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Models proposed to explain recently discovered heavy-light four-quark states already assume certain
internal structures, i.e., the (anti)quark constituents are grouped into diquark/antidiquark clusters, heavy-
meson/light-meson clusters (hadrocharmonium) or heavy-light meson molecules. We propose and use an
approach to four-quark states based on Dyson-Schwinger and Bethe-Salpeter equations that has the
potential to discriminate between these models. We study the masses of heavy-light cqq̄c̄ and ccq̄q̄
four-quark states with q ¼ u, d, s and quantum numbers IðJPCÞ ¼ 0ð1þþÞ; 1ð1þ−Þ; 0ð0þþÞ and
1ð0þÞ; 0ð1þÞ; 1ð1þÞ. We identify the dominant components of the ground states with these quantum
numbers and suggest candidates for corresponding experimental states. Most notably, we find strong
heavy-light meson-meson and negligible diquark-antidiquark components in all cqq̄c̄ states, whereas for
ccq̄q̄ states diquarks are present. A potential caveat in the I ¼ 0 channels is the necessary but costly
inclusion of cc̄ components which is relegated to future work.

DOI: 10.1103/PhysRevD.102.051501

I. INTRODUCTION

In the past two decades a number of highly interesting
states have been identified in the charmonium and botto-
monium energy regions that cannot be accommodated for
in the conventional quark model for mesons made of a
quark and an antiquark. Since the quark model is otherwise
extremely successful in predicting spectra of heavy QQ̄
states (with Q ¼ c, b), these exceptional states are con-
sidered to be exotic hadrons. Some of them carry electro-
magnetic charge and thus may be naturally explained as
four-quark states QQ̄qq̄ (q ¼ u, d, s) with a light charged
quark-antiquark pair in addition to the overall neutral QQ̄
component. Thus, four-quark states are considered as
promising candidates to explain the properties of these
exotic hadrons, see e.g., [1–7] for reviews.
There is, however, no agreement on the internal structure

of these four-quark states. Model approaches usually
assume some kind of internal clustering from the start.
One possibility, the hadroquarkonium picture [8], suggests
a heavy quark and antiquark grouped together in a tight

core surrounded by the light qq̄ pair. This is motivated by
the experimental observation of final states with a specific
charmonium state and light hadrons. The second possibility
is the clustering of constituents in diquark-antidiquark
(dq − dq) components which interact via colored forces,
see e.g., [1] for a review. A third possibility, especially
relevant for states close to open-charm thresholds, is the
meson-molecule picture of arrangements into pairs of
Dð�ÞD̄ð�Þ mesons that interact with each other by short-
and/or long-range forces [5].
It is important to note that these possibilities are not

mutually exclusive: In general, every experimental state
may be a superposition of components with a different
structure and the “leading” component may be different on
a case-by-case basis. It is therefore important to develop
theoretical approaches to QCD that can deal with all these
possibilities. Lattice QCD is one such approach and has
made interesting progress so far, see [9–18] and references
therein. Nevertheless most simulations have been per-
formed at an exploratory level using light quarks with
unphysical large masses. Functional methods, on the other
hand, have been restricted to four-quark states with equal
masses [19,20] or specific quantum numbers [21].
In this work we present a generalization of the functional

approach to four-quark states that has the potential to
systematically address and compare heavy-light states in
different flavor combinations and with different JPC quan-
tum numbers. Based on a well-studied and understood
truncation of the underlying quark-gluon interaction, we
work with an approximated version of the four-body
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Faddeev-Yakubovsky equations that takes into account the
two-body correlations that lead to the internal clustering
described above. We apply the resulting formalism to the
experimentally interesting cqq̄c̄ hidden-charm states with
quantum numbers JPC ¼ 0ð1þþÞ, 1ð1þ−Þ and 0ð0þþÞ,
which are carried by the Xð3872Þ [22,23], the neutral
Zð3900Þ [24] and (likely) the Xð3915Þ [25], respectively.
Furthermore, we discuss four-quark states with open charm
ccq̄q̄ in the channels 1ð0þÞ; 0ð1þÞ and 1ð1þÞ. Currently
there are no experimental candidates for these states but
searches are underway. Corresponding states in the heavier
bottom-quark region received a lot of attention in recent
years since they are promising candidates for deeply bound
and narrow states, see e.g., [15,16,26,27]. It is certainly
interesting to see whether this is still the case for the
experimentally more easily accessible open-charm states.

II. FOUR-BODY EQUATION

The homogeneous Bethe-Salpeter equation (BSE) shown
in Fig. 1 has the form

Γ ¼ KG0Γ; ð1Þ
where Γ is the BS amplitude,K is the four-quark interaction
kernel that contains all possible two-, three- and four-body
interactions, and G0 is the product of four dressed (anti)
quark propagators; see [19–21] for details. Each multipli-
cation represents an integration over all loop momenta.
Equation (1) holds at a given pole position of the offshell
qqqq scattering matrix T, which satisfies the scattering
equation T ¼ K þ KG0T. Poles on the real axis of the total
squared momentumP2 correspond to bound states, whereas
resonances appear as poles in the complex plane on higher
Riemann sheets.
In this work we focus entirely on the two-body corre-

lations in K since these generate the internal two-body
clusters discussed above. This leads to

KG0 ¼
X

aa0
Kaa0 ; Kaa0 ¼ Ka þ Ka0 − KaKa0 ð2Þ

where a, a0 stand for qq, q̄q̄ or qq̄ pairs and aa0 is either
(12)(34), (13)(24) or (14)(23). The subtraction is necessary
to avoid overcounting [19,28,29]. Irreducible three- and
four-body interactions are not (yet) taken into account for
three reasons: first, this would complicate an already
tremendous numerical task further beyond the resources

currently available to us; second, a similar strategy has been
employed with great success in the baryon sector, where
strong two-body correlations naturally lead to a diquark-
quark picture, which in turn leads to a spectrum in one-to-
one agreement with experiment [30,31]; third and most
important, the pictures of internal structures that we like to
discriminate (i.e., diquark/antidiquark vs hadro-charmo-
nium vs meson molecule) all rely on strong two-body
clustering. Thus for the purpose of this work it is indeed
sufficient to focus on two-body interactions. Nevertheless,
of course, the effects of irreducible three- and four-body
forces have to be explored in future work.
For the two-body kernels we employ the same rainbow-

ladder interaction that is used in the Dyson-Schwinger
equation (DSE) for the quark propagator. This truncation
has recently been reviewed in [31], where the DSE for the
quark propagator is discussed around Eq. (3.18) and the
effective interaction in Eqs. (3.95)–(3.96). We use Λ ¼
0.72 GeV for the scale parameter, adjusted to reproduce the
pion decay constant fπ, and η ¼ 1.8� 0.2. Together with
the current-quark masses, these are the only input param-
eters in all equations. The construction satisfies chiral
constraints such as the Gell-Mann-Oakes-Renner relation,
ensures the (pseudo-) Goldstone-boson nature of the pion
and has been extensively applied to meson and baryon
phenomenology. As discussed in [31], the truncation is well
known to reliably reproduce many properties of pseudo-
scalar and vector mesons (and, correspondingly, scalar and
axialvector diquarks). Since we focus on two-body clusters
inside tetraquarks in these channels only, we may expect
qualitatively reasonable results.
The quantitative reliability of the approximation of the

two-body kernel may be judged from the results for meson
masses in Table I. We work in the isospin symmetric limit
where mDþ ¼ mD− ¼ mD0 . The u=d current-quark mass is
fixed by mπ, the strange quark mass is chosen such that the
sum mDs

þmD�
s
equals the sum of the experimental values

[32] and analogously for the charm quark mass in
mD þmD� . The deviations between the theoretical and
experimental meson masses are then below 7% in all cases.

FIG. 1. Four-quark BSE for a cqq̄c̄ system in the (12)(34)
configuration; the remaining (13)(24) and (14)(23) permutations
are not shown. The half-circles and boxes represent the tetraquark
amplitude and Bethe-Salpeter kernel, respectively.

TABLE I. Rainbow-ladder results for nn̄, cn̄, cs̄ and cc̄ meson
and diquark masses (in MeV; n ¼ u, d). mq̄ is the input current-
quark mass at a renormalization point μ ¼ 19 GeV in a mo-
mentum-subtraction scheme. The column mPS contains the
masses of π, D, Ds and ηc, the column mV those of ρ=ω, D�,
D�

s and J=ψ , and the columns mS and mA list the corresponding
diquark masses. The quoted errors are obtained by varying the
parameter η ¼ 1.8� 0.2.

mq̄ mPS mV mS mA

nn̄ 3.7 138 732(1) 802(77) 999(60)
cn̄ 3.7 1802(2) 2068(16) 2532(90) 2572(8)
cs̄ 91 1911(3) 2169(14) 2627(82) 2666(7)
cc̄ 795 2792(6) 2980(6) 3382(15) 3423(8)
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III. FOUR-QUARK AMPLITUDE

The main challenge in solving Eq. (1) for given JPC is
the structure of the BS amplitude. Its general decomposi-
tion can be written as

ΓðμÞ
αβγδðp1…p4Þ ¼

X

i

fið…ÞτðμÞi ðp1…p4Þαβγδ; ð3Þ

where the Lorentz-invariant dressing functions fið…Þ
depend on the ten Lorentz invariant momentum variables
that can be constructed from four independent momenta.
The tensors τi are the direct products of Dirac, color and
flavor parts. A J ¼ 0 state has 256 linearly independent
Dirac tensors and a J ¼ 1 state 768, which are collected in
Ref. [20] and the Appendix of [21]. The color part of the
amplitude consists of two independent color-singlet tensors
and the flavor wave functions depend on the particular
system, cf. [33] for details.
To extract physical content from the BS amplitude

ΓðμÞðp1…pnÞ, we observe that the amplitude develops
internal two-body clusters, which for heavy-light systems
occur in the three different channels corresponding to
hadroquarkonia, heavy-light meson-meson components
and dq − dq clusters. These clusters may go on-shell
provided that the sum of their masses is smaller than the
mass of the four-body state. If this occurs in color-singlet
channels, the four-quark state becomes a resonance in the
two-body hadronic system of the corresponding clusters.
But even if the masses of the two-body clusters are large
enough such that the probed momenta only come close
to the corresponding singularities, this will influence the
four-body system. Thus the guiding idea is to represent
ΓðμÞðp1…pnÞ in terms of these two-body clusters.
Since we are interested in specific quantum numbers

with experimental candidates for four-quark states, we
draw on existing information on the decay channels of
these states and construct our representation along the
content displayed in Table II. For example, in the heavy-
light meson sector we took into account combinations of
the IðJPÞ ¼ 1=2ð0−Þ multiplets ðD;D�Þ and their antipar-
ticles ðD̄; D̄�Þ, omitting the heavy combinationD�D̄�. Note
that since we work in the isospin-symmetric limit the
charged and neutral states are mass-degenerate and both
taken into account.

The construction of the τðμÞi ðp1…p4Þ for the configura-
tions qqqq, cqqc and ccqq is detailed in [33]. We construct
the Dirac parts according to the dominant two-body clusters
and combine them with appropriate color and flavor wave
functions such that the charge-conjugation and Pauli
exchange symmetries are respected. As a result, one
populates a physically motivated subset of all possible
basis elements. Whereas in this work we restrict ourselves
to the combinations displayed in Table II, in principle one
could construct a complete basis for the four-body ampli-
tude with entangled Dirac, color and flavor tensors includ-
ing all possible meson and diquark channels (i.e., also those
with higher total angular momentum).

TABLE II. Physical content of the BS amplitudes for flavor
combinations cqqc and ccqq. Scalar and axialvector diquarks are
denoted by S and A, respectively.

IðJPðCÞÞ Physical components

cqqc 0ð0þþÞ DD, J=ψω, SS
0ð1þþÞ DD�, J=ψω, SA
1ð1þ−Þ DD�, J=ψπ, SA

ccqq 1ð0þÞ DD, AA
0ð1þÞ DD�, AS
1ð1þÞ DD�, AA

FIG. 2. Quark-mass evolution of the cqqc ground states in the
0ð0þþÞ and 1ð1þ−Þ channels for different components of the four-
body amplitude. The three vertical dashed lines mark the
positions of the up/down, strange and charm quark (from left
to right). Masses below the respective two-meson thresholds have
been determined directly from the eigenvalue curve λðP2Þ of the
BSE. Results above the threshold (i.e., for small quark masses)
are obtained from extrapolated eigenvalue curves. For example,
in the upper plot, the masses obtained with J=ψω components
only are all extrapolated, whereas in the other three setups all
results are read off directly, except those at the smallest quark
masses which lie above the lowest threshold. See main text for
further details.
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With this setup, we are in a position to solve the BSEs as
an eigenvalue problem, with structure λΓ ¼ KG0Γ and
general eigenvalue λ. All elements of this equation depend
explicitly on the total momentum P. By varying P2 such
that λ ¼ 1 one finds the mass of the bound state/resonance
in the four-body system via P2 ¼ −M2. One problem that
appears in this search is the potential appearance of
singularities in the plane of the complex total momentum
due to the internal meson and diquark correlations.
Typically, this does not happen for large masses of the
lighter quark pair, where the resulting bound state is in
general (well) below the meson-meson thresholds,
cf. Figs. 2 and 3. However, this situation changes for
smaller masses and in particular close to the physical point
of light quark masses, where the mass of the bound state/
resonance comes close to or is even larger than the meson-
meson threshold. For these cases we determine the eigen-
value curve λðM2Þ in the singularity free region and

extrapolate it further into the timelike momentum domain
using rational functions. This procedure can only pick up
the real part of potentially complex masses, i.e., it is not
possible to extract decay widths. To this end one would
need to use the much more involved approach described in
[35,36], which is not (yet) at our disposal for heavy-light
four-quark states. For many further details and first results
in the light quark sector we refer the reader to Ref. [34].

IV. HIDDEN-CHARM STATES

We first discuss our results for the hidden-charm cqqc
four-quark states in the IðJPCÞ ¼ 0ð0þþÞ and 1ð1þ−Þ
channels. In this context we wish to emphasise that the
results in the I ¼ 0-channel must be seen as preliminary
since the necessary but costly inclusion of cc̄ components
in our approach is relegated to future work (see however
[34] for corresponding results in the light quark sector).
The results for the 0ð1þþÞ heavy-light state can be found

in [21], where we also described our procedure to estimate
(part of) the error of the calculation. In that case we found a
dominant heavy-light meson component, whereas the
hadrocharmonium component is rather weak and the
diquark component has almost no effect at all.
A similar pattern arises in the scalar 0ð0þþÞ case

displayed in the top panel of Fig. 2. We show the mass
evolution of the four-quark state when the mass of the cc̄
pair is fixed and the mass of the other qq̄ pair is varied from
the charm mass (rightmost vertical dashed line) to the
strange and light quark masses (other two vertical lines).
We compare calculations with hadrocharmonium content
only (J=ψω; squares), heavy-light meson components only
(DD; circles) and a combination of the two (triangles). The
full calculation including also the diquark/antidiquark
component (DDþ J=ψωþ SS) is marked with crosses.
Not contained in the figure is our result for using diquark
components only (SS). For the scalar channel and in fact for
all channels that we studied we obtain very large masses
with diquarks only. These are typically of the order of the
diquark/antidiquark thresholds around 5 GeV (cf. Table I)
and therefore unphysical. Comparing the results for 0ð0þþÞ
shown in Fig. 2 we find that for large masses, the dq − dq
component has almost no effect on the results, whereas the
hadrocharmonium component gives only mild corrections
to the leading heavy-light meson components. The diquark
corrections become somewhat more prominent for small
masses, however without changing the general picture. Due
to the sizeable error bar we cannot discriminate between a
bound state and a resonance. The masses quoted in Table III
are obtained from a linear fit to the mass evolution at larger
quark masses; only for 0ð0þþÞ the direct calculation yields
a mass below any threshold.
The general picture changes somewhat for the 1ð1þ−Þ

state shown at the bottom of Fig. 2. Once again we find
negligible diquark components and a strong heavy-light
meson component, but also non-negligible contributions

FIG. 3. Quark-mass evolution of the ccqq ground states in the
0ð1þÞ and 1ð1þÞ channels. The 0ð1þÞ ccss state is read off from
the curve for the 1ð1þÞ state at mq ¼ ms. The three vertical
dashed lines mark the positions of the up/down, strange and
charm quark (from left to right). Masses below theDD� threshold
have been determined directly from the eigenvalue curve λðP2Þ of
the BSE. Results above the threshold (i.e., for small quark
masses) are obtained from extrapolated eigenvalue curves.
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from the hadrocharmonium component. It is interesting to
compare this behavior to the 1þþ channel discussed in [21].
From Table II we observe that the only difference between
the two states are the hadrocharmonium components. The
J=ψπ component in the 1þ− channel is significantly lighter
than the J=ψω component in the 1þþ channel, which lifts
the degeneracy between the two states and leads to a lighter
mass of the 1þ− (which is, however, opposite to the current
experimental situation). We have also tested further com-
ponents, which can contribute to the axial-vector 1ð1þ−Þ
state. We found the D�D� components to be negligible;
however, the ηcρ component is sizeable and enhances the
mass splitting once included. Further studies in this
direction are necessary.
The resulting masses are collected in Table III. It is

interesting to compare our results with expectations from
the literature. In Ref. [37] heavy-quark symmetry has been
used to predict patterns for molecular states. This led to the
identification of the Xð3872Þ with a molecular state in the
1þþ channel and the neutral Zcð3900Þ with a molecular
state in the 1þ− channel. Our results agree with this
identification: for the Xð3872Þ we expect an almost pure
heavy-light meson state which is then natural to expect to
sit very close to the DD̄� threshold. For the Zcð3900Þ,
however, we find non-negligible corrections from other
components, which may shift the physical state away from
the threshold. For the scalar channel no predictions have
been made in [37], see however [38–40] for a detailed
discussion. The lightest scalar molecule, if it exists, would
be expected at theDD̄ threshold. This is indeed the case for
our scalar state, which sits in the region of the threshold of
ourDmesons (cf. Table I). Thus the mass pattern emerging
in Table III is in line with our observation of heavy-light
meson dominance in all cqq̄ c̄ states studied so far.
In Table III we also list the masses of the charm-strange

css̄ c̄ states extracted from the mass evolution. For I ¼ 0
these correspond to observable states, whereas for I ¼ 1
they are unphysical. In the 1þþ channel there is an
experimental candidate, namely the Xð4140Þ with a mass
only slightly above the upper range of our error bar.
Provided this identification holds, we predict a strong

heavy-light meson component of the Xð4140Þ, even though
it is not overly close to the DsD̄�

s threshold. In addition, we
find a corresponding state in the 0þþ channel, although the
large error bars in this case make a prediction of its mass
rather imprecise.

V. OPEN-CHARM STATES

Our results for the open-charm states with flavor content
ccqq are shown in Fig. 3. The basis construction in the
open-charm case is significantly different from hidden
charm since charge-conjugation symmetry is replaced by
Pauli antisymmetry. The two heavy-light meson combina-
tions ðcq̄Þðcq̄Þ are identical, whereas the dq − dq compo-
nent ðccÞðq̄q̄Þ with a heavy diquark and a light antidiquark
inherits the role of the hadrocharmonium component. For
I ¼ 0, the light q̄q antidiquark must be scalar (S) due to
symmetry, whereas for I ¼ 1 it is axial-vector (A). The
heavy cc pair is always an axial-vector diquark.
This change of internal dynamics is also reflected in the

results. The heavy-light meson component alone produces
a state that is well below theDD� threshold and moves only
slightly above threshold for decreasing quark masses.
Whereas the AS diquark contribution in the I ¼ 0 case
is negligible compared to the DD� contribution, the AA
diquark component for I ¼ 1 has a significant impact in
pushing the mass evolution up above threshold. In the
graph for 0ð1þÞ we also included the D�D̄� component
explicitly, which is negligible as in all other channels. The
resulting mass hierarchy between the isosinglet and iso-
triplet states is as expected from heavy quark symmetry
[26]. Our extrapolated values for the masses are in the
ballpark expected from other approaches, see e.g.,
[26,27,41] and references therein.
In the open-charm case, the ccss states (with I ¼ 0) must

be read off from the ccqq curves with I ¼ 1 since those
have the same wave-function components [33]. As a
consequence, several slots in Table III are empty because
they do not support physical states. Moreover, there is a
large gap between the light and strange state in the 0ð1þÞ
channel but it comes again with a sizeable mass uncertainty.

VI. CONCLUSIONS

In this work we have studied and compared the masses of
heavy-light four-quark states in the charm energy region. We
developed a dynamical framework that takes into account all
possible combinations of internal two-body clusters and is
therefore able to decide dynamically whether pictures from
effective field theory and models (meson molecule, hadro-
charmonium, diquark-antidiquark) are realized. For hidden
charm, in all cases considered we do not find a sizeable
diquark-antidiquark component. Instead, the heavy-light
meson component is favoured, with channel-dependent
negligible [for 0ð1þþÞ] or small but significant [0ð0þþÞ
and 1ð1þ−Þ] contributions from the hadrocharmonium

TABLE III. Masses of hidden-charm (cqqc) and open-charm
(ccqq) states (n ¼ u, d) in GeV. The combined error from fitting
and varying the momentum partitioning is given in parentheses.
For the 0ð0þþÞ state we quote both the fitted value (first line) and
the direct calculation (second line). Tetraquarks with open or
hidden strangeness are only quoted in channels where physical
states may be present.

IðJPCÞ cnnc cssc IðJPÞ ccnn ccss

0ð0þþÞ 3.20(11) 3.36(10) 0ð0þÞ � � � 3.95(10)
3.50(42) 3.59(30) 1ð0þÞ 3.80(10) � � �

0ð1þþÞ 3.92(7) 4.07(6) 0ð1þÞ 3.90(8) 4.36(39)
1ð1þ−Þ 3.74(9) � � � 1ð1þÞ 4.22(44) � � �
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component. The situation for open charm is similar; the
dominant contribution is the heavy-light meson component
although significant corrections from the diquark-antidi-
quark component arise. Although the masses of the charm
quarks are far from static, mass patterns expected from
heavy-quark symmetry are visible: In the open-charm sector
we observe the expected mass hierarchy and difference
between the I ¼ 0 and I ¼ 1 axial-vector channels [26]. The
observed mass pattern in the hidden charm sector resembles
the one expected of the lowest-lying multiplet of states in the
hadronic molecular approach [37]. In order to make further
contact with heavy-quark symmetry and lattice QCD, it
would be interesting to further increase the masses of the

heavy quarks and explore the bottomonium sector. This is
technically challenging and therefore left for future studies.
A potential caveat of the present formalism is that it does not
take into account potentially important effects from mixing
with ordinary cc̄ states in the I ¼ 0 channels [10,14]. Again,
this is left for future work.
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