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1 Introduction

Symmetry, as wide or as narrow as you
may define its meaning, is one idea by
which man through the ages has tried
to comprehend and create order,
beauty and perfection.

Hermann Weyl

The notion of symmetry plays a central role in the theoretical description of phys-
ical phenomena. This pivotal role is even more fundamental in the context of effective
descriptions, in which the information about microscopic details is not accessible. This is
especially the case for effective field theory (EFT) [1] and hydrodynamics [2]. Those are
low-energy effective descriptions with a finite regime of validity, which are constructed in a
perturbative fashion in terms of only the relevant degrees of freedom. In the context of hy-
drodynamics, the regime of validity is that of late time and large distances (or equivalently
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small gradients), and the perturbative structure is known as the gradient expansion. In
general, symmetries not only play a role of guidance in the construction of the theory, but
they also strongly constrain the low-energy dynamics and the nature of the physical exci-
tations. The case of non-linearly realized symmetries and Goldstone bosons is emblematic
in this sense [3]. As a consequence of Noether’s theorem, symmetries imply the presence
of conserved quantities, whose dynamics is governed by the so-called hydrodynamic modes,
protected excitations whose frequency goes to zero in the limit of zero wave-vector. The
possibility of separating the hydrodynamic modes from the non-hydrodynamic, and in this
sense irrelevant, ones is a fundamental assumption in the construction of hydrodynamics,
also known as separation of scales.

EFT and hydrodynamics have been widely used in many different physical situations
(e.g., [1, 4–7]), and their success is ultimately due to symmetries. Nevertheless, despite
Nature preferring symmetry and simplicity, symmetries are very often approximate or
softly broken. Several examples can be mentioned. Finite quark masses in QCD explicitly
break chiral symmetry giving a small but finite mass to the pions [8]. Impurities or disor-
der explicitly break translational symmetries, pinning the corresponding Goldstone modes
(e.g., charge density waves [5, 9]). The effects of explicitly breaking a certain symmetry
are reflected in the appearance of almost conserved quantities, and of relaxing excitations
which decay exponentially in time. These modes are not anymore hydrodynamic, in the
sense that their frequency is finite even in the limit of zero wave-vector, k = 0. In par-
ticular, the imaginary part of their frequency at k = 0 determines their relaxation rate,
−Im[ω(k = 0)] = Γ = τ−1 (where τ is the associated relaxation time), while their real
part at k = 0 gives their mass gap. In the time domain, these modes decay exponentially,
as ∼ exp (−Γt). Therefore, their dynamics is completely negligible for times larger than
1/Γ, i.e., in the hydrodynamic limit. On general grounds, we do expect the relaxation rate
Γ to parameterize the breakdown of the conservation law and therefore the strength of
explicit symmetry breaking. Larger explicit breaking implies a larger relaxation rate for
the corresponding non-conserved quantity.

Because of these motivations, and also as a fundamental theoretical question, enlarging
the EFT and hydrodynamic descriptions in the case of explicitly broken symmetries is of
extreme importance, but it encounters foundational problems. In general, this may appear
as a challenging or even impossible task. The main difficulty lies in the capability of sepa-
rating the non-hydrodynamic modes arising due to the broken symmetries from those who
are just parameterizing the dynamics of microscopic quantities, which are irrelevant at late
time or large scale. A simplification might arise when the explicit breaking strength λ can
be tuned to be parametrically small, i.e. much smaller than the microscopic scale Λ, deter-
mining the location of the other non-hydrodynamic modes (see figure 1 for a cartoon). In
first approximation, we can therefore define the explicit breaking scale to be small whenever
λ/Λ� 1. In finite temperature systems, the microscopic scale is usually of the order of the
temperature T , and therefore the small explicit breaking regime is then defined by the con-
dition λ/T � 1. Following the arguments above, one does expect the relaxation rate Γ to
be also small (compared to T ) in such a limit. In that case (left panel in figure 1), one could
safely separate the modes associated with the broken symmetries from those related to the
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Figure 1. Left: the small breaking regime in which the explicit breaking scale λ is much smaller
than the microscopic scale Λ. The red symbol corresponds to the non-conserved quantity, the black
ones parameterize the microscopic physics, and the blue ones are the protected hydrodynamic
modes. Right: the large breaking regime in which the explicit breaking scale λ is of the same order
of the microscopic scale Λ. In this case, no quasi-hydrodynamic description can be pursued. For
simplicity, the cartoon is taken at zero wave-vector, k = 0 and only a single non-hydrodynamic
mode, corresponding to a single non-conserved quantity, is considered.

microscopic physics. Therefore, one could enlarge the validity of the effective description
by incorporating the modes corresponding to the broken symmetry, while still neglecting
the rest of the UV ones. Notice that this is possible only because the scale of the non-
hydrodynamic modes related to the explicit broken symmetries can be directly controlled
by the explicit breaking parameter, and can be made in principle parametrically small. In
the context of relativistic hydrodynamics, this extended framework has recently been la-
belled as quasi-hydrodynamics [10]. On the contrary, in the opposite limit where the explicit
breaking parameter is large, λ/Λ� 1, such an extended effective description does not exist.
Indeed, in such a situation, the non-conserved quantities decay very fast in time, and the
imaginary part of the frequency of the corresponding modes is very large, of the same order
of the other microscopic excitations (right panel in figure 1). One has simply to discard the
non-conserved quantities from the low-energy effective description and live without them.

So far, we have mostly discussed the homogeneous dynamics in which the wave-vector
of the excitations is taken to be zero, k = 0. In the complete scenario at finite wave-vector,
the discussion about the separation of scales and the various regimes becomes more compli-
cated, since it involves the size the wave-vector k itself. We will discuss this in more detail
in section 2. Notice that a similar quasi-hydrodynamic scenario always appears in the vicin-
ity of a critical point, where critical modes approach the hydrodynamic limit. In that case,
the role of the explicit breaking scale is played by the distance from the critical point (e.g.,
(T−Tc) for a finite temperature critical point). In that context, the extended hydrodynamic
description is known as Hydro+ [11], and the slowly relaxing non-hydrodynamic mode usu-
ally corresponds to the fluctuations of the order parameter [12]. Let us emphasize here that
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all these extended frameworks are profoundly different from the generalized hydrodynam-
ics or mode-coupling theory used in liquid dynamics [13], in which the non-hydrodynamic
modes are not parameterized by a tunable perturbative parameter, but they are just a
manifestation of some unknown microscopic physics. Needless to say, the extension of hy-
drodynamics beyond its original regime of validity has attracted a lot of interest in the
context of classical fluids, with the appearance of interesting phenomena such as the cutoff
wave-vector for propagating shear waves [14], and the positive sound dispersion for longi-
tudinal sound [15]. Recently, the important role of non-hydrodynamic modes has been also
appreciated in the context of relativistic hydrodynamics and heavy-ion collisions [16, 17].

Apart from the conceptual difficulties, writing down an enlarged effective description
in the presence of broken symmetries comes with additional operational difficulties. In
particular, allowing for all the possible effects of this soft explicit breaking might be cum-
bersome. On top of that, the structure of the gradient expansion and the order therein of
the various quantities (frequency, wave-vector, explicit breaking scale) become very subtle.
At the same time, the role of frame redefinitions is not clearly established. In the past,
these obstacles have created a lot of confusion and contrasting results (some of which still
exist). In this direction, holography has emerged as an extremely useful and effective tool
to help with the construction of hydrodynamics and effective field theories with broken
symmetries (see for example the case of charge density waves, [4, 18–22]). The merits of
holography are twofold. On the one hand, holography provides the full structure of the hy-
drodynamics or EFT expansion at all orders in the perturbative parameters (frequency and
wave-vector, for example). There is no space left for missing terms or neglected effects.
On the other hand, holography gives a fully microscopic description able to concretely
predict the numerical values of all the coefficients involved in the hydrodynamic or EFT
perturbative expansion. In the case of systems with broken symmetries, holography has
another big advantage. The holographic description is valid not only in the limit of small
explicit breaking but at every order in its effects. This implies that holography can also
play an important role to ascertain and quantitatively predict the regime of validity of the
extended effective description described above, i.e., how far quasi-hydrodynamics can go.

One of the main critiques towards the so-called bottom-up holography pertains the
complete (or almost) ignorance about the structure of the dual field theory descrip-
tion. This could be a well motivated criticism, even though in several contexts (e.g.,
holographic superfluids [23], holographic systems with broken translations [22], magneto-
hydrodynamics [24], etc.), a quantitative match between the EFT/hydrodynamic descrip-
tion of the dual field theory and the holographic results has been shown. On top of several
numerical checks, in recent years, the situation has drastically changed thanks to the so-
called holographic Schwinger-Keldysh (SK) techniques [25–27]. This new tool allows for a
direct and explicit determination of the dual effective theory including all its dissipative
terms, and is particularly useful as it provides an (symmetry-based) action principle for
hydrodynamics,1 and directly computes real-time observables. Using the aforementioned
methods, one is able to obtain the full SK effective field theory description [30, 31] of a

1See [28, 29] for some earlier attempts.
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given holographic model directly from its gravitational bulk dynamics. These techniques
have been rapidly growing and have already been applied to many holographic systems [32–
39, 39–46].

Hydrodynamics and effective field theory with explicitly broken symmetries have
been recently considered in the context of translational symmetry [47–53], U(1) symme-
try [51, 54, 55], non-Abelian symmetries [56–58] and also higher-form symmetries [59, 60].
Holography has played a fundamental role both in verifying but also falsifying the pro-
posed effective descriptions (see for example [19]). In this work, we will consider the
simplest scenario possible for studying the effective description of systems with explicitly
broken symmetries and its quasi-hydrodynamic regime. More specifically, using both SK
field theory and holographic SK techniques, we will study in detail a system which explic-
itly breaks a global U(1) symmetry in the limit of small explicit breaking, which can serve
as a toy model for the more complicated cases of translations and non-Abelian symmetries.
For simplicity, we will also work in the probe limit in which the dynamics of the stress
tensor (i.e., temperature and momentum fluctuations) is kept frozen.

1.1 U(1) quasi-hydrodynamics

Let us consider a finite temperature system which possesses a global U(1) symmetry. The
latter is associated to the conservation of a charge Q (e.g., electric charge) and of a current
density Jµ:

∂µJ
µ = 0, (1.1)

which, in absence of sources, arises as the Ward identity for the aforementioned U(1)
symmetry. In the probe limit, neglecting the dynamics of the stress tensor, the only
relevant hydrodynamic degree of freedom at low energy corresponds to the fluctuations of
the charge density δρ(t, ~x). At lowest order in the gradient expansion, or equivalently in
the wave-vector k, charge fluctuations obey a diffusive equation given by:(

∂t +D∇2
)
δρ(t, ~x) = 0, (1.2)

which is a direct consequence of the macroscopic Fick’s law. In the context of hydrody-
namics, the latter manifests itself in the so-called constitutive relation for the current Jµ.
Finally, still within the effective description, one can derive that the diffusion constant D
is given by:

D = σ

χρρ
, with χρρ ≡

∂ρ

∂µ
, (1.3)

with σ being the electric conductivity, χρρ the charge susceptibility and µ the chemical
potential. What we have just described is what one observes by dissolving color in a glass
of water. For a formal derivation using standard hydrodynamics see [2]; for a derivation
using SK techniques see [31].

What happens when we do break the U(1) global symmetry explicitly? The total
charge is not anymore conserved and charge fluctuations decay exponentially in time at a
rate Γ, proportional to the amount of explicit breaking (at least, for small explicit breaking).
If this rate is too large, charge is gone before we have the time to actually see it, meaning
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that the late time description of such a system does not need to take into account the
dynamics of charge fluctuations at all. What happens on the contrary if the breaking
is very soft and the relaxation rate Γ small? Then, one expects that the conservation
equation (1.1) can be somehow retained, but modified by the addition of new terms in the
r.h.s. which parameterize the amount of non-conservation:

∂µJ
µ = . (1.4)

Recall that the general philosophy of hydrodynamics is that we can expand any opera-
tor in terms of gradients of the slow degrees of freedom, and this will hold in particular for
the operators appearing in the r.h.s. of (1.4). When the only relevant degree of freedom is
the charge density ρ, the hydrodynamic expansion will give rise to (in a generally covariant
form)2

∂µJ
µ = ΓuµJµ + · · · , (1.5)

at leading order, where uµ is the four-velocity vector, and Γ is a dissipative transport
coefficient from this point of view. In other words, flowing to the IR of the deformed QFT
is expected to lead to the effective Ward identity eq. (1.5). Alternatively, one can postulate
eq. (1.5) directly as the effective description of the system. This approach is quite common
from the EFT point of view, and is inherently agnostic of the microscopic details of the
underlying QFT; for instance, (1.5) simply encodes that the current operator Jµ acquires
an anomalous dimension in the IR.

Recently, a lot of activity has focused on the pinned or relaxed phase of superflu-
ids, in which the U(1) is also spontaneously broken, on top of the soft explicit breaking.
The hydrodynamics of such systems has been derived in the probe limit in [48, 51, 55].
Holographic models have been employed in [55, 63] in order to analyze this problem in
more detail. Ref. [63] took a standard approach by breaking the global U(1) symmetry of
the dual field theory with explicit sources for charged scalar operators. On the contrary,
ref. [55] considered, in addition to the scenario just mentioned, a different one in which
the global U(1) symmetry of the dual field theory is explicitly broken by the presence of
a mass term for the bulk gauge field. This kind of gravitational action is known as Proca
theory, and its use has been inspired by the applications of the holographic correspondence
to mimic the dynamics of non-conserved axial charge [64–71].

Despite the compatibility of the numerical results of [55] with the hydrodynamic de-
scription and with the broken Ward identity in eq. (1.5), several points of the analysis
therein have not been clarified. First, there is a lot of confusion in the literature about
the broken Ward identity in eq. (1.5) for the holographic Proca model. Additionally, in
presence of a finite charge density state, it is unclear how one can even define thermal equi-
librium in presence of a softly broken U(1) symmetry and a non-conservation equation as
in eq. (1.5). At most, one expects the possibility of creating a steady state by balancing the
charge relaxation term in the r.h.s. of eq. (1.5) with some external source and/or driving
(see for example [72]). Finally, ref. [48] identified additional transport coefficients which

2See [61, 62] for further discussions on relaxed hydrodynamics and covariance.
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appear when the U(1) is pseudo-spontaneously broken, and it would be interesting to gain
a better understanding of their origin.

In this manuscript, we consider the holographic Proca model and we study in detail
its low-energy dynamics using holographic SK techniques. We see the emergence of the
SK effective action and we explicitly compute many of its coefficients in terms of bulk
quantities. As a corollary, we derive the Ward identity in eq. (1.5). We also find analogous
transport coefficients to the ones introduced in [48], albeit they appear at higher order
in the explicit breaking scale. Finally, we derive the dispersion relation of the pseudo-
diffusive hydrodynamic mode, and observe that, to leading order, its diffusion constant
does not receive corrections. Apart from these investigations, we aim to pave the way
towards extending the holographic Scwhinger-Keldysh techniques in presence of explicitly
broken symmetries into the quasi-hydrodynamic regime.

The manuscript is organized as follows. In section 2, we review and extend the EFT
description for systems with broken U(1) symmetry; in section 3 we perform the Schwinger-
Keldysh analysis for the holographic Proca model; in section 4 we present the main results
of our work and the lessons learned, and finally, in section 5, we conclude with an outlook
and some perspectives for the future. The details of the holographic Schwinger-Keldysh
computations appear in appendix A.

2 Schwinger-Keldysh effective field theory for relaxed U(1) diffusion

The EFT for a single conserved U(1) charge and its diffusive dynamics has been constructed
in [73], and later confirmed by holographic methods in [25, 36, 74]. Here, we will extend the
construction of [73] to the situation in which a soft explicit breaking of the global U(1) sym-
metry is introduced. Our building blocks will be the gauge-invariant quantities Bsµ and ϑs

Bsµ ≡ Asµ + ∂µφs, ϑs = θbs + φs, (2.1)

where s = 1 (s = 2) corresponds to the upper (lower) branch of the SK closed time path,
φs is the dynamical field, Asµ is an external gauge field coupling to the U(1) current,
and θbs is an external scalar source introduced in order to artificially restore the U(1)
symmetry [48]. The terms constructed from the building block ϑs will be responsible
for the non-conservation of the global U(1) current, cfr. eq. (1.5). In general, it is more
convenient to work with the Keldysh retarded-advanced basis

Brµ = 1
2(B1µ+B2µ), ϑr = 1

2(ϑ1 +ϑ2), Baµ = B1µ−B2µ, ϑa = ϑ1−ϑ2 . (2.2)

The EFT action can be organized in a perturbative hydrodynamic expansion in derivatives
as

Seff =
∫
d4x (L1 + L2) , (2.3)
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where:

L1 = g0Ba0Br0 + g1Ba0∂0Br0 + f0BriBai + f1Bai∂0Bri + h0Ba0∂iBri

+ h1Bai∂iBr0 + Γ0ϑaϑr + Γ̃ϑa∂0ϑr + Γ1ϑa∂
2
0ϑr + Γ2ϑa∂

2
i ϑr + c0ϑaBr0

+ c1ϑa∂0Br0 + c2ϑa∂iBri + d0ϑrBa0 + d1∂0ϑrBa0 + d2∂iϑrBai

+ 1
2w0B

2
a0 + w1Ba0∂iBai + 1

2w2B
2
ai + 1

2w3ϑ
2
a + 1

2w4ϑa∂
2
i ϑa + 1

2w5ϑa∂
2
0ϑa

+ w6ϑaBa0 + w7ϑa∂0Ba0 + w8ϑa∂iBai, (2.4)
L2 = c3ϑa∂

2
0Br0 + c4ϑa∂0∂iBri + c5ϑa∂

2
iBr0 + d3∂

2
0ϑrBa0 + d4∂0∂iϑrBai

+ d5∂
2
i ϑrBa0 + Γ3ϑa∂0∂

2
i ϑr + Γ4ϑa∂

3
0ϑr + g2Ba0∂

2
0Br0 + g3Ba0∂

2
iBr0

+ f2Bai∂i∂kBrk + f3Bai∂
2
jBri + h2Ba0∂0∂iBri + h3Bai∂0∂iBr0

+ Γ5ϑa∂
4
0ϑr + Γ6ϑa∂

2
0∂

2
i ϑr + Γ7ϑa∂

2
i ∂

2
jϑr + c6ϑa∂

3
0Br0 + c7ϑa∂0∂

2
iBr0

+ c8ϑa∂
2
0∂iBri + c9ϑa∂

2
j ∂iBri + d6Ba0∂

3
0ϑr + d7Ba0∂0∂

2
i ϑr + d8Bai∂

2
0∂iϑr

+ d9Bai∂
2
k∂iϑr + w9ϑa∂

2
0Ba0 + w10ϑa∂

2
iBa0 + w11ϑa∂0∂iBai + 1

2w12ϑa∂0∂
2
i ϑa

+ 1
2w13ϑa∂

3
0ϑa, (2.5)

where we have imposed rotational invariance along the spatial coordinates. Setting
ϑr = ϑa = 0, (2.4) and (2.5) reduce to the effective Lagrangian for single conserved U(1)
charge, as in [73]. Thus, the coefficients in (2.4) and (2.5) generally scale as

g0−3, f0−3, h0−3, w0−2 ∼ O(m0), Γ̃, Γ0−7, c0−9, d0−9, w3−13 ∼ O(m2), (2.6)

as a function of the parameter m, which is the scale characterizing the soft explicit
breaking of the U(1) symmetry. Here, we have clearly assumed that m/T � 1, and
that therefore such an expansion is legitimate. This scaling makes the terms L1 leading
compared to those in L2, in an O(∂,m2) expansion, justifying the splitting made in (2.3).

Importantly, in this work, we will only consider a (soft) explicit breaking of the global
U(1) symmetry and not an additional spontaneous breaking of the latter, as in [48, 51,
55]. This will have two crucial consequences. First, in absence of spontaneous breaking,
chemical shifts are an exact symmetry of the system which the SK functional should obey.
Second, the leading scaling of several coefficients with respect to the explicit breaking scale
will be profoundly different in the purely explicit case compared to the pseudo-spontaneous
one. We will return on this point later in the manuscript.

We turn to the various constraints among the coefficients appearing in (2.4) and (2.5),
which are imposed by the general rules of the Scwhinger-Keldysh effective field theory (SK
EFT) [73, 75].

Here, we provide a list of them and the corresponding constraints.

• Z2-reflection symmetry.

(Seff [Brµ, ϑr;Baµ, ϑa])∗ = −Seff [Brµ, ϑr;−Baµ,−ϑa], (2.7)

– 8 –



J
H
E
P
0
9
(
2
0
2
3
)
0
1
9

which directly follows from the SK formalism. This symmetry implies that the coefficient
for any term with an even number of a-variables shall be purely imaginary, while the
coefficient for any term with an odd number of a-variables must be real. Thus, all the wi’s
are purely imaginary, and all the other coefficients are real.

• Chemical shift symmetry. This symmetry simply reflects the redundancy of the
description in labelling the U(1) phase of each local fluid element. It defines the normal
phase of a fluid, and is broken only when the U(1) symmetry is spontaneously broken [73].
Then, the EFT action is invariant under a diagonal time-independent shift

φr → φr + λ(~x), φa → φa

⇒ Bri → Bri + ∂iλ(~x), ϑr → ϑr + λ(~x), Br0, Baµ, ϑa unchanged, (2.8)

which leads to

d2 = −f0, h0 = 0, c2 = −Γ2, Γ0 = 0, d0 = 0,
d5 = −h0, f2 + f3 = −d9, Γ7 = −c9. (2.9)

• Onsager relations. The Onsager relations follow from the symmetry properties of
the retarded (or advanced) correlation functions under a change of the ordering of opera-
tors [73]. Imposing them, we find

h0 = h1 h2 = h3,

c0 = −d0, c1 = −d1, c2 = −d2, c3 = −d3, c4 = −d4,

c5 = −d5, c6 = −d6, c7 = −d7, c8 = −d8, c9 = −d9. (2.10)

• Dynamical KMS symmetry. When the system is in a thermal equilibrium state, the
KMS condition sets important constraints on the generating functional W = i logZ, with
Z =

∫
[Dφr][Dφa]exp (iSeff) being the partition function. At quadratic level, as considered

in this work, the constraint is simply the celebrated fluctuation-dissipation theorem. Within
the SK EFT, the KMS condition is guaranteed by imposing that the EFT action satisfies
the dynamical KMS symmetry [75]

Seff [B1µ, ϑ1;B2µ, ϑ2] = Seff [B̃1µ, ϑ̃1; B̃2µ, ϑ̃2], (2.11)

where, in the classical statistical limit [75],

B̃rµ(−v,−~x) = (−1)ηµBrµ(v,~x), B̃aµ(−v,−~x) = (−1)ηµ [Baµ(v,~x)+ iβ∂0Brµ(v,~x)] ,
ϑ̃rµ(−v,−~x) = (−1)ηϑϑrµ(v,~x), ϑ̃aµ(−v,−~x) = (−1)ηµ [ϑaµ(v,~x)+ iβ∂0ϑrµ(v,~x)] . (2.12)

Here, (−1)ηµ and (−1)ηϑ are the eigenvalues of a discrete symmetry transformation Θ (con-
taining time-reversal T ) acting on Bµ and ϑ, respectively. We use v to denote the time
coordinate, and β ≡ 1/T is the inverse temperature. Physically, the dynamical KMS sym-
metry (2.11) amounts to imposing microscopic time-reversibility and local equilibrium [75].
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Indeed, by taking the classical statistical limit (2.12), the EFT becomes a classical sta-
tistical theory, in which only statistical thermal fluctuations survive. Eventually, after
imposing (2.11) and (2.12), we find

g1 = 1
2 iβw0, f1 = 1

2 iβw2, h0 = 0, h1 = 0, Γ̃ = 1
2 iβw3,

c0 = 0, d0 = 0, w1 = 0, w6 = 0, c3 = −d3 = 1
2 iβw7,

c4 = −d4 = 1
2 iβw8, c5 = 0, d5 = 0, Γ3 = 1

2 iβw4, Γ4 = 1
2 iβw5,

w9 = w10 = w11 = w12 = w13 = 0. (2.13)

It is interesting to note that in this quasi-hydrodynamic setup, not all of the Onsager
relations follow from the dynamical KMS conditions, in contrast to fluids with preserved
or spontaneously broken symmetries [75].

• Well-defined path integral. Recall that some coefficients in the EFT action are
purely imaginary. Then, for the path integral based on Seff to be well-defined, we shall
impose

Im(w0) ≥ 0, Im(w2) ≥ 0, Im(w3) ≥ 0, . . . (2.14)

where the second requirement, combined with KMS relations, indicates that the diffusion
constant and conductivity (i.e., the dissipative coefficients) are non-negative. At quadratic
level, this is equivalent to the positivity of entropy production, as commonly imposed in
hydrodynamics.

In section 3, through a holographic study, we will confirm the structure of L1 in (2.4),
as well as various constraints set by symmetry rules. Moreover, we will compute all the
coefficients in (2.4) within the holographic model. L2 in (2.5) contains higher order deriva-
tive terms, which are crucial in obtaining a correct prediction for the dispersion relation of
the low energy modes up to order O(m2k2).

3 Schwinger-Keldysh effective field theory from holography

In this section, we apply the holographic prescription for the SK closed time path [25] to
the holographic Proca model. In addition to a holographic derivation of the EFT action
written down in section 2, we also compute the unknown coefficients in the EFT action.
For simplicity, we will work in the probe limit and consider zero background charge density.

Let us consider the 5-dimensional Proca theory using the Stückelberg formalism3

Sbulk =
∫
d5x
√
−g

[
−1

4FMNF
MN − m2

2 (CM −∇Mθ)(CM −∇Mθ)
]
, (3.1)

3Alternatively, we could use a more standard Maxwell action coupled to a charged scalar field with a
non zero source at the boundary. For the appropriate choice of the scalar conformal dimension, this would
lead to a similar asymptotic analysis as the one performed in section 3.3, and a similar structure for the
SK EFT action. This comparison is for example discussed in section 4.1 of [67].
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Figure 2. The holographic prescription for the Schwinger-Keldysh closed time path [25]: complex-
ified radial coordinate and analytical continuation around the horizon rh.

which, in the unitary gauge θ = 0, reduces to the “standard” Proca massive vector theory.
The AdS radius has been set to unity LAdS = 1, and can be reinstated from dimensional
analysis. While the U(1) gauge field CM is massive, the Stückelberg theory (3.1) still enjoys
a gauge symmetry

CM → CM +∇Mξ, θ → θ + ξ, (3.2)

which will play a crucial role in the subsequent analysis. The bulk action (3.1) shall be
supplemented with a counter-term action Sct which will be specified in section 3.3.

In the ingoing EF coordinate system, the metric for the fixed background geometry is
given by the AdS black brane

ds2 = gMNdx
MdxN = 2drdv − r2f(r)dv2 + r2δijdx

idxj , (3.3)

with f(r) = 1 − r4
h/r

4. In order to construct Schwinger-Keldysh EFT on the boundary,
we adopt the holographic prescription of [25]. Then, the radial coordinate r varies on the
contour in figure 2.

Latin indices, M,N, · · · , are used to denote the 5-dimensional spacetime coordinates,
Greek indices, µ, ν, · · · , indicate the 4-dimensional boundary ones.

3.1 Holographic dictionary revisited

In order to derive the effective action from a bulk theory in AdS space, we need to consider
the holographic Wilsonian renormalization group, as outlined in [26] for pure gravity. In [36,
37], this analysis was adopted to the examples of a probe Maxwell theory and scalar QED,
respectively, in a fixed AdS black brane. Here, we carry out such an analysis for the
Stückelberg theory in eq. (3.1).

The starting point is the Gubser-Polyakov-Klebanov-Witten (GPKW) master rule [76,
77]

ZAdS = ZCFT, (3.4)

where the partition function ZCFT is expressed as a path integral over the low energy modes
collectively denoted by φ,

ZCFT =
∫

[Dφ]eiSeff [φ]. (3.5)

– 11 –



J
H
E
P
0
9
(
2
0
2
3
)
0
1
9

Here, Seff [φ] is the desired effective action to be derived from the holographic model. On
the other hand, the AdS partition function is given by

ZAdS =
∫

[DC ′M ][Dθ′]eiSbulk[C′M ,θ
′]+iSct , (3.6)

where a primed field means no gauge-fixing has yet been imposed.
When m 6= 0, the asymptotic behavior for the bulk vector field gets modified dramat-

ically. Accordingly, we set the boundary conditions for C ′M , θ′ as follows (i.e., fixing the
non-normalizable modes):

r−∆C ′µ(r =∞, xα) = Aµ(xα), θ′(r =∞, xα) = θb(xα), (3.7)

where ∆ = −1 +
√

1 +m2 is the conformal dimension of the boundary U(1) current.
The bulk gauge symmetry in eq. (3.2) allows to bring an arbitrary field configuration

(C ′M , θ′) to a desired one (CM , θ) by means of the following transformation

C ′M → CM = C ′M + ∂Mξ, θ′ → θ = θ′ + ξ. (3.8)

Immediately, under (3.2), the boundary values of the bulk fields transform as

r−∆Cµ(r =∞, xα) = Aµ + ∂µφ ≡ Bµ, θ(r =∞, xα) = θb + φ ≡ ϑ, (3.9)

where
φ = r−∆ξ(r =∞, xα) . (3.10)

For an infinitesimally small mass m, we will elaborate on the near-boundary behavior for
the bulk fields later on in section 3.3.

Importantly, the bulk path integral (3.6) can be equivalently expressed in terms of
gauge-fixed configurations (once the gauge transformation parameter is included)

ZAdS =
∫

[DCµ][Dξ][Dθ]eiSbulk[Cµ,θ]+iSct =
∫

[Dξ]eiSbulk[Cµ[Bµ,ϑ], θ[Bµ,ϑ]]
∣∣
p.o.s

+iSct

≈
∫

[Dφ]eiSbulk[Cµ[Bµ,ϑ], θ[Bµ,ϑ]]
∣∣
p.o.s

+iSct
, (3.11)

where the Jacobian determinant, arising from going from (C ′M , θ′) to (Cr =
−Cv/(r2f(r)), Cµ, θ), is neglected (hence, the ≈). In the right-handed side of the first
line in (3.11), the heavy modes dual to Cµ, θ have been integrated out in the saddle point
approximation, yielding the partially on-shell (p.o.s) action Sbulk[Cµ[Bµ, ϑ], θ[Bµ, ϑ]]

∣∣
p.o.s,

which is eventually identified as the desired effective action for the boundary theory

Seff = Sbulk[Cµ[Bµ, ϑ], θ[Bµ, ϑ]]
∣∣
p.o.s + Sct. (3.12)

Here, in the partially on-shell action, we shall not impose the constraint equation, which
corresponds to the “conservation law” for the boundary current. More details will be
provided in section 3.2.

The analysis above can be slightly modified in order to be compatible with a different
gauge choice, e.g., Cr = 0. While some details might change, the main conclusion does not.

– 12 –



J
H
E
P
0
9
(
2
0
2
3
)
0
1
9

3.2 Bulk dynamics: variational problem revisited

In the saddle point approximation, the bulk dynamics reduces to solving the classical
equations of motion for the bulk fields CM and θ. However, we shall do this in a partially
on-shell approach so that the low energy mode will be kept as dynamical in the effective
action. It turns out that this prescription becomes more natural by reconsidering the bulk
variational problem based on gauge-fixed field configurations.

First of all, it is direct to carry out such a procedure based on the field configuration
(C ′M , θ′), which can be varied freely

C ′M → C ′M + δC ′M , θ′ → θ′ + δθ′. (3.13)

Therefore, the variation of the bulk action reads

δSbulk =
∫
d5x
√
−g

[
∇MF ′MNδC ′N − δC ′Mm2(C ′M −∇Mθ′)−m2∇M (C ′M −∇Mθ′)δθ′

]
+ Sbdy

=
∫
d5x
√
−g

[
∇MFMNδC ′N − δC ′Mm2(CM −∇Mθ)−m2∇M (CM −∇Mθ)δθ′

]
+ Sbdy, (3.14)

where Sbdy is a potential boundary term which is irrelevant for the subsequent discussion.
Now, we are ready to express δSbulk in terms of a gauge-fixed configuration. To this end,
via (3.8), we have

δC ′r = − δCv
r2f(r) −∇rδξ, δC ′µ = δCµ −∇µδξ, δθ′ = δθ − δξ. (3.15)

Thus, from δSbulk, we obtain the dynamical equations of motion (EOMs)

δCv 6= 0⇒ ∇MFMv −m2(Cv −∇vθ)− 1
r2f(r)

[
∇MFMr −m2(Cr −∇rθ)

]
= 0,

δCi 6= 0⇒ ∇MFMi −m2(Ci −∇iθ) = 0,
δθ 6= 0⇒ ∇M (∇Mθ − CM ) = 0, (3.16)

and the contracted Bianchi identity

δξ 6= 0⇒ ∇M∇NFMN = 0. (3.17)

Lastly, we also have a potential boundary term due to variation of the gauge parameter,
δξ, which is given by

δSbulk →
∫
d4x
√
−γnN

[
−∇MFMN +m2(CN −∇Nθ)

]
δξ
∣∣
bdy. (3.18)

The latter gives the constraint equation

δξ
∣∣
bdy 6= 0⇒ Er ≡ ∇MFMr −m2(Cr −∇rθ)

∣∣
bdy = 0. (3.19)
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Using the radial gauge
Cr = − Cv

r2f(r) , (3.20)

the dynamical equations (3.16) fully determine the profiles of bulk fields CM and θ in the
bulk spacetime. Indeed, after solving the dynamical equations (3.16), the value of the con-
straint Er will become known at any spacetime point. Moreover, the Bianchi identity (3.17)
allows to obtain a compact expression for Er at any radial slice.

Then, explicitly, the dynamical equations (3.16) are

0 = ∂r(r3∂rCv) +
[ 2r
f(r)∂r + 1

f(r) −
rf ′(r)
f2(r)

]
∂vCv + ∂2

vCv
rf2(r) + 1

rf(r)(∂2
kCv − ∂v∂kCk)

− m2r

f(r)(Cv − ∂vθ),

0 = ∂r[r3f(r)∂rCi] + 2r∂r∂vCi + ∂vCi + ∂v∂iCv
rf(r) + r−1∂k(∂kCi − ∂iCk)−m2r(Ci − ∂iθ),

0 = ∂r[r5f(r)∂rθ] + 2r3∂r∂vθ + 3r2∂vθ + r∂k(∂kθ − Ck) + r

f(r)∂vCv. (3.21)

These EOMs will be solved on the radial contour shown in figure 2.

3.3 Holographic renormalization

We turn to the near-boundary behavior for the bulk fields. Remarkably, the asymptotic
behavior for the bulk fields depends on the value of bulk mass m. The present work will
be limited to the case of a small m. Then, within this assumption, eq. (3.21) will be solved
perturbatively

Cµ = C(0)
µ +m2C(2)

µ + · · · , θ = θ(0) +m2θ(2) + · · · . (3.22)

Then, near the AdS boundary, we have

C(0)
µ (r →∞, xα) = Bµ + ∂vBµ

r
− log r

2r2 ∂
ν(∂µBν − ∂νBµ) + J̃

(0)
µ

r2 + · · · ,

C(2)
µ (r →∞, xα) = 1

2(Bµ − ∂µϑ) log r + 0 + log r
2r ∂v(Bµ − ∂µϑ) + log r

8r2 δB
L
µ + J̃

(2)
µ

r2 + · · · ,

θ(0)(r →∞, xα) = ϑ+ θ1
r

+ θ2
r2 + θ3

r3 + log r
r4 θL + Õ(0)

r4 + · · · , (3.23)

where

δBL
µ = −4J̃ (0)

µ − ∂µ∂νBν + 4∂2
vBµ + ∂µ(~∂ 2 − 3∂2

v)ϑ,
θ1 = ∂vϑ,

θ2 = 1
4
(
∂2
v + ~∂ 2

)
ϑ− 1

4∂µB
µ,

θ3 = 1
12
(
3~∂ 2 − ∂2

v

)
∂vϑ−

1
4∂v∂µB

µ,

θL = −1
4∂µJ̃

µ(0) + 1
16
(
~∂ 2 − 3∂2

v

)
∂µB

µ + 1
16
(
~∂ 2 − ∂2

v

)2
ϑ. (3.24)
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Since we will truncate the boundary action up to O(m2), the knowledge of θ(2) is irrelevant.
The underlined terms in (3.23) indicate the free boundary data which will be fixed by AdS
boundary conditions. We will elaborate on this point in section 3.4.

We proceed by explaining the derivation of the counter-term action Sct, by applying
the standard procedure of holographic renormalization [78, 79]. Once the dynamical equa-
tions (3.16) are solved, it is direct to evaluate the partially on-shell bulk action. For a
quadratic action like (3.1), it is possible to reduce it into a surface term via integration by
parts. It turns out that

Sbulk = −1
2

∫
d4x
√
−γnM

[
CNF

MN +m2θ(∇Mθ − CM )
] ∣∣∣∣r=∞1

r=∞2

= −1
2

∫
d4x
√
−g

[
CµF

rµ +m2θ(∇rθ − Cr)
] ∣∣∣∣r=∞1

r=∞2

,

= −1
2

∫
d4x

{
−r3Cv∂rCv −

r

f(r)Cv∂vCv + r3f(r)Ck∂rCk + rCk∂vCk

+m2r5f(r)θ∂rθ +m2r3θ∂vθ

}
. (3.25)

Here, we utilized the dynamical equations (3.16) and the radial gauge choice, but have not
assumed the constraint equation (3.19). Using the near-boundary behavior (3.23), it is
straightforward to obtain the divergent part of the bulk action (3.1) near to the conformal
boundary r =∞. The result is given by

Sdiv =
∫
d4x

log rc
4 (∂µBν − ∂νBµ)(∂µBν − ∂νBµ)

+m2
∫
d4x

{
−1

4r
2
c (Bµ − ∂µϑ)(Bµ − ∂µϑ)− 1

8(log2 rc − log rc)(∂µBν − ∂νBµ)

×(∂µBν − ∂νBµ) + 1
8 log rc [∂µ(Bµ − ∂µϑ)]2

}
, (3.26)

where rc is a UV cutoff. In a minimal subtraction scheme, the counter-term action Sct may
be taken as

Sct =
∫
d4x
√
−γ

{
− log r

8 (2− 3m2 log r)FµνFµν + 1
4m

2(Cµ − ∂µθ)(Cµ − ∂µθ)

− log r
8 m2 [∂µ(Cµ − ∂µθ)]2

} ∣∣∣∣
r=∞

. (3.27)

In the counter-term action (3.27), while the first piece and the third piece are written
down based on minimal subtraction scheme, the second piece will unavoidably bring in
finite contributions when r →∞. Here, we briefly compare our counter-term action (3.27)
with that proposed in [66, 67]

SJA
ct =

∫
d4x
√
−γ

{∆
2 (Cµ − ∂µθ)(Cµ − ∂µθ)−

1
4(∆ + 2)[∂µ(Cµ − ∂µθ)]2 + 1

8∆F 2
}
.

(3.28)
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While (3.28) does cancel most of the divergences in (3.26), it becomes ill-defined as m→ 0.
Eventually, the boundary EFT action is given by

Seff =
∫
d4x

[
Bµ(x)

(
J̃µ(0)(x) + 1

2m
2J̃µ(0)(x) +m2J̃µ(2)(x)

)
+ 2m2ϑ(x)Õ(0)(x)

−3
8m

2J̃µ(0)∂µϑ+ · · ·
] ∣∣∣∣1

2
, (3.29)

where · · · denotes contact terms beyond order O(∂2
µ). As evident, eq. (3.29) has a smooth

m→ 0 limit.

3.4 Boundary conditions and perturbative scheme

We will impose AdS boundary conditions and fix the underlined terms in (3.23). However,
in order to fully fix Cv, we shall additionally impose a vanishing condition for Cv at the
horizon [25]

Cv(r = rh, x
α) = 0 . (3.30)

This condition corresponds to the chemical shift symmetry in (2.8), which becomes more
obvious if we examine the residual gauge symmetry. Indeed, with the radial gauge-fixing
Cr = −Cv/(r2f(r)), we still have a residual gauge symmetry for the configuration (CM , θ)

Cµ → Cµ + ∂µΛ(xα), θ → θ + Λ(xα), (3.31)

where Λ(xα) is to distinguish from the gauge transformation parameterized by ξ that has
brought (C ′M , θ′) to (CM , θ). Now, the condition (3.30) requires Λ to be time-independent,
Λ(xα)→ Λ(~x). Eventually, the boundary version of (3.31) is nothing else but the chemical
shift symmetry (2.8).

Note however that preserving chemical shift symmetry actually allows for a more gen-
eral condition at the horizon, which can be generally written as Cv(rh, xα) = F (xα) for any
fixed function F of the boundary coordinates xα. It is tempting to relate such a redun-
dancy in the horizon condition to the freedom of choosing a specific hydrodynamic frame.
In other words, we expect that the choice of the F function above would entirely fix the
zero modes of the bulk differential operators derived within the fluid-gravity correspon-
dence, which indeed encode the hydrodynamic frame transformations [80].4 We leave such
an exploration as a future task.

In all our discussions, we assume that the bulk mass m is small. This is equivalent to
assuming that the explicit breaking term in the dual field theory is small compared to the
characteristic microscopic scale of the system. More specifically, we will work within the
approximation of m/T � 1, where T is the temperature of the dual field theory. Within
this assumption, (3.21) can be solved perturbatively, cfr. Eq. (3.22). At each order in the
m-expansion of (3.22), we perform a hydrodynamic expansion

C(0)
µ = εC(0)(1)

µ + ε2C(0)(2)
µ + · · · , C(2)

µ = εC(2)(1)
µ + ε2C(2)(2)

µ + · · · ,
θ(0) = θ(0)(0) + ε θ(0)(1) + ε2θ(0)(2) + · · · , (3.32)

4See also [81–83] for the appearance of these zero modes in explicit holographic constructions of hydro-
dynamic modes and for discussions on hydrodynamic frames in related holographic settings.
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where the bookkeeping parameter ε ∼ ∂µ helps to count number of boundary derivatives.
In Fourier space, ε has to be identified with the frequency ω and the wave-vector k. Here,
the derivative expansion in (3.32) is motivated by the fact that Bµ = Aµ + ∂µφ is first
order in boundary derivatives, while ϑ = θb + φ is zeroth order in boundary derivative.
Notice that, at this point, we are performing a double and independent expansion in the
parameter m and the spacetime derivatives ∂µ, hence the double indices.

Consequently, at each order in the double expansion, C(n)(l)
µ and θ(n)(l) satisfy decou-

pled ordinary differential equations (ODEs)

∂r
[
r3∂rC

(n)(l)
v

]
= j(n)(l)

v , ∂r
[
r3f(r)∂rC(n)(l)

i

]
= j

(n)(l)
i , ∂r

[
r5f(r)∂rθ(n)(l)

]
= j

(n)(l)
θ ,

(3.33)
where the sources are built up from lower order solutions. For our purpose, we record the
first few source terms

j
(0)(0)
θ = j(0)(1)

v = j
(0)(1)
i = 0,

j
(0)(1)
θ = −2r3∂r∂vθ

(0)(0) − 3r2∂vθ
(0)(0),

j(0)(2)
v = −

[ 2r
f(r)∂r + 1

f(r) −
rf ′(r)
f2(r)

]
∂vC

(0)(1)
v ,

j
(0)(2)
i = −2r∂r∂vC(0)(1)

i − ∂vC(0)(1)
i ,

j(2)(1)
v = r

f(r)
[
C(0)(1)
v − ∂vθ(0)(0)

]
,

j
(2)(1)
i = r

[
C

(0)(1)
i − ∂iθ(0)(0)

]
,

j(2)(2)
v = −

[ 2r
f(r)∂r + 1

f(r) −
rf ′(r)
f2(r)

]
∂vC

(2)(1)
v + r

f(r)
[
C(0)(2)
v − ∂vθ(0)(1)

]
,

j
(2)(2)
i = −2r∂r∂vC(2)(1)

i − ∂vC(2)(1)
i + r

[
C

(0)(2)
i − ∂iθ(0)(1)

]
,

j
(0)(2)
θ = −2r3∂r∂vθ

(0)(1) − 3r2∂vθ
(0)(1) − r∂k

(
∂kθ

(0)(0) − C(0)(1)
k

)
− r

f(r)∂vC
(0)(1)
v . (3.34)

The double expansion has been truncated as follows. First, since θ is always multiplied by
a m2 factor, we will keep its lowest order in the m-expansion. Then, we cover the derivative
terms in θ(0) up to second order. Second, ignoring the backreaction of θ on the bulk gauge
field, we will construct C(0)

µ up to second order in boundary derivative expansion. Finally,
the backreaction effect of θ on the dynamics of the bulk gauge field is important, and will
not be neglected. For this purpose, we track the leading order m2-corrections C(2)

µ up to
second order in boundary derivative expansion.

The truncation scheme specified above guarantees that we will obtain the structure
of the EFT Lagrangian (2.4), along with the specific values for the coefficients. Since the
perturbative computations are rather cumbersome and not very illuminating, we will defer
all the details and results to appendix A.

3.5 Summary of results

With the perturbative solutions presented in appendix A, it is straightforward to evalu-
ate (3.29). Limited to the truncated order, we do obtain the desired EFT structure as in
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eq. (2.4) in which the various coefficients are given by

g0 = 2r2
h+ 1

2m
2r2
h

[
2log(2r2

h)+1
]
, g1 = 0, f0 = 1

2m
2r2
h, f1 =−rh−

1
2m

2rh log(2r2
h),

h0 = 0, h1 = 0, Γ0 = 0, Γ̃ =−m2r3
h, Γ1 = 1

2m
2r2
h(1− log2), Γ2 =−1

2m
2r2
h,

c0 = 0, c1 = 1
2m

2r2
h log(2r2

h), c2 = 1
2m

2r2
h, d0 = 0, d1 =−1

2m
2r2
h log(2r2

h),

d2 =−1
2m

2r2
h, w0 = 0, w1 = 0, w2 = 2ir2

h

π
+m2 ir

2
h

π
log(2r2

h), w3 = 2m2 ir
4
h

π
,

w4 =m2 ir
2
h log2
π

, w5 =−m2 ir
2
h

24π
(
5π2 +24log2−12log2 2

)
, w6 = 0,

w7 =m2 ir
2
h

4π (2 log2− log2 2), w8 =m2 ir
2
h

π
logrh. (3.35)

We have checked that the holographic results (3.35) indeed satisfy all the constraints sum-
marized in section 2. Notice that the AdS length scale is set to LAdS = 1; restoring it will
make the arguments in the logarithms dimensionless. Before continuing, let us discuss a
few important points related to the various transport coefficients above.

• In the absence of explicit breaking, f1 and g0 correspond respectively to the electric
conductivity and the charge susceptibility, with their ratio giving the charge diffusion
constant.

• The vanishing of the g1 coefficient, g1 = 0, which was also observed in [25, 36, 74],
is related to the hydrodynamic frame that the holographic models naturally choose.
Indeed, in the absence of explicit breaking, g1 can be consistently set to zero by an
appropriate redefinition of the dynamical field, at the cost of having an additional
higher-order terms. In other words, its value is not frame independent. On the
contrary, in the case of spontaneous or pseudo-spontaneous breaking, chemical shifts
are not anymore a symmetry of the system and the corresponding horizon boundary
condition is lost. As a matter of fact, for superfluids, g1 gives the Goldstone diffusivity,
which is a “measurable” transport coefficient (see for example [51]).

• In the EFT language, Γ0 = 0 corresponds to the vanishing of the so-called pinning
frequency. This is expected since there is no spontaneous symmetry breaking in our
model and therefore no Goldstone mode to be pinned.

• Γ̃ determines the relaxation rate of charge and will play a major role in the analysis
of section 4.

• In section 4.2, we will comment on the relationship between some of other coefficients
we found, particularly Γ2, c1,Γ1 and the m2-part of g0 (or equivalently c2, d2, d1),
and some novel coefficients proposed in [48] (see also [51]).

4 Lessons from effective field theory and holography

After explaining in detail both the EFT and holographic sides, we are now in a position
to bring all the results together and present them in a coherent form. The purpose of this
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section is twofold: present a derivation of the non-conservation Ward identity using EFT
and predict the dispersion of the relaxed charge diffusion mode.

4.1 The broken U(1) Ward identity

We define the non-conserved U(1) currents as the functional derivative of EFT action with
respect to the external gauge field

Jµr ≡
δSeff
δAaµ

, Jµa ≡
δSeff
δArµ

. (4.1)

Meanwhile, the expectation values of the scalar operator (dual to the bulk scalar field θ)
are

Or ≡
δSeff
δθba

, Oa ≡
δSeff
δθbr

. (4.2)

For simplicity, we will take L1 to illustrate the derivation. Then, the results are

J0
r = g0Br0 + g1∂0Br0 + d1∂0ϑr + w0Ba0 − w7∂0ϑa,

J ir = f0Bri + f1∂0Bri + d2∂iϑr + w2Bai − w8∂iϑa,

J0
a = g0Ba0 − g1∂0Ba0 − c1∂0ϑa,

J ia = f0Bai − f1∂0Bai − c2∂iϑa,

Or = Γ̃∂0ϑr + Γ1∂
2
0ϑr + Γ2∂

2
kϑr + c1∂0Br0 + c2∂iBri + w3ϑa + w4∂

2
kϑa

+ w5∂
2
0ϑa + w7∂0Ba0 + w8∂iBai,

Oa = −Γ̃∂0ϑa + Γ1∂
2
0ϑa + Γ2∂

2
kϑa − d1∂0Ba0 − d2∂iBai. (4.3)

The equations of motion for dynamical fields φa and φr are simply the Ward identities for
the currents defined above

δSeff
δφa

= 0⇒ ∂µJ
µ
r = Or,

δSeff
δφr

= 0⇒ ∂µJ
µ
a = Oa. (4.4)

The physical current Jµr and scalar operator’s expectation value Or can be split into a
mean-field part and a stochastic part

Jµr = Jµmf + Jµst, Or = Omf +Ost, (4.5)

corresponding to the hydrodynamic current and the noise respectively. Here, we can per-
form a Legendre transformation to turn the variable φa into ζ, which now obeys Gaussian
distribution (see [36, 73] for more details). Then, the Ward identity for the physical current
can be rewritten into a Langevin-type equation

∂µJ
µ
mf = Omf + ζ, (4.6)

where ζ is the stochastic force.
Therefore, when the noise term is ignored, the Ward identity becomes

∂µJ
µ
mf = Omf , (4.7)
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where

J0
mf = g0Br0 + g1∂0Br0 + d1∂0ϑr,

J imf = f0Bri + f1∂0Bri + d2∂iϑr,

Omf = Γ̃∂0ϑr + Γ1∂
2
0ϑr + Γ2∂

2
kϑr + c1∂0Br0 + c2∂iBri. (4.8)

As an approximation, we focus on the leading order term Γ̃∂0ϑr in Omf :

Γ̃∂0ϑr → Γ̃∂0φr ≈
Γ̃

g0 + d1
J0

mf . (4.9)

Then, the Ward identity simplifies to

∂µJ
µ
mf = −ΓJ0

mf + · · · , (4.10)

where the relaxation rate of the U(1) current is

Γ = − Γ̃
g0 + d1

≈ 1
2m

2rh = 1
2m

2πT, (4.11)

which will be further confirmed by numerical study in section 4.3.2. We thus see how (1.5)
emerges in our field theoretic SK construction in a similar way as discussed in section 1.1.

4.2 Novel coefficients

In this section, we would like to clarify the relationship between some coefficients in our
analysis and some new coefficients proposed in [48] (e.g., λ, f̄s therein).

First, let us discuss the dissipative nature of the various coefficients in the EFT La-
grangian (2.4). Inspired by the old Martin-Siggia-Rose formalism [84], ref. [85] recently
showed how to separately construct the non-dissipative and dissipative KMS-invariant
terms in the effective Lagrangian

L = Lnd + Ld. (4.12)

The non-dissipative part Lnd can be derived from a real Lagrangian Ω[ϕr] by setting

Lnd = ϕa
∂Ω
∂ϕr

, (4.13)

where we use ϕr and ϕa to denote all r-type and a-type fields (including sources), respec-
tively. The dissipative part Ld is derived from a suitable, quadratic in ϕa, quantity X as

Ld = 1
2 [X(ϕr, ϕa) +XKMS(ϕr, ϕa)−X(ϕr, 0)−XKMS(ϕr, 0)] , (4.14)

where XKMS is what we obtain after applying the KMS transformation (2.12) on X.
In our case, it is useful to define the gauge invariant source combination

Ξs µ ≡ ∂µθb s −As µ = ∂µϑs −Bsµ. (4.15)
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Using (4.15), we can equivalently build the effective action in terms of Bs µ, Ξs µ, and ϑs
without derivatives acting on the latter. In fact, in order to construct the relevant ra-terms
of L1 in (2.4), we can use the seed functions Ω and X

Ω = (g0 + Γ1 + 2c1)B2
r0 + (Γ1 + c1)Br0Ξr0 + Γ1Ξ2

r0 + Γ2Ξ2
ri ,

X = 1
iβ

(
g1B

2
a0 + f1B

2
ai + Γ̃ϑ2

a

)
. (4.16)

Eq. (4.16) clearly shows that the coefficients g0, c1,Γ1 and Γ2 are non-dissipative, while
g1, f1 and Γ̃ are dissipative. Then, following the procedure outlined above, we obtain the
alternative form of L1

L(ra)
1 = (g0 + Γ1 + 2c1)Ba0Br0 + g1Ba0∂0Br0 + (Γ1 + c1) (Ba0Ξr0 + Ξa0Br0)

+ f1Bai∂0Bri + Γ̃ϑa(Br0 + Ξr0) + Γ1Ξa0Ξr0 − Γ2ΞaiΞri , (4.17)

which automatically satisfies the chemical shift symmetry, the KMS conditions and the
Onsager relations, (2.8) and (2.10). We recall that g0, g1, f1 have contributions of order
O(m0) along with O(m2) corrections, whereas Γ̃,Γ1,Γ2, c1 are of order O(m2) and they
appear only after explicitly breaking the global U(1) symmetry.

From (4.17), one can observe that Γ1 and Γ2 are contact-type coefficients. These
terms are not shown in [48] because they are subleading in their derivative counting. On
the other hand, here, the coefficient labelled as f̄s in [48] does not appear, because we are
in the normal phase and chemical shift symmetry implies that it vanishes identically.5 The
relation between the other coefficients found in our setup and the one denoted by λ in [48]
can be understood as follows.

Turning the sources Ξs µ off, the constitutive relations at leading order take the form

J0
mf = (g0 + c1)Br0 + g1∂0Br0,

J imf = f1(∂iBr0 + F0i),
Omf = Γ̃Br0 − (Γ1 + c1)∂0Br0 . (4.18)

Using a frame redefinition, we could define the chemical potential µ by

g
(0)
0 µ ≡ (g0 + c1)Br0 , (4.19)

where g(0)
0 represents the m0-part of g0. This leads to

J0
mf = g

(0)
0 µ+ . . . ,

J imf = f1(∂iµ+ F0i) + . . . ,

Omf = Γ̃µ+ . . . , (4.20)

where the dots involve higher order terms in our perturbative scheme.
From (4.19), we see that the combination g0 + c1 is analogous to the new coefficient λ

identified in [48], in the sense that it is an m-dependent proportionality constant between
5We would like to thank Akash Jain and Jay Armas for discussions on this point.
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the chemical potential µ and the time derivative of the dynamical field φ. Of course, in
the case of spontaneous symmetry breaking, φ is a Goldstone mode and its relation to µ
is a physical, dynamical equation of motion, i.e. the Josephson relation. In the case of
pure explicit breaking, all of the dynamics is captured by eq. (4.20), while eq. (4.19) is a
trivial choice of hydrodynamic frame. Indeed, from (4.17), we can easily see that only the
combination of coefficients (g0 + Γ1 + 2c1) enters in the dispersion relation. Despite g0 +c1
appearing in a similar fashion as λ of [48], it pops up at a different order in terms of the
explicit breaking scale m, and would appear as subleading in their analysis because of the
different symmetry breaking pattern. We also note that, while λ in [48] is dissipative,6
here all the relevant coefficients g0,Γ1, c1 are non-dissipative.

In summary, in our purely explicit case, all these coefficients are at least O(m2), and
not order O(m) as those considered in [48].7 In presence of only explicit breaking, the
possibility of having such a coefficients O(m) cannot be realized. On the contrary, whenever
the additional spontaneous scale (the condensate) is introduced in the EFT description,
then a combination of the spontaneous and explicit scales could bring such a term down
to order O(m). In general, it is not surprising that the existence of additional scales
allow for a richer set of possibilities in the scaling of the various coefficients. A similar
situation happens for example in the case of translations for the pinning frequency and the
Gell-Mann-Oakes-Renner relation, see [86–88].

4.3 Charge relaxation mode

In this section, we focus on the dispersion relation of the charge relaxation mode. In absence
of any explicit breaking terms, such a mode corresponds to the diffusion of conserved charge
and obeys the following dispersion relation

ω = −i σ
χρρ

k2 + . . . (4.21)

where σ is the electric conductivity and χρρ ≡ ∂ρ/∂µ the charge susceptibility. In presence
of soft explicit breaking of the U(1) symmetry, this mode acquires a finite relaxation time
at zero wave-vector and its dispersion relation becomes

ω = −iΓ− iDqk
2 + · · · (4.22)

where Dq does not anymore correspond to the standard charge diffusion σ/χρρ, as even-
tually will get corrected by terms proportional to the explicit breaking scale. The charge
relaxation mode is the lowest non-hydrodynamic mode in the quasi-normal modes (QNMs)
spectrum, and it is expected to be well separated from the other microscopic degrees of free-
dom as long as the explicit breaking is kept small. Because of this reason, the relaxational
late-time dynamics in that limit will be dominated by its dynamics.

6This happens because λ involves a combination of the new, non-dissipative coefficient denoted by σ×
in [48], and the usual dissipative Goldstone diffusivity σφ, which is absent in the purely explicit case.

7This is consistent with results for the linear axion model by Blaise Goutéraux and Ashish Shukla, to
appear soon.
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With the EFT Lagrangian (2.4) and (2.5), we can show (4.22) and predict the relax-
ation rate Γ and diffusion constant Dq. To this end, we turn off external sources and obtain
the dispersion relation from δSeff/δφa = 0 (setting φa = 0 in the equation)

0 = iωa1 + ω2a2 + k2a3 + a4 + a5iωk
2 + a6iω

3, (4.23)

where for safety we have kept all third order derivatives. The various coefficients in the
dispersion equation are expressed in terms of those in EFT action

a1 ≡ g0 − c1 + d1 − Γ1 = a
(0)
1 +m2a

(2)
1 ,

a2 ≡ g1 − c3 + d3 − Γ4 = a
(0)
2 +m2a

(2)
2 ,

a3 ≡ f1 + h0 + h1 − c4 − c5 + d4 + d5 − Γ3 = a
(0)
3 +m2a

(2)
3 ,

a4 ≡ Γ̃ = 0 +m2a
(2)
4 ,

a5 ≡ −g3 − h2 − h3 + Γ6 + c7 + c8 − d7 − d8 = a
(0)
5 +m2a

(2)
5 ,

a6 ≡ −g2 + Γ5 + c6 − d6 = a
(0)
6 +m2a

(2)
6 , (4.24)

where we have expanded each coefficients to order O(m2). In the hydrodynamic limit, the
dispersion equation is solved and yields the dispersion shown in eq. (4.22) with

Γ = −m2a
(2)
4

a
(0)
1
, Dq = −a

(0)
3

a
(0)
1
−m2

[
a

(2)
3

a
(0)
1
− a

(2)
1 a

(0)
3 + a

(2)
4 a

(0)
5

(a(0)
1 )2

− 2a(0)
2 a

(0)
3 a

(2)
4

(a(0)
1 )3

]
. (4.25)

Using the explicit holographic results in eq. (3.35), along with the KMS conditions (2.13),
we find

a
(0)
1 = 2r2

h, a
(2)
1 = 1

2r
2
h log 2, a

(0)
2 = 0,

a
(0)
3 = −rh, a

(2)
3 = 0, a

(2)
4 = −r3

h, (4.26)

while, from ref. [74], we can read off the coefficient of the k4 term in the dispersion relation
of normal diffusion, implying that

a
(0)
5 = −1

2 log 2. (4.27)

Using these expressions in eq. (4.25), we immediately obtain

Γ = 1
2m

2rh, Dq = 1
2rh

+O(m4), (4.28)

where, surprisingly, the O(m2k2) term in the dispersion relation vanishes. In principle, this
might be simply an artifact of the holographic model used, or of the probe limit that we
assumed. However, there is also the possibility that such a result is a generic feature of the
quasi-hydrodynamics structure revealed by holographic calculations. In order to validate
this prospect, one should check other concrete models or prove it directly from a more
careful field theory analysis. We plan to investigate this point further in the near future.
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We will confirm the validity of the results above with two alternative methods. First,
we will compute the dispersion relation using standard holographic perturbative techniques,
which do not involve the SK contour. Second, we will perform a numerical computations
for the QNMs of the field theory dual to our holographic model. As we will see, all the
three methods give compatible results.

4.3.1 Analytic computation of the lowest quasi-normal modes

In this section, we will consider the bulk action presented in eq. (3.1) and investigate the
dispersion relation of the lowest non-hydrodynamic QNM, the charge relaxation mode.
Here, as a major difference with the computations presented in section 3, we shall follow a
fully on-shell formalism. More precisely, we will solve all the components of bulk EOMs for
the fluctuations. For this purpose, we find it more convenient to work in the Schwarzschild
coordinate system where the background line element is defined as

ds2 = dr2

r2f(r) − r
2f(r)dt2 + r2δijdx

idxj . (4.29)

We denote the bulk fields in Schwarzschild coordinates using an extra tilde, C̃M and θ̃. For
convenience, we also assume the radial gauge, C̃r = 0. We decompose the bulk fields in
Fourier space

C̃M (r, xµ) =
∫
dωdk

(2π)2 C̃M (r, ω, k)e−iωt+ikx, θ̃(r, xµ) =
∫
dωdk

(2π)2 θ̃(r, ω, k)e−iωt+ikx.

(4.30)
Since all bulk fields vanish in the background, the equations for the fluctuations correspond
to those for the bulk fields themselves.

The transverse components of the gauge field C̃y or C̃z satisfy a single ordinary differ-
ential equation (ODE) given by

0 = ∂r
[
r3f(r)∂rC̃α

]
+ ω2

rf(r) C̃α − k
2r−1C̃α −m2rC̃α, α = y, z. (4.31)

Since we are mainly interested in the charge relaxation mode, we will only consider the
fluctuations in the longitudinal sector and skip those in the transverse sector. We do not
expect any (quasi-)hydrodynamic modes in the transverse sector.

The longitudinal modes {C̃t, C̃x, θ̃} satisfy a system of linear ODEs which reads

0 = ∂r(r3∂rC̃t)−
1

rf(r)(k2C̃t + ωkC̃x)− m2r

f(r) C̃t −
m2riω

f(r) θ̃,

0 = ∂r
[
r3f(r)∂rC̃x

]
+ 1
rf(r)(ω2C̃x + ωkC̃t)−m2rC̃x +m2ikrθ̃,

0 = ∂r
[
r5f(r)∂rθ̃

]
+ r

f(r)(ω2θ̃ − iωC̃t)− r(k2θ̃ + ikC̃x),

0 = −iω∂rC̃t − ikf(r)∂rC̃x +m2r2f(r)∂rθ̃, (4.32)

where the first three equations are dynamical, while the last one is a constraint. The
constraint equation, when computed at the boundary, is related to the UV Ward identity.
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Here, it is important to notice that imposing any two of the three dynamical equations
in (4.32), plus the constraint equation, will automatically yield the remaining dynamical
equation. Because of this reason, one of the three dynamical equations can be discarded.

Here, we start by clarifying the generic structure of solutions to the linear system
in (4.32). Near the horizon, the ingoing solutions behave as

C̃ ig
t (r, ω, k) = [f(r)]1−iω/(4rh)

[
C̃ht + C̃1

t (r − rh) + C̃2
t (r − rh)2 + · · ·

]
,

C̃ ig
x (r, ω, k) = [f(r)]−iω/(4rh)

[
C̃hx + C̃1

x(r − rh) + C̃2
x(r − rh)2 + · · ·

]
,

θ̃ig(r, ω, k) = [f(r)]−iω/(4rh)
[
θ̃h + θ̃1(r − rh) + θ̃2(r − rh)2 + · · ·

]
, (4.33)

where C̃hx and θ̃h are two independent horizon data. In other words, all the rest coefficients
C̃ht , C̃1

t , C̃2
t , C̃1

x, C̃2
x, θ̃1, θ̃2, · · · are fully determined in terms of the horizon data C̃hx and

θ̃h. For instance

C̃ht = ikC̃hx −m2r2
hθ̃
h

4rh − iω
,

C̃1
x = C̃hx

{
2m2r2

h(4rh − iω) + iω(−2k2 − 16r2
h + 16iωrh + 3ω2)

}
− 8ikm2r3

hθ̃
h

4r2
h(8r2

h − 6iωrh − ω2) ,

θ̃1 = 8ikrhC̃hx + θ̃h
{
k2(8rh − 2iω) + iω

[
−2m2r2

h + 3ω(4irh + ω)
]}

4r2
h(8r2

h − 6iωrh − ω2) . (4.34)

Thus, the number of linearly independent ingoing solutions is two. These have to be
supplemented by the pure gauge solution (labelled as “pg”)

C̃pg
t (r, ω, k) = −iωξ̃, C̃pg

x (r, ω, k) = ikξ̃, θ̃pg(r, ω, k) = ξ̃, (4.35)

which is characterized by the residual gauge transformation parameter ξ̃.
Therefore, after imposing ingoing boundary conditions near the horizon (i.e., ruling

out outgoing solutions), a generic solution for the linear system (4.32) can be written as

C̃t(r, ω, k) = b1C̃
ig, I
t (r, ω, k) + b2C̃

ig, II
t (r, ω, k) + b3C̃

pg
t (r, ω, k),

C̃x(r, ω, k) = b1C̃
ig, I
x (r, ω, k) + b2C̃

ig, II
x (r, ω, k) + b3C̃

pg
x (r, ω, k),

θ̃(r, ω, k) = b1θ̃
ig, I(r, ω, k) + b2θ̃

ig, II(r, ω, k) + b3θ̃
pg(r, ω, k), (4.36)

where the ingoing solution {C̃ ig, I
t , C̃ ig, I

x , θ̃ig, I} may be uniquely fixed by taking horizon
data C̃hx 6= 0, θ̃h = 0 in (4.33), and the other ingoing solution {C̃ ig, II

t , C̃ ig, II
x , θ̃ig, II} to

taking horizon data (C̃hx = 0, θ̃h 6= 0) in (4.33). The coefficients b1,2,3 will be fixed by
the AdS boundary conditions. At this point, the original task of determining the QNM
spectrum for the bulk theory reduces to working out the two ingoing solutions (4.33). We
will work perturbatively in the bulk mass m so that

C̃µ = C̃(0)
µ +m2C̃(2)

µ + · · · , θ̃ = θ̃(0) + · · · . (4.37)
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Additionally, at each order in the m-expansion above, we will work in the hydrodynamic
limit, say ω, k � T . The QNM spectrum corresponds to solving the following expression8∣∣∣∣∣∣∣

C̃ ig,I
t (∞) C̃ ig,II

t (∞) C̃pg
t (∞)

C̃ ig,I
x (∞) C̃ ig,II

x (∞) C̃pg
x (∞)

θ̃ig,I(∞) θ̃ig,II(∞) θ̃pg(∞)

∣∣∣∣∣∣∣ = 0. (4.38)

Recall that our goal is to obtain eq. (4.22) using holographic calculations. However, the
presence of a gap (∼ Γ) makes the calculations subtle, which requires (4.38) to properly
cover third order derivatives in the dispersion equation (4.23). After careful examination,
we find this will be achieved if one covers second order derivative corrections in each ingoing
solutions.

Without presenting more details, we summarize the main results for the two ingoing
solutions (4.33). For the first ingoing solution, we take the horizon data as (C̃hx , θ̃h) = (1, 0)
and find that

C̃ ig, I
t (r, ω, k) = [f(r)]1−iω/(4rh)

[
ikr2

2rh(r2 + r2
h) + · · ·+m2C̃

ig,I(2)(1)
t + · · ·

]
,

C̃ ig, I
x (r, ω, k) = [f(r)]−iω/(4rh)

[
1 + iω

2rh
log r

2 + r2
h

2r2 + · · ·+m2C̃ ig,I(2)(1)
x + · · ·

]
,

θ̃ig, I(r, ω, k) = [f(r)]−iω/(4rh)
[
− ik

4r2
h

log r
2 + r2

h

2r2 + · · ·+O(m2)
]
, (4.39)

where

C̃
ig,I(2)(1)
t = ikr2

8rh(r4
h − r4)

[
r2 − r2

h + (r2 + r2
h) log 2r2

h

r2 + r2
h

]
, (4.40)

C̃ ig,I(2)(1)
x = 1

4 log r
2 + r2

h

2r2
h

− iω

4rh
log r + iω

48rh
(π2 + 6 log2 2 + 12 log 2 log rh) +O(r−2),

and the second term is expressed only near the boundary, in the limit r →∞. The omitted
terms denoted by · · · in (4.39) represent second order derivatives, which are too lengthy
to be presented. However, some of them are crucial in correctly producing (4.23).

Near the AdS boundary, the first ingoing solution behaves as

C̃ ig, I
t (r →∞) = m2 ik

4rh
log r + ik

2rh
+ log 2

4r2
h

ωk −m2 ik

8rh

[
1 + log(2r2

h)
]

−m2π
2 + 12 log2 2

384r2
h

ωk +O(r−1),

C̃ ig, I
x (r →∞) = m2

(1
2 −

iω log 2
4rh

)
log r + 1− iω

2rh
log 2− π2 + 6 log2 2

48r2
h

ω2

−m2 1
4 log(2r2

h) +m2 iω

48rh

(
π2 + 6 log2 2 + 12 log 2 log rh

)
+ #1ω

2 + #2q
2 +O(r−1),

θ̃ig, I(r →∞) = ik

4r2
h

log 2− π2 − 24(log 2− 1) log 2
192r2

h

ωk +O(r−1), (4.41)

where #1,#2 will play no role in subsequent calculation of QNM.
8Here, we shall subtract the log r-terms at the AdS boundary.
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For the second ingoing solution, we take the horizon data as (C̃hx , θ̃h) = (0, 1) and find
that

C̃ ig, II
t (r, ω, k) = [f(r)]1−iω/(4rh)m2

[
− rhr

2

2(r2 + r2
h) + C̃

ig,II(2)(1)
t + · · ·

]
,

C̃ ig, II
x (r, ω, k) = [f(r)]−iω/(4rh)m2

[
−1

4 ik log r
2 + r2

h

2r2
h

+ · · ·
]
,

θ̃ig, II = [f(r)]−iω/(4rh)
[
1 + · · ·+O(m2)

]
, (4.42)

where
C̃

ig,II(2)(1)
t = iωr2

4(r4 − r4
h)

[
(r2 − r2

h)
(

log r
2

r2
h

− 1
)

+ r2
h log r

2 + r2
h

2r2
h

]
. (4.43)

Here, as in (4.39), the terms denoted by · · · in (4.42) represent second order derivatives
and are too lengthy to be presented above. Similarly, they are important for correctly
covering third order terms in the dispersion equation (4.23).

Near the AdS boundary, the second ingoing solution behaves as

C̃ ig, II
t (r →∞) = m2 1

2 iω log r −m2 rh
2 −m

2 1
4 iω(1 + 2 log rh)−m2 π2

192rh
ω2

−m2 log 2
8rh

q2 +O(r−1),

C̃ ig, II
x (r →∞) = −m2 1

2 ik log r +m2 1
4 ik log(2r2

h) +m2π
2 + 4 log2 2

64rh
ωk +O(r−1),

θ̃ig, II(r →∞) = 1 + −π
2 + 12(log 2− 2) log 2

96r2
h

ω2 + log 2
4r2
h

q2 +O(r−1). (4.44)

With (4.41) and (4.44), it is straightforward to solve (4.38) in the hydrodynamic limit.
As expected, we obtain the dispersion relation (4.22) with

Γ = rh
2 m

2, Dq = 1
2rh

+O(m4). (4.45)

As anticipated in section 4.3, we find the diffusion constant does not receive correction at
the order O(m2). As already mentioned, further studies are needed to ascertain whether
this property is a reflection of a deeper, and maybe even universal, underlying structure.
This result will be further confirmed through numerical calculation in next section.

4.3.2 Numerical computation

The analytical computation presented in section 4.3.1 is perturbative in the bulk mass m,
the frequency ω and the wave-vector k. In other words, the result in (4.22) and (4.45) re-
produces only the dispersion relation of the lowest QNM in the hydrodynamic limit, and in
the limit of small explicit breaking, m/T � 1. The complete QNMs spectrum beyond such
approximations can nevertheless be obtained using numerical methods. The idea is exactly
the same as that in the previous section, but the EOMs (4.32) will be now solved numer-
ically using the same boundary conditions. In this way, we can search for the solutions
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Figure 3. Left: the charge relaxation rate extracted from the imaginary part of the lowest QNM
at k = 0 (black symbols) vs. the prediction from the perturbative SK computation in eq. (4.45).
Right: the dispersion relation of the lowest non-hydrodynamic mode for different values of the
dimensionless Proca mass. The solid lines are the SK perturbative results in eq. (4.45). The inset
shows a zoom for small values of the wave-vector k.

of (4.38) at any order in ω, k,m. For simplicity, we focus only on the lowest QNM, i.e., the
charge relaxation mode. First, we extract its imaginary part at zero wave-vector as a func-
tion of the explicit breaking parameter m. The result is shown in the left panel of figure 3.
As expected, for small values of the explicit breaking parameter m/T , the perturbative re-
sult in eq. (4.45) is in good agreement with the numerical data. Beyond a critical value, the
numerical results start to deviate from the perturbative formula (first equation of (4.45)),
suggesting that the neglected higher order corrections become important. In the right
panel of figure 3, we show the complete dispersion relation of the charge relaxation mode
for different values of m/T . For small values of that parameter we see that eq. (4.45) is in
good agreement with the data up to k/T ≈ 1, within the hydrodynamic limit. By increas-
ing the value of the explicit breaking parameter, we observe that the perturbative result
deviates from the numerical data. In summary, the numerical computation confirms the
validity of our results both in the SK formalism and in the single AdS perturbative scheme.

One of the main results of the previous analysis is that the quadratic term in the
dispersion will be not affected at order m2, but only at higher order. In order to check this
with the numerics, we focus on the low mass regime, m/T � 1, and carefully track the
quadratic term in the dispersion relation.

In figure 4, we consider the quadratic term ∼ k2 in the dispersion relation of the
relaxing charge fluctuations. We subtract from it the value at zero mass, and carefully
look at the corrections at order m2. We define the variation of such a coefficient from the
zero mass value ∆Dq and plot it, after normalizing it by m2, as a function of the mass
itself. For small values of m2, we see that the resulting numerical data are scattered in
a region ±2% around zero. Therefore, within that confidence, we can conclude that the
O(m2) correction to the quadratic coefficient is compatible with zero, as derived from the
previous theoretical analysis. Our numerics show that, if such a correction existed, it would
be extremely small, of order 10−2, which is rather unnatural from the EFT perspective.
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Figure 4. The deviation of the quadratic coefficient in the dispersion relation from its zero mass
value, ∆Dq as a function of the mass squared.

5 Summary and outlook

In this work, we have initiated the study of quasi-hydrodynamics using holographic
Scwhinger-Keldysh methods. We have focused on the simplest example of a system with a
global U(1) symmetry which is explicitly broken in a controllable way, and whose breaking
can be made parametrically small. In order to do that, we have considered a holographic
massive vector Proca model, where the bulk mass m is responsible for the breaking of the
U(1) symmetry. We take this as the simplest example of relaxed hydrodynamics. Using
holographic SK techniques, we have derived the low-energy effective action of the boundary
field theory in presence of dissipation and finite temperature effects, in the limit of small
breaking m/T � 1, i.e., the quasi-hydrodynamic regime. The results obtained within
holographic SK approach are compared and confirmed using standard EFT methods, al-
ready presented in [48, 51], and the analytical and numerical computations of the lowest
QNMs. We find perfect agreement between all these different methods. Interestingly, we
find that the term O(m2k2) in the dispersion of the damped charge diffusion mode vanishes
identically. It would thus be interesting to determine whether that is just an accident of
the model considered or a manifestation of a more fundamental, and perhaps universal,
characteristic of the quasi-hydrodynamics structure.

Among the various results, we have formally derived the field theory Ward identity
for the U(1) current from the holographic Proca model. We have confirmed that its form
is in agreement with the EFT predictions, and with the form previously assumed in the
literature, e.g., [55, 67] (see [64] for a previous formal derivation in the context of string
theory). Taking advantage of the derivation of the boundary effective SK action, we have
directly observed the appearance of additional transport coefficients, which are analogous
to those proposed in [48], appearing in the case of pseudo-spontaneous symmetry breaking.
By direct analytical computation, we have shown that terms of that kind naturally appear
in our effective action. Nevertheless, in the case of explicit breaking, they always appear
at quadratic order in the explicit breaking scale, indicated as m in our analysis, and not
at linear order, as for the terms described in [48]. This difference in the orders is not a
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coincidence, nor a result of the different counting scheme chosen, but rather a direct mani-
festation of the different symmetry breaking pattern; in presence of only explicit breaking,
it is impossible to realize those coefficients at linear order.

From a more practical point of view, even though we are not aware of any realistic
system where a vector U(1) symmetry is explicitly broken, our setup could serve as a toy
model for several physical scenarios which are of great interest in different fields of research,
and they are all connected by the same quasi-hydrodynamic structure. A first important
case is that of axial charge relaxation in the context of QCD and condensed matter systems
with anomalous transport. In QCD, for example, axial symmetry is broken by gluonic
effects, which can be parameterized in holography using an explicit mass for the bulk gauge
field [64] (see for example [66, 67]). A similar situation appears in the context of relativistic
spin hydrodynamics, where the spin current is not conserved, but at least for massive
fermions, its relaxation can be made parametrically long by taking the non-relativistic
limit of large fermion mass [89]. This is as well the case for magneto-hydrodynamics, in
which the global U(1) electric symmetry is broken, and where both electric field and charge
fluctuations relax in time [90, 91] (see [24, 92, 93] for the holographic realizations).

Additionally, any system close to a critical point also displays a similar behavior, since
the fluctuations of the amplitude of the order parameter relax very slowly close to crit-
icality. This has been formalized in the context of relativistic hydrodynamics with the
so-called Hydro+ formalism [11], but it appears more general in the study of critical phe-
nomena [12] (e.g., the amplitude mode in superfluids/superconductors [94, 95]). Moreover,
several hydrodynamic models (e.g., Maxwell’s model [96], Cattaneo’s model [97], Israel-
Stewart model [98], and generalizations [99]) involve at least one non-hydrodynamic mode
(which is necessary in relativistic theories to preserve causality), and therefore fall in the
more general class of quasi-hydrodynamics. In the context of classical liquids, the quasi-
hydrodynamic structure is not a theoretical framework but it is responsible for several
physical phenomena, such as the onset of gapped shear waves, which can be observed exper-
imentally [100]. Finally, a widely studied framework where quasi-hydrodynamics is at work
is that of momentum relaxation in condensed matter systems, where disorder, impurities,
or simply Umklapp scattering produce a dissipation of momentum (e.g., the Drude model).

We believe that extending our computation to these more complex cases would be very
fruitful in the near future, not only to understand better the validity and the meaning of
quasi-hydrodynamics but also to reveal in depth the structure of the low-energy effective
descriptions for such systems. We are confident that holography might always be a good
partner in these explorations, and we are planning to consider some of these problems in
the near future.
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A Details of the holographic Schwinger-Keldysh computations

In this appendix, we present the perturbative solutions for bulk fields. When the source
terms are ignored, all the EOMs become homogeneous ODEs, which can be solved analyt-
ically

Chv (r) = c1
v + c2

v

r2 , Chi (r) = c1
i + c2

i log r
2 − r2

h

r2 + r2
h

, θh(r) = c1
θ + c2

θ log r
4 − r4

h

r4 . (A.1)

Obviously, the two linearly independent solutions for Cv are regular over the entire contour.
This is one of the reason why the extra condition (3.30) has to be imposed at the horizon.
Thus, Cv will have a piecewise solution at each order. Later on, the linearly independent so-
lutions for Ci and θ will be used to build Green’s functions on the radial contour of figure 2.

The solutions for C(0)(1)
µ and θ(0)(0). The solution for C(0)(1)

v is piecewise

C(0)(1)
v (r) = B1v

(
1− r2

h

r2

)
, r ∈ [rh − ε,∞1),

C(0)(1)
v (r) = B2v

(
1− r2

h

r2

)
, r ∈ [rh − ε,∞2). (A.2)

The solution for C(0)(1)
i is

C
(0)(1)
i (r) = B2i + Bai

2iπ log r
2 − r2

h

r2 + r2
h

. (A.3)

The solution for θ(0)(0) is

θ(0)(0)(r) = ϑ2 + ϑa
2iπ log r

4 − r4
h

r4 . (A.4)

It is straightforward to check that all the lowest order solutions satisfy the respective
EOMs with correct boundary conditions. It is important to stress that, in contrast to C(0)(1)

v

which is regular over the entire contour, both C
(0)(1)
i and θ(0)(0) contain a singular part,

which roughly behaves as log(r − rh) near the horizon, which is a multi-valued function.
Near the AdS boundaries, we read off the normalizable modes for the lowest order

solutions

J̃
(0)(1)
1v = −r2

hB1v, J̃
(0)(1)
2v = −r2

hB2v,

J̃
(0)(1)
1i = i

π
r2
hBai, J̃

(0)(1)
2i = i

π
r2
hBai,

Õ
(0)(0)
1 = ir4

h

2π ϑa, Õ
(0)(0)
2 = ir4

h

2π ϑa, (A.5)
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which, via (3.29), give the leading-order result for the effective action. Here, we record the
explicit results for each of the terms in (3.29)

BµJ̃
µ(0)(1)

∣∣∣∣1
2

= 2r2
hBavBrv + ir2

h

π
BaiBai,

1
2m

2BµJ̃
µ(0)(1)

∣∣∣∣1
2

= 1
2m

2
(

2r2
hBavBrv + ir2

h

π
BaiBai

)
,

2m2ϑÕ(0)(0)
∣∣∣∣1
2

= m2 ir
4
h

π
ϑaϑa,

−3
8m

2J̃µ(0)(1)∂µϑ

∣∣∣∣1
2

= −3
8m

2
[
r2
hBav∂vϑr + r2

hBrv∂vϑa + i

π
r2
hBai∂iϑa

]
, (A.6)

where the first and third lines are in perfect agreement with those of [25]. Here, the diffusive
field φ appears explicitly, representing the effect of explicit symmetry breaking. The last
line represents a renormalization scheme-dependent contribution.

Solutions for C(0)(2)
v and C(2)(1)

v . Beyond the lowest order, the EOM for C(n)(l)
v can

be solved via direct integration. To this end, we examine the behavior of the sources near
the AdS boundary and horizon

j(0)(2)
v (r →∞s) = −∂vBsv +O(r−2),

j(0)(2)
v (r → rh) = − rh

r − rh
∂vBsv + · · · ,

j(2)(1)
v (r →∞s) = r(Bsv − ∂vϑs)−

r2
h

r
Bsv +O(r−3),

j(2)(1)
v (r → rh) = #1

log(r − rh)
r − rh

+ #1
r − rh

, (A.7)

where the leading order terms near the AdS boundary essentially correspond to those in
the near-boundary expansion of C(0)

v and C
(1)
v . The divergent behavior near the horizon

prohibits integrating the EOMs from the horizon. Similarly, the near-boundary behavior
implies that we cannot just perform the integration from the AdS boundaries. To circum-
vent this problem, we redefine the bulk fields as

C(0)(2)
v (r) = C̃(0)(2)

v (r) + ∂vBsv
r

,

C(2)(1)
v (r) = C̃(2)(1)

v (r) + 1
2(Bsv − ∂vϑs) log r + r2

h log r
2r2 Bsv, (A.8)

so that the relevant EOMs are modified into

∂r
[
r3∂rC̃

(0)(2)
v (r)

]
= j̃(0)(2)

v (r), ∂r
[
r3∂rC̃

(2)(1)
v (r)

]
= j̃(2)(1)

v (r), (A.9)

where the new sources are

j̃(0)(2)
v (r) = j(0)(2)

v (r) + ∂vBsv,

j̃(2)(1)
v (r) = j(2)(1)

v (r)− r(Bsv − ∂vϑs) + r2
h

r
Bsv, (A.10)
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which now behave well near the AdS boundaries. Then, the solutions are

C̃(0)(2)
v (r) =

∫ r

∞s

[
1
x3

∫ x

∞s

j̃(0)(2)
v (y)dy + c

(0)(2)
s

x3

]
dx,

C̃(2)(1)
v (r) =

∫ r

∞s

[
1
x3

∫ x

∞s

j̃(2)(1)
v (y)dy + c

(2)(1)
s

x3

]
dx, (A.11)

which should be understood as piecewise, and the lower bound ∞s helps to distinguish
between solution on the lower branch and that on the upper branch. The remaining
integration constants are fixed by the vanishing horizon conditions for Cv

c(0)(2)
s = 2r2

h

∫ rh

∞s

[ 1
x3

∫ x

∞s

j̃(0)(2)
v (y)dy

]
dx+ 2rh∂vBsv,

c(2)(1)
s = 2r2

h

∫ rh

∞s

[ 1
x3

∫ x

∞s

j̃(2)(1)
v (y)dy

]
dx+ (2Bsv − ∂vϑs)r2

h log rh. (A.12)

Then, the normalizable modes are determined in terms of integration constants

J̃ (0)(2)
sv = −1

2c
(0)(2)
s , J̃ (2)(1)

sv = −1
2c

(2)(1)
s , s = 1 or 2. (A.13)

For later convenience, we record the explicit expressions for C(0)(2)
sv and C(2)(1)

sv (with s =
1, 2)

C(0)(2)
sv (r) = ∂vBsv

4rh

(
1− r2

h

r2

)[
π − 2 arctan

(
r

rh

)
+ log r + rh

r − rh

]
,

C(2)(1)
sv (r) = −r

2
h log(2r2

h)
2r2 Bsv + 1

4Bsv
(

1 + r2
h

r2

)
log(r2 + r2

h) + · · · , (A.14)

where the · · · denotes ϑ-terms that are too lengthy to be written here. The normalizable
modes of C(0)(2)

sv and C(2)(1)
sv are

J̃
(0)(2)
1v = J̃

(0)(2)
2v = 0,

J̃
(2)(1)
1v =

[
ir2
h

8π (2 log 2− log2 2) + r2
h

8 log(2r2
h)
]
∂vϑa + r2

h

4 log(2r2
h) ∂vϑr

− r2
h

8
[
−1 + 2 log(2r2

h)
]
Bav −

r2
h

4
[
−1 + 2 log(2r2

h)
]
Brv,

J̃
(2)(1)
2v =

[
ir2
h

8π (2 log 2− log2 2)− r2
h

8 log(2r2
h)
]
∂vϑa + r2

h

4 log(2r2
h) ∂vϑr

+ r2
h

8
[
−1 + 2 log(2r2

h)
]
Bav −

r2
h

4
[
−1 + 2 log(2r2

h)
]
Brv, (A.15)

– 33 –



J
H
E
P
0
9
(
2
0
2
3
)
0
1
9

which yield

BvJ̃
v(0)(2)

∣∣∣∣1
2

= 0,

1
2m

2BvJ̃
v(0)(2)

∣∣∣∣1
2

= 0,

m2BvJ̃
v(2)(1)

∣∣∣∣1
2

= m2 ir
2
h

8π (log2 2− 2 log 2)Bav∂vϑa +m2 r
2
h

2
[
2 log(2r2

h)− 1
]
BavBrv

−m2 r
2
h

4 log(2r2
h) (Bav∂vϑr +Brv∂vϑa) ,

3
8m

2J̃v(0)(2)∂vϑ

∣∣∣∣1
2

= 0. (A.16)

Solutions for θ(0)(1), C(0)(2)
i and C

(2)(1)
i . The EOM for θ(0)(1) can be solved ana-

lytically. With vanishing boundary conditions imposed at the AdS boundaries, the final
solution is given by

θ(0)(1)(r) = ∂vϑ2
4rh

[
π − 2 arctan

(
r

rh

)
+ log r

4 − r4
h

r4 + log r + rh
r − rh

]

+ ∂vϑa
8πrh

[
(2− i)π + 2i arctan

(
r

rh

)
− i log r + rh

r − rh

]
log r

4 − r4
h

r4 (A.17)

Immediately, we can read off the normalizable modes of θ(0)(1)

Õ
(0)(1)
1 = 1

8r
3
h∂vϑa −

1
4r

3
h∂vϑr, Õ

(0)(1)
2 = −1

8r
3
h∂vϑa −

1
4r

3
h∂vϑr. (A.18)

From this result, the relevant part in the boundary effective action is given by

2m2ϑÕ(0)(1)
∣∣∣∣1
2

= −m2r3
hϑa∂vϑr, (A.19)

which is exactly eq. (3.23) in [25].
Similarly, the EOM for C(0)(2)

i can be analytically solved. Here, we just record the
result

C
(0)(2)
i (r) = ∂vB2i

4rh

[
π − 2 arctan

(
r

rh

)
+ 2 log(r + rh)− log(r2 + r2

h)
]

− ∂vBai
8πrh

[
−(2− i)π − 2i arctan

(
r

rh

)
− i log r − rh

r + rh

]
log r

2 − r2
h

r2 + r2
h

. (A.20)

So, the normalizable modes of C(0)(2)
i are

J̃
(0)(2)
1i = rh

4 ∂vBai −
rh
2 ∂vBri, J̃

(0)(2)
2i = −rh4 ∂vBai −

rh
2 ∂vBri. (A.21)

Then, we obtain the following pieces in the boundary effective action

BkJ̃
k(0)(2)

∣∣∣∣1
2

= −rhBak∂vBrk,
1
2m

2BkJ̃
k(0)(2)

∣∣∣∣1
2

= −1
2m

2rhBak∂vBrk, (A.22)
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where the first equality exactly reproduces the v00-term in [25], see equations (4.6) and
(4.69) therein.

We turn to C
(2)(1)
i , which is more involved due to presence of θ(0)(0) in the source

j
(2)(1)
i , cfr. (3.34). The final result is

C
(2)(1)
i (r) = − iBai24π

[
π2 + 3 log2(2r2

h) + 3 log r
2 − r2

h

4r4
h

log(r2 + r2
h) + 6Li2

(
1
2 −

r2

2r2
h

)]

+ 1
4B2i log(r2 + r2

h)− 1
4∂iϑ2 log(r2 + r2

h) + i

48π∂iϑa
[
π2 − 12iπ log r

rh

−6 log r
2

r2
h

log
(
r2

r2
h

− 1
)
− 12 log r log

(
r2

r2
h

+ 1
)

+ 6 log
(
r2 + r2

h

)
log

(
r2

r2
h

− 1
)

−3Li2
(
r4

r4
h

)]
, (A.23)

where Li2(x) is a polylogarithm function, which has a branch cut point at x = 1. The
normalizable modes of C(2)(1)

i (r) are

J̃
(2)(1)
1i =

[
r2
h

8 −
ir2
h

2π + ir2
h

2π log(2r2
h)
]
Bai+

r2
h

4 Bri−
(
r2
h

8 + ir2
h logrh
2π

)
∂iϑa−

r2
h

4 ∂iϑr,

J̃
(2)(1)
2i =

[
−r

2
h

8 −
ir2
h

2π + ir2
h

2π log(2r2
h)
]
Bai+

r2
h

4 Bri+
(
r2
h

8 −
ir2
h logrh
2π

)
∂iϑa−

r2
h

4 ∂iϑr, (A.24)

from which we obtain the following part in the boundary effective action

m2BkJ̃
(2)(1)
k

∣∣∣∣1
2

= m2 r
2
h

4 Brk(Bak − ∂kϑa) +m2 r
2
h

4 Bak(Brk − ∂kϑr)

−m2 ir
2
h

2π
[
1− log(2r2

h)
]
BakBak −m2 ir

2
h log rh

2π Bak∂kϑa. (A.25)

The computation of C(2)(2)
v and J̃(2)(2)

v . The knowledge of C(2)(2)
v will yield Bv∂vBv

and Bv∂
2
vϑ. Here, we are more interested in the first structure Bv∂vBv, so that it is

sufficient to set ϑ1 = ϑ2 = 0 when solving C(2)(2)
v . Then, we are able to directly solve the

EOM for C(2)(2)
v

∂r
[
r3∂rC

(2)(2)
v (r)

]
= j(2)(2)

v (r). (A.26)

We skip the expression for C(2)(2)
v but just record the final result for the normalizable modes

J̃ (2)(2)
sv = 0 +O(∂2

vϑ), (A.27)

which means at the order O(m2), the term Bav∂vBrv again has a zero coefficient9

m2BvJ̃
v(2)(2)

∣∣∣∣1
2

= 0. (A.28)

9But see the discussion in section 3.5.
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Higher order corrections to θ and Ci: Green’s function approach. For the higher
order corrections θ(0)(2) and C(2)(2)

i , the source terms in their EOMs turn out to be very
lengthy. Therefore, we will solve them via the Green’s function approach.

We turn to the construction of the Green’s functions based on the linearly independent
solutions for homogeneous EOMs. The Green’s functions GX(r, r′) and GY (r, r′) obey

∂r
[
r3f(r)GX(r, r′)

]
= δ(r − r′), ∂r

[
r5f(r)GY (r, r′)

]
= δ(r − r′). (A.29)

Since higher order corrections C(2)(2)
i , θ(0)(2) satisfy vanishing-type Dirichlet boundary con-

ditions,10 we require the Green’s functions to satisfy similar conditions

GX(r →∞2, r
′) = 0 + #2

X

r2 , GX(r →∞1, r
′) = 0 + #1

X

r2 ,

GY (r →∞2, r
′) = 0 + #2

Y

r4 , GY (r →∞1, r
′) = 0 + #1

Y

r4 . (A.30)

Accordingly, we make linear combinations over the linearly independent solutions in
eq. (A.1) to get

X2(r) = −1
2 log r

2 − r2
h

r2 + r2
h

, X1(r) = −1
2 log r

2 − r2
h

r2 + r2
h

+ iπ,

Y2(r) = −1
2 log r

4 − r4
h

r4 , Y1(r) = −1
2 log r

4 − r4
h

r4 + iπ, (A.31)

which satisfy “good” boundary conditions near the AdS boundaries:

X2(r →∞2) = 0 + r2
h

r2 + · · · , X2(r →∞1) = −iπ + r2
h

r2 + · · · ,

X1(r →∞2) = iπ + r2
h

r2 + · · · , X1(r →∞1) = 0 + r2
h

r2 + · · · , (A.32)

and

Y2(r →∞2) = 0 + r4
h

2r4 + · · · , Y2(r →∞1) = −iπ + r4
h

2r4 + · · · ,

Y1(r →∞2) = iπ + r4
h

2r4 + · · · , Y1(r →∞1) = 0 + r4
h

2r4 + · · · , (A.33)

Now, we are ready to build the Green’s functions based on the new set of linearly indepen-
dent solutions above

GX(r, r′) = 1
r′3f(r′)WX(r′)

[
Θ(r − r′)X1(r)X2(r′) + Θ(r′ − r)X2(r)X1(r′)

]
,

GY (r, r′) = 1
r′5f(r′)WY (r′)

[
Θ(r − r′)Y1(r)Y2(r′) + Θ(r′ − r)Y2(r)Y1(r′)

]
, (A.34)

where WX and WY are the Wronskian determinants of solutions {X1, X2} and {Y1, Y2},
respectively

WX(r) ≡ X2(r)∂rX1(r)−X1(r)∂rX2(r) = 2iπr2
h

r3f(r) ,

WY (r) ≡ Y2(r)∂rY1(r)− Y1(r)∂rY2(r) = 2iπr4
h

r5f(r) . (A.35)

10We have subtracted the leading terms near the boundary, as read off from the general analysis (3.23).
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The function Θ(r − r′) is a step function compatible with the radial contour. Apparently,
near the AdS boundary, thus-constructed Green’s functions behave as

GX(r→∞2, r
′) = 0+X1(r′)

2iπ
1
r2 + · · · , GX(r→∞1, r

′) = 0+X2(r′)
2iπ

1
r2 + · · · ,

GY (r→∞2, r
′) = 0+ Y1(r′)

2iπ
1

2r4 + · · · , GY (r→∞1, r
′) = 0+ Y2(r′)

2iπ
1

2r4 + · · · . (A.36)

Then, the solutions for C(2)(2)
i and θ(0)(2) are

C
(2)(2)
i (r) =

∫ ∞1

∞2
dr′GX(r, r′)j(2)(2)

i (r′)

= X1(r)
2iπr2

h

∫ r

∞2
dr′X2(r′)j(2)(2)

i (r′) + X2(r)
2iπr2

h

∫ ∞1

r
dr′X1(r′)j(2)(2)

i (r′),

θ(0)(2)(r) =
∫ ∞1

∞2
dr′GY (r, r′)j(0)(2)

θ (r′)

= Y1(r)
2iπr4

h

∫ r

∞2
dr′Y2(r′)j(0)(2)

θ (r′) + Y2(r)
2iπr4

h

∫ ∞1

r
dr′Y1(r′)j(0)(2)

θ (r′). (A.37)

In order to extract the normalizable modes in C(2)(2)
i and θ(0)(2), we take the near-boundary

limits r →∞1,2 of (A.37)

C
(2)(2)
i (r →∞1) = X1(r)

2iπr2
h

∫ r

∞1
dr′X2(r′)j(2)(2)

i (r′)− X2(r)
2iπr2

h

∫ r

∞1
dr′X1(r′)j(2)(2)

i (r′)

+ X1(r)
2iπr2

h

∫ ∞1

∞2
dr′X2(r′)j(2)(2)

i (r′),

C
(2)(2)
i (r →∞2) = X1(r)

2iπr2
h

∫ r

∞2
dr′X2(r′)j(2)(2)

i (r′)− X2(r)
2iπr2

h

∫ r

∞2
dr′X1(r′)j(2)(2)

i (r′)

+ X2(r)
2iπr2

h

∫ ∞1

∞2
dr′X1(r′)j(2)(2)

i (r′),

θ(0)(2)(r →∞1) = Y1(r)
2iπr4

h

∫ r

∞1
dr′Y2(r′)j(0)(2)

θ (r′)− Y2(r)
2iπr4

h

∫ r

∞1
dr′Y1(r′)j(0)(2)

θ (r′)

+ Y1(r)
2iπr4

h

∫ ∞1

∞2
dr′Y2(r′)j(0)(2)

θ (r′),

θ(0)(2)(r →∞2) = Y1(r)
2iπr4

h

∫ r

∞2
dr′Y2(r′)j(0)(2)

θ (r′)− Y2(r)
2iπr4

h

∫ r

∞2
dr′Y1(r′)j(0)(2)

θ (r′)

+ Y2(r)
2iπr4

h

∫ ∞1

∞2
dr′Y1(r′)j(0)(2)

θ (r′), (A.38)

Indeed, in each equality above, near the AdS boundary r′ =∞1 or r′ =∞2, the integrals
diverge, but the final sum is free of such divergences. For safety, we introduce a regulator,
r′ = Λs, near the two AdS boundaries.

We would like to stress that we are interested in extracting the large r behavior for
C

(2)(2)
i and θ(0)(2). The contour integrals in (A.38) will be computed by splitting the radial

contour as ∫ ∞1

∞2
dr =

∫ rh+ε

∞2
dr +

∫
C
iεeiϕdϕ+

∫ ∞1

rh+ε
dr, (A.39)
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where C denotes the infinitesimal circle, and the angle ϕ runs from 0 to 2π, as one goes
from upper branch to lower branch. Here, it is important to note that as ε → 0 is taken,
the contribution from the circle does not vanish, and moreover brings in log ε-divergence.
The contributions from upper and lower legs cancel significantly. Below, we present the
respective results for the gauge sector and scalar sector.

• The results for the normalizable modes J̃(2)(2)
i . The correction at this order

yields to the terms ∂vBi, ∂v∂iϑ in the normalizable modes J̃ (2)(2)
i . For simplicity, we

will not capture ∂v∂iϑ-terms so that we can simply drop the θ-term in the source j(2)(2)
i

of (3.34). To this end, we have collected the compact expressions for C(0)(2)
i and C

(2)(1)
i

in (A.20) and (A.23). Skipping the details, we present the final results

J̃
(2)(2)
1i =

[
−rh8 + 1

8rh log(2r2
h)
]
∂vBai −

1
4rh

[
−1 + log(2r2

h)
]
∂vBri,

J̃
(2)(2)
2i =

[
rh
8 −

1
8rh log(2r2

h)
]
∂vBai −

1
4rh

[
−1 + log(2r2

h)
]
∂vBri. (A.40)

The relevant terms in the effective action are

m2BkJ̃
k(2)(2)

∣∣∣∣1
2

= m2 rh
2
[
1− log(2r2

h)
]
Bak∂vBrk. (A.41)

• The results for the normalizable modes Õ(0)(2). The result at this order yields
terms ϑ∂2

vϑ, ϑ∂2
kϑ, ϑ∂vBv, ϑ∂kBk in the boundary effective action. The source j(0)(2)

θ

of (3.34) involves θ(0)(0), θ(0)(1), C(0)(1)
µ , which have been presented in (A.4), (A.17), (A.2)

and (A.3).
The calculations are in parallel with those of C(2)(2)

i , although more tedious. Here, we
just present the final results. For Õ(0)(2)

1 , we have a linear combination of the following
terms with coefficients given by

∂vBrv : r2
h

16 (−3 + 2 log 2 + 4 log rh) ,

∂vBav : r2
h

32 (−3 + 2 log 2 + 4 log rh) + ir2
h

16π
(
2 log 2− log2 2

)
,

∂kBrk : 1
8r

2
h,

∂kBak : r2
h

16 −
ir2
h

16π (3− 4 log rh),

∂2
vϑr : r2

h

8 (1− log 2),

∂2
vϑa : r2

h

16(1− log 2)− ir2
h

96π
(
5π2 + 24 log 2− 12 log2 2

)
,

∂2
kϑr : − r2

h

8 ,

∂2
kϑa : − r2

h

16 + ir2
h

4π log 2. (A.42)
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The results for Õ(0)(2)
2 are quite similar

∂vBrv : r2
h

16 (−3 + 2 log 2 + 4 log rh) ,

∂vBav : r2
h

32 (3− 2 log 2− 4 log rh) + ir2
h

16π
(
2 log 2− log2 2

)
,

∂kBrk : 1
8r

2
h,

∂kBak : − r2
h

16 −
ir2
h

16π (3− 4 log rh),

∂2
vϑr : r2

h

8 (1− log 2),

∂2
vϑa : − r2

h

16(1− log 2)− ir2
h

96π
(
5π2 + 24 log 2− 12 log2 2

)
,

∂2
kϑr : − r2

h

8 ,

∂2
kϑa : r2

h

16 + ir2
h

4π log 2. (A.43)

Thus, the relevant terms in the effective action are

2m2ϑÕ(0)(2)
∣∣∣∣1
2
=2m2 r

2
h

16 (3−2log2−4logrh)(Bav∂vϑr−ϑa∂vBrv)

+2m2−r2
h

8 (Bak∂kϑr−ϑa∂kBrk)+2m2 r
2
h

4 (1−log2)ϑa∂2
vϑr

−2m2 r
2
h

4 ϑa∂
2
kϑr+2m2 ir

2
h

16π (2log2−log22)ϑa∂vBav

+2m2−ir2
h

16π (3−4logrh)ϑa∂kBak

+2m2−ir2
h

96π (5π2+24log2−12log22)ϑa∂2
vϑa+2m2 ir

2
h log2
4π ϑa∂

2
kϑa, (A.44)

where the fourth line and fifth line are in perfect agreement with eq. (3.29) of [25], and all
the rest terms are new. The expressions (in terms of contour integrals) for the last two
lines have been presented in [25], without explicit values.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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