
Eur. Phys. J. C (2020) 80:694
https://doi.org/10.1140/epjc/s10052-020-8289-8

Regular Article - Theoretical Physics

Model comparison of �CDM vs Rh = ct using cosmic
chronometers

Haveesh Singirikondaa, Shantanu Desaib

Department of Physics, Indian Institute of Technology, Hyderabad, Telangana 502285, India

Received: 31 May 2020 / Accepted: 25 July 2020 / Published online: 2 August 2020
© The Author(s) 2020

Abstract In 2012, Bilicki and Seikel (Mon Not R Astron
Soc 425:1664, 2012) showed that H(z) data reconstructed
using Gaussian Process Regression from cosmic chronome-
ters and baryon acoustic oscillations, conclusively rules out
the Rh = ct model. These results were disputed by Melia
and collaborators in two different works (Melia and Maier in
Mon Not R Astron Soc 432:2669, 2013; Melia and Yenna-
pureddy in JCAP 2018:034, 2018), who showed using both
an unbinned analysis and Gaussian Process reconstructed
H(z) data from chronometers, that Rh = ct is favored over
�CDM model. To resolve this imbroglio, we carry out model
comparison of �CDM versus Rh = ct by independently
reproducing the above claims using the latest chronometer
data. We perform model selection between these two models
using Bayesian model comparison. We find that no one model
between �CDM and Rh = ct is decisively favored when uni-
form priors on �CDM parameters are used. However, if we
use priors centered around the Planck best-fit values, then
�CDM is very strongly preferred over Rh = ct .

1 Introduction

The standard hot Big-Bang model of cosmology is described
by a flat �CDM universe, with 70% of the energy density
comprising of the cosmological constant (or any dark energy
fluid with equation of state w ≡ P/ρ close to −1) and 25%
cold (non-baryonic) dark matter and 5% baryons [4]. This
model has two episodes of acceleration (one in the early uni-
verse caused by inflation [5], posited to solve the horizon and
flatness problems in the standard hot Big-Bang model [6]),
and another in the late universe, caused by dark energy [7].
This model has been spectacularly confirmed by Planck 2018
CMB observations [8] along with other large-scale structure
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probes. There are however a few data-driven lingering prob-
lems with the standard �CDM paradigm, such as the Hub-
ble constant tension between local and high redshift mea-
surements [9,10], σ8 tension between CMB and galaxy clus-
ters [11,12], Lithium-7 problem in Big-Bang nucleosynthe-
sis [13], anomalies in CMB at low l [14], etc. A few works
have also challenged some of the most well-established tenets
of the standard cosmological model, viz. cosmic accelera-
tion [15] and even cosmic expansion [16].

Independent of the above data driven problems, there are
also conceptual problems with the standard model. The best-
fit model of scalar-field driven inflation (an essential pillar of
standard hot Big-Bang model) with flat potentials also causes
lots of fine-tuning issues [17]. Furthermore, we don’t yet
have laboratory evidence for any cold dark matter candidate,
despite searching for over three decades [18]. If the dark
energy turns out to be a cosmological constant, a non-zero
value would be very problematic from the point of view of
quantum field theory [19,20].

Therefore, because of some of the above problems, many
alternatives to the standard model have been constructed.
One such model is the Rh = ct universe model, proposed by
Melia [21–23]. In this model, the size of the Hubble sphere
given by Rh(t) = ct is upheld for all times in contrast to
the case of the �CDM model, where this coincidence is true
only at the current epoch, i.e. Rh(t0) = ct0. This model
has a(t) ∝ t and H(z) = H0(1 + z). One direct result of
this is that the rate of expansion ȧ is constant; and pres-
sure and energy density satisfy an equation of state given
by p = −ρ

3 . This is known as the zero active mass con-
dition, and has been argued by Melia to be a necessary
requirement due to the symmetries of FRW universes [24].
(See however Ref. [25] for objections to this argument of
zero active mass condition.) Melia has also argued that this
model provides a cosmological basis for the origin of the
rest mass energy relation, i.e. E = mc2 [26], although this
has been disputed [27]. The Rh = ct model also has several
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antecedents and generalizations, discussed in Refs. [28,29],
and an up-to-date review of all such models can be found in
Ref. [30]. This model has been tested with a whole slew of
cosmological observations by Melia and collaborators; such
as cosmic chronometers [3], quasar core angular size mea-
surements [31], quasar X-ray and UV fluxes [32], Type 1a
SN [33], strong lensing [34], cluster gas mass fraction [35],
etc and found to be in better agreement compared to �CDM
model. However, other researchers have reached opposite
conclusions and have argued that this model is inconsis-
tent with observations [1,36–42]. Even before this model
was introduced, there were severe observational constraints
on power-law cosmologies, within which this model can be
subsumed [43,44]. These results in turn have also been con-
tested by Melia and collaborators [45]. Conceptual prob-
lems have also been raised against this model [25,46–51],
although some have been countered [52]. We note however
so far this model is yet to reproduce the Cosmic Microwave
Background temperature and polarization anisotropy mea-
surements.

In this work, we try to adjudicate between one such con-
flicting claim between two of the above works: Ref. [1]
(BS12, hereafter) and Refs. [2,3] (MM13 and MY18, here-
after), which have reached diametrically opposite conclu-
sions, when analyzing Hubble parameter (H(z)) measure-
ments. BS12 reconstructed a non-parametric fit for H(z)
using Gaussian Process Regression (GPR hereafter) from
18 cosmic chronometer measurements and 8 BAO measure-
ments spanning the redshift range 0.09 ≤ z ≤ 0.73. They
argued based on a visual inspection of the reconstructed H(z)
and its derivatives, that the �CDM model is a much better
fit than the Rh = ct model. Soon thereafter, MM13 however
pointed out that 19 unbinned H(z) measurements obtained
from chronometers, support Rh = ct over the �CDM. This
assertion was based on AIC, BIC, and KIC based tests from
information theory and χ2/dof. Most recently, MY18 used 30
H(z) measurements using cosmic chronometers, and simi-
lar to BS12, used GPR to reconstruct a non-parametric H(z).
Model comparison of �CDM vs Rh = ct was done by cal-
culating the normalized area difference between the model
and the reconstructed H(z). They argued that with this pro-
cedure, Rh = ct model is a better fit than �CDM. Here,
we do an independent analysis of H(z) data, using the latest
measurements from chronometers.

The outline of this paper is as follows. We discuss the
GPR technique and Bayesian model comparison technique
in Sect. 2 and Sect. 3 respectively. The key points made in
the two conflicting sets of papers BS12 versus MM13, MY18
are discussed in Sect. 4. The description of our datasets and
analysis can be found in Sect. 5. Our results using H(z)
measurements can be found in Sect. 6. A comparison of the
two models using the Om(z1, z2) statistic can be found in
Sect. 7. We conclude in Sect. 8.

2 Gaussian process regression

Both the groups (BS12 and MY18) have used GPR for their
analysis. Therefore, we provide an abridged introduction to
GPR, before discussing the results of their analysis. A more
detailed explanation can be found in Section 2 of Ref. [53].
GPR is a widely used technique in astronomy as it allows us
to smoothly interpolate in a non-parametric fashion between
different datapoints, thereby allowing us to increase the num-
ber of degrees of freedom. However, they do not provide more
information than the underlying data. Gaussian process is
similar to a Gaussian distribution but it describes the distri-
bution of functions instead of random variables. To describe
the distribution of these functions, we need the mean function
μ(x) and a covariance function cov( f (x), f (x̃)) = k(x, x̃)
connecting the values of f evaluated at x and x̃ . There are
many choices for the covariance function. Both the papers
have used a squared exponential/Gaussian covariance func-
tion, so even in this paper we use a Gaussian kernel for GPR.
For a Gaussian kernel k(x, x̃) is:

k(x, x̃) = σ 2
f exp

(
− (x − x̃)2

2l2

)
.

Here, σ f and l are hyper-parameters which describe the
‘bumpiness’ of the function.

Even a random function f (x) can be generated using the
covariance matrix. Let X be the set of points xi and one can
generate a vector f∗ of function values atX∗ with f ∗

i = f (x∗
i )

as

f∗ = N (μ∗, K (X∗,X∗
)).

The notation N means that the Gaussian process is evaluated
at x∗, where f (x∗) is a random value drawn from a normal
distribution. Similarly, observational data can be written in
the same way as

y = N (μ, K (X,X) + C)

where C is the covariance matrix of the data. If data is uncor-
related the covariance matrix is simply diag(σ 2

i ). Using the
values of y at X we can reconstruct f∗ using

f∗ = μ∗ + K (X∗,X )[K (X,X) + C]−1(y − μ)

and

cov(f∗) = K (X∗,X∗
) − K (X∗,X )[K (X,X) + C]−1K (X,X∗)

where f∗ and cov(f∗) are mean and covariance of f∗ respec-
tively. The diagonal elements of cov(f∗) provide us the vari-
ance of f∗. More details on this can found in Ref. [53]. Both
BS12 and MY18 implement GPR inPython using the pack-
age GaPP, which was developed by Seikel and collabora-
tors [53].
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3 Model comparison summary

Model comparison between two models can be broadly clas-
sified into three distinct categories: frequentist, information-
theory, and Bayesian techniques [54–58]. In this work we
shall only apply Bayesian model comparison, since this is
argued to be the most robust among the different model com-
parison techniques [56,59]. We briefly summarize this tech-
nique and more details can be found in Refs. [56,58,59] or
some of our previous works [60,61].

Using Bayesian statistics, we compute the probability
that the data was generated by each model, also called the
Bayesian evidence (Z ) [56]:

P(�|D, M) = P(D|�, M)P(�, M)

P(D|M)
(1)

where P(�|D, M) is the posterior, P(D|�, M) is the like-
lihood, P(�, M) is the prior, and P(D|M) is the evidence,
also sometimes referred to as marginal likelihood. Note that
unlike the other model comparison test, the Bayesian evi-
dence does not use the best-fit value of a given model. It
considers the entire range. Again, the model with a higher
evidence, i.e, higher probability that the data was generated
from that model, will be the better model to describe the data.
From the Bayesian evidence of the two models, we can cal-
culate the value of the Bayes factor, which is simply the ratio
of the evidence for the two models and given by:

B = Z1

Z2
. (2)

For the Bayes factor, we evaluate the ratio of the evidence
of the �CDM to the evidence for the Rh = ct model. The
significance can be evaluated using the Jeffreys scale [56].

4 Summary of BS12, MM13, and MY18

As mentioned in the introduction, there is a large amount of
literature comparing the Rh = ct model with the �CDM
model. We focus on the particular case of these two sets of
papers (BS12 versus MM13/MY18) and a few others which
only use H(z) measurements, where they have arrived at
conflicting results despite similar analysis. We then briefly
mention some other works which compared the two models
using only expansion history.

BS12 reconstructed the value of the deceleration parame-
ter q(z) from Union2.1 Type 1a Supernova dataset with GPR,
and showed from a visual inspection that the reconstructed
q(z) better fits the �CDM model. They also used Hubble rate
data from 18 cosmic chronometer and 8 BAO measurements,
and reconstructed H(z) with GPR, and plotted it against the
predicted values of H(z) from the �CDM model and the

Rh = ct model. They compared the reconstructed H(z), its
first and second derivative, as well as the Om(z) diagnos-
tic [62] against the theoretical predictions of the two models.
They again used visual inspection from these plots to con-
clude that the �CDM model is a better fit to the data com-
pared to Rh = ct . Very soon after BS12, MM13 considered
19 unbinned H(z) measurements from cosmic chronome-
ters and fit this data to both the models. They found that
the χ2/DOF (or reduced χ2) is equal to 0.745 and 0.777 for
Rh = ct and �CDM (with parameters given by: �M = 0.32,
H0 = 68.9 ± 2.4 km/s/Mpc) respectively. Therefore, the
reduced χ2 was smaller for �CDM. However, when �CDM
model is fit to the cosmic chronometer data, the estimated
values of �M and H0 (0.27 and 73.8±2.4 km/s/Mpc respec-
tively) yield a χ2/DOF of 0.9567, which is greater than that
for Rh = ct universe. However, no comparison of the good-
ness of fit based on χ2 p.d.f. was made. They also found
smaller values of AIC, BIC, and KIC for Rh = ct universe
compared to �CDM. However, we note that the difference in
information criterion between the two models did not cross
the threshold of 10, needed for any one model to be deci-
sively favored over the other. They further criticized the SN
data analysis in BS12, arguing that the data used was opti-
mized for �CDM cosmology. They also argued that the BAO
data analyzed in BS12 includes non-linear evolution of the
matter density and velocity fields, and hence is not model-
independent. Therefore, their analysis was done using only
chronometers.

A similar analysis using the latest cosmic chronometer
data (consisting of 30 measurements) and GPR was carried
out in MY18. Here, they used an analytical approach to com-
pare the two models after reconstructing the values of H(z)
using GPR. They argued that the Rh = ct performs bet-
ter than the �CDM model, contradicting the conclusion of
BS12. To quantify this, they constructed a mock data set using
Gaussian random variables, and then computed the normal-
ized absolute area difference between this and the real func-
tion. For each model they calculated the differential areas
by replacing the mock data set with the predictions from the
models, and then estimated the probability of the model (p-
value). From this analysis they came to the conclusion that
the Rh = ct model is the better model among the two for the
chronometer data.

Besides the above two sets of papers, Ref. [39] showed
using AIC and BIC that a combination of JLA type 1a SN
sample and 30 H(z) measurements from chronometers and
BAO strongly support the �CDM model over Rh = ct uni-
verse. They also found using AIC and BIC that the chronome-
ter only measurements by themselves do not decisively favor
any one model. Haridasu et al. [38] did a joint analysis of Type
1a SN, BAO, GRB and chronometer H(z) data and compared
the likelihood of �CDM model with Rh = ct using AIC and
BIC. They found that both �AIC and �BIC between the
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two models is greater than 20, thereby decisively ruling out
Rh = ct model. Hu and Wang showed from a test of the
cosmic distance duality relation using a sample of galaxy
clusters and Type 1a SN, that the �CDM model is strongly
favored over Rh = ct with both �AIC and �BIC greater
than 10 [40]. Tu et al. used a combination of strong lens-
ing, Type 1a supernovae, BAO and cosmic chronometers to
argue that �CDM is moderately favored over Rh = ct model
with the natural logarithm of the Bayes factor greater than
five [41].

5 Datasets and analysis

The H(z) data from cosmic chronometers are obtained by
comparing relative ages of galaxies at different redshifts and
is given by the following expression, assuming an FRW met-
ric [63]:

H(z) = − 1

1 + z

dz

dt
. (3)

Based on the measurements of the age difference, �t ,
between two passively–evolving galaxies that are separated
by a small redshift interval �z, we can approximately cal-
culate the value of dz/dt from �z/�t . This differential age
method is much more reliable than a method based on an
absolute age determination for galaxies, as absolute stellar
ages are more vulnerable to systematic uncertainties than
relative ages.

Even though cosmic chronometers probe only the expan-
sion history of the universe, they have been used for a vari-
ety of cosmological inferences, such as determination of
H0 [64–67], transition redshift from deceleration to acceler-
ation [68,69], cosmic distance duality relation [70], σ8 esti-
mation [71], dark energy equation of state [72,73], etc. The
complete data set of 31 measurements of H(z) at redshifts
0.07 < z < 1.965 from cosmic chronometers is listed in
Table 1. This data set was obtained from the compilation in
Table III of Ref. [71]. A graphical summary of this unbinned
data, along with the reconstructed H(z) using GPR can be
found in Fig. 1.

Although BS12 (and also Ref. [39]) has used H(z) mea-
surements from BAO to rule out Rh = ct model, we have
only used the Hubble parameter data obtained from cosmic
chronometers. This is due to various concerns regarding com-
bining data from these two sources for parameter estimation
within �CDM and for testing Rh = ct universe [2,74]. One
problem in using the BAO data for assessing the viability of
an alternative to the �CDM model arises from the fact that
measurement of the Hubble parameter from BAO requires
the assumption of a particular cosmological model, unlike
the model independent measurements of cosmic chronome-

Table 1 H(z) data from cosmic chronometers along with references
to original sources. This list was compiled from Ref. [71]

z H(z) (km/s/Mpc) σ (km/s/Mpc) Refs.

0.07 69 19.6 [75]

0.09 69 12 [76]

0.12 68.6 26.2 [75]

0.17 83 8 [76]

0.179 75 4 [77]

0.199 75 5 [77]

0.2 72.9 29.6 [75]

0.27 77 14 [76]

0.28 88.8 36.6 [75]

0.352 83 14 [77]

0.3802 83 13.5 [73]

0.4 95 17 [76]

0.4004 77 10.2 [73]

0.4247 87.1 11.2 [73]

0.4497 92.8 12.9 [73]

0.47 89 34 [78]

0.4783 80.9 9 [73]

0.48 97 62 [79]

0.593 104 13 [77]

0.68 92 8 [77]

0.781 105 12 [77]

0.875 125 17 [77]

0.88 90 40 [79]

0.9 117 23 [76]

1.037 154 20 [77]

1.3 168 17 [76]

1.363 160 33.6 [80]

1.43 177 18 [76]

1.53 140 14 [76]

1.75 202 40 [76]

1.965 186.5 50.4 [80]

ters. All BAO measurements are scaled by the size of the
sound horizon at the drag epoch, rs . Computing the value of
rs requires the assumption of a fiducial model. Most anal-
yses which employ BAO measurements use the value of rs
obtained using the �CDM model. This would induce a bias
towards the �CDM model when comparing it with other
models. Another concern is that one also needs to model
the non-linear evolution of density and velocity fields, which
are not model-independent [2,31]. Therefore, in MY18 and
MM12, no BAO data was used, whereas both BAO and
chronometer data was used in BS12. Accounting for all these
problems we present our results for model comparison with-
out the BAO data.

The first step in model comparison is to find the best-
fit values of the free parameters in �CDM as well as the
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Fig. 1 Plot showing H(z) chronometer data along with the best-
fit �CDM model and the Rh = ct model, with best-fit parameters
obtained using unbinned data. Also shown is H(z) reconstructed non-
parametrically (along with 1σ and 2σ errors in reconstruction). The
reconstruction was done with Gaussian Process Regression using the
GaPP package

Rh = ct universe model. This is obtained by minimizing the
χ2 functional given by:

χ2 =
N∑
i=1

(
Hi (z) − H�CDM/Rh=ct (z, θ)

σi

)2

, (4)

where Hi (z) indicate the various Hubble parameter mea-
surements, N is the total number of datapoints used,
H�CDM/Rh=ct (z, θ) encapsulates the relation for the Hub-
ble parameter in �CDM and Rh = ct cosmology; σi denotes
the error in H(z); and θ denotes the parameter vector in the
two models.

In the Rh = ct model, H(z) is given by:

H(z) = H0(1 + z), (5)

whereas for the �CDM model, H(z) is:

H(z) = H0

√
�M (1 + z)3 + (1 − �M − ��)(1 + z)2 + ��

(6)

where �M and �� are the density parameters of matter and
the cosmological constant respectively. Note that for a flat
�CDM model, �� = 1−�M , which reduces the number of
free parameters by one. For a flat �CDM model the equation
would be -

H(z) = H0

√
�M (1 + z)3 + 1 − �M . (7)

In both BS12 and MM13, a flat �CDM model was used
for the model comparison. So in this work we will stick to
the flat case of the �CDM model (�k = 0) with H(z) given
from Eq. 7.

Since Bayesian model comparison does not depend upon
the best-fit values, we do not have to maximize any likeli-
hood. We only need to choose priors for the two models. For

Table 2 The priors used for the analysis. U(x, y) denotes a top-hat or a
uniform prior between x and y. N (x, y) denotes a Gaussian prior with
a mean of x and scale parameter of y. The Gaussian priors for �CDM
are centered around the best fit values of the 2018 results of Planck
collaboration [8], with the scale parameter equal to 1σ error of these
results. The priors on H0 are given in units of km/s/Mpc

�CDM – Uniform prior

�M U(0, 1)

H0 U(0, 100)

�CDM – Gaussian prior

�M N (0.315, 0.007)

H0 N (67.4, 0.5)

Rh = ct

H0 U(0, 100)

�CDM, we used two sets of priors. The first set assumes
a uniform distribution for �M and H0. For the second set
of priors, we use the 2018 Planck cosmology determined
best-fit parameters [8], and choose Gaussian priors centered
around these values. The Rh = ct universe has only one free
parameter, H0 and we used the same (uniform) H0 prior as in
�CDM model. 1 A summary of all the priors used for model
comparison for both the models can be found in Table 2.
In this work, the Bayesian evidence was computed using
the dynesty [81] package, which uses the nested sampling
technique.

6 Results

We now present our results for model comparison using the
chronometer dataset. We carried out two different analyses.
The first analysis involves using the unbinned data. The sec-
ond analysis involves reconstructing H(z) using the non-
parametric GPR method. For each of these datasets, we used
two different priors for �CDM, as outlined in the previ-
ous section. For this purpose, we repeat the analysis done in
BS12, wherein H(z) is reconstructed at many values using
GPR. The GPR was done using theGaPP software. This GPR
reconstructed H(z) for chronometers along with the original
unbinned measurements is shown in Fig. 1, along with the
best-fit �CDM model and the Rh = ct model. For carrying
out model comparison with GPR, we use 100 reconstructed
measurements uniformly distributed between the lowest and
highest available redshift.

1 We do not use the Gaussian prior on the value of H0 for Rh = ct as
the Planck 2018 results were obtained for the �CDM model, and there
is no independent precise estimate of H0 for Rh = ct model.
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6.1 Model comparison using unbinned data

Our model comparison results using unbinned analysis using
both the prior choices are summarized in Table 3. The sum-
mary of these results is as follows. When uniform priors
for �CDM are chosen, the Bayes factor (defined as ratio of
Bayesian evidence for �CDM model to Rh = ct) is close
to one, and hence does not prefer any one model over the
other. However, if we choose Gaussian priors centered around
Planck best-fit values, then �CDM is very strongly favored
over Rh = ct using Jeffreys scale. Therefore, we disagree
with MM12 that Rh = ct is favored, if you consider only
chronometer data.

6.2 Model comparison using GPR data

Our results for model comparison using data reconstructed
with GPR can be found in Table 4. The Bayes factor again
marginally favors �CDM, when uniform priors are used.
When we use Planck based priors, then �CDM is decisively
favored over Rh = ct .

Therefore, in summary we disagree with MS18 that Rh =
ct provides a better fit than the �CDM model, since no test
provides a decisive evidence for either model and most tests
strongly favor the �CDM model. At the same time we note
that out Rh = ct model cannot be currently ruled out using
chronometers, if we use uniform priors on �M and H0.

7 Diagnosis using Om statistic

We now explore if we can distinguish between the two models
using the two-point Om(z1, z2) statistic between any two
pairs of redshifts (z1,z2). The Om(z1, z2) statistic is defined

as [82]:

Om(z1, z2) = h2(z1) − h2(z2)

(1 + z1)3 − (1 + z2)3 (8)

where h(z) = H(z)/H0. The Om(z1, z2) statistic has been
used to map out the expansion history of the universe and also
as a null test of �CDM in a number of works [74,82–86].
For �CDM model, Om(z1, z2) has the remarkable property
that it is independent of z1 and z2, and is equal to �M [83].
Therefore, computing the Om(z1, z2) using H(z) measure-
ments enables us to carry out a model independent test of
�CDM and simultaneously obtain an estimate of �M . For
Rh = ct universe, Om(z1, z2) is given by

OmRh=ct = (1 + z1)
2 − (1 + z2)

2

(1 + z1)3 − (1 + z2)3 . (9)

Therefore for Rh = ct model, Om(z1, z2) is not a constant
and is a function of z1 and z2.

From 31 H(z) measurements, we obtain a total of 31C2 or
465 Om(z1, z2) data points. These data points can be found
in Fig. 2. The errors are obtained from Gaussian error propa-
gation from the errors in H(z1) and H(z2). As we can see, for
low values of the redshift difference, the errors in Om(z1, z2)

are quite large, and although they reduce with increasing
z2 − z1, they are usually of the same order as Om(z1, z2).

For doing model comparison, we need to determine the
total number of free parameters in �CDM and Rh = ct .
For �CDM, this is equal to one, since H0 is degenerate with
�m , and choosing a different H0 would lead to a different
�m . However, irrespective of which value of H0 is used,
Om(z1, z2) would be a constant, independent of the redshift
difference. Since Om(z1, z2) is constant for �CDM model,
the best-fit maximum likelihood estimate would just be the

Table 3 Comparison of Bayes factor for Rh = ct and �CDM using
unbinned measurements of chronometer data listed in Table 1, using
two different sets of priors in �CDM (cf. Table 2) log Z denotes the
logarithm of the Bayesian evidence. The Bayes factor is defined as
the ratio of the evidence of the �CDM model to the evidence for the

Rh = ct universe model. When uniform priors are used for �CDM,
the Bayesian evidence for the two models are almost identical, with no
one model been preferred. When we used Gaussian priors centered on
the Planck best-fit values [8], �CDM is very strongly preferred over
Rh = ct

Rh = ct �CDM (Uniform prior) �CDM (Gaussian prior)

log Z −128.0 −129.3 −123.9

Bayes factor – 0.3 60.0

Table 4 Model Comparison tests using GPR measurements of
chronometer data listed in Table 1. The explanation of all the columns
is the same as in Table 3. When uniform priors are used, no one model

is preferred, whereas �CDM is decisively favored if we use Gaussian
priors obtained from the 2018 Planck best-fit measurements [8]

Rh = ct �CDM (Uniform prior) �CDM (Gaussian prior)

log Z −277.7 −277.3 −270.8

Bayes factor – 1.6 992.3
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Fig. 2 Plot of Om(z1, z2) calculated from the chronometer data using
Eq. 8. These points were calculated from combinations of the 31 Hubble
measurements in pairs, amounting to 465 points. The theoretical plots
are not included because the theoretical curves cannot be distinguished
at this scale

weighted mean of all the Om(z1, z2) measurements. For
Rh = ct , the only free parameter would be H0, since varying
H0 would vertically re-scale the whole plot by a constant
offset.

For �CDM, we get

χ2/dof = 185.4/350

and for Rh = ct we get

χ2/dof = 185.2/350.

For doing this fit, we removed four H(z) points with the
largest error bars. So the total number of Om(z1, z2) data
points used for doing the fits is equal to 351. As we see, both
the χ2/dof values are smaller than one and are very close to
each other making the Om(z1, z2) ineffective for this model
comparison. For illustrative purposes, we show this best-fit
along with some of the Om(z1, z2) (after removing the error
bars) in Fig. 3. Therefore, it is not possible to distinguish
between the two models using current H(z) chronometer
data.

8 Conclusions

In this work we try to independently assess the viability of
�CDM vs Rh = ct universe using only H(z) measurements
from cosmic chronometers to resolve conflicting claims
between two groups of authors. In 2012, Bilicki and Seikel [1]
claimed using H(z) measurements from chronometers and
BAO, that Rh = ct model is conclusively ruled out. This
was contested by Melia and collaborators [2,3], who showed
using H(z) measurements from chronometers that Rh = ct
universe is favored over �CDM. They also pointed out BAO
measurements cannot be used to test Rh = ct models, since
the BAO H(z) measurements implicitly assume �CDM. A

Fig. 3 This plot shows the theoretical curves for the best-fit �CDM
and Rh = ct models, along with the data for Om(z1, z2) (grey points).
For this plot, four H(z) points with the largest error bars have been
removed for which the value of Om(z1, z2) was large. Since this plot
is for illustrative purposes, we have also removed the error bars in the
Om(z1, z2) values for brevity. The actual error bars are much larger than
the differences between the two models. Therefore, it is not possible to
distinguish between the two models using Om(z1, z2) measurements

few other works [36,38,39,41] also found that type 1a SN,
H(z) measurements from chronometers, and BAO rule out
Rh = ct model.

In order to settle the conflicting results between the above
two groups of authors, we considered measurements from
only chronometers (to emulate the analysis in Refs. [2,3]).)
We did not consider the BAO measurements, given the cir-
cularity involved in using them for testing non-�CDM uni-
verses [2,3]. We carried out model comparison using both the
unbinned data, and also by doing a non-parametric recon-
struction using GPR. To carry out model comparison, we
used a Bayesian model comparison technique by comput-
ing the Bayes factor between the two models. We used two
different priors for the �CDM: a uniform prior over a wide
parameter range, and also Gaussian priors centered around
the 2018 Planck best-fit �CDM cosmology. A summary of
these priors used can be found in Table 2.

Our results for both these priors and datasets can be found
in Tables 3 and 4. When we use a uniform prior, the dif-
ference in significance between the two models is negligi-
ble, using both the datasets. However, for the priors centered
around the Planck 2018 best-fit �CDM values, we find that
�CDM is very strongly/decisively favored over Rh = ct
for the unbinned/GPR reconstructed datasets. Therefore, we
conclude that using the chronometer H(z) data, Rh = ct
model is not preferred over �CDM.

We also investigated if the Om statistic, calculated using
redshift pairs, which has been used in previous literature for
testing �CDM model [82,83], can be used to discriminate
between the two models. Unfortunately, the current error bars
in Om(z1, z2) estimated using chronometer H(z)data are too
large to enable a robust model comparison.

Therefore, in summary, we disagree with the claims in
both Ref. [1] and Refs. [2,3], and conclude that neither
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model is ruled out or decisively favored using only H(z)
measurements with chronometers, if we use uniform priors
on parameters of both models. A more acid test would be
using CMB and other large scale structure based tests in a
theory-independent fashion.
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