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Abstract We propose models to explain the hierarchies of
the quark masses and mixing by utilizing the S′

4 modular
flavor symmetry. The hierarchy is realized by the modulus
τ stabilized at Im τ � 1, where the residual ZT

4 symmetry
is approximately unbroken and the Froggatt–Nielsen mech-
anism works. It is found that the quark hierarchies are real-
ized only in a few cases of quark representations. We study
two models with assigning the modular weights, so that the
observed quark hierarchies are explained in the cases of both
small and large ratios of the top to bottom Yukawa couplings.
We also argue that O (0.1) hierarchies of the O (1) coeffi-
cients and the spontaneous CP violation can be realized by
imposing another S3 modular symmetry.

1 Introduction

Understanding the origin of the flavor structure of quarks
and leptons is one of the big challenges in particle physics.
Recently, the modular flavor symmetry attracts the attention
as an interesting possibility to explain the flavor structure [1].
In these models, the three generations of quarks and leptons
transform non-trivially under the modular symmetry, that is,
the modular symmetry is in a sense a flavor symmetry. On
top of that, Yukawa couplings are assumed to be modular
forms, which are holomorphic functions of the modulus τ

and non-trivially transform under the action of the modu-
lar group. As discussed in Ref. [2], it is remarkable that the
(in)homogeneous finite modular group �

(′)
N with the level
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N ≤ 5 is isomorphic to the well-known (double covering
of) permutation group, such as S3, A(′)

4 , S(′)
4 and A(′)

5 , which
have been intensively studied to explain the lepton flavor
structure in the literature [1,3–10]. These non-Abelian finite
groups have been studied in flavor models for quarks and
leptons [11–21]. The phenomenological aspects of the mod-
ular flavor symmetries have been actively discussed in the
literature [22–62].

The modular symmetry is well-motivated from the higher
dimensional theories such as superstring theory. For exam-
ple, if we consider the torus or its orbifold compactification,
the modulus parameter τ is the complex structure modulus,
which is a dynamical degree of freedom of the effective field
theory determining the shape of the torus. The modular sym-
metry appears as the geometrical symmetry associated with
this compact space. The Yukawa couplings are obtained by
the overlap integral of the profile functions of the matter zero-
modes and expressed as the function of the modulus which
transform non-trivially under the modular transformation.
The behavior of the zero-mode function under the modu-
lar transformation was studied in magnetized D-brane mod-
els [63–69] and heterotic orbifold models [70–75]. The mod-
ular flavor symmetric three-generation models based on the
magnetized extra dimension were discussed in Refs. [69,76].
The modulus stabilization is also discussed in Refs. [77,78].

A certain residual symmetry remains unbroken when the
modular symmetry is broken by the vacuum expectation
value (VEV) of the modulus at a certain fixed point. The
residual symmetry Z

S
4 ⊂ �′

N or Z
S
2 ⊂ �N , associated

with the S generator, remains unbroken at τ = i . In addi-
tion, ZST

3 and Z
T
N , associated with ST and T , remains at

τ = ω := e2π i/3 and τ = i∞, respectively. These residual
symmetries have been utilized in model-building in the liter-
ature [5,25,34,60]. It is particularly interesting that the hier-
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archical structure of Yukawa matrices for the Standard Model
(SM) fermions can be realized at a vicinity of the fixed points.
Indeed the lepton sector was discussed in Refs. [79,80].

In this paper, we discuss the modular flavor symmetry
which can realize the hierarchical structures of the quark
masses and the Cabbibo–Kobayashi–Maskawa (CKM) mix-
ing. The realizations of the quark mass hierarchy were dis-
cussed by use of �3 � A4 at τ ∼ ω and �6 at Im τ � 1 in
Refs. [81] and [82], respectively. We focus on the modular
flavor symmetry at N = 4, which is isomorphic to S(′)

4 . This
is the minimal possibility to realize the hierarchical struc-
ture with up to cubic order of a small parameter which may
be necessary to explain the quark hierarchies. For Imτ � 1,
this model has approximately the residual discrete symmetry
Z
T
4 , which realizes the quark mass structures by the Froggatt–

Nielsen (FN) mechanism [83,84]. It turns out that a few pat-
terns of representations can realize the quark hierarchical
structure. We then explicitly construct two models by assign-
ing modular weights, so that the experimental values of the
quark masses and the CKM angles are explained with small
and O (1) ratios of bottom to top quark Yukawa couplings.

The rest of the paper is organized as follows. In Sect. 2, we
briefly review the modular symmetry at N = 4. We discuss
the textures of the modular forms at Im τ � 1, where the
the residual ZT

4 symmetry is realized. In Sect. 3, we discuss
possible quark representations to realize the quark mass hier-
archy. We study two models with different modular weights
based on the modular flavor symmetry S(′)

4 in Sect. 4. Sect. 5
is devoted to summary. The details of S′

4 modular flavor sym-
metry as well as S3 are shown in Appendix A.

2 Modular symmetry at N = 4

We briefly review the modular symmetry. The homogeneous
modular group � := SL(2,Z) is defined as

� :=
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad − bc = 1

}
. (1)

This group is generated by the generators

S =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)
, R =

(−1 0
0 −1

)
,

(2)

and they satisfy the following algebraic relations,

S2 = R, (ST )3 = R2 = I, T R = RT . (3)

The inhomogeneous modular group � := PSL(2,Z) is
defined by � := �/ZR

2 , where ZR
2 is generated by R. That is,

the generator R is presented by R = I in � := PSL(2,Z).

In addition, congruence subgroup �(N ) is defined by

�(N ) :=
{(

a b
c d

)
∈ SL(2,Z),

(
a b
c d

)
≡

(
1 0
0 1

)
mod N

}
.

(4)

The quotients �N := �/�(N ) for N = 2, 3, 4 and 5 are
respectively isomorphic to S3, A4, S4 and A5. Moreover, the
quotients �′

N := �/�(N ) for N = 3, 4 and 5 are isomor-
phic to A′

4, S
′
4 and A′

5, which are double covering groups of
A4, S4 and A5, respectively. In these quotients, the generator
T satisfies

T N = I, (5)

and thus it generates ZT
N symmetry.

The group �′
4 � S′

4 has 10 irreducible representations,

1, 1′, 2, 3, 3′ and 1̂, 1̂′, 2̂, 3̂, 3̂′. (6)

The non-hatted representations r are those in the S4 sym-
metry, transformed by R trivially, i.e. ρR(r) = I, while the
hatted representations r̂ are transformed non-trivially by R,
i.e. ρR(r̂) = −I. Throughout this work, we use the represen-
tation matrices in which matrices are diagonal for T and real
for S, shown in Appendix A.

The modular group � acts on the modulus τ (Im τ > 0)
as

τ → aτ + b

cτ + d
. (7)

A modular form Y (k)
r of representation r under �′

4 with a
weight k transforms as

Y (k)
r (τ ) → (cτ + d)kρ(r)Y (k)

r (τ ), (8)

where ρ(r) is the representation matrix. The number of rep-
resentations at a weight k is listed in Table 3 of Appendix A.1.
At k = 1, there is a 3̂ representation,

Y (1)

3̂
(τ ) =

⎛
⎝

√
2ε(τ )θ(τ )

ε2(τ )

−θ2(τ )

⎞
⎠ , (9)

where the functions θ and ε are written by the Jacobi theta
functions [8]. Their series forms are given by

θ(τ ) = 1 + 2
∞∑
n=1

qn
2
, ε(τ ) = 2q1/4

∞∑
n=0

qn(n+1), (10)

where q := e2π iτ . The modular forms at higher weights can
be constructed from products ofY (1)

3̂
, and the ones used in our
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models are shown in Appendix A.1. Note that there is ambi-
guity in the normalization of the modular forms, which can
be absorbed by the coefficients of the couplings. We assume
that the ambiguity does not change the hierarchical structure
given by the powers of ε, and we choose a normalization such
that the absolute value of the numerical factor of the element
whose the power of ε is lowest is unity as in Eq. (9).

At Im τ � 1, θ ∼ 1 and |ε| ∼ 2e−(π/2)Im τ 
 1, and
hence ε will be the origin for the quark hierarchies. In this
limit, the symmetry generated by T is unbroken, and thus
the ZT

4 symmetry can realize the FN-like mechanism [83,
84], where the flavon is replaced by ε(τ ) ∼ 2q1/4 whose
ZT

4 charge is one. The irreducible representations have the
following hierarchical structures in this limit,

Y1 ∼ 1, Y1′ ∼ ε2, Y1̂ ∼ ε3, Y1̂′ ∼ ε, Y2 ∼
(

1
ε2

)
, Y2̂ ∼

(
ε3

ε

)
,

Y3 ∼
⎛
⎝ε2

ε3

ε

⎞
⎠ , Y3′ ∼

⎛
⎝ 1

ε

ε3

⎞
⎠ , Y3̂ ∼

⎛
⎝ ε

ε2

1

⎞
⎠ , Y3̂′ ∼

⎛
⎝ε3

1
ε2

⎞
⎠ , (11)

where Yr is the modular form of the representation r . The
weights k are omitted here since the hierarchical structures
are determined only by theZT

4 charge and are independent of
the weight for a given representation (see the representation
matrix ρ(r) shown in Appendix A.1). We see that the max-
imum power of ε is N − 1 = 3 which may be the minimal
number to explain the quark hierarchies [84].

3 Hierarchical structures

The goal of this work is to explain the hierarchical structure
in the quark sector with O(1) free parameters. The quark
hierarchies may be expressed by a small parameter ε 
 1,

(mu,mc,mt ) ∼ (ε3, ε, 1),

(md ,ms,mb) ∼ ε p × (ε2, ε2, 1),

VCKM ∼
⎛
⎝ 1 1 ε2

1 1 ε2

ε2 ε2 1

⎞
⎠ , (12)

where p = 0, 1. The top to bottom mass ratio mt/mb will be
explained by ε for p = 1, while, for p = 0, it is explained
by tan β := vu/vd , where vu (vd ) is the VEV of the neutral
component of the up-type (down-type) Higgs doublet in two
Higgs doublet models, such as supersymmetric models. We
note that N = 4 is the minimum possibility to realize the
texture in Eq. (12), since the maximum power of ε is N − 1:
εN−1 = ε3 ∼ mu/mt . One may think that the texture may
not fully fit the data, especially for the strange to down quark
mass ratio ms/md and the CKM angles involving the third
generation. The former is predicted to be O (1) and the latter
may be too small. It is shown in Ref. [84] that the CKM angles

withO (ε) fits to the data. We will see later that these potential
issues are resolved by the canonical normalizations and the
numerical coefficients in the modular forms. Recently, the
quark hierarchical structures realized by the level N = 3 at
τ � ω and N = 6 at τ � i∞ were studied in Refs. [81]
and [82], respectively.

The hierarchical structure of the masses from the modular
flavor symmetry is listed in Ref. [80].1 The mass hierarchy
of the up quarks, (1, ε, ε3), is realized if

uc ⊗ Q = 3 ⊗

⎧⎪⎨
⎪⎩

2 ⊕ 1

1′ ⊕ 1 ⊕ 1

1′ ⊕ 1′ ⊕ 1′,
(13)

where the exchange of Q and uc gives the same masses. Here
and hereafter, we omit the combinations which give the same
representation of Yukawa couplings, e.g. 3′ ⊗(2⊕1′). Those
of the down quarks, ε p(1, ε2, ε2), are obtained if

Q ⊗ dc =
{

2 ⊕ 1

1′ ⊕ 1 ⊕ 1
⊗ 1′ ⊕ 1′ ⊕ 1′ (1̂′ ⊕ 1̂′ ⊕ 1̂′)

(14)

for p = 0 (p = 1). One can consider that the down quark
masses have the hierarchy, ε p(1, ε, ε2) realized by

Q ⊗ dc = 3 ⊗ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1 ⊕ 1 ⊕ 1) , (15)

for p = 0 (p = 1).
The CKM hierarchy can be realized only if Q = 2 ⊕ 1

or 1′ ⊕ 1 ⊕ 1. If Q is composed of the same singlet rep-
resentations, all of the mixing angles in the CKM matrices
are predicted to be O (1), and hence the hierarchy can not
be explained. If Q is a triplet 3, the top Yukawa coupling of
O (1) is originated fromY3′ , see Eqs. (11) and (13). The down
quarks are realized in a way of Eq. (15), so the representation
of the Yukawa couplings are Y3̂ or Y3. According to Eq. (11),
the top Yukawa coupling is predominantly from the first row
of the Yukawa matrix, while the bottom Yukawa coupling
is from the second or third row. This means that the CKM
matrix is not identity at ε = 0, and |Vtb| 
 1 is predicted.
Thus the CKM hierarchy is explained only if Q = 2 ⊕ 1 or
1′ ⊕1⊕1. Altogether, the texture in Eq. (12) is realized only
in the following four cases:

uc = 3, dc =
{

1′ ⊕ 1′ ⊕ 1′

1̂′ ⊕ 1̂′ ⊕ 1̂′ , Q =
{

2 ⊕ 1

1′ ⊕ 1 ⊕ 1
.

(16)

1 In this work, we consider the combinations of the representations
shown in Ref. [80], i.e. the hatted and non-hatted representations do not
appear in the same type of quarks.
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Note that the cases such as uc = 3′, dc = 1 ⊕ 1 ⊕ 1 and
Q = 2′ ⊕ 1′ give the same Yukawa structure, so the phe-
nomenology will not be changed from the above four cases.
The first (second) case for dc corresponds to p = 0 (p = 1).
The texture is the same for the two cases of Q. We shall
study the first case since it is more predictive, because of the
smaller number of parameters. The second case is obtained
by splitting 2 into 1′ ⊕ 1 in the first case.

4 Models

We construct supersymmetric models with the representa-
tions shown in Eq. (16) which realizes the texture in Eq. (12).
The assignments of the chiral superfields under the elec-
troweak (EW) gauge symmetry, S′

4 and the modular weights
k are shown in Table 1. For general weight assignments, the
Yukawa couplings are given by

W = Hu

{
α1q1

(
Y

(ku+kq1 )

3 uc
)

1
+ α2

(
q2Y

(ku+kq2 )

3 uc
)

1

+α3

(
q2Y

(ku+kq2 )

3′ uc
)

1

}

+ Hd

3∑
i=1

{
β1i q1

(
Y

(kdi +kq1 )

1 dci

)
1
+ β2i

(
q2Y

(kdi +kq2 )

2 dci

)
1

}

=: HuQYuu
c + HdQYdd

c, (17)

where (· · · )1 is the trivial singlet combination of the product
inside the parenthesis.2 Besides, there will be more coeffi-
cients if there are more than one modular forms which are
degenerate for a given representation r and weight k. On
the contrary, the term is understood to be absent if there is
no modular form for a given r and k. For explicit exam-
ples, see the models in the following sections. For the down
quark couplings, (1, 2) = (1′, 2) and (1̂, 2̂) for p = 0 and
p = 1, respectively. In the second line, we defined Q :=
(Q1, Q2, Q3), uc := (uc1, u

c
2, u

c
3) and dc := (dc1, dc2, dc3).

We assign Q1 is the singlet and the others forming the dou-
blet under S′

4, i.e. q1 := Q1, q2 := (Q2, Q3). The up-type
quark uc is the triplet and each element of dc is the singlet.
The Kähler potential of the quark chiral superfield q with
wight kq , which includes the kinetic term, is given by3

K ⊃ q†q

(−iτ + iτ)kq
, (18)

2 The products of the irreducible representations of S′
4 are listed in

Appendix A.
3 As pointed out in Ref. [85], the form of Kḧler potential can not be
determined uniquely from the modular symmetry, but we choose the
simplest form Eq. (18) for simplicity. Also, there can be an overall
constant to the kinetic term which can be absorbed by the Yukawa
couplings in the superpotential. We here assume that these effects in the
Kähler potential do not induce additional hierarchical structure.

then, after the canonical normalization, the Yukawa matrices
are normalized as

[Yu]i j →
(√

2 Im τ
)kqi +ku

[Yu]i j ,

[Yd ]i j →
(√

2 Im τ
)kqi +kd j [Yd ]i j , (19)

where i, j = 1, 2, 3 and kq3 = kq2 . At Im τ � 1 where
ε ∼ O (0.01), this normalization factor 2 Im τ ∼ 5 can be
important for the hierarchical structure.

The hierarchical structure of the Yukawa matrices before
the canonical normalization are given by

Yu P13 ∼
⎛
⎝ε3 ε ε2

ε3 ε ε2

ε ε3 1

⎞
⎠ ,

Yd P13 ∼ ε p

⎛
⎝ε2 ε2 ε2

ε2 ε2 ε2

1 1 1

⎞
⎠ ,

where P13 :=
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ . (20)

Here, P13 is multiplied so that (3, 3) element is predomi-
nantly the top and bottom Yukawa couplings. These struc-
tures realize the mass and CKM hierarchies in Eq. (12). Note
that the hierarchial structure in the masses and mixing can
be realized even if some elements are vanishing because of
absence of modular forms for a given representation and
weight. We shall consider the two models which can explain
the quark hierarchies for p = 0 and p = 1.

4.1 Large tan β scenario: p = 0

We assign the modular weights as

kq1 = 2, kq2 = 4, ku = 2,

kd1 = 4, kd2 = 2, kd3 = 0. (21)

Since there is no odd weight, there are only non-hatted
representations. This means that the inhomogeneous group
�′

4/R � S4 is enough for this model. We can also study other
patterns of the weights where the weights of the Yukawa cou-
plings are less than 10, but this setup has the smallest hierar-
chy among the parameters with explaining the experimental
values.

In this case, the superpotential is

W = Hu

{
α1q1

(
Y (4)

3 uc
)

1
+ α2

(
q2Y

(6)
3 uc

)
1

+
2∑

iY=1

α
iY
3

(
q2Y

iY (6)
3′ uc

)
1

}
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Table 1 Assignments of the quarks and Higgs doublets under GEW := SU (2)L ×U (1)Y , S′
4 and the weight k

uc dc1 dc2 dc3 q1 q2 Hu Hd

GEW 1−2/3 11/3 11/3 11/3 21/6 21/6 21/2 2−1/2

S′
4 3 1̂′ or 1′ 1̂′ or 1′ 1̂′ or 1′ 1 2 1 1

k −ku −kd1 −kd2 −kd3 −kq1 −kq2 0 0

Table 2 The values of the Yukawa couplings at benchmark points in
the case of p = 0 (left) and p = 1 (right). The second column is
predictions of our models, and the third (fourth) column shows the
experimental values (its 1σ error). The central values are at the GUT

scale after the renormalization group evolution from the experimental
values when MSUSY = 10 TeV and vanishing threshold corrections in
the MSSM [86]. The errors at the scale 10 TeV are shown for reference.
At these points, tan β = 36.0982 (1.6358) on the left (right) panel

Obs. Value Center Error Obs. Value Center Error

yu /106 2.8 2.7 1.3 yu /106 2.9 2.9 1.3

yc /103 1.487 1.422 0.095 yc /103 1.560 1.508 0.095

yt 0.5139 0.5139 0.0084 yt 0.5464 0.5464 0.0084

yd /104 1.9935 1.9935 0.0087 yd /106 9.00 9.06 0.87

ys /103 3.946 3.946 0.014 ys /104 1.73 1.79 0.14

yb 0.2282 0.2282 0.0001 yb /102 1.011 0.994 0.013

s12 0.2274 0.2274 0.0007 s12 0.2274 0.2274 0.0007

s23 /102 3.945 3.942 0.065 s23 /102 3.991 3.989 0.065

s13 /103 3.43 3.43 0.13 s13 /103 3.47 3.47 0.13

δCP 1.215 1.208 0.054 δCP 1.204 1.208 0.054

+ Hd

⎧⎨
⎩β11q1

(
Y (6)

1′ dc1

)
1

+
2∑

iY=1

β
iY
21

(
q2Y

iY (8)
2 dc1

)
1

+
3∑
j=2

β2 j

(
q2Y

(10−2 j)
2 dcj

)
1

⎫⎬
⎭ . (22)

The Yukawa matrices are given by

Yu =⎛
⎜⎜⎝

α1[Y (4)
3 ]1 α1[Y (4)

3 ]3 α1[Y (4)
3 ]2

−2α2[Y (6)
3 ]1 α2[Y (6)

3 ]3 + √
3α

iY
3 [Y iY (6)

3′ ]2 α2[Y (6)
3 ]2 + √

3α
iY
3 [Y iY (6)

3′ ]3

−2α
iY
3 [Y iY (6)

3′ ]1 α
iY
3 [Y iY (6)

3′ ]3 − √
3α2[Y (6)

3 ]2 α
iY
3 [Y iY (6)

3′ ]2 − √
3α2[Y (6)

3 ]3

⎞
⎟⎟⎠ ,

Yd =

⎛
⎜⎜⎝

β11Y
(6)

1′ 0 0

−β
iY
21 [Y iY (8)

2 ]2 −β22[Y (6)
2 ]2 −β23[Y (4)

2 ]2

β
iY
21 [Y iY (8)

2 ]1 β22[Y (6)
2 ]1 β23[Y (4)

2 ]1

⎞
⎟⎟⎠ , (23)

where [Y (k)
r ]i is the i-th element ofY (k)

r . Here, the summation
over iY = 1, 2 is implicit. Note that there is no 1′ at k = 2, 4,
so (1, 2) and (1, 3) elements in Yd are zero. Altogether there
are 9 coefficients, namely α1, α2, α

1
3, α2

3, β11, β
1
12, β

2
12, β22

and β23. In our analysis, we assume that the coefficients are
real except α1

3 for simplicity.4 We introduce a phase to α1
3,

since the CKM phase is approximately vanishing if all of the
coefficients are real.

4 Without loss of generality, the phases of α1, β22 and β23 can be
absorbed by the redefinition of the quarks, so we assume that α2, α2

3

and β
1,2
21 are real in such basis.

We fit tan β, τ and the 9 coefficients to explain the
observed quark masses and the CKM mixing. The values
of Yukawa coupling constants and CKM angles at the Grand
Unified Theory (GUT) scale in the MSSM are calculated
in Ref. [86]. Throughout our analysis, we refer to the values
when MSUSY = 10 TeV, and the SUSY threshold corrections
are zero.5 We find the benchmark point where the observables
are within 1σ range, as shown in the left panel of Table 2.
The input parameters at this point are tan β = 36.0982,
τ = 0.4956 + 2.2306i , |α1

3 | = 4.1369 × 10−3 and

1

|α1
3 |

⎛
⎜⎜⎝

α1

α2

α1
3

α2
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−0.1357
−1.6734
e0.0074i

−0.6894

⎞
⎟⎟⎠ ,

1

|α1
3 |

⎛
⎜⎜⎜⎜⎝

β11

β1
21

β2
21

β22

β23

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−3.1165
0.1350
1.6214

−0.1357
0.2806

⎞
⎟⎟⎟⎟⎠ .

(24)

Here, we normalize the coefficients by the absolute value
of α1

3. The overall factor for the coefficients are needed to
be small to compensate the relatively large factor from the
canonical normalization in Eq. (19). Although this would not
be a problem because we do not know the overall normal-
ization of the Yukawa forms, the smallness of overall factor
of the coefficients could also be explained by other moduli,

5 The values in 1 < tan β < 5 are linearly extrapolated from tan β > 5.
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which appear only in the overall factor [87]. The ratio of
the largest and smallest absolute values of the coefficients is
about 23.

With the assignment of the weights, the predictions for
the quark masses and CKM angles at t := 2 Im τ � 1 are
modified as

(yu , yc, yd , ys , yb)/yt ∼ (ε3/t, ε, ε2/t2, ε2, t) ∼ (5 × 10−5,

0.06, 2 × 10−4, 0.004, 5),

(s12, s23, s13) ∼ (1/t, ε2, ε2/t) ∼ (0.2, 0.0036, 0.0008), (25)

where ε ∼ 0.06 and t ∼ 4.5. Here, we define si j := sin θi j ,
where θi j being the mixing angle between the i-th and j-
th generation in the standard parametrization of the CKM
matrix [88]. For quark masses, yd and ys are well explained
in this setup, because of the t2 difference between them. The
other ones, yu , yc and yb, are predicted to be larger than
the experimental values by an order of magnitude. These
are resolved by O (0.1) values of α1 and β21 for yu and yb,
respectively. The charm Yukawa yc is realized by a tuning
between α2 and α3. The phase of α3 should be small (but
non-zero) to keep the charm mass light, because it can not be
canceled by real α2. In other words, the phase of α2 and α3

should be approximately aligned to explain the charm mass.
Regarding the CKM angles, s12 and s13 are well explained
by the pattern Eq. (25), while s23 ∼ 0.004 is an order of
magnitude smaller than the experimental value. This gap is
explained by the numerical factor of O (

ε2
)

in the modular

form Y (8)
2 ∼ (1, 10/

√
3 ε2).

Altogether, the CKM angles and yd , ys are well explained
in this model, while there should be O (0.1) hierarchies in
α1/α

2
3 and β21/α

2
3 for yu/yt and yb/yt respectively, and the

O (0.1) tuning between α2 and α3 for yc/yt . Although the
small hierarchies of O (0.1) may be simply accidental, we
will discuss the possible origin for the small hierarchy in
Sect. 4.3.

4.2 Small tan β: p = 1

Now we consider the case with p = 1 and the bottom quark
mass is suppressed by ε. We assign the modular weights as

kq1 = 4, kq2 = 4, ku = 2,

kd1 = 5, kd2 = 3, kd3 = 1, (26)

so that the superpotential is given by

W = Hu

{
α1q1

(
Y (6)

3 uc
)

1
+ α2

(
q2Y

(6)
3 uc

)
1

+
2∑

iY=1

α
iY
3

(
q2Y

iY (6)

3′ uc
)

1

}

+ Hd

{
β11q1

(
Y (9)

1̂
dc1

)
1
+

3∑
i=1

β2i

(
q2Y

(11−2i)
2̂

dci

)
1

}
.

(27)

The Yukawa matrices are given by

Yu =
⎛
⎜⎝

α1[Y (6)
3 ]1 α1[Y (6)

3 ]3 α1[Y (6)
3 ]2

−2α2[Y (6)
3 ]1 α2[Y (6)

3 ]3 + √
3α

iY
3 [Y iY (6)

3′ ]2 α2[Y (6)
3 ]2 + √

3α
iY
3 [Y iY (6)

3′ ]3

−2α
iY
3 [Y iY (6)

3′ ]1 α
iY
3 [Y iY (6)

3′ ]3 − √
3α2[Y (6)

3 ]2 α
iY
3 [Y iY (6)

3′ ]2 − √
3α2[Y (6)

3 ]3

⎞
⎟⎠ ,

Yd =

⎛
⎜⎜⎝

β11Y
(9)

1̂
0 0

β21[Y (9)

2̂
]1 β22[Y (7)

2̂
]1 β23[Y (5)

2̂
]1

β21[Y (9)

2̂
]2 β22[Y (7)

2̂
]2 β23[Y (5)

2̂
]2

⎞
⎟⎟⎠ . (28)

In Yd , (1, 2) and (1, 3) elements vanish because there is no
1̂ representation for k < 9. There are 8 coefficients in this
setup. We assign the odd weights for the down-quarks, and
hence there are the hatted-representations in Yd . Thus we
should consider the homogeneous group �′

4 unlike the first
model. In our numerical analysis, we assume that the coeffi-
cients are real except α1

3 as in the first model for simplicity.
At the benchmark point, the parameters are given by

tan β = 1.6358, τ = 0.4944 + 2.6779i , |α3| = 1.2683 ×
10−3 and

1

|α3|

⎛
⎜⎜⎝

α1

α2

α1
3

α2
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−0.2674
1.7408
e−3.1281i

−1.4009

⎞
⎟⎟⎠ ,

1

|α3|

⎛
⎜⎜⎝

β11

β21

β22

β23

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−6.9026
−0.1294
0.2800
0.4095

⎞
⎟⎟⎠ .

(29)

The ratio of the largest and smallest absolute values of the
coefficients is about 53. The slightly larger ratio is necessary
because the parameter ε ∼ 0.03 is smaller than the first case.

The hierarchical structure after the canonical normaliza-
tion gives the masses and CKM angles as
(yu , yc, yd , ys , yb)/yt ∼ (ε3, ε, ε3/t1/2, ε3t1/2, ε t3/2)

∼(3 × 10−5, 0.03, 1 × 10−5, 6 × 10−5, 0.4),

(s12, s23, s13) ∼ (1, ε2, ε2) ∼ (1, 9 × 10−4, 9 × 10−4),

(30)

where ε ∼ 0.03 and t ∼ 5.4. The hierarchy well explains
most of the hierarchical patterns except yc, yb and s23. Sim-
ilarly to the first model, yc is suppressed by the cancella-
tion between α2 and α3, and yb is suppressed by β21. The
CKM angle s23 is enhanced by the ratio of the coefficients
|β11/β21| ∼ 50. Note that the first (second) row in the
Yukawa matrices Yu and Yd is predominantly the second
(first) generation, as opposed to the first model.

4.3 S3 origins of the small hierarchies and spontaneous CP
violation

The small hierarchical structure of the coefficients in previous
two models can be explained by another modular symmetry
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S3 at N = 2. The S3 modular symmetry would be realized in
models with extra dimensions, e.g. T2 × T2, where the first
T2 leads S′

4 and the second one leads S3. In this case, the
coefficients αi and βai are modular forms of τ2, where τ2 is
the modulus of the S3 modular symmetry. In both models of
the previous sections, we found the small hierarchies in the
coefficients,

|α1| 
 |α2| , |α3| , |β11| � |β21| , |β22| , |β23| . (31)

Here we omit the upper index iY for the multiple modular
forms.6 Similarly to �′

4 � S′
4, we can consider �2 � S3 to

explain this hierarchy, by another small parameter ε2 ∼ 0.1
controlled by another modulus τ2. The irreducible represen-
tations have the following hierarchies at Im τ2 � 1,

Y1 ∼ 1, Y1′ ∼ ε2, Y2 ∼
(

1
ε2

)
, (32)

in the basis with real S and diagonal T . The explicit forms
of the modular forms are shown in Appendix A.2.

Now, we assign dci , q1 to the trivial singlet 1 and uc, q2

to the non-trivial singlet 1′ under the S3 symmetry. Then the
hierarchial structure of the Yukawa matrices are given by

Yu ∝
⎛
⎝ε2 ε2 ε2

1 1 1
1 1 1

⎞
⎠ , Yd ∝

⎛
⎝ 1 1 1

ε2 ε2 ε2

ε2 ε2 ε2

⎞
⎠ . (33)

This can explain the hierarchical pattern in Eq. (31). For
example, we can construct Y1 and Y1′ by the modular forms
of weight 6 as explicitly shown in Appendix A.2. The hierar-
chical structure of the Yukawa couplings is essentially real-
ized by ZT

4 × ZT ′
2 symmetry, where the second one is from

the S3 modular symmetry. The residual symmetry Z
T
6 ⊂ �6

plays a similar role in the model of Ref. [82].
The spontaneous CP violation may be induced from the

modulus VEV of the S3 symmetry at O (
ε2

2

)
. If all of the

O (1) coefficients are real, the CKM phase is vanishing up
to O (

ε4
)

and O (
ε2

2

)
. After rotating the phases of the quarks

as

QT →
⎛
⎝ e−2iφQ1
e−i(2φ+φ2)Q2

e−iφ2 Q3

⎞
⎠ , uc →

⎛
⎝ eiφ2uc1

ei(φ+φ2)uc2
e−i(φ−φ2)uc3

⎞
⎠ , dc → dc,

(34)

where φ := Arg(ε) and φ2 := Arg(ε2), the phases of the Yukawa
matrices are given by

Arg (Yu) =
⎛
⎝2φ2 2φ2 2φ2

0 0 0
0 4φ 0

⎞
⎠ , Arg (Yd ) = 0. (35)

6 β2
21 with O (1) will not be a problem because Y 2(8)

2 does not have
O (1) element, and thus only gives minor impacts on the result.

The phase 4φ does not contribute to the CKM phase, since
it is relevant only to the diagonalization of uc up to O (

ε4
)
.

Whereas, the phase 2φ2 contributes to the CKM phase, and
thus the spontaneous CP violation will occur due to the S3

modular symmetry.7 We also note that our assumptions on
the phases, i.e. only α1

3 is complex, is not hold, and all of
the coefficients will be complex. Nonetheless we expect that
there will be a good fits to the data, and concrete numerical
analysis is beyond the scope of this paper.

5 Summary

In this paper, we demonstrated that the hierarchical structure
of the quark masses and the CKM matrix is realized in the
modular flavor symmetry at the level N = 4. The FN-like
mechanism is realized due to the ZT

4 symmetry with a small
parameter ε where the modulus is assumed to be stabilized
at Im τ � 1. We found that there are only four cases shown
in Eq. (16) in which the observed hierarchical structure in
Eq. (12) is realized.

We then studied the two examples with different assign-
ments of the modular weights for the quarks. In both models,
the quark hierarchical structures are realized withO (1) coef-
ficients, although the small hierarchy shown in Eq. (31) of
O (0.1) is needed, as well as the cancellation between the
parameters α2 and α3 to explain the charm mass. We pro-
posed a way to understand the small hierarchical structure
Eq. (31) and the origin of the CKM phase by the existence of
another modular flavor symmetry S3. In this case, the hier-
archical structure of the Yukawa couplings are essentially
realized by ZT

4 × ZT ′
2 , where the second symmetry comes

from the second modular symmetry S3. It was also turned out
that the factors from canonical normalization 2 Im τ ∼ 5 play
an important role, because of the assignments of the modular
weights. For instance, the Cabbibo angle is explained by this
factor in the first model.
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A Details of S′
4 and S3 symmetries

A.1 Modular forms in S′
4

We choose the basis in which T is diagonal and S is real.
For the doublet and the triplet, the representation matrices
are respectively given by

ρS(2) = 1

2

(−1
√

3√
3 1

)
, ρT (2) =

(
1 0
0 −1

)
, (36)

and

ρS(3) = −1

2

⎛
⎝ 0

√
2

√
2√

2 −1 1√
2 1 −1

⎞
⎠ , ρT (3) =

⎛
⎝−1 0 0

0 −i 0
0 0 i

⎞
⎠ .

(37)

The primed and hatted representations are related as

ρS(r) = −ρS(r
′) = −iρS(r̂) = iρS(r̂

′), (38)

ρT (r) = −ρT (r ′) = iρT (r̂) = −iρT (r̂ ′), (39)

I = ρR(r) = ρR(r ′) = −ρR(r̂) = −ρR(r̂ ′). (40)

The products of the non-trivial singlets are given by

1′ ⊗ 1′ = 1̂ ⊗ 1̂′ = 1, 1̂ ⊗ 1̂ = 1̂′ ⊗ 1̂′ = 1′,
1′ ⊗ 1̂′ = 1̂, 1′ ⊗ 1̂ = 1̂′. (41)

The similar relations for the prime and hat are applied for
the other representations. For the doublet, however, 2′ (2̂′)
should be understood as (u2,−u1) to be 2 (2̂). For instance,
the products of a singlet χ and doublet u = (u1, u2) are given
by

1′ ⊗ 2 = 1̂ ⊗ 2̂ = 1̂′ ⊗ 2 = 1′ ⊗ 2̂ = χ

(
u2

−u1

)
,

1̂ ⊗ 2 = 1̂′ ⊗ 2̂ = χ

(
u1

u2

)
. (42)

The products of 2 and 3 are given by

2(u)⊗2(v)=(u1v1+u2v2)1 ⊕ (u1v2−u2v1)1′ ⊕
(
u2v2 − u1v1
u1v2 + u2v1

)
2
,

2(u) ⊗ 3(φ) =
⎛
⎝ −2u1φ1
u1φ2 − √

3u2φ3
u1φ3 − √

3u2φ2

⎞
⎠

3

⊕
⎛
⎝ −2u2φ1
u2φ2 + √

3u1φ3
u2φ3 + √

3u1φ2

⎞
⎠

3′
,

3(φ) ⊗ 3(ψ) = (φ1ψ1 + φ2ψ3 + φ3ψ2)1 ⊕
(

2φ1ψ1 − φ2ψ3 − φ3ψ2√
3 (φ2ψ2 + φ3ψ3)

)
2

⊕
⎛
⎝ φ2ψ2 − φ3ψ3

−φ3ψ1 − φ1ψ3
φ1ψ2 + φ2ψ1

⎞
⎠

3

⊕
⎛
⎝φ2ψ3 − φ3ψ2

φ1ψ2 − φ2ψ1
φ3ψ1 − φ1ψ3

⎞
⎠

3′
. (43)

Those for the representations with prime and/or hat are for-
mally the same but with prime and/or hat accordingly to
Eq. (41). Note that doublets with prime should be understood
in the same way as in Eq. (42).

The modular forms used in the model are given by

Y (4)
2 =

(
ε8 − 10ε4θ4 + θ8

4
√

3ε2θ2
(
θ4 + ε4

)
)

,

Y (4)
3 = εθ

(
ε4 − θ4

)⎛
⎝−√

2εθ

−ε2

θ2

⎞
⎠ ,

Y (5)

2̂
= εθ

(
ε4 − θ4

)(
2
√

3ε2θ2

ε4 + θ4

)
,

Y (6)

1′ = ε2θ2
(
ε4 − θ4

)2
,

Y (6)
2 = (ε8 + 14ε4θ4 + θ8)

(
ε4 + θ4

−2
√

3ε2θ2

)
,

Y (6)
3 = εθ

(
ε4 − θ4

)⎛
⎝−2

√
2εθ(ε4 + θ4)

ε2
(
ε4 − 5θ4

)
θ2

(
5ε4 − θ4

)
⎞
⎠ ,

Y 1(6)

3′ = εθ
(
ε4 − θ4

)⎛
⎝ 4

√
2ε3θ3

−θ2
(
3ε4 + θ4

)
ε2

(
ε4 + 3θ4

)
⎞
⎠ ,

Y 2(6)

3′ =
⎛
⎝ (ε4 − θ4)3

8
√

2ε5θ3
(
ε4 + 3θ4

)
8
√

2ε3θ5
(
3ε4 + θ4

)
⎞
⎠ ,

Y (7)

2̂
= −εθ

(
ε4 − θ4

)(−4
√

3ε2θ2
(
ε4 + θ4

)
ε8 − 10ε4θ4 + θ8

)
,

Y 1(8)
2 = 1√

3

( √
3
(
ε16 − 130ε8θ8 + θ16

)
2ε2θ2

(
5ε12 + 91ε8θ4 + 91ε4θ8 + 5θ12

)
)

,

Y 2(8)
2 = ε2θ2

(
ε4 − θ4

)2
(

2
√

3ε2θ2

ε4 + θ4

)
,

Y (9)

1̂
= ε3θ3

(
ε4 − θ4

)3
,

Y (9)

2̂
= εθ(ε4 − θ4)(ε8 + 14ε4θ4 + θ8)

(
2
√

3ε2θ2

ε4 + θ4

)
,

(44)

where the functions are normalized such that the absolute
value of the largest element is unity. The number of repre-
sentations at weight k ≤ 11 are listed in Table 3 for reference.
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Table 3 The number of representations of the modular forms at the weight k ≤ 11 in the S′
4 modular symmetry. The representations for odd

weights should be understood as the hatted ones

Weight 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 1 0 1 0 1 1 1 0

1′ 0 0 1 0 0 1 1 0 1 1 1

2 0 1 0 1 1 1 1 2 1 2 2

3 1 0 1 1 2 1 2 2 3 2 3

3′ 0 1 1 1 1 2 2 2 2 3 3

There are 2k + 1 independent modular functions at a weight
k at the level N = 4.

A.2 Modular forms in S3

For completeness, we derive the modular forms of S3 fol-
lowing Ref. [3]. We work on the basis of the representations
given by

ρS = 1

2

( −1 −√
3

−√
3 1

)
, ρT =

(
1 0
0 −1

)
, (45)

then the modular form at weight 2 is given by

Y (2)
2 =

(
Y1

Y2

)
, (46)

where

Y1(τ ) := i

2π

d

dτ

[
log η

( τ

2

)
+ log η

(
τ + 1

2

)
− 2 log η(2τ)

]
,

(47)

Y2(τ ) := i
√

3

2π

d

dτ

[
log η

( τ

2

)
− log η

(
τ + 1

2

)]
. (48)

Here, η(τ) is the Dedekind eta function. The q-expansions
of these functions are given by

Y1(τ ) = 1

8
+

∞∑
n,m=1

q2nm {−2n + (2n − 1)q−m + 2nq−n}

∼ 1/8 + 3q + 3q2 + 12q3, (49)

Y2(τ ) = √
3q

1
2

∞∑
n,m=1

(2n − 1)q2nm−n−m

∼ √
3q1/2

(
1 + 4q + 6q2 + 8q3 + · · ·

)
. (50)

The modular forms with higher weights are given by

Y (4)
1 = Y 2

1 + Y 2
2 , Y (4)

2 =
(
Y 2

2 − Y 2
1

2Y1Y2

)
, (51)

for k = 4, and

Y (6)
1 = Y 3

1 − 3Y1Y
2
2 , Y (6)

1′ = Y 3
2 − 3Y 2

1 Y2,

Y (6)
2 = (Y 2

1 + Y 2
2 )

(
Y1

Y2

)
, (52)

for k = 6. As expected from the residual ZT
2 symmetry,

the modular forms have the hierarchical structure Eq. (31) at
τ ∼ i∞ and |ε2| := ∣∣q1/2

∣∣ 
 1. Thus the weight should
be k ≥ 6 to realize the hierarchy of the Yukawa matrices in
Eq. (33).
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