiffiffi
2

p ðtþ c1Þ;

x2inðtÞ ¼
1ffiffiffi
2

p ðtþ c1Þ; c1 ¼ ð
ffiffiffi
2

p
− 1Þt0;

x̄1inðtÞ ¼
1ffiffiffi
2

p ðtþ c1Þ;

x̄2inðtÞ ¼ −
1ffiffiffi
2

p ðtþ c2Þ; c2 ¼ −ð
ffiffiffi
2

p
þ 1Þt0: ð33Þ

Now we are ready to compute the retarded potential from
the outgoing and incoming massless particles. Note that
χaa ¼ χya ¼ χ̃ ¼ 0 for the source (32).

1. Contribution from outgoing massless particles

First we consider the contribution from the outgoing
massless particles for which the energy-momentum
tensor is

Tout
μν ðxÞ¼

y2

L2
Eoutnoutμ noutν δðt−x1Þδðx2− t0Þδðy−y0Þθðt− t0Þ

þ y2

L2
Ēoutn̄outμ n̄outν δðx1− t0Þδðt−x2Þ

×δðy−y0Þθðt− t0Þ; ð34Þ

where noutμ ¼ −δ0μ þ δ1μ, n̄outμ ¼ −δ0μ þ δ2μ are the unit tan-
gents to the trajectories of the outgoing massless particles
and Eout, Ēout are the energies of each of the outgoing
massless particles.
The retarded potential is evaluated as

χoutab ¼ 8GEout

L2
nouta noutb

Z
dt0θðt0 − t0Þ

×

�
yy0ðδððt − t0Þ2 − r2Þ þ δððt − t0Þ2 − r̃2ÞÞ− 1

2
ðθððt − t0Þ2 − r2Þ − θððt − t0Þ2 − r̃2ÞÞ

�
x01¼t0;x02¼t0;y0¼y0

þ 8GĒout

L2
n̄outa n̄outb

Z
dt0θðt0 − t0Þ

�
yy0ðδððt − t0Þ2 − r2Þ þ δððt − t0Þ2 − r̃2ÞÞ

−
1

2
ðθððt − t0Þ2 − r2Þ − θððt − t0Þ2 − r̃2ÞÞ

�
x01¼t0;x02¼t0;y0¼y0

¼ 2G
L2

�
Eoutnouta noutb

t − x1
þ Ēoutn̄outa n̄outb

t − x2

�
½ð2yy0 −UÞθðuÞ þ ð2yy0 þ ŨÞθðũÞ�; ð35Þ

where we have used θðUÞ ¼ θðuÞ and θðŨÞ ¼ θðũÞ with

u ¼ t − t0 − r0; U ¼ ðt − t0Þ2 − r20; r20 ¼ ðx1 − t0Þ2 þ ðx2 − t0Þ2 þ ðy − y0Þ2; ð36Þ

ũ ¼ t − t0 − r̃0; Ũ ¼ ðt − t0Þ2 − r̃20; r̃20 ¼ ðx1 − t0Þ2 þ ðx2 − t0Þ2 þ ðyþ y0Þ2: ð37Þ
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2. Contribution from incoming massless particles

Next we consider the retarded potential due to the incom-
ing massless particles. The energy-momentum tensor is

T in
μνðxÞ ¼

y2

L2
Einmin

μ min
ν δðx1 − x1inÞδðx2 − x2inÞ

× δðy − y0Þθðt0 − tÞ

þ y2

L2
Ēinm̄in

μ m̄in
ν δðx1 − x̄1inÞδðx2 − x̄2inÞ

× δðy − y0Þθðt0 − tÞ; ð38Þ

wheremin
μ ¼−δ0μþðδ1μþδ2μÞ=

ffiffiffi
2

p
, m̄in

μ ¼−δ0μþðδ1μ−δ2μÞ=
ffiffiffi
2

p
are the unit tangents to the trajectories of the incoming
massless particles. The energy-momentum conservation
(31) at t ¼ t0 is solved by

Ein ¼ Eout; Ēin ¼ Ēout ¼ ð
ffiffiffi
2

p
− 1ÞEin: ð39Þ

The retarded potential due to the incoming massless
particles is given by

χinab ¼
4Gyy0
L2

�
Einmin

a min
b

tþ c1 − x1þx2ffiffi
2

p
þ Ēinm̄in

a m̄in
b

t − t0 − x1−x2ffiffi
2

p

�
ðθð−uÞ þ θð−ũÞÞ

−
4G
L2

�
Einmin

a min
b

�
θð−uÞ

Z
t−

tc

dt0 − θð−ũÞ
Z

tþ

tc

dt0 þ ðθðuÞ − θðũÞÞ
Z

t0

tc

dt0
�

þ Ēinm̄in
a m̄in

b

�
θð−uÞ

Z
t̄−

tc

dt0 − θð−ũÞ
Z

t̄þ

tc

dt0 þ ðθðuÞ − θðũÞÞ
Z

t0

tc

dt0
��

¼ 4Gyy0
L2

�
Einmin

a min
b

tþ c1 − x1þx2ffiffi
2

p
þ Ēinm̄in

a m̄in
b

t − t0 − x1−x2ffiffi
2

p

�
ðθð−uÞ þ θð−ũÞÞ

−
4G
L2

½Einmin
a min

b ðθð−uÞt− − θð−ũÞtþ þ ðθðuÞ − θðũÞÞt0Þ
þ Ēinm̄in

a m̄in
b ðθð−uÞt̄− − θð−ũÞt̄þ þ ðθðuÞ − θðũÞÞt0Þ�;

¼ 2G
L2

�
Einmin

a min
b

tþ c1 − x1þx2ffiffi
2

p
þ Ēinm̄in

a m̄in
b

t − t0 − x1−x2ffiffi
2

p

�
½ð2yy0 −UÞθð−uÞ þ ð2yy0 þ ŨÞθð−ũÞ�; ð40Þ

where tc is an infrared cutoff whose dependence cancels
out in the end. t∓ and t̄∓ are the solution to ðt − t−Þ2−
r2ðt−Þ ¼ 0, ðt − tþÞ2 − r̃2ðtþÞ ¼ 0 for the unbarred null
geodesic and ðt− t̄−Þ2− r2ðt̄−Þ¼ 0, ðt − t̄þÞ2 − r̃2ðt̄þÞ ¼ 0
for the barred null geodesic. Explicitly, it is

t∓ ¼ t2−x1ðx1− ffiffiffi
2

p
c1Þ−x2ðx2− ffiffiffi

2
p

c1Þ− ðy∓ y0Þ2−c21
2ðtþc1− x1þx2ffiffi

2
p Þ ;

t̄∓ ¼ t2−x1ðx1− ffiffiffi
2

p
c1Þ−x2ðx2− ffiffiffi

2
p

c2Þ− ðy∓ y0Þ2−3t20
2ðt− t0− x1−x2ffiffi

2
p Þ :

ð41Þ

3. Behavior of the retarded potential

Putting together (35) and (40) and making use of the
identity

½ð2yy0 −UÞθðuÞ þ ð2yy0 þ ŨÞθðũÞ�
þ ½ð2yy0 −UÞθð−uÞ þ ð2yy0 þ ŨÞθð−ũÞ� ¼ 0; ð42Þ

the retarded potential for the massless scattering source
χ ¼ χout þ χin is obtained as

χab ¼
2G
L2

ðαab−βabÞ½ð2yy0−UÞθðuÞþð2yy0þ ŨÞθðũÞ�;
χya ¼ 0; χ̃¼ 0; ð43Þ

where we have defined αab and βab by

αab ≔
Eoutnouta noutb

t − x1
þ Ēoutn̄outa n̄outb

t − x2
;

βab ≔
Einmin

a min
b

tþ c1 − x1þx2ffiffi
2

p
þ Ēinm̄in

a m̄in
b

t − t0 − x1−x2ffiffi
2

p
: ð44Þ

The result (43) gives the original metric perturbation γμν
3:

3The gauge condition (8) in this case reads ∂aγ
a
b ¼ 0. This

implies ðαab − βabÞKaδðuÞ ¼ 0 and ðαab − βabÞK̃aδðũÞ ¼ 0, re-
spectively, where Ka ¼ ∂au ¼ −ðta þ ra0Þ and K̃a ¼ ∂aũ ¼
−ðta þ r̃a0Þ.
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γab ¼
L2

y2
χab; γya ¼ 0; γyy ¼ 0: ð45Þ

We note that in (43), the terms proportional to U and Ũ are
the tail contribution. The ratio of the direct and tail
contributions of the gravitational waves which directly
come from the source event is thus

tail
direct

≈
r0Δt
yy0

; ð46Þ

where Δt ≔ t − t0 − r0 measures the time passed since the
passage of gravitational waves.
Figure 2 shows a two-dimensional spacetime diagram

for the behavior of the retarded potential χab where the xi

directions are suppressed. The bullet represents the source
event, the dotted lines represent the propagation of gravi-
tational waves traveling at the speed of light. Gravitational
waves and their tails reach the AdS boundary in a finite
time and then will get reflected back to the bulk.
Let us consider two timelike observers whose geodesics

are given by

y2ðτ1;2Þ ¼ ðtðτ1;2Þ − T1;2Þ2 þ L2;

x1 ¼ const; x2 ¼ const; ð47Þ

where τ1;2 are the proper times and T1;2 are constants with
T2 < t0 < T1 for the observers 1 and 2, respectively. The
worldlines of these observers are represented by the solid
curves in Fig. 2. The retarded potential χab for these

observers acquires a nonzero contribution discontinuously
on the light cone t ¼ t0 þ r due to the direct contribution.
In the region t0 þ r < t < t0 þ r̃, the tail contribution is
nonzero and reduces the effect of the potential χab. When
t ≈ tr þ yy0=r0, the tail contribution becomes comparable
to the direct contribution. Once t ¼ t0 þ r̃, which happens
to observer 1, then χab vanishes discontinuously as the
second term in (35) which is proportional to θðũÞ comes
into action. This means that the contribution from the
reflected gravitational waves cancels exactly that from
those directly from the source and the spacetime goes
back to the original vacuum AdS space. It follows that χab
is nonzero only in the gray region in between the two light
cones. Note that for the observer 2, t ≥ t0 þ r̃ will never be
realized and the cancellation does not occur.

III. MEMORY EFFECT IN AdS SPACE

In flat space, the memory effect is defined as a permanent
displacement in the geodesic deviation of a pair of test
particles after the passage of gravitational waves. In this
paper, wewill use this observable to give a definition for the
memory effect in AdS space. The geodesic deviation
equation is

uρ∇ρðuσ∇σDμÞ ¼ −Rμ
αβγuαDβuγ: ð48Þ

Here we consider two nearby test particles initially at rest as
a gravitational wave detector. Dμ is the deviation vector of
the test particles and uμ ¼ dxμ=dτ is the unit tangent to the
geodesic of one of the test particles. In what follows, we
will call this geodesic the central geodesic γ which is, at the
zeroth order of the perturbation, parametrized by the proper
time τ (−πL=2 < τ < πL=2) as

yðτÞ¼ L
cosðτLÞ

; tðτÞ¼Ltan

�
τ

L

�
; x1¼x2¼const; ð49Þ

with y2ðτÞ ¼ t2ðτÞ þ L2.
In general, the geodesic deviation

Dμ ¼ D̄μ þ δDμ ð50Þ

gets an intrinsic contribution D̄μ from the curvature of the
background spacetime and this is independent of the
contribution δDμ from the gravitational wave that we are
interested in. If one subtracts out the contribution from the
background curvature, one can obtain from (48) a second
order differential equation for δDμ. This can be solved in
principle and will give generally an integrated expression
for δDμ in terms of the full history of the metric perturba-
tion. This is much more complicated than the local
expression (1) obtained in the flat case. In the following,
we show that a simple local expression can be obtained if
the memory δDμ is observed with respect to a certain local

FIG. 2. Propagation of the gravitational waves and timelike
geodesics.
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inertial frame, the Fermi normal coordinate, around the
central geodesic γ.

A. Gravitational radiation induced geodesic derivation

In order to simplify the study of the geodesic deriva-
tion, it is desirable to adopt a coordinate system that is
somehow adapted to the central geodesic. In this regard, we
find it convenient to use the Fermi normal coordinates
(FNC) [31] associated with the central geodesic γðτÞ,
xαF ¼ ðtF ¼ τ; xrFÞ, r ¼ 1, 2, 3, where the time coordinate
is identified with the proper time and the spatial coordinates
xrF are parametrized by the affine parameter of geodesics
perpendicular to the central geodesic γðτÞ on which
xαF ¼ ðτ; 0; 0; 0Þ. In the following, the subscript F stands
for quantity in the FNC. The Fermi normal coordinate
system is a locally flat coordinate system attached to the
central geodesic, i.e., on the central geodesic γðτÞ, themetric
is given by Minkowski metric gFμν ¼ ημν and the Christoffel
symbols vanish, ðΓFÞμαβ ¼ 0. In the neighborhood of the
central geodesic, the metric receives corrections from the
spacetime curvaturewhich begins with the quadratic term in
xrF of the form ðRFÞμrνsxrFxsF. In AdS space, jRFj ≃ L−2 and
the use of FNC at a spacetime point P away from the central
geodesic is valid as long as ðxrFÞ2ðPÞ ≪ L2.4

In the FNC, the tangent to the geodesic is uμF ¼
dxμF=dτ ¼ δμ0. Then the geodesic deviation equation takes
the form

d2

dτ2
Dr

F ¼ −ðRFÞr0s0ðτÞDs
F; ð51Þ

where ðRFÞμαβγðτÞ is the Riemann tensor in the FNC that is
evaluated on γðτÞ and it is related to the Riemann tensor in
the Poincaré coordinates by

ðRFÞμαβγðτÞ ¼ ημδRνρσλðeδÞνðeαÞρðeβÞσðeγÞλ: ð52Þ

Here ðeδÞν is a set of the orthonormal tetrads which is
parallel transported along γðτÞ and satisfies [33]

ðeαÞμ¼
�∂xμ
∂xαF

�
γðτÞ

;
d
dτ

ðeαÞμþΓμ
ρσðe0ÞρðeαÞσ¼0;

gμνðeαÞμðeβÞν¼ηαβ; ð53Þ

where ðe0Þμ is taken as the tangent to γðτÞ, ðe0Þμ ¼ uμ. For
the background AdS space, the orthonormal tetrads on (49)
are determined as

ēμα ≔ ðeαÞμjgμν¼ḡμν ; ēμ0 ¼
y2

L2
δμ0 þ

ty
L2

δμy;

ēμi ¼
y
L
δμi ; ēμ3 ¼ −

ty
L2

δμ0 −
y2

L2
δμy: ð54Þ

The geodesic and parallel transport equations in the
perturbative AdS background are discussed in Appendix C.
At the first order of the perturbation χab given by (43),

we obtain

ðRFÞr0s0¼
1

L2
ηrsþ

1

2L4
δirδ

j
s½y4ð2∂0∂ðjχiÞ0−∂2

0χij−∂i∂jχ00Þþ2ty3ð∂y∂ðjχiÞ0−∂0∂yχijÞ−t2y2∂2
yχijþy3ηij∂yχ00−yL2∂yχij�

−
1

2L5
ðδirδ3sþδ3rδ

i
sÞ
�
y3L2ð∂y∂0χi0−∂y∂iχ00Þþty2L2

�
∂2
yχi0−

1

y
∂yχ0i

��

þ y2

2L2
δ3rδ

3
s

�
−∂2

yχ00þ
1

y
∂yχ00

�
: ð55Þ

In deriving this, we have used (B2) in Appendix B, (C1),
(C7) and (C8) in Appendix C together with (52). It is
remarkable that the perturbations of the geodesic δxμ and
the tetrads δeμα do not appear in the final result. Note that the
first line in (55) arises from the background curvature in the
FNC and gives an oscillating solution for the background
geodesic deviation. Below we will focus on the deviation

vector with an initial condition dD̄μ
F=dτðτiÞ ¼ 0. In this

case we have

D̄r
F ¼ Cr cos

�
τ − τi
L

�
; ð56Þ

where Cr is the initial separation. Note that we have
explicitly isolated the geodesic derivation (56) due to the
AdS background curvature.
Since the Riemann tensor (55) has a complicated form, it

may appear not easy to solve the geodesic deviation
equation (51) which is a second order differential equation
in the perturbed AdS spacetime. However there is a trick.

4In dS space, due to the exponential expansion of the physical
distance between two nearby geodesics, the use of FNC for the
analysis of the geodesic deviation equation will be invalidated at
late times. In such a case, instead of FNC, one should use the
conformal Fermi coordinates [32].
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Let us introduce a tensor defined by Ωμ
ν ≔ ∇νðe0Þμ. It has

been demonstrated recently in [34], especially for shock-
wave metrics of Aichelburg-Sexl type [35], that the tensor
Ωμ

ν are useful for the investigation of the memory effect. In
terms of Ωμ

ν, the Riemann tensor can be expressed as

d
dτ

Ωμ
ν þ Ωμ

λΩλ
ν ¼ −Rμ

ανβðe0Þαðe0Þβ ð57Þ

and the deviation vector Dμ satisfies the first order differ-
ential equation [36],

ðe0Þρ∇ρDμ ¼ Ωμ
νDν: ð58Þ

In the FNC, we have

d
dτ

ðΩFÞμν þ ðΩFÞμλðΩFÞλν ¼ −ðRFÞμ0ν0; ð59Þ

and

d
dτ

Dμ
F ¼ ðΩFÞμνDν

F: ð60Þ

Thus the introduction of Ωμ
ν and the employment of FNC

allow us to greatly reduce the problem of determining Dμ

from solving second order partial differential equations to
solving a first order ordinary differential equation.
To proceed, let us compute ðΩFÞμν:

ðΩFÞμν ¼ ημσgαλðeσÞλðeνÞβ∇βðe0Þα: ð61Þ

The spatial components of (61) for the central geodesic γðτÞ
in the perturbed AdS background is given by

ðΩFÞrs ¼ ðΩ̄FÞrs þ ðδΩFÞrs; ð62Þ

where

ðΩ̄FÞrs¼−
t
L2

δrs;

ðδΩFÞrs¼
1

y

�
t
L2

δxy−δey0

�
δrs

þ1

2
ηrpḡαλēλpð∂βhαγþ∂γhαβ−∂αhβγÞēβs ēγ0

þ2

y
ηrph0λē

y
s ēλpþηrpḡαλðδeλpēβs∂βēα0þ ēλpē

β
s∂βδeα0Þ;

ð63Þ

where hμν ¼ y2L−2γμν. Putting Dr
F ¼ D̄r

F þ δDr
F into (60),

the geodesic derivation vector that arises from the pertur-
bation of the AdS metric satisfies

d
dτ

�
y
L
δDr

F

�
¼ y

L
ðδΩFÞrsD̄s

F þOðδD2
FÞ; ð64Þ

where D̄r
F is given by (56).

Now we are to solve the geodesic deviation equation (64)
with the metric perturbation given by the retarded potential
(43). Consider the specific example of

x1 ¼ x2 ¼ t0; ð65Þ
for the central geodesic γðτÞ. Applying (65) to (43), we find
that χ0a ¼ 0 and fμ given by (C6) vanishes. It then follows
from (C10) [with a set of initial conditions δxμðτiÞ ¼
dδxμ=dτðτiÞ ¼ 0] that δxμ ¼ δeμ0 ¼ 0. Therefore (49) with
(65) is indeed a consistent solution to the perturbed geodesic
equation. As a result, we get

ðδΩFÞrs ¼
1

2

d
dτ

χijδ
r
iδ

j
s; ðδΩFÞrr ¼ 0 ð66Þ

and the geodesic equation (64) can be integrated to a closed
form immediately, giving

Di
FðτÞ ¼ D̄i

FðτÞ þ
1

2
χijðτÞD̄j

FðτÞ ði; j ¼ 1; 2Þ;
D3

FðτÞ ¼ D̄3
FðτÞ: ð67Þ

It is easy to check that (67) satisfies the geodesic deviation
equation (51) in this case. The geodesic deviation in the
Poincaré coordinates is given by Dμ ¼ ðeαÞμDα

F.
It is remarkable that the perturbation of the deviation

vector (67) can be written in terms of the retarded potential
directly and takes the form (1) exactly as in the flat case.
That this is possible is because of the adaptation and
simplification brought about by the use of the Fermi normal
coordinates.

B. Gravitational radiation memory in AdS

Memory effect as a permanent displacement of the
geodesic derivation can be defined in the FNC by

ΔDr
F ≔ δDr

FðτfÞ − δDr
FðτiÞ; ð68Þ

where τi and τf are the proper time before and after the
passage of gravitational waves.
We have ignored the background effect on the geodesic

deviation since we are interested in the geodesic deviation
with gravitational wave origin. In AdS spacetime, two
distinguished types of gravitational wave detectors can be
considered. One is a detector whose central geodesic passes
through the region of nonzero retarded potential, e.g.,
observer 1 in Fig. 2. The other is a detector whose central
geodesic stays in the region of nonzero retarded potential,
e.g., observer 2 in Fig. 2. In the former case (t0 < 0), we
can discuss the memory effect from a viewpoint of a
vacuum to vacuum transition of the spacetime. But now it is
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obvious that there is no memory effect since after the
passage of the reflected gravitational waves the spacetime
settles down to the original vacuum AdS space described
by (5) due to the cancellation of the retarded potential. In
the latter case (t0 > 0), the gravitational wave detector will
always be under the influence of the retarded potential
since the passage of the direct gravitational waves from the
source, and there will be the competition between the direct
and the tail contributions. From (43), the retarded potential
for the central geodesic (49) with x1 ¼ x2 ¼ t0 is

χij ¼ aij
2G
L2

Eout

t − t0
ð2yy0 − ðt − t0Þ2 þ ðy − y0Þ2ÞθðuÞ

¼ aij
2G
L2

Eout

t − t0
ð2tt0 þ L2 − t20 þ y20ÞθðuÞ; ð69Þ

where aij ≔ ð1 − ffiffiffi
2

p
=2Þðδ1i δ1j − δ1i δ

2
j − δ2i δ

1
j − δ2i δ

2
jÞ. Here

we have used y2 ¼ t2 þ L2 and have dropped the term
proportional to θðũÞ. It can be seen that at late times χij will
approach a constant value

χij ∼ aij
4Gt0
L

: ð70Þ

Therefore the geodesic deviation will also approach some
constant value and yields a permanent displacement
ΔDr

F ≠ 0 while the metric satisfies the vacuum Einstein
equation in AdS space.

C. Asymptotic expansion near the AdS boundary

The asymptotic behavior of the retarded potential near
the AdS boundary can be obtained by the Taylor expansion
of (43) at y → 0. Using

ð2yy0−UÞθðUÞ
¼−U0θðU0Þþ ½θðU0ÞþU0ðδðU0Þ−2y20δ

0ðU0ÞÞ�y2

þ2y0

�
δðU0ÞþU0

�
δ0ðU0Þ−

2y20
3

δ00ðU0Þ
��

y3þOðy4Þ;

ð71Þ
ð2yy0þŨÞθðŨÞ
¼U0θðU0Þ− ½θðU0ÞþU0ðδðU0Þ−2y20δ

0ðU0ÞÞ�y2

þ2y0

�
δðU0ÞþU0

�
δ0ðU0Þ−

2y20
3

δ00ðU0Þ
��

y3þOðy4Þ;

ð72Þ

where U0 ≔ ðt − t0Þ2 − ðx1 − t0Þ2 − ðx2 − t0Þ2 − y20, we
obtain

χab ¼
4Gðyy0Þ3
3L2r3B

δðu0Þ
�
1 − rB

∂
∂t
�
ðαab − βabÞ þOðy5Þ;

ð73Þ

where u0 ¼ t − t0 − rB and

rB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − t0Þ2 þ ðx2 − t0Þ2 þ y20

q
ð74Þ

is the distance from the scattering event to a point under
consideration at the boundary. We note there is a delta
function singularity localized at the light cone from the
source and it arises because of a careful handling of the step
functions as distribution.
The vacuum expectation value of boundary energy-

momentum tensor is given by the formula [37]

hTB
abi ¼

3L2

16πG
lim
y→0

1

y3
χab: ð75Þ

Substituting (73) into (75) yields

hTB
abi ¼

y30
4πr3B

δðu0Þ
�
1 − rB

∂
∂t
�
ðαab − βabÞ: ð76Þ

Thus the boundary energy-momentum tensor is localized
on the hyperbola u0 ¼ 0.

D. AdS shock wave

In addition to displacement memory, gravitational wave
may induce other observable effects on a detector. In the
flat case, a notable effect is that a shock wave would give
rise to a velocity memory in the form of a relative velocity
kick between two nearby particles. It is interesting to know
if a shock wave in AdS spacetime would give rise to a
velocity memory; and if so, how different would it be from
the flat case?
Let us consider the shock-wave limit of the retarded

potential. Naively if we take t0 → −∞ in (32), the source
describes massless particles which travel at the speed of
light forever. In flat space, the gravitational field of such a
massless particle is described by the Aichelburg-Sexl
shock-wave metric [35] which is localized on the light
cone. In AdS space, such a shock-wave metric was first
obtained in [38]. Note that, however, the AdS shock-wave
metric cannot be obtained by simply taking t0 → −∞ in the
retarded solution (35) since it vanishes for t0 → −∞.
Instead, following [39], we start with a massless source
with a finite extent Δ in the x1 direction with the energy-
momentum tensor given by

Tsw
μν ðxÞ ¼

y2

L2
Enμnν

1

Δ
½θðt − x1Þ − θðt − x1 − ΔÞ�

× δðx2Þδðy − y0Þθðx1 − t0Þ: ð77Þ

Here we have picked one of the outgoing massless particles
moving in the x1 direction and set the scattering point as
(t0; t0; 0; y0) for simplicity.
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The retarded potential is decomposed into the direct and tail parts, χswab ¼ χdirectab þ χtailab ,

χdirectab ¼ 4GE
yy0
ΔL2

nanb

�
θðu − ΔÞ

Z t2−ðx1Þ2−ρ2
2ðt−x1Þ

ðt−ΔÞ2−ðx1Þ2−ρ2
2ðt−Δ−x1Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x01Þ2 þ ρ2

p dx01

þ ðθðuÞ − θðu − ΔÞÞ
Z t2−ðx1Þ2−ρ2

2ðt−x1Þ

t0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x01Þ2 þ ρ2

p dx01 þ ðρ ↔ ρ̃; u ↔ ũÞ
�
; ð78Þ

χtailab ¼−
4GE
ΔL2

nanb

�
θðuÞ

Z t2−ðx1Þ2−ρ2
2ðt−x1Þ

t0

ðt−x01− rÞdx01−θðu−ΔÞ
Z ðt−ΔÞ2−ðx1Þ2−ρ2

2ðt−Δ−x1Þ

t0

ðt−Δ−x01−rÞdx01− ðρ↔ ρ̃;r↔ r̃;u↔ ũÞ
�
;

ð79Þ

where

u ¼ t − t0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − t0Þ2 þ ρ2

q
; ũ ¼ t − t0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − t0Þ2 þ ρ̃2

q
; ð80Þ

ρ2 ¼ ðx2Þ2 þ ðy − y0Þ2; ρ̃2 ¼ ðx2Þ2 þ ðyþ y0Þ2: ð81Þ

The shock-wave limit should be taken carefully by first performing the integrations, then taking t0 → −∞ and finally the
limit Δ → 0. As a result, we obtain

χdirectab → 4GE
yy0
L2

nanb

�
2

t − x1
θðt − x1Þ − ln

�
ρ2ρ̃2

4t20ðt − x1Þ2
�
δðt − x1Þ

�
; ð82Þ

χtailab → −4GE
yy0
L2

nanb

�
2

t − x1
θðt − x1Þ þ

�
2 − ln

�
ρ2ρ̃2

4t20ðt − x1Þ2
�
−
ρ2 þ ρ̃2

4yy0
ln

�
ρ̃2

ρ2

��
δðt − x1Þ

�
: ð83Þ

Adding together (82) and (83), we obtain

lim
t0→−∞
Δ→0

χswab ¼ 8GE
L2

nanb

�
−yy0 þ

ρ2 þ ρ̃2

8
ln

�
ρ̃2

ρ2

��
δðt − x1Þ:

ð84Þ

This is precisely the AdS shock-wave geometry obtained in
[38,40] for y0 ¼ L. One can check that the AdS shock-
wave geometry gμν ¼ ḡμν þ δaμδ

b
ν
L2

y2 χ
sw
ab is in fact a sol-

ution to the full nonlinear Einstein equation with a source
given by a massless particle traveling at the speed of light
forever. Thus we have provided an alternative derivation of
the AdS shock wave by taking a limit of the retarded
potential. We note that it is crucial in our derivation of the
shock-wave geometry to take into account the tail term.
Otherwise we will not get the correct result. The vacuum
expectation value of boundary energy-momentum tensor
corresponding to (84) is

hTB
abi ¼ nanb

2Ey30
πððx2Þ2 þ y20Þ2

δðt − x1Þ; ð85Þ

and this is localized on the light cone [41,42].

E. Velocity memory of AdS shock wave

It is known that passing through the shock wave causes a
jump in the advanced time coordinate and a refraction of the
geodesic [43–46]. It is instructive to compare the memory
effect of shockwave inAdS spacetime and flat spacetime. In
flat space, the shock wave induces a permanent displace-
ment in the relative velocity of two nearby timelike geo-
desics [7,34,47,48]. We will show now that the AdS shock
wave induces much richer features in the velocity memory:
the relative velocity kick (98) in AdS has a kink uθðuÞ, a
jump θðuÞ and a pulse δðuÞ in its v component; and a kink
and a jump in the u, x2 and y components.
To start with, let us review the analysis of [46] for

geodesic motion in the AdS shock-wave background. The
shock-wave metric is written using a five-dimensional
formalism as

ds2¼HðZ2;Z3;Z4ÞδðUÞdU2−2dUdVþdZ2
2þdZ2

3−dZ2
4;

ð86Þ

where U ¼ ðZ0 þ Z1Þ=
ffiffiffi
2

p
, V ¼ ðZ0 − Z1Þ=

ffiffiffi
2

p
and the

five-dimensional coordinates are subject to a constraint,
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−2UV þ Z2
2 þ Z2

3 − Z2
4 ¼ −L2: ð87Þ

In this description, the shock wave is localized at U ¼ 0. In
the following, we assume that H is a function of Z4 only
H ¼ HðZ4Þ so that it corresponds to the Hotta-Tanaka AdS
shock wave as [40]

HðZ4Þ ¼
4

ffiffiffi
2

p
GE

L

�
−2Lþ Z4 log

�
Lþ Z4

L − Z4

��
: ð88Þ

The most general solution to the geodesic equation in the
AdS shock-wave background (86) is given by Eq. (39) of
[46] with e ¼ −1, where it was also pointed out that one
can always achieve the vanishing velocities in front of the
shock wave, _Z0

p ¼ dZp=dτðU ¼ 0−Þ ¼ 0, p ¼ 2, 3, 4, by
utilizing the symmetry of the shock-wave background.
Thus without loss of generality, one can reduce the solution
to the form [Eq. (37) of [46]]

U¼L _U0 sin
�
τ

L

�
;

ZpðUÞ¼Z0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðL _U0Þ−2U2

q
þApUθðUÞ;

VðUÞ¼1

2
ð _U0Þ−2UþBθðUÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðL _U0Þ−2U2

q
þCUθðUÞ;

ð89Þ

where τ is the proper time of a timelike geodesic and

A4 ¼
1

2

�
−∂4Hð0Þ þ 1

L2
Z0
4Gð0Þ

�
;

Ai ¼
1

2L2
Z0
i Gð0Þ; i ¼ 2; 3

B ¼ 1

2
Hð0Þ;

C ¼ 1

8

�
−ð∂4Hð0ÞÞ2 − 1

L2
Hð0Þ2 þ ðZ0

4∂4Hð0ÞÞ2
�
;

Hð0Þ ≔ HðZ0
4Þ; Gð0Þ ≔ Z0

4∂4Hð0Þ −Hð0Þ: ð90Þ

The solution is specified by the constants _U0 ≔
dU=dτðU ¼ 0−Þ and Z0

p ≔ ZpðU ¼ 0−Þ. We are interested
in the geodesic deviation of two nearby timelike geodesics,
xAðτÞ and xBðτÞ. Before crossing the shock wave at U ¼ 0,
the relative velocity of the two geodesics is generally
nonzero and it would not be possible to achieve _Z0

p ¼ 0 for
both of the geodesics by utilizing the symmetry trans-
formations of the coordinates. However, if the two geo-
desics are parallel to each other and are at the same velocity
(the relative velocity is zero) initially, then it is possible to
achieve _Z0

p ¼ 0 for both xAðτÞ and xBðτÞ by using the
symmetry transformations. In what follows we will restrict
ourselves to this case since it is a very natural situation to

have a pair of test particles which are initially at rest at the
time the shock wave arrives, and to consider the relative
velocity kick induced by the shock wave. As we will see
later, in this case the geodesic deviation in the Poincaré
coordinates can be characterized by ξ0, the relative sepa-
ration in the x2 direction at U ¼ 0−.
Let us express the above solution (89) in the Poincaré

coordinates (t; x1; x2; y) by using the coordinate trans-
formation:

Z0 ¼
L
y
t; Z1 ¼ −

L
y
x1;

Z2 ¼
L
y
x2; Z3 ¼

L
2yys

ðy2 þ ðx1Þ2 þ ðx2Þ2 − t2 − y2sÞ;

Z4 ¼
L

2yys
ðy2 þ ðx1Þ2 þ ðx2Þ2 − t2 þ y2sÞ; ð91Þ

where ys denotes the value of the y coordinate at the source
massless particle. The shock-wave metric (86) can then be
written as

ds2 ¼ L2

y2

�
y
L
Hðx2; yÞδðuÞdu2 − 2dudvþ ðdx2Þ2 þ dy2

�
;

ð92Þ

where u ¼ ðt − x1Þ= ffiffiffi
2

p
, v ¼ ðtþ x1Þ= ffiffiffi

2
p

and

Hðx2; yÞ ¼ 4
ffiffiffi
2

p
GE

�
−2þ ðx2Þ2 þ y2 þ y2s

2yys

× log

�ðx2Þ2 þ ðyþ ysÞ2
ðx2Þ2 þ ðy − ysÞ2

��
: ð93Þ

Here t ¼ x1 has been imposed by δðuÞ. Using (91), the
solution (89) can be written in terms of (u; v; x2; y) as

yðUÞ¼ ysL
Z4−Z3

¼ ysL

ys
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2U2L−2

p
þðA4−A3ÞUθðUÞ

;

uðUÞ¼ 1ffiffiffi
2

p Z0þZ1

Z4−Z3

¼ y
L
U;

vðUÞ¼ 1ffiffiffi
2

p Z0−Z1

Z4−Z3

¼ y
L
½UþðB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2U2L−2

p
þCUÞθðUÞ�;

x2ðUÞ¼ ysZ2

Z4−Z3

¼ y
L
ðZ0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2U2L−2

p
þA2UθðUÞÞ; ð94Þ

where we have set _U0 ¼ 1=
ffiffiffi
2

p
for simplicity. We immedi-

ately find that yðU ¼ 0−Þ ¼ L and then it follows that
x20 ≔ x2ðU ¼ 0−Þ ¼ Z0

2, Z
0
3 ¼ððx20Þ2þL2−y2sÞ=ð2ysÞ and

Z0
4 ¼ ððx20Þ2 þ L2 þ y2sÞ=ð2ysÞ. Hence the solution (94) is

specified entirely in terms of x20.
Let us now consider two nearby timelike geodesics

denoted by xμAðτÞ and xμBðτÞ and the geodesic deviation
between them. As mentioned in the above, we consider the
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case in which xμAðτÞ and xμBðτÞ are parallel with the same
velocity. Then, let xμAðτÞ be specified by (94) with ðx2AÞ0 ¼
x20 and xμBðτÞ be that specified by ðx2BÞ0 ¼ x20 þ ξ0. xAðτÞ
passes the AdS shock wave at τ ¼ 0, x2 ¼ x20 while xAðτÞ
passes it at τ ¼ 0, x2 ¼ x20 þ ξ0. The geodesic deviation is
written as

Dμ ¼ xμBðτÞ − xμAðτÞ; ð95Þ

with

DμðU < 0Þ ¼ ξ0δ
μ
2;

dDμ

dU
ðU < 0Þ ¼ 0: ð96Þ

At the lowest order of ξ0, we obtain

Du ¼ Dy

L
U;

Dy ¼ −
ysL∂x2

0
ðA4 − A3Þξ0UθðUÞ

ðys
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2U2L−2

p
þ ðA4 − A3ÞUθðUÞÞ2

;

Dv ¼ Dy

L
½U þ ðB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2U2L−2

p
þ CUÞθðUÞ�

þ yξ0
L

∂x2
0
ðB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2U2L−2

p
þ CUÞθðUÞ;

D2 ¼ Dy

L
ðx20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2U2L−2

p
þ A2UθðUÞÞ

þ y
L
ξ0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2U2L−2

p
þ ∂x2

0
A2UθðUÞÞ: ð97Þ

The relative velocity kick can be written as

Δvμ ≔
dDμ

dU
ðU > 0Þ − dDμ

dU
ðU < 0Þ: ð98Þ

Using the same terminology as in [47], we conclude that
Δvμ receives a kink UθðUÞ, a jump θðUÞ and a pulse δðUÞ
in the v-component, and a kink and a jump in the (u; x2; y)-
directions.
We remark that it is possible to introduce FNC to

investigate the geodesic deviation in the AdS shock-wave
background. In that case it is expected from the flat space
results [34]5 that the geodesic deviation (97) in the FNC is
nonzero only in the transverse x2F and yF directions and so

is the relative velocity kick. We also note that in the FNC
the geodesic derivation will not be simply multiplied by the
overall scale factor y=L, and so it can be inferred from the
fourth equations of (94) and (97) that we will have a
permanent displacement in the relative velocity kick in the
x2-direction.

IV. CONCLUSION AND DISCUSSIONS

We have investigated the retarded potential and memory
effect for the particle scattering source in AdS space. Apart
from the tail term, the retarded propagator receives con-
tribution from the reflected gravitational waves. We evalu-
ated the retarded potential for a particle scattering source
and found that the retarded potential contains two kinds of
step functions θðuÞ and θðũÞ corresponding to the two
types of the gravitational waves, one came directly from the
source and the other experienced a reflection. As a
consequence, the retarded potential is nonzero only in a
finite domain of the spacetime as shown in Fig. 2. Once the
two contributions become active, they cancel each other out
giving a vanishing retarded potential and the spacetime
goes back to the original vacuum AdS space. This is a
somewhat surprising result.
We have solved the geodesic deviation equation in the

perturbed AdS space by making use of Fermi normal
coordinates (FNC) and the tensor Ωμ

ν. We find that in the
FNC, the geodesic perturbation vector and the displacement
memory depend linearly and locally on the retarded
potential exactly the same way as in the flat space (1).
This is a nice result of this work.
Even though it may be expected from the behavior of the

retarded potential, we made it clear that there will be no
memory for the gravitational wave detector which passes
through the region of nonzero retarded potential. On the
other hand, for a detector which stays in the region
of nonzero retarded potential, the direct and tail contribu-
tions together are shown to approach to some constant
value at the late time, while the perturbed metric still
satisfies the vacuum Einstein equation. This corresponds
precisely to a nonvanishing memory induced by the
gravitational radiation.
It is known that the Fefferman-Graham expansion of the

metric near the AdS boundary (y ¼ 0) of an asymptotically
AdS space begins with the Oðy3Þ term and it does not have
terms linear or quadratic in y. Actually we saw that the
asymptotic expansion of the retarded potential for a particle
scattering source also begins with the Oðy3Þ term as the
Oðy0Þ and Oðy2Þ terms cancels out between the contribu-
tions of the gravitational wave with its reflection. It is
interesting to understand better if and how the asymptotic
form of the memory is related to the asymptotic symmetries
of AdS space.
We have considered the memory effect of a shock wave

in AdS. We find for a pair of particles initially at rest
relative to each other, the passage of the shock wave will

5The flat space result,

Du ¼ Dy ¼ 0;

Dv ¼ −ξ0
�
4

ffiffiffi
2

p
GE

x20
θðuÞ þ 32ðGEÞ2

ðx20Þ3
uθðuÞ

�
;

D2 ¼ ξ0

�
1þ 4

ffiffiffi
2

p
GE

ðx20Þ2
uθðuÞ

�
; ð99Þ

can be obtained by taking y → L, ys → L, L → ∞ in (97).
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induce a velocity kick in the relative velocity. Unlike in the
flat case where the velocity kick is in the form of a jump
θðuÞ and a pulse δðuÞ, there is also a kink uθðuÞ
contribution in the AdS case.
In flat spacetime, the gravitational memory effect from

the localized particle source is characterized [7] by a
discontinuity in the retarded potential and a first order
derivative of the delta function in the Riemann tensor. In the
present AdS case, the retarded potential in AdS space gets
additional complications compared to that in the flat space:
there is the multiplication of the warp factor yy0=L2 and
there is also an additional contribution from the reflected
gravitational waves proportional to θðũÞ.
In this work, we have demonstrated that the use of the

Fermi normal coordinates allows us to disentangle in the
geodesic deviation the background curvature contribution
from the gravitational wave contribution, and extract the
gravitational memory of interest. For general curved
spacetime, our analysis suggests that the use of a certain
adapted coordinate system could be very helpful in
allowing one to dissect the geodesic deviation of test
particles and extract the relevant memory due to gravita-
tional radiation. It is interesting to understand what proper-
ties are needed for the right local coordinate system. For the
de Sitter space, due to the background expansion, we find
that the use of conformal Fermi coordinates (CNC) seems
to be the right choice. This is an interesting direction for
further exploration [28].

ACKNOWLEDGMENTS

We would like to thank Calros Cardona, Dimitrios
Giataganas, Wu-Zhong Guo, Yuta Hamada, Hiroyuki
Kitamoto, Toshifumi Noumi, Sang-Jin Sin, and Gary Shiu
for valuable discussion and comments. This work is sup-
ported in part by theNationalCenter for Theoretical Sciences
(NCTS) andGrantNo. 107-2119-M-007-014-MY3 from the
Ministry of Science and Technology of Taiwan.

APPENDIX A: GEODESIC EQUATION
IN AdS SPACE

Geodesic equations for a point particle in the vacuum
AdS space (5) are

ẗ−
2

y
_t _y¼ 0; ẍi−

2

y
_xi _y¼ 0; ÿ−

1

y
ð_t2þ _y2−δij _xi _xjÞ¼ 0;

ðA1Þ

where the dot denotes a derivative with respect to the proper
time for massive particles or the affine parameter for
massless particles. There is a constraint equation

L2

y2
ð−_t2 þ δij _xi _xj þ _y2Þ ¼

�−1 ðmassiveÞ
0 ðmasslessÞ: ðA2Þ

Conserved quantities Pa in the geodesic motion are
given by

P0=m¼−ḡ00u0¼
L2

y2
_t; Pi=m¼ ḡijuj ¼

L2

y2
δij _xj: ðA3Þ

The energy of particle measured by a timelike observer
whose 4-velocity is tμ is

E ¼ −Pμtμ: ðA4Þ

For a timelike Killing vector tμ in AdS space, tμ ¼
ð−1; 0; 0; 0Þ, E ¼ P0. Using (A2) and (A3), (A1) becomes

̈t ¼ 2y
L2

P0 _y; ẍi ¼ 2y
L2

Pi _y;

ÿ ¼
8<
:

2y3

L4 ðP
2
0

m2 −
P2
i

m2 − L2

2y2Þ ðmassiveÞ
2y3

L4 ðP2
0 − P2

i Þ ðmasslessÞ;
ðA5Þ

where Pi ¼ δijPj, P2
i ¼ δijPiPj.

For a massive particle, from (A3) and (A2), we have

_xi ¼ y2

L2

P0

m
dxi

dt
¼ y2

L2

Pi

m

_y2 ¼ y4

L4

P2
0

m2

�
dy
dt

�
2

¼ y4

L4

�
P2
0 − P2

i

m2

�
−
y2

L2
: ðA6Þ

It follows that

xi ¼ Pi

P0

tþCi; y¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2L2þP−2

0 ðP2
0−P2

i Þ2ðt−C3Þ2
P2
0−P2

i

s
;

ðA7Þ

where Ci and C3 are constants and C3 determines the time
at which y takes minimum value. Taking m → 0 in (A7)
gives a solution to the geodesic equation of a massless
particle. The energy of the massless particle is written
as E ¼ L2y−2_t.

APPENDIX B: LINEARIZED RIEMANN TENSOR

The Christoffel symbols for the background AdS metric
(5) are

Γ̄ρ
μν ¼ −

1

y
ðδyμδρν þ δyνδ

ρ
μ − δρyημνÞ: ðB1Þ

The linearized Riemann tensor is given by

Rμð1Þ
αβγ ¼

1

2
ð∇̄β∇̄αγ

μ
γ − ∇̄γ∇̄αγ

μ
β þ ∇̄γ∇̄μγαβ − ∇̄β∇̄μγαγ

þ R̄μ
ρβγγ

ρ
α − R̄ρ

αβγγ
μ
ρÞ: ðB2Þ
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Substituting (5) and (B1) into (B2), we get

Rμð1Þ
αβγ ¼Aμ

αβγ−Aμ
αγβ− ḡμρḡασðAσ

ρβγ−Aσ
ργβÞ

−
1

2y2
ðδμβηργγρα−δμγ ηρβγ

ρ
α−δρβηαγγ

μ
ρþδργηαβγ

μ
ρÞ;

ðB3Þ

where

Aμ
αβγ ¼

1

2

�
∂β∂αγ

μ
γ −

1

y

�
δμα∂βγ

y
γ −

y2

L2
δμy∂βγαγ − δyγ∂βγ

μ
α

þ ηγα∂βγ
μ
y − δyα∂βγ

μ
γ þ ηβα∂yγ

μ
γ þ δμβ∂αγ

y
γ

− δμyηβρ∂αγ
ρ
γ

�
þ 1

y2

�
δyβδ

μ
αγyγ þ δyαδ

y
γ γμβ

−
y2

L2
δμβγαγ − δμβδ

y
γ γyα þ δμβηαγγ

y
y

þ y2

L2
δμyδ

y
βγαγ − δyγηβαγ

μ
y

��
: ðB4Þ

APPENDIX C: GEODESIC AND PARALLEL
TRANSPORT EQUATIONS IN
PERTURBED AdS SPACE

Here we consider the geodesic and geodesic deviation
equations in AdS space with perturbations. Our analysis is
restricted to the first order of the metric perturbations.

1. Perturbed geodesic and parallel transport equations

A formalism to construct and solve the perturbed
geodesic equation in curved spaces is given in [49,50].
One first decomposes the geodesic into the background
trajectory and perturbation about it:

xμðτÞ ¼ x̄μðτÞ þ δxμðτÞ; ðC1Þ

where x̄μ solves the background geodesic equation,

d2x̄μ

dτ2
þ Γ̄μ

αβ

dx̄α

dτ
dx̄β

dτ
¼ 0; ðC2Þ

with Γ̄μ
αβ the Christoffel symbols consisting of the back-

ground metric, and δxμ is OðγμνÞ quantity.6 Substituting
(C1) into the geodesic equation,

d2xμ

dτ2
þ Γμ

αβðxÞ
dxα

dτ
dxβ

dτ
¼ 0; ðC3Þ

one obtains at the first order of perturbation that

�
δμβ

d2

dτ2
þ Aμ

β
d
dτ

þ Bμ
β

�
δxβ ¼ fμ; ðC4Þ

where

Aμ
β ¼ 2Γ̄μ

αβ

dx̄α

dτ
; Bμ

β ¼ ∂βðΓ̄μ
αρÞ dx̄

α

dτ
dx̄ρ

dτ
;

fμ ¼ −δΓμ
αβ

dx̄α

dτ
dx̄β

dτ
: ðC5Þ

In our case of the Poincaré coordinates in AdS space, fμ is
given by

fμ ¼ −
�
∂αh

μ
β −

1

2
∂μhαβ þ

1

y
δμyhαβ −

1

y
ηαβhyμ

�
dx̄α

dτ
dx̄β

dτ
;

ðC6Þ

where hμν ≔ y2L−2γμν.
Corresponding to (C1), we also decompose the tetrads

into its background and perturbation pieces

ðeαÞμðτÞ ¼
∂xμ
∂xαF

����
γðτÞ

¼ ēμαðτÞ þ δeμαðτÞ; ðC7Þ

where ēμα solves the background constraint equation,
ḡμνðx̄Þēμαēνβ¼ηαβ. Note that ēμ0¼dx̄μ=dτ and δeμ0¼dδxμ=
dτ. Substituting (C1) and (C7) into the constraint equation,
gμνðxÞðeαÞμðeβÞν ¼ ηαβ, and the parallel transport equation,
dðeαÞμ=dτ þ Γμ

ρσðxÞðe0ÞρðeαÞσ ¼ 0, we obtain

2ḡμνē
μ
αδeνβ þ ðγμν þ ∂ρðḡμνÞδxρÞēμαēνβ ¼ 0; ðC8Þ

d
dτ

δeμαþ Γ̄μ
ρσðδeρ0ēσαþ ēρ0δe

σ
αÞðδΓμ

αβþ∂βðΓ̄μ
ρσÞδxβÞēρ0ēσα ¼ 0:

ðC9Þ

2. Solution to the perturbed geodesic equation

A general solution to (C4) can be represented by using
the parallel propagator and the Jacobi propagator [50] as
follows:

� 1
LPðτi; τÞδxðτÞ

d
dτ ðPðτi; τÞδxðτÞÞ

�

¼ Uðτ; τiÞ

0
B@ 1

L δxðτiÞ
d
dτ0 ðPðτi; τ0Þδxðτ0ÞÞjτ0¼τi

1
CA

þ
Z

τ

τi

dτ̄Uðτ; τ̄Þ
�

04

Pðτi; τ̄Þfðτ̄Þ

�
; ðC10Þ

6For notation simplicity, in the main body (Sec. III) we are
using xμðτÞ as the background geodesic x̄μðτÞ as long as there is
no confusion.
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where we have adopted the matrix notation, e.g., Pδx ¼
Pμ

αδxα, Pf ¼ Pμ
αfα, and L is some length scale which is

identified with the AdS radius in our case. The parallel
propagator Pðτ1; τ2Þ is given by a 4 × 4 matrix,

Pðτ1; τ2Þμν ¼ P exp

�
−
1

2

Z
τ1

τ2

dτAðτÞ
�

μ

ν

;

Pðτ1; τ2Þ ¼ P−1ðτ2; τ1Þ; ðC11Þ

where P denotes the path ordering and A is given by Aμ
β in

(C5), and the Jacobi propagator Uðτ1; τ2Þ is given by an
8 × 8 matrix,

Uðτ1;τ2Þ¼P exp

"
1

L

Z
τ1

τ2

dτ

�
0 14

−Pðτ1;τÞRðτÞPðτ;τ1Þ 0

�#
;

ðC12Þ

where Rμ
ν ≔ R̄μ

ανβēα0 ē
β
0. Note that the first term on the

right-hand side of (C10) vanishes for a set of initial
conditions δxμðτiÞ ¼ dδxμ=dτðτiÞ ¼ 0.
For the central geodesic γðτÞ in the AdS space, the

parallel and Jacobi propagators are obtained as

Pðτ1; τ2Þ ¼

0
BBBBBBBB@

ȳðτ1Þ2
L2 ð1 − t̄ðτ1Þt̄ðτ2Þ

ȳðτ1Þȳðτ2ÞÞ 0 0
ȳðτ1Þ2
L2 ð t̄ðτ1Þȳðτ1Þ −

t̄ðτ2Þ
ȳðτ2ÞÞ

0
ȳðτ1Þ
ȳðτ2Þ 0 0

0 0
ȳðτ1Þ
ȳðτ2Þ 0

ȳðτ1Þ2
L2 ð t̄ðτ1Þȳðτ1Þ −

t̄ðτ2Þ
ȳðτ2ÞÞ 0 0

ȳðτ1Þ2
L2 ð1 − t̄ðτ1Þt̄ðτ2Þ

ȳðτ1Þȳðτ2ÞÞ

1
CCCCCCCCA
; ðC13Þ

Uðτ1; τ2Þ ¼
�

J cosðτ1−τ2L Þ J sinðτ1−τ2L Þ
−J sinðτ1−τ2L Þ J cosðτ1−τ2L Þ

�
þ
�
14 − J ð14 − JÞ τ1−τ2L

0 14 − J

�
; ðC14Þ

where

J ≔ L2Pðτ1; τÞRðτÞPðτ; τ1Þ ¼

0
BBBBB@

− ȳðτ1Þ2
L2 0 0

ȳðτ1Þt̄ðτ1Þ
L2

0 1 0 0

0 0 1 0

− ȳðτ1Þt̄ðτ1Þ
L2 0 0

ȳðτ1Þ2
L2

1
CCCCCA: ðC15Þ
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