
Eur. Phys. J. C (2023) 83:1018
https://doi.org/10.1140/epjc/s10052-023-12175-6

Regular Article - Theoretical Physics

The physical acceptability conditions and the strategies to obtain
anisotropic compact objects

Daniel Suárez-Urango1,a , Laura M. Becerra1,b, Justo Ospino2,c, Luis A. Núñez1,3,d

1 Escuela de Física, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
2 Departamento de Matemática Aplicada and Instituto Universitario de Física Fundamental y Matemáticas, Universidad de Salamanca, Salamanca,

Spain
3 Departamento de Física, Universidad de Los Andes, Mérida 5101, Venezuela

Received: 14 July 2023 / Accepted: 23 October 2023 / Published online: 9 November 2023
© The Author(s) 2023

Abstract We studied five methods to include anisotropy,
or unequal stress distributions, in general relativistic matter
configurations. We used nine acceptability conditions that
the metric and physical variables must meet to determine if
our models were astrophysically viable. Our analysis found
the most effective way to introduce anisotropy while keeping
a simple density profile. We also found a practical “rule of
thumb” that relates the density at the boundary to the density
at the centre of relativistic matter distributions. Additionally,
we calculated the configuration radius and encountered that
values observed by NICER for PSR J0740+6620 are con-
sistent with several acceptable matter configurations, both
isotropic and anisotropic.

1 Introduction

General Relativity is experiencing an extraordinary era where
what was once considered a mathematical curiosity, such as
black holes, and faint phenomena, like gravitational waves,
have transformed into observable astrophysical entities [1,2].
Significant efforts explore the properties of physically viable
matter configurations that may describe general relativistic
compact objects in various states: static, stationary, or under-
going collapse. Any exact solution to the Einstein Equa-
tions has certain restrictions, constraining the metric and
the energy–momentum tensor to ensure that emerging space-
time geometry is astrophysically reasonable.
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Since the seminal result of Delgaty and Lake [3], several
works have expanded the set of acceptability conditions to
obtain more meaningful solutions [4–8]. These conditions
are elaborated under the assumption that there are two dis-
tinct components for the pressure, one radial and the other
tangential, which yields a richer and more realistic descrip-
tion of the internal structure of a compact object. The con-
sideration of local anisotropy, where the radial and tangen-
tial stresses are unequal (P �= P⊥), has gained recogni-
tion as a relevant concept in describing general relativistic
stars. This idea can be traced back to the pioneering works of
Jeans [9] and Lemaître [10] and has continued to be explored
in both Newtonian and relativistic frameworks (see [11–24]
and references therein). Notably, a recent paper [25] presents
intriguing insights into the instability of isotropic pressure
distribution in self-gravitating matter systems.

Various heuristic strategies have been employed to describe
anisotropic microphysics in astrophysical relativistic mat-
ter configurations [19–21,26–28]). First, there is the ini-
tial method proposed by Bowers and Liang [12]; followed
by other schemes such as the proportional-to-gravitation
approach [13]; the quasilocal method [29]; the covariant
approach using proportional pressure gradient [30]; the com-
plexity factor method [31], and the Karmarkar embedding
class I [32,33]. Finally, there is another strategy for imple-
menting anisotropic fluids for General Relativistic matter
configurations: the gravitational decoupling approach [34].

Throughout this work, we shall consider the first five
common assumptions to model non-Pascalian fluids in gen-
eral relativistic matter configurations and examine, through
extensive modelling, the consequences of the acceptability
conditions. We identify the relevant parameters for a par-
ticular equation of state, their range and relevance. We inte-
grate the structure equations implementing every anisotropic
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equation of state with the same density profile ρ(r) for all
configurations. We also identify a comparable set of param-
eter ranges so as to compare all the physical acceptabilities
of the different anisotropic modelling strategies.

Within this framework, for a particular common density
distribution, we explore answers to the following two ques-
tions:

• Which type of anisotropy strategy leads to more accept-
able matter configurations?

• Are these acceptable models consistent with the Neutron
Star Interior Composition Explorer (NICER) observa-
tions [2]?

This paper answers the above questions by organizing
our subject matter into several sections. The next section
describes the notation and framework of General Relativ-
ity. In Sect. 3, we list the acceptability conditions that our
models must meet to be considered candidates for compact
stellar objects. Section 4 discusses five approaches to include
anisotropy in a general relativistic matter configuration. Next,
in Sect. 5, we explore the parameter space while fulfilling sev-
eral acceptability conditions and answer the above queries.
Finally, Sect. 6 summarizes our closing remarks and conclu-
sions.

2 The field equations

Let us consider the interior of a dense star described by a
spherically symmetric line element written as

ds2 = e2ν(r) dt2 − e2λ(r) dr2 − r2
(

dθ2 + sin2(θ)dφ2
)

,

(1)

with regularity conditions at r = rc = 0, i.e. e2νc = constant,
e−2λc = 1, and ν′

c = λ′
c = 0.

We shall consider a distribution of matter consisting of
a non-Pascalian fluid represented by an energy–momentum
tensor:

T ν
μ = diag [ρ(r),−P(r),−P⊥(r),−P⊥(r)] , (2)

where ρ(r) is energy density, with P(r) and P⊥(r) the radial
and tangential pressures, respectively.

From Einstein’s field equations, we obtain the physical
variables in terms of the metric functions as

ρ(r) = e−2λ
(
2rλ′ − 1

) + 1

8πr2 , (3)

P(r) = e−2 λ
(
2r ν′ + 1

) − 1

8π r2 and (4)

P⊥(r) = −e−2λ

8π

[
λ′ − ν′

r
− ν′′ + ν′λ′ − (

ν′)2
]

, (5)

where primes ′ denote differentiation with respect to r .
Now, assuming the metric function λ(r) is expressed in

terms of the Misner “mass” [35] as

m(r) = r2

2
R3

232 ⇔ m(r) = 4π

∫ r

0
T 0

0 r
2dr ⇒ e−2λ

= 1 − 2m(r)

r
. (6)

Additionally, the interior metric should continuously match
the Schwarzschild exterior solution at the sphere’s surface,
r = rb = R. This implies that e2νb = e−2λb = 1 − 2C� =
1 − 2M/R, where M = mb is the total mass and C� =
M/R the compactness of the configuration. From now on,
the subscripts b and c indicate the variable’s evaluation at
the boundary and the centre of the matter distribution.

The Tolman–Oppenheimer–Volkoff equation (i.e. Tμ

r ;μ =
0, the hydrostatic equilibrium equation) for this anisotropic
fluid can be written as

dP

dr
= − (ρ + P)

m + 4πr3P

r(r − 2m)︸ ︷︷ ︸
Fg

+ 2

r
(P⊥ − P)

︸ ︷︷ ︸
Fa

. (7)

Thus, we can identify two forces competing in compensating
the pressure gradient: the “gravitational force”, Fg and the
“anisotropic force”, Fa . Equation (7) together with

dm

dr
= 4πr2ρ, (8)

constitute the relativistic stellar structure equations.
From Eq. (7), notice that the pressure gradient becomes

less steep when the anisotropy is positive 	+ = P⊥−P > 0,
and conversely, it changes more rapidly when the anisotropy
is negative 	− = P⊥ − P < 0. The only possibility for
negative anisotropy is that the tangential and radial pressures
vanish at r = rb.

Thus, for a fixed central stiffness, σ = Pc/ρc, the com-
pactness, C�, of the sphere increases when there is pos-
itive anisotropy 	+, and decreases when there is nega-
tive anisotropy 	−. Concerning positive anisotropy, we can
adjust more massive configurations compared to isotropic
	0 = 0 scenarios. If both forces balance, i.e., Fg = Fa ,
we obtain a specific matter configuration characterised by
vanishing radial pressures and solely sustained by tangential
stresses [36]. This is because the tangential stresses support
the mass shells, reducing the required radial pressure in such
circumstances [37].

3 The physical acceptability conditions

The emerging physical variables have to comply with the
various acceptability conditions [3–5,7,8], which are cru-
cial when considering self-gravitating stellar models. Only
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acceptable self-gravitating objects are of astrophysical inter-
est and, in this work, those models have to comply with nine
requirements expressed as [8]:

C1: 2m/r < 1, which implies [38,39]:

1. That the metric potentials eλ and eν are positive, finite
and free from singularities within the matter distribution,
satisfying eλc = 1 and eνc = const at the centre of the
configuration.

2. The inner metric functions match the exterior Schwarzsc
hild solution at the boundary surface.

3. The interior redshift should decrease with increasing of
r .

C2: Positive density and pressures, finite at the centre of
the configuration with Pc = P⊥c [39].

C3: ρ′ < 0, P ′ < 0, P ′⊥ < 0 with density and pres-
sures having maximums at the centre, thus ρ′

c = P ′
c =

P ′⊥c = 0 with P⊥ ≥ P .
C4: The causality conditions on the radial, 0 < v2

s ≤ 1 and
tangential 0 < v2

s⊥ ≤ 1, sound speeds, respectively
[40].

C5: The trace energy condition ρ − P − 2P⊥ ≥ 0, which
is more restrictive than the strong energy condition,
ρ + P + 2P⊥ ≥ 0, for imperfect fluids [5,41,42].
This condition has several interesting consequences
for isotropic EoS [43].

C6: The dynamic perturbation analysis restricts the adia-
batic index [15,44–46]

� = ρ + P

P
v2
s ≥ 4

3
.

C7: The Harrison–Zeldovich–Novikov stability condition:
dM(ρc)/dρc > 0 [47,48].

C8: The cracking instability against local density pertur-
bations, δρ = δρ(r) (for more details, the reader is
referred to [6,49,50]).

C9: The adiabatic convective stability condition ρ′′ ≤ 0,
which is more restrictive than the outward decreasing
density and pressure profiles [6].

Acceptability conditions for general relativistic spheres
refer to the criteria that must be satisfied by the metric and
physical variables in a relativistic matter distribution to be
considered astrophysically viable and consistent within the
framework of General Relativity. They are motivated by

• Regularity conditions on the physical and metric vari-
ables, i.e. C1 and C2: A physically acceptable solution
should exhibit regular behaviour, particularly at the cen-
tre of the sphere, avoiding singularities or divergences in

physical quantities such as energy density, pressure, and
metric components.

• Energy conditions and equation of state, i.e. C2, C3,
C4 and C5: Relativistic matter distributions are typi-
cally required to satisfy certain energy conditions, which
impose constraints on the stress-energy tensor compo-
nents. These conditions ensure the energy density and
pressures associated with the matter distribution are
within physically reasonable bounds.

• Stability, i.e. C6, C7, C8 and C9: This involves assessing
the stability of the matter distribution against perturba-
tions or dynamic changes, ensuring that it remains in a
state of equilibrium and does not collapse, cracks or other
undesirable behaviours.

4 Anisotropy heuristic strategies

This section will introduce several assumptions and heuristic
strategies to model anisotropy in relativistic matter configu-
rations. Local anisotropy in compact objects is a hypothesis
that has gained relevance over time. Nowadays, it is well
understood that unequal radial and tangential stresses may
increase the stability of neutron star models. However, a com-
plete description of the complex interactions in the fluid that
cause such phenomena is still unknown.

The most common approaches in introducing anisotropy
for modelling relativistic matter configuration are:

• Anisotropy proportional to gravitational force. M.
Cosenza et al. [13] inspired by the work of Bowers and
Liang [12] proposed suitable models for anisotropic mat-
ter by considering the anisotropic force proportional to
the gravitational one. This relationship leads to the fol-
lowing expression for the difference between the tangen-
tial and radial pressures:

P⊥ − P = CGF (ρ + P)
(
m + 4πr3P

)

r − 2m
= 	GF , (9)

• Quasi-local anisotropy Local anisotropy can also be
considered as the influence of quasi-local variables,
which are quantities that are not solely dependent on the
state of the fluid at a specific point in space-time [51].
These variables, such as the curvature radius r or the
compactness μ (= 2m/r ), are employed as a quasi-local
equation of state to describe anisotropy [29]. Within this
approach, a particular type of anisotropy is:

P⊥ − P = CQL Pμ = 2CQL P
m

r
= 	QL . (10)
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• Anisotropy proportional to a pressure gradient. Another
potential form for the anisotropic force, considering
Eq. (7), is for it to be proportional to the pressure gradient.
Raposo and collaborators [30] proposed an anisotropy
proportional to the covariant derivative of pressure as:

P⊥ − P = −CPG f (ρ)kμ∇μP

= −CPG f (ρ)

√
1 − 2m

r

dP

dr
= 	PG , (11)

where f (ρ) (see Appendix B for details) is a generic
function of the energy density and kμ = (

0, k1, 0, 0
)

is
a unitary space-like vector orthogonal to the fluid four-
velocity.

• Complexity factor anisotropy. This factor is a quantity
defined by decomposing the Riemann tensor, which mea-
sures the level of complexity in self-gravitating systems
[31,52,53]. It reflexes the impact of local anisotropy and
density inhomogeneity on the active gravitational mass.
Consequently, systems with minimal complexity are rep-
resented by homogeneous and isotropic fluids. In the case
of anisotropic fluids, satisfying the condition of a vanish-
ing complexity factor with minimal complexity, the local
anisotropy can be expressed as follows:

P⊥ − P = −CCF

2r3

∫ r

0
r̃3ρ′dr̃ = 	CF . (12)

• Karmarkar anisotropy. The Karmarkar condition [32]
is a relationship among components of the Riemann ten-
sor, given by

R0303 R1212 − R0101 R2323 − R0313 R0212 = 0. (13)

This condition provides a geometric mechanism for
incorporating anisotropy into matter configurations. To
express Eq. (13) in a scalar form, we introduce a set
of scalar functions known as structure scalars, obtained
from the orthogonal splitting of the Riemann tensor (refer
to [33,54] for more a detailed discussion). Hence, the
scalar Karmarkar condition for spherically symmetric
static configurations is

Y0X1 + (X0 + X1)Y1 = 0, (14)

with

Y0 = 4π (ρ + 3P) , Y1 = E1 − 4π	,

X0 = 8πρ and X1 = − (E1 + 4π	) , (15)

where

P = P + 2P⊥
3

and E1 = −4π

r3

(∫ r

0
r̃3ρ′dr̃ + r3	

)
.

(16)

Thus, the induced anisotropy by the Karmarkar condi-
tion, written in terms of the physical variables, is given
by

P⊥ − P = CKC

r3

∫ r

0
r̃3ρ′dr̃

(
(3P − ρ) − 1

r3

∫ r
0 r̃3ρ′dr̃

4ρ

)

= 	KC . (17)

In the above Eqs. (9), (10), (11), (12), and (17), we denoted
the corresponding anisotropic parameter by CGF , CQL ,
CPG , CCF and CKC , respectively.

The relationship between the complexity and Karmarkar
anisotropies is evident when we re-write Eq. (17) in terms of
	CF , i.e.

	KC = −	CF

(
C (3P − ρ) + 2	CF

2ρC

)
. (18)

Where we have setC = CCF = CKC . It is worth mentioning
that when 	CF = 0 ⇔ 	KC = 0 and the only matter
configuration for both anisotropic strategies corresponds to
the Schwarzschild homogeneous isotropic solution.

Another strategy for implementing anisotropic fluids in
General Relativistic matter configurations is the gravitational
decoupling approach [34]. This procedure assumes that the
energy–momentum tensor splits into two parts as

T ν
μ = T̂ ν

μ + θν
μ, (19)

where T̂ ν
μ corresponds to the perfect fluid contribution and

θν
μ describes any other coupled form of gravitational source.

Implementing the anisotropic parameterC for modelling this
method is unattainable. Thus, comparing the models emerg-
ing from this strategy with those executed with all previous
techniques is impossible. It deserves a more detailed consid-
eration which will be developed elsewhere.

5 Anisotropy and physical acceptability

In this section, we discuss the physical acceptability of rel-
ativistic anisotropic models. We numerically integrate the
structure equations (7) and (8) implementing every equation
of state for anisotropy from the previous section, (i.e. 	GF ,
	QL , 	PG , 	CF , and 	KC ) and selecting a common density
profile

ρ (r) = ρc

(
1 − αr2

)
, (20)
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where the central density ρc and the constant α are free
parameters.

This simple Tolman VII density profile [55] is not deprived
of physical interest [56] and has a long tradition of mod-
elling compact objects. It corresponds to the Gokhroo–Mehra
[57] solution used in several anisotropic static spheres in
General Relativity [37,51,58]. Additionally, under some cir-
cumstances [59], it leads to densities and pressures that give
rise to an equation of state similar to the Bethe–Börner–Sato
Newtonian equation for nuclear matter [60]. It also describes
radiating anisotropic fluid spheres [59,61] representing the
Kelvin–Helmholtz phase in the birth of a neutron star [62,63].

Now, from Eq. (20), we obtain the boundary radius of the
configuration as a function of the physical parameters of the
problem, i.e. ρc and � = ρb/ρc as

ρ̃ = ρ̃c

(
1 − α̃x2

)
⇒ m̃ = 4πρ̃c

(
x3

3
− α̃

x5

5

)

⇒ R =
{

M

4πρc
[ 1

3 − (1 − �) 1
5

]
}1/3

. (21)

Where we have defined the following quantities

α̃ = αR2, � = 1 − α̃ = ρb

ρc
, m = Rm̃,

ρ = 1

R2 ρ̃, and r = Rx, (22)

where R and M are the structure boundary radius and total
mass, respectively. In Appendix B, we present the dimen-
sionless expressions for the structure equations and each
anisotropic EoS, including some information about the sim-
ple numerical integration techniques.

5.1 The range of the parameters

The solution of Eq. (7) for the density profile (20) is sen-
sitive to ρc, � = ρb/ρc and the anisotropy factor, C [56].
A variation of these three factors generates a parameter
space, exhibiting several acceptability conditions satisfied
by each model. We shall identify which anisotropy delivers
more physically acceptable configurations, i.e. satisfy more
acceptability conditions. Thus, we shall identify a common
set of parameter variations so as to compare the physical
acceptability of the different anisotropic modelling strate-
gies.

We start determining the possible variation of a com-
mon anisotropic parameter, C . Regarding the case of 	GF ,
observe that Eq. (7) leads to

dP

dr
= −h

(ρ + P)(m + 4πr3P)

r(r − 2m)
, (23)

with h = 1 − 2C , and when h = 1 the isotropic case is
recovered. Notice that condition C3 and Eq. (23) implies
h > 0, therefore if ρb �= 0 we have,

h = 1 − 2C > 0 ⇒ C <
1

2
, and since

P⊥ ≥ 0 ⇒ 0 ≤ C <
1

2
. (24)

The tangential pressure should be positive at the boundary
P⊥ b ≥ 0 within the matter distribution and from Eq. (9),
it restricts the anisotropic parameter to 0 ≤ C < 1

2 for any
EoS having ρb �= 0. We selected six values for the anisotropy
parameter, i.e.C = 0.000, 0.050, 0.150, 0.250, 0.350, and
0.450.

In addition to the anisotropic parameter, C , there are two
other significant elements: the central density, ρc, and �.
According to typical values in compact objects/neutron stars,
ρc could go from 0.1 × 1015 to 2.5 × 1015 g/cm3. The scale
variation for� runs from 0.0 (vanishing density at the surface)
to 0.9 (almost homogeneous density). Finally, we have to
provide the total mass, M , of the configuration (≈ 2.08 M�,
the highest reliable gravitational mass of any neutron star
[64,65]) to determine the central density of each model.

5.2 The best method to introduce anisotropy

To answer the first question, we shall follow two lines of rea-
soning in identifying which of the above anisotropy strategies
is best suited in providing more acceptable models. The next
section identifies regions in the parameter space (C , � and
ρc), that comply with the acceptability criteria. Figure 1 dis-
plays, in a colour scale, those patches for five different values
of the anisotropy factorC . For example, in the isotropic case,
i.e. C = 0, we obtain 33 of these physically fully acceptable
models. More acceptable matter configurations are placed
below the red line in all cases shown, i.e. when

ρb ≤ 9

10
ρc

(
1 − 2ρc

5

)
. (25)

As displayed in Fig. 2, the second approach is to sum up
the total number of models satisfying all nine-acceptability
criteria. This method, discussed in Sect. 5.2.2, complements
the previous criterion because we explore the number of pos-
sible acceptable models for the whole range of variation of
the anisotropic parameter.

5.2.1 Acceptable model distribution in a parameter space

In this section, we shall discuss the acceptable model distri-
bution in the common parameter space defined by 0.000 ≤
C ≤ 0.450; 0.1 × 1015 ≤ ρc ≤ 2.5 × 1015 g/cm3 and
0.0 ≤ � ≤ 0.9. Figure 1 displays, in a colour scale, this
model distribution for six different values of the anisotropy

123



1018 Page 6 of 13 Eur. Phys. J. C (2023) 83 :1018

factor C . As will be clear in the following discussion, this
range of variation in the parameter plane (ρc, �) is due to
the NICER-acceptable models [64] when we considered the
total mass of the configuration M ≈ 2.08M�. See Fig. 3 to
grasp the rationale of the parameter variation.

For a low anisotropic presence (C = 0.050 displayed
in Fig. 1), 	GF and 	QL strategies deliver more accept-
able models (yellow patches represent models satisfying
the nine criteria) than in the isotropic case. Several models
with anisotropy proportional to the pressure gradient, 	PG ,
become unacceptable because they do not meet the adiabatic
index’s stability criterium C6. On the other hand, config-
urations with anisotropy defined by the complexity factor
have nonphysical negative pressure and positive tangential
pressure gradient. Moreover, configurations with vanishing
density at the boundary (ρb = 0 � � = 0.0) do not comply
with C5, C6 or C8. The Karmarkar anisotropy scheme, 	KC ,
produces unsuitable configurations having negative tangen-
tial pressures. When � = 0.0 the corresponding matter dis-
tributions do not comply with C4, C6 or C8. In general, as �

increases, the speed of sound exceeds the light speed, failing
C4. The increase in the central density oversteps the condi-
tion on the trace of the energy–momentum tensor, and the
darker region in the upper right corner is due to the models’
cracking (C8).

Raising C to 0.150 enhances the acceptability when
anisotropy is proportional to the gravitational force, and 65
out of 90 models satisfy all the conditions. On the other hand,
quasi-local anisotropy does not show variation in the accept-
able configurations, while the number of acceptable models
with 	PG decreases drastically by failing with condition C6.
The increased anisotropy in 	CF makes acceptable models,
now to have positive tangential pressure gradient and nega-
tive radial pressure. One model becomes acceptable for 	KC

by fulfilling condition C5.
Increasing the anisotropic factorC to 0.250 further causes

a maximum in 	GF . As seen from Fig. 1, almost all mod-
els, 	GF , meet the nine criteria for the considered values
of � and ρc. This is also evident from Fig. 2. It attains 76
fully acceptable models when C = 0.225. The remaining
12 configurations mainly do not satisfy the causality condi-
tion of radial sound speed C4. Quasi-local anisotropy also
increases, to a lesser extent, the number of acceptable mod-
els. Only one model for 	PG becomes unacceptable due to
condition C6. Regarding 	CF , a few models are no longer
acceptable, breaking the tangential pressure condition C3.
Acceptable models with 	KC remain unchanged.

As it is clear from Fig. 1, when C = 0.350, there is
no 	GF -model satisfying the nine acceptability criteria; the
	QL -strategy allows a few new models, while 	PG and 	CF

decrease in acceptable models. In contrast, 	KC remains
unchanged. Finally, as displayed in Fig. 1, i.e. forC = 0.450,
only the 	QL -strategy provides more acceptable models than

the isotropic condition. Several models under the red line, for
	CF , become acceptable by fulfilling condition C4.

5.2.2 Total number of acceptable models and the best
anisotropy strategy

This section extends our analysis by determining the total
number of entirely acceptable models. To achieve this, we
redefine the range for the anisotropic parameter, starting from
isotropy (C = 0.000) and continuing until the last value
(C = C0) where no other fully acceptable model exists, i.e.
satisfying all nine criteria for acceptability.

In Fig. 2 and Table 1, we show the most effective methods
for introducing anisotropy. The most useful approach is the
quasi-local 	QL method [29], followed by the Karmarkar
scheme [32,33], and finally the complexity factor approach
[31,52,53]. These strategies include varying degrees of effec-
tiveness due to the significant range of the anisotropic param-
eter C : 0.000 ≤ CQL ≤ 3.345, 0.000 ≤ CKC ≤ 4.760, and
0.000 ≤ CCF ≤ 3.570, respectively.

Anisotropy leads to more acceptable models than isotropic
ones. The most distinct scheme is the anisotropy propor-
tional to gravitational force, 	GF . It has a narrow range
of variation for the anisotropic parameter, with 0.000 ≤
CGF ≤ 0.250, and a pronounced peak with 76 models
for CGF = 0.225. Around half of the models fall within
0.050 ≤ CGF ≤ 0.250. Models with CGF > 0.250 are con-
sidered unacceptable due to their positive tangential pres-
sure gradient, which violates condition C3. Regarding the
quasi-local approach, 	QL , the number of models satisfy-
ing all requirements increases with the level of anisotropy,
reaching a peak of 53 for CQL = 0.910. This method has
a significant range in anisotropy 0.000 ≤ CQL ≤ 3.345.
The simplest but least effective method is anisotropy propor-
tional to pressure, 	PG . It has a limited anisotropic range of
0.000 ≤ CPG ≤ 0.578, with a maximum of 34 models at
very low anisotropy, CPG = 0.025. The following method
is complexity anisotropy, 	CF , which has a considerable
range, 0.000 ≤ CCF ≤ 3.570, but no anisotropic parameter
generates more acceptable models than the isotropic case.
Finally, the geometric Karmarkar strategy is 	KC related to
the complexity anisotropy and has the broadest range, i.e.,
0.000 ≤ CCF ≤ 4.760.

5.3 NICER acceptable models

The Neutron Star Interior Composition Explorer is an X-ray
telescope on the International Space Station which studies
the X-ray emissions from neutron stars, helping to deter-
mine their size, mass, and the properties of their dense inte-
riors. By measuring the mass and radius of multiple neu-
tron stars, NICER refines our understanding of the equation
of state, providing valuable constraints on the properties of
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Fig. 1 Number of conditions fulfilled by the different anisotropy
heuristic strategies. The strategies 	GF and 	QL lead to better mod-
elling (more yellow squares representing models complying with nine
criteria) than the isotropic case for C = 0.050, 0.150 and 0.250, This
is not the case for the other anisotropic approaches: 	CF , 	KC , which
have the maximum number of acceptable models in the isotropic con-
dition. When the anisotropic parameter increases to C = 0.150, the
number of acceptable models boost for 	GF and very little for 	QL
and 	KC . For the other approaches, the number of models decreases.

Increasing the anisotropy to C = 0.250 generates a maximum of
acceptable models with the 	GF method. When C = 0.350, no 	GF -
model satisfies the nine acceptability criteria. The 	QL -strategy gives
a few new models, and other anisotropic methods decrease the num-
ber of acceptable configurations. Nearly all matter distributions meet
the nine criteria for the considered values of � and ρc. Finally, when
C = 0.450, only the 	QL -strategy provides more acceptable models
than the isotropic condition. Clearly, for all the anisotropic methods,

we found more acceptable models when ρb ≤ 9
10 ρc

(
1 − 2ρc

5

)
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Fig. 2 In the left panel, we present the number of acceptable mod-
els N (C) fulfilling the nine acceptability conditions as a function of
the anisotropic factor C for each anisotropic strategy. The embedded
plot displays a zoom of the region near the isotropy, i.e. C ≈ 0.
The black point represents the number of nine-condition-acceptable-
isotropic models. There are more anisotropic-acceptable models than
isotropic ones. 	GF has a limited range of anisotropy variation,
0.000 ≤ CGF ≤ 0.250, with a pronounced peak for 76 models for
CGF = 0.225. The number of acceptable quasi-local models, 	QL ,
increases with anisotropy, reaching 53 for CQL = 0.910. The areas

under the curves are proportional to the total number of anisotropic con-
figurations described by the three parameters: C , ρc and �. The quasi-
local anisotropic modelling, 	QL , is the most effective anisotropic strat-
egy, followed by the Karmarkar scheme, 	KC , and then by the com-
plexity factor approach, 	CF . The right panel illustrates the number
of acceptable models representing the NICER observational estimation
of the radius R for PSR J0740+6620. The area under the curve for the
anisotropic strategies follows the same pattern in the NICER-acceptable
models. More possible models exist for the 	QL approach

Table 1 Values of the anisotropic parameter C and the number of
acceptable models N (C) in the range of the considered � and ρc. C0
represents the anisotropic parameter where no other fully acceptable
model is found. Cmax represents the central value among the C val-
ues that yield the highest number of acceptable models for a particular
anisotropy strategy. N (Cmax ), is greater than the number of acceptable
isotropic models for 	GF , 	QL and 	PG strategies. The area under the

curve, NTotal ∝ ∫ C0
0 dC N (C), for each anisotropic strategy. Clearly,

for the range in � and ρc considered, there are more anisotropic accept-
able models than their isotropic counterparts. Concerning the NICER-
acceptable models, we found NN ICER(CN ICER−max ) = 10, 9, 8, 8
and 8, for 	GF , 	QL , 	PG , 	CF and 	KC , respectively and the area
under the curve for the anisotropic strategies follow the same pattern.
Figure 2 illustrates these results

Anisotropy and number of acceptable models 	GF 	QL 	PG 	CF 	KC

C0 0.253 3.345 0.578 3.570 4.760

Cmax 0.225 0.910 0.025 0.000 0.000

N (Cmax ) 76 53 34 33 33

NTotal ∝ area = ∫ C0
0 dC N (C) 14.236 76.524 2.649 22.799 57.846

CN ICER−0 0.253 1.458 0.088 1.538 3.328

CN ICER−max 0.188 0.730 0.014 0.000 0.000

NN ICER(CN ICER−max ) 10 9 8 8 8

NN ICER−Total ∝ area = ∫ C0
0 dC NN ICER(C) 2.332 11.775 0.370 4.695 11.955
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Fig. 3 NICER acceptable models for PSR J0740+6620. There could
be several descriptions (isotropic and anisotropic) for this pulsar. We
consider three anisotropic methods, 	GF , 	QL , 	PG and the isotropic
case. We present the isotropic scenario because the number of accept-
able models is the same for the 	CF and 	KC . We show that the value
of all possible radii ranges within 11.6 km ≤ R ≤ 13.1 km, correspond-
ing to several NICER-acceptable models with the selected parameter

space, fulfilling all the physically acceptable conditions. The NICER
acceptable region overlaps with more yellow models in 	GF and 	QL
plots than in the other anisotropic strategies. The red arrows indicate
the possible values for the central density, 0.7 × 1015 g/cm3 ≤ ρc ≤
1.3×1015 g/cm3 and the corresponding values of � consistent with the
assumed density profile (20), which are displayed in Table 2

ultra-dense matter. NICER also detects the pulsation of neu-
tron stars, permitting scientists to explore the dynamics of
their atmospheres, unravelling the physical processes occur-
ring in and around them. NICER has been employed to obtain
the first precise (and dependable) measurements of a pulsar’s
size and mass and the first-ever map of hot spots on its surface
(see [2] and references therein).

In Fig. 3, we include a region covering observational esti-
mates for the radius of the PSR J0740+6620, with mass
2.08 ± 0.07 M�, which is the highest reliable gravitational
mass of any neutron star [64,65]. In Table 1, we indi-
cate the number of NICER-compatible models for different
anisotropic strategies.

From Eq. (21), we calculate the configuration radius as
a function of ρc and �. We find that the central density,

0.7 × 1015 g/cm3 ≤ ρc ≤ 1.3 × 1015 g/cm3, is consis-
tent with observational data. The range for � associated with
various central densities for different anisotropy strategies
are displayed in Table 2.

We also find various acceptable configurations with dif-
ferent ρc, ranging from almost homogeneous density pro-
files, i.e. � ≈ 0.8, to others with vanishing density at the
configuration boundary where � ≈ 0.0. Assuming a simple
density (20), the observed radius for PSR J0740+6620 can
be described by acceptable isotropic matter configurations
and several anisotropic approaches. Models with the highest
� correspond only to anisotropic configurations within 	GF

strategy.
Figure 3 provides a visual representation of the results

detailed in Table 1. All possible radii 11.6 km ≤ R ≤
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Table 2 Range of � and ρc for the PSR J0740+6620 with
2.08 ± 0.07 M�, considering distinct anisotropy approaches. In this
table, we present the range of � for the possible values of ρc consistent
with the observational NICER data. We found various possible con-
figurations for different ρc, ranging from almost homogeneous density
profiles, i.e. � ≈ 0.8, to others with vanishing density at the boundary

of the configuration where � ≈ 0.0. Assuming a simple density profile,
the observed radius for PSR J0740+6620, can be described by accept-
able isotropic matter configurations and several anisotropic approaches.
Models with the highest � correspond to anisotropic configurations with
	GF strategy

Range of � ρc = 1.3 × 1015 g/cm3 ρc = 1.0 × 1015 g/cm3 ρc = 0.7 × 1015 g/cm3

CGF = 0.225 0.0 ≤ � ≤ 0.1 0.1 ≤ � ≤ 0.3 0.4 ≤ � ≤ 0.8

CQL = 0.910 0.0 ≤ � ≤ 0.1 0.1 ≤ � ≤ 0.3 0.4 ≤ � ≤ 0.7

CPG = 0.025 0.0 ≤ � ≤ 0.1 0.1 ≤ � ≤ 0.3 0.4 ≤ � ≤ 0.6

Ciso = 0.000 0.0 ≤ � ≤ 0.1 0.1 ≤ � ≤ 0.3 0.4 ≤ � ≤ 0.6

13.1 km harmonise with various NICER-acceptable models.
The red arrows denote workable values for the central den-
sity, ranging from 0.7 × 1015 g/cm3 to 1.3 × 1015 g/cm3,
coupled with their corresponding � values that align with the
assumed density profile (20).

In both the 	GF and 	QL anisotropy strategies, the
NICER acceptable region encompasses more yellow mod-
els compared to other anisotropic approaches. Specifically,
there are ten NICER models for 	GF with CGF = 0.225
and nine for 	QL with CQL = 0.910. However, if we con-
sider the whole range of possible values for the anisotropy
parameter C , the total number of NICER models reaches
approximately NN ICER−Total−QL ≈ 11.775 for the 	QL

strategy (see Table 1).

6 Final remarks

This work introduces the most common assumptions in mod-
elling non-Pascalian fluids in general relativistic matter con-
figurations. Local anisotropy in compact objects is a hypoth-
esis that has gained relevance over time. So far, however,
it is still not well known how unequal radial and tangential
stresses may increase the stability of neutron star models.
The complete description of the complex interactions in the
fluid that cause such phenomena is unknown [15,23].

We explore five different heuristic methods to include
anisotropy in general relativistic matter configurations. We
found that the most effective approach in introducing
anisotropy, with a physically meaningful density profile (20)
is the quasi-local 	QL method [29]; followed by the Kar-
markar scheme [32,33]; and last by the complexity factor
approach [31,52,53]. Incorporating any of the five types of
anisotropy schemes considered in this study results in a sig-
nificantly greater number of acceptable configurations than
their isotropic counterparts within the specified range of crit-
ical parameters (C , � and ρc).

Furthermore, as shown in Fig. 1 and from Eq. (25), we
have established a “rule of thumb” that provides a simple

relationship between the density at the boundary, ρb, and the
centre, ρc, for relativistic matter distributions. This rule can
serve as a helpful tool for identifying potentially realistic
and acceptable models of compact objects. By leveraging
this relationship, researchers can make informed judgments
about the physical viability of different matter configurations.

From Eq. (21), we calculate the configuration radius as
a function of ρc and �. We found that the central density,
0.7 × 1015 g/cm3 ≤ ρc ≤ 1.3 × 1015 g/cm3, is consistent
with NICER-observational data. In Table 2, we introduce the
corresponding ranges for �. All the possible radii values,
11.6 km ≤ R ≤ 13.1 km, correspond to several NICER-
acceptable models within the selected parameter space, ful-
filling all physically acceptable conditions.

Assuming a simple density profile (20), the observed
radius for PSR J0740+6620 can be described by accept-
able isotropic matter configurations and several anisotropic
approaches. Models with the highest � correspond only to
anisotropic configurations with 	GF strategy.
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Appendices

A The structure equations

We determine the physical variables (ρ,m, P, P⊥) and
check the acceptability conditions. We compare the physi-
cal acceptability among models with the same parameters
(ρc, α,C) having different anisotropy strategies. The more
acceptable models an anisotropy generates, the more it may
represent observable compact objects. Now, expressing the
structure equations (7) and (8) in term of dimensionless quan-
tities we have

d P̃

dx
= −

(
ρ̃ + P̃

) (
m̃ + 4π P̃x3

)

x (x − 2m̃)
+

2
(
P̃⊥ − P̃

)

x
and

(26)

dm̃

dx
= 4πρ̃x2, (27)

with

ρ̃ = ρ̃c

(
1 − α̃x2

)
⇒ m̃ = 4πρ̃c

(
x3

3
− α̃

x5

5

)
, (28)

leaving only Eq. (26) to be integrated. We have this new set
of dimensionless physical variables:

m = Rm̃, P = 1

R2 P̃, P⊥ = 1

R2 P̃⊥,

ρ = 1

R2 ρ̃, and r = Rx, (29)

where R is the boundary radius of the configuration.
It is convenient to transform the parameter α̃ (= αR2)

into a quantity with greater physical meaning. Evaluating
the dimensionless density in (28) at the surface of the con-
figuration, where x = 1, we can define

� = 1 − α̃ = ρb/ρc (30)

as the density ratio at the surface to the density at the centre.

B Dimensionless equations of state for anisotropy

The change of variables proposed in (29) to express equations
in dimensionless form has the virtue of preserving the equa-
tions without additional constants. That is, we can directly
put the tilde mark on the variables (and swap r for x in the
case of the radial coordinate) to obtain the dimensionless ver-
sion. Equations (26) and (27) are an example of what has just
been stated. However, here are some simple calculations that
prove it.

• Anisotropy proportional to gravitational force. Car-
rying out the change of variables (29) on the anisotropy
proportional to gravitational force yields

P̃⊥ − P̃

R2 =
CGF

(
ρ̃

R2 + P̃
R2

) (
Rm̃ + 4πR3x3 P̃

R2

)

Rx − 2Rm̃
.

Now, rearranging the constant R to the right-hand side,
we have

P̃⊥ − P̃ =
CGF R2

(
ρ̃

R2 + P̃
R2

)
R

(
m̃ + 4πR2x3 P̃

R2

)

R (x − 2m̃)
,

(31)

from where we have that

	̃GF =
CGF

(
ρ̃ + P̃

) (
m̃ + 4πx3 P̃

)

x − 2m̃
. (32)

• Quasi-local anisotropy. Quasi-local anisotropy is a more
straightforward case since compactness is a dimension-
less variable. Implementing the change of variables (29)
in Eq. (10) leads us to

	̃QL

R2 = 2CQL Rm̃
P̃
R2

Rx
,

and therefore

	̃QL = 2CQLm̃ P̃

x
. (33)

• Anisotropy proportional to a pressure gradient. In this
particular case, we first choose the function f (ρ) = ρ

as in [30], leaving anisotropy (11) as

	PG = −CPGρ

√
1 − 2m

r

dP

dr
.

Therefore, the anisotropy factor CPG has dimensions
length cubed. Thus, substituting the change of variables
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into the last equation gives

	̃PG

R2 = −R3C̃3
ρ̃

R2

√
1 − 2Rm̃

Rx

1

R3

d P̃

dx
,

and consequently, we get

	̃PG = −C̃PG ρ̃

√
1 − 2m̃

x

d P̃

dx
. (34)

• Complexity factor anisotropy We can solve the inte-
gral in the anisotropy (12) since density profile is given,
yielding

	CF = ρcαr2

5
.

Now, applying the change of variables, we get

	̃CF

R2 = 1

5

ρ̃c

R2

α̃

R2 R
2x2,

and therefore

	̃CF = ρ̃c (1 − �) x2

5
. (35)

• Karmarkar anisotropy. Given the density profile (20),
we can compute derivatives and integrals to obtain

	KC = ρcαr2

5ρ

(
ρ − 3P

2
− ρcαr2

5

)
. (36)

Therefore the dimensionless induced anisotropy by the
Karmarkar condition is given by

	̃KC = ρ̃c (1 − �) x2

5ρ̃

(
ρ̃ − 3P̃

2
− ρ̃c (1 − �) x2

5

)
.

(37)

C Numerical integration

Equation (26) was numerically integrated with Python,
implementing the RK45 method through the solve_ivp func-
tion. The solution was started at the surface of the model,
with initial values xb = 1 and P̃b = 0, and proceeded with an
adaptive step towards the centre, with final values xc = 10−15

and P (xc) = Pc. Since x takes values between 10−15 and 1
we can identify R as the total radius.
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