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We study the Wheeler–DeWitt (WDW) equation close to the Big Bang.
We argue that an interaction-dominated fluid (speed of sound equal to the
speed of light), if present, would dominate during such an early phase.
Such a fluid with p = ρ ∝ 1/a6 generates a term in the potential of the
wave function of the WDW equation proportional to −1/a2. This very
peculiar potential, which embodies a spontaneous breaking of dilatation
invariance, has some very remarkable consequences for the wave function
of the Universe: Ψ(a) vanishes at the Big Bang: Ψ(0) = 0; the wave
function Ψ(a) is always real; a superselection rule assures that the system
is confined to a ≥ 0 without the need of imposing any additional artificial
barrier for unphysical negative a. These results are valid for a continuous
class of choices of the operator ordering of the WDW equation.
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1. Motivation

At the very beginning of the Universe evolution, just after the Big Bang,
the energy density was extremely high. In a classical treatment, one has the
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so-called Big Bang singularity: the energy density diverges when the scale
factor a defining the Friedmann–Robertson–Walker (FRW) metric vanishes.
However, when assuming that a more general and quantum version of clas-
sical general relativity (GR) exists, quantum fluctuations can be as large as
to deeply modify the early Universe evolution.

One of the first treatments of quantum gravity was put forward by
Wheeler and DeWitt [1, 2]: it is a canonical approach, in which the Hamilto-
nian of general relativity is quantized, hence the wave function is a function
of the (spacial) metric. A Schrödinger-like equation, called Wheeler–DeWitt
(WDW) equation, emerges. Although we still do not know if this is the cor-
rect and/or the most efficient way to quantize gravity [3–5], it represents
a useful approach to describe various problems in which both GR and QM
merge. This is especially the case of quantum cosmology.

The WDW equation simplifies tremendously when a uniform and homo-
geneous FRW Universe is considered: the wave function is solely a function
of the scale parameter a [hence, Ψ = Ψ(a)], see e.g. [6, 7]. However, it is
not clear what fixes the boundary conditions (if any) associated with the
WDW equation and a long debate has emerged in this context: while Hartle
and Hawking find, within the so-called no-boundary proposal, a real wave
function [8] (see also [9–11]) containing both ingoing and outgoing waves,
Vilenkin [12] put forward a complex wave function corresponding solely to
an outgoing wave. Usually, in such studies of the early time of the Universe,
only the curvature and the constant cosmological terms are retained. For
a recent description of the other possible components, such as matter and
radiation, see Refs. [13, 14]. Indeed, the interest on the wave function of
the Universe is very strong, as the recent lively and vibrating dispute on the
effect of quantum gravitational perturbations in the early Universe shows
[15–17].

Besides the problem of the explicit form of the wave function mentioned
above, there are other issues connected to the WDW equation:

(i) What should be the wave function at the Big Bang, Ψ(0)? It is non-
vanishing for both the Hartle–Hawing and Vilenkin solutions men-
tioned above.

(ii) How to implement the classical constraint a ≥ 0 [18]? Usually, the
transformation a = eΩ is performed [4], but this is merely a mathe-
matical trick.

(iii) Should the wave function be real or complex?

(iv) Is there any influence of the so-called operator ordering problem?

In this work, we shall consider the effect of a stiff-matter interaction-
dominated gas, for which the pressure equalizes the energy density, p = ρ
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(the speed of sound is c, hence maximal). Namely, whatever degrees of free-
dom (d.o.f.) are present in the very early Universe, their strong interactions
could generate such a gas. In the realm of quantum cosmology, a fluid with
p = ρ corresponds to a term of the type of −1/a2 in the effective potential of
the WDW equation. Such a potential, if present, necessarily dominates at
small a (other possibilities are excluded since they would violate causality).
This is indeed a very peculiar quantum potential that breaks all our naive
expectations for a quantum system, see Ref. [19] and also Refs. [20, 21]. At
first sight, it seems that no bound state should exist, since, if one exists, a
continuum of bound states, one for each negative energy, would also exist.
At a closer inspection, the system is much more interesting and its detailed
treatment imposes to render the Hamiltonian self-adjoint [19, 22]: if the at-
traction is below a certain critical value, there is a single bound state, but
above, there is an infinity of bound states (one of which with lower energy).
In turn, this system provides a beautiful example of an anomaly: a char-
acteristic length in the system emerges, which is, in a sense, similar to the
development of the Yang–Mills energy scale in QCD.

Quite remarkably, the unexpected features of the potential −1/a2 in the
WDW equation may help to relieve in an elegant way the problems of the
WDW approach listed above:

(i) The wave function vanishes at the Big Bang: Ψ(a = 0) = 0. This
condition reminds the old idea of DeWitt according to which a van-
ishing wave function could represent a solution of the problem of the
singularity [1, 4]. Indeed, it has been also discussed as an example
of ‘Planck potential’ in Ref. [23], where the WKB approximation is
adopted to show that not only the wave function vanishes at the Big
Bang but that it leads to an intrinsic symmetric initial condition which
removes the dependence of the wave function on all the matter degrees
of freedom at the singularity.

(ii) It generates a superselection rule according to which only positive (or
negative) values of a are allowed. Hence, once a > 0 is chosen, the
wave function is automatically nonzero only on the r.h.s. and there is
no need of any further artificial restriction.

(iii) The wave function is real in agreement with the result of Hartle and
Hawking [8].

(iv) An important technical aspect concerns the choice of the operator
ordering. The results are qualitatively independent on a large and
continuous class of choices (but not on all of them), see the detailed
discussion later on.
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In previous works, a component of the form of p = ρ has been taken into
account for classical cosmologies (e.g. Refs. [24, 25]). Moreover, an equiva-
lent term in the classical FRW equation appears also in the presence of the
so-called kination domain [26–28], in which a massless (and homogeneous)
scalar field φ is considered. The investigation of the quantum version of a
massless and homogeneous scalar field was the topic of various publications,
e.g. Refs. [29–33]. The corresponding wave function Ψ(a, φ) is subject to a
potential of the ‘stiff-matter’ type 1/a2. Interestingly, in those works, the
possibility to avoid the initial singularity is discussed in great detail: as a
consequence, in many of the discussed solutions dealing with stiff matter, the
wave function Ψ vanishes for a→ 0, in agreement with our results. Indeed,
also the problem of ‘self-adjointness’ mentioned above has been discussed
[30, 31], but a different prescription than the one discussed in Ref. [19] is
employed. In our work, we use the results of Ref. [19], which lead to different
solutions of Ψ(a) for small a.

Another interesting theoretical aspect concerns the quantum field theory
which generates stiff matter: in Ref. [34] (see also references therein and
Ref. [35]), it is shown that the case of p = ρ is obtained in the presence of
a quantum field theory in which the interaction dominates over the kinetic
terms. This is quite different from the case of a massless scalar field φ(t, x) (in
which the space-dependence is retained), which in flat space should generate
a gas of the type of p = ρ/3 when quantum fluctuations of the fields are
included. Yet, the description of a strongly interacting quantum field theory
in early quantum cosmology is at present not possible thus, one needs to
either start with p = ρ (as we do in our work) or consider an homogenous
scalar field, as in Refs. [29–33, 36]. Another possibility is suggested within
the context of loop quantum cosmology: in Ref. [37], it has been shown
that non-perturbative quantum geometric effects manifest themselves in the
form of a definite negative ρ2 modification of the Friedmann equation. In
this case, a ‘dark plus visible’ matter component (with a dust-like equation
of state) would again produce a potential ∝ 1/a2 in the WDW equation.
It would be interesting to investigate whether this correction could also be
positive definite such as to lead to an attractive potential in the WDW
equation as the one we are going to discuss here.

2. WDW equation in cosmology:
brief review and consequences of stiff matter

First, we recall how the WDW equation emerges in cosmology. First, we
consider the scale factor a ≡ a(t) as a field with dimension length subject
to the classical Lagrangian
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LFRW = −Ca3

[(
ȧ

a

)2

− kc2

a2
+
Λc2

3
+

8πG

3c2
ρ

]
with C =

3πc2

4G
, (1)

where k and Λ parametrize the curvature and the cosmological constant
contributions to the Universe’s evolution.

The energy density ρ describes the contribution of matter and energy.
Here, we shall consider that each component fulfills the EoS p = wρ, which
has a constant speed of sound vsound = c

√
dp/dρ = c

√
w ≤ c. The adiabatic

expansion dE + p dV = 0 translates into d(ρa3) + p d(a3) = 0, then

a
dρ

da
= −3(ρ+ p) = −3(1 + w)ρ =⇒ ρ(a) =

Aw

a3(w+1)
. (2)

As renowned [38], for w = 0, a Universe dominated by dust is obtained
(ρdust ∝ a−3, dark plus visible matter, about 30% of contribution to the
present state of the expansion, the rest being the present cosmic inflation). A
radiation-dominated Universe is found by setting w = 1/3 (ρradiation ∝ a−4);
this was relevant in the radiation-dominated era of the Universe. Of course,
the use of a constant w is an approximation, since a relativistic plasma with
w ' 1/3 turns into a non-relativistic gas w ' 0 when the Universe cools
down. Moreover, at a given time, different disjunct components of the fluid
can follow their own EoS, leading to

ρ = ρdust + ρradiation + . . . (3)

Here, we argue that at the very beginning of the Universe, an interaction-
dominated gas whose EoS is given by w = 1 could have been present (what-
ever d.o.f. were relevant, see e.g. Ref. [39] and references therein). For this
fluid,

p = ρ→ vsound = 1 and ρint-dom =
Aint-dom

a6
. (4)

Clearly, this component can be relevant only at a very stage of the expansion,
since

(i) it decreases very fast for increasing a and

(ii) the strong interaction generating it weakens down and transforms this
fluid into a more conventional component [hence, w decreases from
1 to 1/3 (or even smaller)].

The first Friedmann equation is obtained by imposing that the Hamilto-
nian vanishes

HFRW = pȧ− LFRW = 0 with p =
∂LFRW

∂ȧ
− 2Caȧ . (5)
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This constraint follows from the invariance under coordinate transformations
of GR. In terms of a and ȧ, Eq. (5) gives the first Friedmann equation(

ȧ

a

)2

+
kc2

a2
− Λc2

3
− 8πG

3c2
ρ = 0 . (6)

(The second Friedmann equation is obtained by studying the equation of
motion of LFRW together with the continuity equation, see details in [6, 13,
14].) As a function of p and a, the Hamiltonian reads

HFRW =
−1
4C

p2

a
+ C

(
−kc2a+

Λc2

3
a3 +

8πG

3c2
ρa3

)
. (7)

When promoting HFRW as an operator via a → a and p → −i}∂a and by
choosing the ordering p2

a = 1
ap

2 (the following results do not depend on
this choice as we will explain later), one obtains the stationary Schrödinger
equation with zero energy[

−}2 d2

da2
+ Veff(a)

]
Ψ(a) = 0

with Veff(a) = 4C2

(
kc2a2 − Λc2

3
a4 − 8πG

3c2
ρa4

)
. (8)

This is the famous WDW equation. It is a timeless equation: a discussion
about the emergence of time can be found in the literature [3, 18, 40, 41].

Here, we are interested in the very early time evolution, therefore, we
consider ρ = ρint-dom = Aint-dom/a

6 (we neglect dust and radiation as well
as other contributions, which become important at later stages of the evo-
lution). Thus, our final form for the effective potential reads

Veff(a) = 4C2

(
kc2a2 − Λc2

3
a4

)
− α}2

a2
. (9)

The first term in the parenthesis is the one usually studied for the early
quantum cosmology [8, 9, 12, 42], and the second piece represents the addi-
tional part being the main subject of the present work. It is parametrized
by the dimensionless coupling α

α = 4C2 8πG

3c2}2
Aint-dom = 6π3 c2

G}2
Aint-dom . (10)

Thus, for a very small, the term −α}2/a2 dominates, leading to the WDW
equation [

d2

da2
+
α

a2

]
Ψ(a) = 0 for a very small . (11)
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The potential −1/a2 has very remarkable properties that have been studied
in detail in Refs. [19–21]. Since α in Eq. (10) is dimensionless, there is
no typical energy scale in the problem: writing the eigenvalue equation for
this potential, one can infer that — if it admits a bound state — there are
infinite bound states, or in other terms, there is no ground state. Actually,
this simple argument fails when imposing HFRW to be self-adjoint, as we
will see in the following. Independently from the self-adjointness of HFRW,
Eq. (11) admits two independent solutions which in the limit of a→ 0 scale
as
√
a e±ig log a, where g =

√
α− 1/4. Since both of them vanish in the limit

of a→ 0 also Ψ(a = 0) = 0.
This is the first important and general result of our study (which is solely

a consequence of Eq. (11) and is independent of the use of self-adjointness
requirement introduced below): when considering an interaction-dominated
fluid that could have appeared just after the Big Bang, the wave function of
the Universe fulfills the requirement postulated long ago by DeWitt to solve
the problem of the Big Bang singularity.

A second property of the 1/a2 attractive potential concerns a superselec-
tion rule imposed on the allowed range of the variable a. As shown in [20],
the quantum system is confined to a > 0 (or a < 0) [20]; in other words,
there is no linear superposition of wave functions which live at a > 0 with
the ones at a < 0. Hence, there is no problem with negative values of a.
Next, we turn to explicit solutions in order to show that the wave function
is real.

When interpreting HFRW as an operator associated to a physical ob-
servable (i.e. the Hamiltonian), one has to verify that the operator is a
self-adjoint operator i.e. it is symmetric and the domain of it coincides with
the domain of its adjoint. In general, self-adjointness is a standard require-
ment in Quantum Mechanics [43], that we also impose in the framework of
the WDW equation. It is not yet clear if this is a criterion that should be
imposed to the WDW equation as well, but due to its importance in QM, it
is interesting to study the implications of self-adjointness also in a quantum
cosmological system. Yet, it should be mentioned that some very interesting
ideas have been presented on the possibility to represent physical observables
also with non-symmetric (non-Hermitian) operators, see, for instance, the
seminal paper on the spectrum of non-Hermitian Hamiltonians [44].

As discussed in [19], the property of self-adjointness for the −1/a2 po-
tential is obtained by imposing a specific boundary condition on the wave
function (see Eq. (73) and (81) of Ref. [19], see also Ref. [22]). For g =√
α− 1/4 6= 0,
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√
a
[
e

2ig log a
a0 −1

] dΨ∗(a)
da

− 1√
a

[(
1

2
+ig

)
e

2ig log a
a0 −

(
1

2
−ig

)]
Ψ∗(a)→ 0 ,

(12)
while for g =

√
α− 1/4 = 0,

√
a log

a

a0

dΨ(a)

da
− 1√

a

[
1 +

1

2
log

a

a0

]
Ψ(a)→ 0 . (13)

The general solution of Eq. (11) is a linear combination of two indepen-
dent functions with, in general, complex coefficient. However, when impos-
ing Eqs. (12) and (13) for the cases of g 6= 0 and g = 0, respectively, one
finds that only real wave functions are allowed. Let us discuss the case of
g = 0: the solution is Ψ(a) =

√
a(c1+c2 log(a/a0)), where c1, c2 are complex

numbers. Equation (13) leads to the conditions c1 = 0, and c2 can be chosen
as a real number, thus the wave function is real. Similarly, one can compute
the solution in the general case of g 6= 0: Ψ(a) =

√
aa−ig(c1 + c2a

2ig) and
impose the limit of Eq. (12). Notice that both independent solutions vanish
in the limit of a→ 0.

After a straightforward calculation, the solutions for the wave function
very close to the Big Bang can be recast in the following compact form:

Ψ(a) =


N
√
a sin [g log(a/a0)] for g > 0 (i.e., α > 1/4)

N
√
a log(a/a0) for g = 0 (i.e., α = 1/4)

N
√
a
[
(a/a0)

−g̃ − (a/a0)
g̃
]

for g = ig̃ with 0 < g̃ < 1/2 (i.e., 0 < α < 1/4)

. (14)

These solutions summarize the results of this paper. As anticipated pre-
viously, Ψ(a = 0) = 0: the wave function vanishes at the Big Bang, thus
offering a possible solution of the singularity problem (this is why α cannot
be negative, otherwise Ψ(a), although formally still given by the last line of
Eq. (14), would be divergent for a→ 0).

Some comments on these results are in order. It is important to stress
that, in presence of the −1/a2 potential, there is a superselection rule that
separates the quantum states at a > 0 from the states at a < 0 (see Ref. [30]).
In this respect, there is no need to send V (a) to infinity for a < 0 in order to
“exclude” this part of the space. Moreover, the fact that the wave function
vanishes at a = 0 is not an arbitrary boundary condition, but originates
from the presence of a regular singular point for the differential equation
(the stationary Schrödinger equation with zero eigenvalue) at a = 0. Indeed,
there are two independent solutions, but both of them vanish in the limit of
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a→ 0 as one can easily verify. The requirement of self-adjointness only fixes
a specific linear combination of these two independent solutions (Eq. (15))
which, in turn, allows to choose a wave function which is real.

It is interesting to notice that a length scale a0 appears in the formu-
lae for the wave function that was not at all present in the Hamiltonian.
Indeed, while the Hamiltonian features scale invariance, the procedure of
imposing the self-adjointness, similarly to the case of the regularization and
renormalization procedure in quantum field theory, leads to the appearance
of a new length (energy) scale. Therefore, this is an example of ‘anomalous
symmetry breaking’ in the context of non-relativistic quantum mechanics
[19]. However, the value of the constant a0 cannot be determined similarly
to the case of ΛQCD in quantum chromodynamics. At first, it seems natural

to set a0 '
√

}G
c3

= lP ' 10−33 cm, but there is actually no compelling rea-
son for that. The eventual role of this new fundamental length a0 and the
fact Ψ(a = a0) = 0 should be investigated in the future. The constant N is
a normalization constant which can be always taken as real, therefore, Ψ(a)
is real. There is no problem for a → 0, and also no problem for a < 0 (it
never goes to a < 0 without imposing any additional requirement).

Finally, it is important to discuss how does the ordering of the operators
affect our results. For a large class of choices, other prescriptions induce
a shift of the critical value of α, but there is no qualitative change of our
discussion. For instance, for p2

a → p̂ 1
a p̂, one still finds that Ψ(a→ 0) = 0 for

each α > 0. Upon defining Ψnew(a) = Ψ(a)/
√
a, Eq. (11) is re-obtained for

a shifted α [
d2

da2
+
αnew

a2

]
Ψnew(a) = 0 (15)

with αnew = α − 3
4 . Thus, being Ψnew(a) real, Ψ(a) is also such. For

the critical value αnew = 1/4 (hence, α = 1), Ψ(a) = Na log(a/a0). (For
α < 3/4, αnew < 0, Ψnew(a) is still given as the last line of Eq. (14), but for
g̃ > 1/2, hence Ψnew(a → 0) diverges. There is, however, no problem since
this divergence is compensated by

√
a as long as α > 0. The wave function

Ψ(a) always vanishes at the Big Bang for positive α.)
Next, let us consider a general two-parameter expression for the operator

ordering [45]
p2

a
→ 1

ai
p̂
1

aj
p̂

1

a1−i−j . (16)

Our case corresponds to i = 1, j = 0 (and it is also a typical choice in various
works, see e.g. Ref. [6]), DeWitt’s choice to i = 1/4, j = 1/2 [2], Vilenkin’s
choice to i = 2, j = −1; finally, the parametrization j = 1 − i was studied
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in Ref. [46]. For the general case of Eq. (16), the WDW Eq. (11) takes the
form of [

1

ai
d

da

1

aj
d

da

1

a1−i−j +
α

a3

]
Ψ(a) = 0 for a very small . (17)

Through a redefinition

Ψnew(a) = a−δΨ(a) , (18)

Eq. (15) is obtained for δ and αnew given by

αnew = α− j

4
(2 + j) , δ =

2− 2i− j
2

. (19)

After a straightforward algebraic evaluation, one can show that, under the
conditions

i+ j ≤ 1 , i ≤ 2 , (20)

the wave function is such that

Ψ(a→ 0) = 0 for any α > 0 . (21)

In this case, all previous conclusions are still valid. (For instance, for the
critical value αnew = 1/4, Ψ(a) = a

3−2i−j
2 log(a/a0), where 3−2i−j

2 is always
positive in the chosen ranges for i and j. Again, Ψnew(a) is real, then also
Ψ(a) is real.)

In other words, there is a continuous class of (qualitatively) equivalent
choices of the operator ordering, but there is still a limitation on it. Admit-
tedly, at the present stage, it is still not known which is the correct ordering
of Eq. (16). Indeed, an intuitively appealing requirement is to impose that
the factor 1/a is split into three different parts, each with a positive power

1

a
=

1

ai
1

aj
1

ak=1−i−j , (22)

with
0 ≤ i ≤ 1 , 0 ≤ j ≤ 1 , 0 ≤ 1− i− j ≤ 1 . (23)

These ranges are a subset of those of Eq. (20), thus also for them the wave
function vanishes at the Big Bang. The simplest choices are i = 1, j = 0,
or i = 1, j = 0 or i = j = 0, since they amount to put the factor 1/a
either on the left, in the middle, or on the right of p̂2 = p̂p̂ without splitting
it into pieces (see Eq. (16)). These possibilities represent the vertices of a
triangular area given by Eq. (23).
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Let us discuss now one example in which conditions (21) are not fulfilled:
by taking

2i+ j = 3 , (24)

it is possible to transform Eq. (17) into an equation of the type of[
d2

dx2
+ k

]
Ψ(x) = 0 , where x = log a and k = α− (2− i)2 . (25)

For this equation, the wave function does not vanish at the Big Bang. This
is only one of the possible choices which, however, will not be considered in
this work. On the other hand, when studying the limit of large a, one can
use the WKB approximation and the ordering problem is relieved.

Notice also that the sign of k is not fixed: Ψ(x → −∞) is divergent for
k < 0, and is finite (but non-necessarily zero) for k ≥ 0.

In conclusion, this analysis shows that there are areas on the parameter
plane spanned by the variables i and j for which different results of the wave
function at the Big Bang are obtained. In this respect, this discussion offers
also a different view to look at the problem of the operator ordering in a spe-
cific case; definitely, future studies on this issue are needed. Here, we have
found that a positive contribution of stiff matter (α > 0) together with the
rather intuitive requirement of Eq. (23) (or, eventually with the less restric-
tive but less intuitive constraint of Eq. (20)) assure that the wave function
vanishes at the Big Bang. Moreover, the condition of self-adjointness im-
poses that the wave function is real and a natural superselection to a ≥ 0
applies.

3. A numerical example

For larger values of a, the terms proportional to Λ and k become impor-
tant. It is then instructive to study a numerical case which is reminiscent
of the potentials studies in Refs. [8, 9, 12, 42], with the inclusion of the
additional short-range −1/a2 potential. To this end, we start by rewrit-
ing the WDW equation in natural units and in terms of the dimensionless
a′ = a/

√
G

−d2Ψ

da′2
+ Ṽeff(a

′)Ψ = 0 , where Ṽeff(a
′) = k̃a′2 − λa′4 − α

a′2
, (26)

with dimensionless constants k̃ = 9π2k
4 , λ = 3π2

4 ΛG, and α already intro-
duced in Eq. (10). In general, we could not find analytic solutions of this
equation and we did not derive the conditions of self-adjointness of this new
operator. However, the behaviour of the wave function close to a′ = 0 should
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be anyway dominated by the 1/a′2 term and thus, we will again have so-
lutions which vanish in a′ = 0 and are real, see Fig. 1 for an illustrative
example.

Fig. 1. Example of one specific choice of the parameters of the effective potential
Ṽeff (k̃ = 10, λ = 1, α = 1) and the corresponding wave-function solution of the
WDW equation (normalized to the value at a′ = 1).

It is easy to prove that the wave function ∈ L2(0,+∞): indeed in the
limit of a′ →∞, Eq. (26) admits a solution of the type of

√
a′BesselJ (±1/6,√

λa′3/3) which scales as 1/a′ at infinity. We thus find a solution which
interpolates between the analytical one in Eq. (14) and the one of Hartle
and Hawking (real and normalizable).

Last, while in the general case no analytic solutions could be found,
one can show that for k̃ = 0 and α = 1/4, only real solutions emerge. In
fact, the general solution is a combination of

√
a′BesselJ (0,

√
λa′3/3) and√

a′BesselY (0,
√
λa′3/3), but for small a′, the former reduces to

√
a′, which

should be rejected due to the self-adjointness requirement for small a′, and
the latter reduces to

√
a′ log(a′), which is then the only physically acceptable

solution and can be taken as real.

4. Conclusions

In this work, we have studied the effect of a stiff-matter component in
the very early phase of the Universe. The corresponding potential in the
WDW equation is proportional to −1/a2. This very interesting and atyp-
ical potential has some remarkable features for the WDW equation: the
wave function vanishes at the origin, it is defined only for positive a, and it
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is real. Moreover, our qualitative results do not depend on a large class of
choices of the operator ordering of the WDW equation. In the future, more
detailed and more realistic numerical studies which take into account such
an interaction-dominated gas as well as additional terms are needed. The
investigation of possible phenomenological implication of an initial stiff mat-
ter on the early inflation and on present cosmological observables represents
a promising outlook of the present work.
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