
J
H
E
P
0
3
(
2
0
2
4
)
0
4
5

Published for SISSA by Springer

Received: January 5, 2024
Accepted: February 12, 2024

Published: March 7, 2024

On AdS/CFT duality in the twisted sector of string
theory on AdS5 × S5/Z2 orbifold background

Torben Skrzypek and Arkady A. Tseytlin 1

Theoretical Physics Group, Blackett Laboratory, Imperial College,
London SW7 2AZ, U.K.

E-mail: t.skrzypek20@imperial.ac.uk, tseytlin@imperial.ac.uk

Abstract: We consider type IIB string theory on an AdS5 × S5/Z2 orbifold background,
which should be dual to 4d N = 2 superconformal SU(N) × SU(N) gauge theory with
two bi-fundamental hypermultiplets. The correlator of two chiral BPS operators from the
twisted sector of this quiver CFT exhibits non-trivial dependence on the ’t Hooft coupling
λ already in the planar limit. This dependence was recently determined using localisation
and the expansion at large λ contains a subleading contribution proportional to ζ(3)λ−3/2.
We address the question of how to reproduce this correction on the string theory side by
starting with the ζ(3)α′3 term in the type IIB string effective action. We find a regular
solution of type IIB supergravity which represents a resolution of the AdS5 × S5/Z2 orbifold
and demonstrate that the relevant light twisted sector states may be identified as additional
supergravity 2-form modes “wrapping” a finite 2-cycle in the resolution space. Reproducing
the structure of the gauge theory result becomes more transparent in the large R-charge or
BMN-like limit in which the resolved background takes a pp-wave form with the transverse
space being a product of R4 and the Eguchi-Hanson space.

Keywords: AdS-CFT Correspondence, Spacetime Singularities, Extended Supersymmetry,
Integrable Field Theories

ArXiv ePrint: 2312.13850

1Also at Lebedev Institute and ITMP, Moscow State University, Moscow, Russia.

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP03(2024)045

https://orcid.org/0000-0003-4406-4375
https://orcid.org/0000-0002-5066-8282
mailto:t.skrzypek20@imperial.ac.uk
mailto:tseytlin@imperial.ac.uk
https://doi.org/10.48550/arXiv.2312.13850
https://doi.org/10.1007/JHEP03(2024)045


J
H
E
P
0
3
(
2
0
2
4
)
0
4
5

Contents

1 Introduction 1
1.1 Gauge theory results 2
1.2 6d effective action for twisted sector modes 3
1.3 Structure of the paper 5

2 Resolution of the S5/Z2 orbifold 6
2.1 Eguchi-Hanson space as resolution of C2/Z2 6
2.2 S5/Z2 orbifold and its resolution M5 7

3 Twisted sector modes from 2-form fields in AdS5 × M5 9
3.1 Solution of supergravity equations for 2-form fields 10
3.2 Effective action for twisted sector modes 12

4 Matching to gauge theory: leading and subleading corrections 14
4.1 Normalisation factors 15
4.2 α′3-corrections 16

5 Matching the k3-term 18
5.1 Large-k limit: pp-wave analogue of the resolved orbifold 18
5.2 Back to AdS5 × M5 21

6 Concluding remarks 22

A String spectrum for a flat-space orbifold 23

B Comments on α′3-terms in the type IIB string effective action 24

C Solution of the 2-form equations of motion 25

D Weyl tensors in Vielbein basis 28

1 Introduction

One of the simplest generalisations of the duality between N = 4 SYM theory and type IIB
superstring theory on AdS5 × S5 background is based on taking its orbifold [1] (see also,
e.g., [2–8]). In particular, in the case of a supersymmetric Z2-orbifold the duality is between
the N = 2 superconformal SU(N) × SU(N) quiver gauge theory (containing two vector
multiplets and two bi-fundamental hypermultiplets) and string theory on AdS5 × S5/Z2.

A way to check this duality is to compute “observables” on the gauge theory side for
large N and any ’t Hooft coupling λ, expand in large λ and then compare the result to
the large-tension expansion of their counterparts on the string theory side. As the N = 2
superconformal quiver arises as a Z2-orbifold of SU(2N) N = 4 SYM [2], its “untwisted”
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sector observables, computed at the leading (planar) order in large N , are the same as in
the SYM theory1 with non-trivial corrections appearing at order 1/N2.

Recently, such leading 1/N2-corrections were studied for some of the simplest untwisted
observables –the BPS circular Wilson loop and the free energy on the 4-sphere (see [9–11] and
references therein). Localisation [12] allows one to compute their strong ’t Hooft coupling
expansion order by order in 1/N2. The comparison to string theory at order 1/N2 then
requires knowledge of string loop corrections in AdS5 × S5/Z2 which, unfortunately, is rather
limited (see a discussion in [9, 11]).

At the same time, observables from the twisted sector may receive corrections already
at the leading order in large N . These should be captured by the tree-level string theory
and thus may be easier to analyse. In particular, the 2- and 3-point correlators of special
twisted sector single-trace BPS operators with protected dimensions2 may be computed at
large N using localisation techniques (see, e.g., [11, 14–23]). The leading order large-λ terms
in these correlators were matched [21–23] with the 6d low-energy effective action for the
corresponding twisted sector string modes constructed in [5].

Our aim below is to attempt to extend this matching to the first sub-leading O
(
λ−3/2

)
-

term in the 2-point twisted-state correlator [23]. We expect this term to be captured by
the α′3-correction to the string effective action.

1.1 Gauge theory results

If ϕ0 and ϕ1 denote the adjoint scalars in the two N = 2 SU(N) vector multiplets, the
simplest chiral BPS operators of dimension ∆ = k belonging to untwisted and twisted
sectors,respectively, are3

Uk(x) =
1√
2k

( 2
N

) k
2 (

trϕk0 + trϕk1
)
, Tk(x) =

1√
2k

( 2
N

) k
2 (

trϕk0 − trϕk1
)
. (1.1)

As their conformal dimension is protected, the corresponding 2- and 3-point correlators are [23]

⟨Ok(x1)Ōk(x2)⟩ =
GOk

|x1 − x2|2k
, (1.2)

⟨Ok(x1)Ol(x2)Ōk+l(x3)⟩ =
GOk,Ol,Ōk+l

|x1 − x3|2k|x2 − x3|2l
, (1.3)

where the operator Ok is either Uk or Tk in (1.1) and the constants G may depend on N

and the ’t Hooft coupling λ.
We shall focus on the leading order in large N . Then the correlators of untwisted BPS

operators are the same as in N = 4 SYM theory, i.e. they are protected by supersymmetry
1In general, to construct an orbifold one starts with a discrete subgroup Γ of the PSU(2, 2|4)-symmetry.

Γ-invariant states form the untwisted sector. In string theory, additional twisted sector states arise from strings
that close only up to a Γ-transformation. These states correspond in the dual gauge theory to operators with
an insertion of a Γ-symmetry operator.

2At the leading order in large N the spectrum of anomalous dimensions of non-BPS states may, in principle,
be studied using integrability techniques (see [13] and references therein).

3We use a different normalisation than in [23].
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and are given by

GUk
= 1 , GUk,Ul,Ūk+l

= 1
N

√
kl(k + l)

2 . (1.4)

On the other hand, the correlators involving twisted sector operators are non-trivial functions
of λ that can be found using localisation. Expanding in large λ one gets, in particular
(see [17, 18, 20, 21] and [10, 11, 22, 23])4

GTk
= 4π2

λ′
k(k−1)

(
λ′

λ

)k [
1+ 1

2(2k−1)(2k−2)(2k−3)ζ(3)
λ′

3
2

− 9
16(k−1)(2k−3)(2k−5)(4k2−1)ζ(5)

λ′
5
2

(1.5)

+ 1
4(k−1)(2k−1)(2k−3)(2k−5)(4k2−20k−3)ζ(3)

2

λ′3
+O

(
λ′−7/2)] ,

GTk,Tk,Ū2k
= k

3
2

N
· 4π

2

λ′
(k−1)2

(
λ′

λ

)k− 1
2
[
1+ 1

2(2k−1)(2k−3)(2k−5)ζ(3)
λ′

3
2
+O

(
λ′−5/2)] ,

(1.6)
√
λ′≡

√
λ−4log2 . (1.7)

In general, these expressions depend on operator normalisations. Considering normalisation-
independent ratios like

GTk,Tk,Ū2k√
GTk

GTk
GUk

, refs. [21, 22] successfully matched their leading large-λ
behaviour to the predictions from the low-energy effective action [5] for the corresponding
twisted sector string modes.

We shall attempt to understand the string origin of the subleading ζ(3)-term in (1.5).
Identifying

√
λ′

2π with the effective string tension or L2

2πα′ (where L is the radius of both AdS5
and S5), the natural expectation is that this term should be reproduced by the first non-trivial
α′3-correction in the string effective action for the corresponding twisted sector modes in
AdS5 × S5/Z2, by analogy with the familiar α′3ζ(3)R4 + . . . term for the standard massless
string modes (cf. [24, 25]). This will require understanding how to construct a generalisation
of the leading-order effective action for the twisted sector modes suggested in [5].

1.2 6d effective action for twisted sector modes

To recall, the Γ = Z2 orbifold on the string theory side acts on embedding coordinates
(z1, z2, z3) of S5 ⊂ C3 as

Γ : (z1, z2, z3) → (−z1,−z2, z3) , (1.8)
4Eqs. (1.5) and (1.6) are taken from [23]. The leading large-λ coefficients were found earlier in [20, 22].

The resummation in terms of λ′ was introduced in [10]. Ref. [23] found the following relation between the 2-
and 3-point coefficient functions:

GTk,Tk,Ū2k
= k√

2

(
N

2

)k−1
(k + λ∂λ)GTk .
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which breaks half of the maximal supersymmetry. The great circle of S5 parametrised by
z1 = z2 = 0, z3 = Leiχ is fixed under the action of Γ. The twisted sector strings, which close
up to a Γ-transformation, extend around the orbifolded angles, so the lowest energy twisted
states localise on the fixed circle, i.e. on the six-dimensional AdS5 × S1 subspace of the 10d
target space. They should then be described by an effective 6d action.

For the similar orbifold R1,5 × C2/Γ of flat-space string theory the spectrum of twisted
sector modes organises into tensor representations of 6d N = (2, 0) supersymmetry [26]
(see appendix A). The low-energy effective action for the light twisted modes could be
reconstructed from correlators of the corresponding vertex operators (cf. [27]).

Ref. [26] provided an alternative interpretation of the twisted sector modes in terms
of a resolution (or “blow-up”) of the orbifold singularity. One may cut out a ball of size
a around the singularity and glue in a smooth manifold, such that the total space M4 is
asymptotically locally Euclidean with global C2/Γ structure. For Γ = Z2 the smooth manifold
is the Eguchi-Hanson space [28]. This resolution features three moduli and a non-trivial
2-cycle over which one may integrate the massless 2- and 4-form fields of type IIB supergravity
generating extra light modes. In the limit a → 0, the resolved space M4 approaches the
orbifold C2/Z2 with the moduli and extra modes (now localised at the singularity) to be
taken into account. It turns out that this procedure reproduces the lightest states in the
twisted sector spectrum as found directly from string theory. This suggests that one can
access the light twisted sector modes using the 10d supergravity action expanded near the
curved background representing a resolution of the orbifold.

In [5] it was suggested that this logic may apply also to the curved-space orbifold S5/Z2.
Close to the fixed circle, one may approximate S5/Z2 by C2/Z2 × S1 and thus expect to
get the same effective action for light twisted sector modes in terms of 6d tensor multiplets
as in the flat-space case, corrected by contributions of the curvature and the F5-flux of the
AdS5 × S5/Z2 background. One may then expand in Fourier modes on S1, generating towers
of fields in AdS5 with masses labelled by the mode number (“KK level”) k. These can then
be put into correspondence with the dual BPS operators in the twisted sector of the gauge
theory and turn out to have the required spectrum of conformal dimensions [5].

In particular, the twisted sector operator Tk in (1.1) is expected to be dual to a 5d
mode representing a combination of B2 and C2 fields integrated over the 2-cycle the orb-
ifold resolution. The relevant terms in the 10d type IIB supergravity action are (ignoring
dependence on the dilaton and RR scalar)

S10 = − 1
2κ2

∫
d10X

√
−g

( 1
2 · 3!H

2
3 + 1

2 · 3!F
2
3 + 1

4 · 5! F̃
2
5

)
− 1

4κ2

∫
B2 ∧ F3 ∧ F5 , (1.9)

H3 = dB2 , F3 = dC2 , F̃5 = F5 −
1
2C2 ∧H3 +

1
2B2 ∧ F3 . (1.10)

Let us set

B2 = β(x, χ)Θ , C2 = γ(x, χ)Θ , (1.11)

where Θ is the anti-self-dual 2-form on the resolution of C2/Z2 [28] with a normalised integral
over the resolution 2-cycle, χ is the fixed S1 coordinate and xi are AdS5 coordinates. Using
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that F5 = 4 (volAdS5 +volS5/Z2) we then arrive at the following effective 6d action for the
fields β and γ [5, 7]

S6 ∼ 1
2

∫
AdS5×S1

d5x dχ
√
−g6

[
(∂iβ)2 + (∂χβ)2 + (∂iγ)2 + (∂χγ)2 − 8β ∂χγ

]
. (1.12)

Expanding the fields β and γ in Fourier modes in χ (i.e. β =
∑
k e

ikχβk(x), γ =∑
k e

ikχγk(x)) we get the following kinetic operator matrix for the βk(x) and γk(x) fields
on AdS5 (

∇2
AdS5

− k2 −4ik
4ik ∇2

AdS5
− k2

)
. (1.13)

Diagonalising it gives the following masses

m2
± = ∆±(∆± − 4) = k(k ± 4) . (1.14)

The dual twisted-sector operators are then expected to be Tk in (1.1) with dimension ∆− = k

and the operator with dimension ∆+ = k + 4 represented by [5]

OF = tr
[
ϕk0 (F 2

0 + iF0F̃0)
]
− tr

[
ϕk1 (F 2

1 + iF1F̃1)
]
, (1.15)

where F0 and F1 are the gauge fields from the two N = 2 SU(N) gauge multiplets.
This identification relies heavily on supersymmetry and is supported by the successful

matching of the leading order term in (1.5) demonstrated in [22]. To extend this matching
to subleading order we need to put the above derivation of the effective action (1.12) on
a firmer footing and then find α′3-corrections to it using as an input the known structure
of α′3-terms in the type IIB string effective action.

1.3 Structure of the paper

We start in section 2 with presenting a regular solution of type IIB supergravity (depending
on an extra parameter a) that is a resolution of the S5/Z2 orbifold. It has S3 × S2 topology
and thus admits a non-trivial 2-cycle.

In section 3 we analyse solutions for the B2 and C2 fields in this background and identify
the 10d analogues of the twisted sector states localised on the AdS5 × S1 subspace, thus
supporting the logic behind the derivation of the action (1.12) in [5].

In section 4 we generalise the discussion to the case when the starting point is not the
supergravity action (1.9) but the type IIB string effective action including α′3-corrections. We
describe a strategy for reproducing the subleading λ−3/2-term in the gauge theory result (1.5)
for the two-point correlator.

In section 5 we focus specifically on reproducing the k3 part of the λ−3/2-term in (1.5)
which dominates when the R-charge k is large. We note that the function (1.5) admits a
regular BMN-like limit, i.e. for large k and λ with ν = k√

λ
being fixed. This suggests to

focus on the pp-wave limit of the resolved orbifold background which turns out to have the
Eguchi-Hanson space as part of its “transverse” space. We suggest a candidate structure
that should be part of the α′3ζ(3)(R4 + . . .) superinvariant and that may be responsible
for reproducing the ζ(3)k3λ−3/2-term.
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Some concluding remarks are made in section 6. In appendix A we review the spectrum
of superstring theory on a flat-space orbifold. In appendix B we summarise some information
about the structure of the leading α′3-corrections to the tree-level type IIB supergravity
action. Details of calculations in section 3 are presented in appendix C. Appendix D contains
expressions for the Weyl tensor of the resolved orbifold background.

2 Resolution of the S5/Z2 orbifold

In this section we find a particular resolution of the AdS5 × S5/Z2 orbifold as a regular
solution of type IIB supergravity depending on an extra “resolution parameter” a. In
section 3 we expand near this background and identify the lightest modes corresponding to
the twisted sector states. This suggests how to construct their low-energy effective action
in the framework of type IIB supergravity.

To motivate the Ansatz for the resolved background we first review the resolution of the
flat C2/Z2 orbifold represented by the Eguchi-Hanson (EH) space [28].

2.1 Eguchi-Hanson space as resolution of C2/Z2

The procedure of blowing up singularities usually involves glueing a projective CPn space
to the singularity and identifying appropriate subspaces. In the C2/Z2 case the orbifolding
acts on the two complex coordinates as (z1, z2) → (−z1,−z2), resulting in a singularity at
(0, 0). Let us choose a parametrisation

z1 = r cos θ2 e
i
2 (ψ+ϕ), z2 = r sin θ

2 e
i
2 (ψ−ϕ) . (2.1)

Then
ds2 = |dz1|2 + |dz2|2 = dr2 + r2(σ2

x + σ2
y + σ2

z) , (2.2)

where we introduced the SU(2) Cartan forms

σx= 1
2(sinψdθ−sinθ cosψdϕ) , σy = 1

2(−cosψdθ−sinθ sinψdϕ) , σz = 1
2(dψ+cosθdϕ) ,

dσx=2σy∧σz , dσy =2σz∧σx , dσz =2σx∧σy .
(2.3)

Here σ2
x + σ2

y + σ2
z represents the metric of S3, parametrised as Hopf fibration over S2 with

ds2
S2 = 4(σ2

x + σ2
y) = dθ2 + sin2 θ dϕ2 and θ ∈ [0, π], ϕ ∈ [0, 2π]. For ψ ∈ [0, 4π] it would

cover the full S3, but for ψ ∈ [0, 2π] it only covers S3/Z2, so that (2.2) represents the metric
of C2/Z2 with a singularity at r = 0.

The resolution of the singularity is achieved by replacing (2.2) with the EH metric
containing a function V0(r), which breaks the SO(4) symmetry to SO(3)

ds2
EH = V0(r)−1dr2 + r2

[
σ2
x + σ2

y + V0(r)σ2
z

]
, V0(r) = 1− a4

r4 . (2.4)

This metric is Ricci-flat and its curvature form is self-dual.5 Here we restrict r to the interval
r ∈ [a,∞). For r → ∞ we recover the C2/Z2 space asymptotically (i.e. EH is an ALE space).

5EH space is also a hyperkähler manifold, i.e. admits three complex structures that form an SU(2) triplet.
In the 10d supergravity context this guarantees preservation of 16 supercharges and that a dimensional
reduction on this space leads to 6d N = (2, 0) supergravity.

– 6 –
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(a) (b)

Figure 1. (a) Representation of S5 as a fibration of S1 × S3 over an interval. (b) Schematic
representation of the resolution M5 (2.17) of the S5/Z2 orbifold.

For r → a this space is regular as one can see by changing the coordinate r → u as

u2 = r2V0(r) . (2.5)

Expanding (2.4) around the apparent singularity at r = a or u = 0 yields

ds2
EH

∣∣∣
u→0

→ 1
4
[
du2 + a2 ds2

S2 + u2(dψ + cos θ dϕ)2
]
. (2.6)

For fixed θ and ϕ and with ψ ∈ [0, 2π] the point at u = 0 is just a coordinate singularity:
the local geometry near u = 0 is that of an R2-bundle over S2. The orbifold singularity
of C2/Z2 is recovered in the limit a → 0.

2.2 S5/Z2 orbifold and its resolution M5

Let us represent the unit-radius S5 metric as that of S1 ×S3 fibered over an interval ρ ∈ [0, π2 ]

ds2
S5 = dρ2 + cos2 ρ ds2

S1 + sin2 ρ ds2
S3 = dρ2 + cos2 ρ dχ2 + sin2 ρ

(
σ2
x + σ2

y + σ2
z

)
. (2.7)

Here we parametrised S1 by χ ∈ [0, 2π] and S3 as in (2.2) with ψ ∈ [0, 4π]. A schematic
picture of this parametrisation is given in figure 1a. At ρ = 0 (the “north pole”) S3 shrinks
to a point and we recover a local R4 × S1 geometry. At the “south pole” ρ = π

2 where S1

shrinks to a point the local geometry is R2 × S3.
To get the metric of the S5/Z2 orbifold we restrict ψ to [0, 2π]. This space is then

singular at ρ = 0 with S1
χ at the north pole being the fixed circle. Thus, S5/Z2 looks like

S1 × S3/Z2 fibered over the ρ-interval.
Motivated by the comparison of the S3 parts of (2.2) and (2.7), and by the Eguchi-

Hanson resolution (2.4) of the C2/Z2 orbifold let us consider the following Ansatz for a
resolution M5 of S5/Z2

ds2
M5 = V (ρ)−1dρ2 + cos2 ρ dχ̃2 + sin2 ρ

[
σ2
x + σ2

y + V (ρ) σ̃2
z

]
. (2.8)

Here we “deformed” (2.7) by introducing a function V (ρ) and defined

χ̃ = pχ , σ̃z = q dψ + cos θ dϕ , (2.9)

– 7 –
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where p and q are two constants which are to be fixed momentarily. To provide a resolution
of the orbifold singularity, the function V (ρ) should behave as the Eguchi-Hanson one (2.4)
near ρ ∼ 0, i.e. V (ρ) ∼ 1 − (aρ)

4, and it should approach a constant for ρ ∼ π
2 . This is

accomplished by the following choice

V (ρ) = 1−
(sin a
sin ρ

)4
, a ∈

(
0, π2

)
. (2.10)

Remarkably, (2.8) with (2.10) satisfies the same 5d Einstein equation as the undeformed
metric (2.7):

Rab = 4gab , R = 20 . (2.11)

Let us note that although we can use this metric (2.8) as a base for a Ricci-flat 6d cone,
there is no associated Kähler form, so this resolution is not a Sasaki-Einstein space and
breaks supersymmetry completely.

Let us demonstrate that M5 is indeed non-singular despite an apparent singularity at
ρ = a. Applying the following coordinate transformation from ρ to u (cf. (2.5))

u2 = sin2 ρ V (ρ) , (2.12)

implies that for u → 0 (or ρ → a) the metric becomes

ds2
M5

∣∣∣
u→0

→ 1
4

[ 1
cos2 a

du2 + 4 cos2 a dχ̃2 + sin2 a ds2
S2 + u2(q dψ + cos θ dϕ)2

]
. (2.13)

For this to be smooth at u = 0 we have to choose

q = (cos a)−1 . (2.14)

In this case the original orbifold singularity at ρ = 0 is removed like in the above EH example.
To study the vicinity of the “south pole” at ρ = π

2 let us introduce the coordinate
v = π

2 − ρ so that the metric becomes

ds2
M5

∣∣∣
ρ→π

2

→ 1
1− sin4 a

dv2 + v2p2 dχ2 + 1
4

[
ds2

S2 + (1− sin4 a)
( 1
cos adψ + cos θ dϕ

)2
]
.

(2.15)
For this to be smooth at v = 0 we need to choose

p = (1− sin4 a)−1/2 . (2.16)

Note that both q (2.14) and p become 1 at a = 0.
To summarise, using (2.8), (2.10), (2.14), (2.16) we thus find a smooth resolution M5

of S5/Z2 which is an Einstein space with the metric

ds2
M5 = V (ρ)−1 dρ2 + cos2 ρ

1− sin4 a
dχ2 + 1

4 sin2 ρ

[
ds2

S2 + V (ρ)
( 1
cos adψ + cos θ dϕ

)2
]
,

(2.17)

ds2
S2 = dθ2 + sin2 θ dϕ2 , ρ ∈ [a, π2 ] , χ ∈ [0, 2π] , θ ∈ [0, π] , ϕ ∈ [0, 2π] , ψ ∈ [0, 2π] .

– 8 –
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As an illustration of regularity of (2.17) let us note that the square of its curvature is given by

RabcdRabcd = 40 + 24sin
8 a

sin8 ρ

(
3 + 16cos

2 ρ

sin4 ρ

)
, (2.18)

which is finite for ρ ∈ (a, π2 ]. If we consider the limit ρ→ a and then a→ 0 we recover the
orbifold singularity as RabcdRabcd → 384 a−4.

The volume form and the volume of M5 are given by

volM5 =
√
1 + sin2 a

8 (1− sin4 a)
sin3 ρ cos ρ sin θ dρ ∧ dχ ∧ dθ ∧ dϕ ∧ dψ ,

VM5 =
∫
M5

volM5 = π3

2
√
1 + sin2 a .

(2.19)

In the limit a → 0 we recover the volume of the orbifold VS5/Z2 = 1
2VS5 = π3

2 .
Let us comment also on the limit a→ π

2 . In terms of the coordinate v = π
2 − ρ ∈ [0, b]

in (2.15) where b = π
2 − a we can write (2.17) as

ds2
M5 = V (v)−1dv2 + sin2 v

1− cos4 b
dχ2 + 1

4 cos2 v
[
ds2

S2 +4V (v)σ̃2
z

]
, V (v) = 1−

( cos b
cos v

)4
.

(2.20)
Setting v = b cos η and then taking the limit b → 0 we get

ds2
M5

∣∣∣
a= π

2

= 1
4
[
2dη2 + 2 cos2 η dχ2 + ds2

S2 + 2 sin2 η dψ2
]
, (2.21)

which is the metric of S3 × S2. Thus for a changing from 0 to π
2 the metric (2.17) of

M5 interpolates between S5/Z2 and S3 × S2 and is in general non-singular with S3 × S2

topology (cf. figure 1b).
In view of (2.11), we conclude that the resolved space AdS5×M5 gives a regular solution of

type IIB supergravity if we supplement it by a direct generalisation of the standard RR 5-form

F5 = 4 (volAdS5 +volM5) . (2.22)

3 Twisted sector modes from 2-form fields in AdS5 × M5

As discussed in the introduction, the twisted sector operator Tk in (1.1) should be dual to
a scalar mode in AdS5 × S5/Z2 localised on AdS5 × S1 and having k units of momentum
along the S1. Motivated by the idea of identifying twisted sector fields using a blow-up
procedure of orbifold singularities [26], we expect this mode to originate from a combination
of fluctuations of B2 and C2 fields in (1.9) that are “wrapping” the blow-up 2-cycle in the
resolved space AdS5 × M5 (cf. (1.11)).

To justify this picture, we first study the type IIB supergravity equations for fluctuations
of B2 and C2 fields in the AdS5 ×M5 background. We identify modes which appear due
to the resolution and correspond to the lightest twisted sector states in the orbifold limit
a→ 0. We then discuss the construction of their 6d effective action, which should reproduce
the action (1.12) of [5].
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3.1 Solution of supergravity equations for 2-form fields

The type IIB supergravity equations for the B2 and C2 fields following from (1.9) may be
written in equivalent real and complex forms as

d ∗ F3 − F5 ∧H3 = 0 , d ∗H3 + F5 ∧ F3 = 0 , (3.1)
d ∗G3 + iF5 ∧G3 = 0 , G3 ≡ F3 + iH3 = dA2 , A2 = C2 + iB2 . (3.2)

We study these equations in the background of the AdS5 × M5 metric (2.17) (of radius
L = 1) supported by the 5-form flux given in (2.22).

Assuming 5+5 separation of coordinates, let us choose the following Ansatz for the
potential A2 in (3.2)6

A2(x, y) = φ(x) Ω(y) , (3.3)

where Ω(y) is a complex 2-form on M5 and φ(x) is a real scalar function solving a free
massive scalar equation in AdS5

∇2
AdS5

φ = m2φ . (3.4)

Then (3.1) is solved if Ω(y) on M5 satisfies7

d ⋆ Ω = 0 , d ⋆ dΩ− 4idΩ +m2 ⋆ Ω = 0 . (3.5)

These equations are satisfied if we express Ω in terms of a closed 3-form ω as

Ω = ⋆ω , dω = 0 ,
[
(d⋆)2 − 4i(d⋆) +m2

]
ω = 0 . (3.6)

Equivalently, the closed 3-form ω on M5 should satisfy

d ⋆ ω = −iMω , M(M + 4) = m2 . (3.7)

The complex conjugate field Ā2 = φ(x)Ω̄(y) should solve the complex conjugate equations,
so that Ω̄(y) is expressed in terms of ω̄ as (we assume that m is real)

d ⋆ ω̄ = −iMω̄ , M(M − 4) = m2 . (3.8)

The metric (2.17) of M5 has an isometry along the S1 parametrised by χ so we may expand
in Fourier modes

ω(y) =
∞∑

k=−∞
eikχ ωk(ρ, θ, ϕ, ψ) , (3.9)

and, for the time being, focus on one particular mode ωk with positive k.8

6We use coordinates xi with indices (i, j, . . .) for AdS5 and ya with indices (a, b, . . .) for M5. In general,
we shall use capital latin indices for coordinates of a generic 10d spacetime. Small latin indices from the
beginning of the alphabet (a, b, c, . . .) label coordinates of internal 5-space and latin indices from the middle of
the alphabet (i, j, k, . . .) label coordinates of non-compact 5-space or AdS5.

7Here and below ⋆ stands for the Hodge-dual form in M5.
8Note that ω and ω̄ solve the same differential equation (3.7), so we may consider only ωk with k > 0 and

relegate k < 0 to modes of ω̄.
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Figure 2. Potential U(ρ) for k = −M = 3 and (i) a = 0 (solid curve) and (ii) a = 1
2 (dotted curve).

As we are interested in the analogues of the twisted sector modes, which are to be
localised near the north pole ρ = 0 of the orbifold we may restrict our attention to the lowest
harmonics on the deformed S3 part of (2.17). Explicitly, we may assume no dependence on
ψ and a spherical symmetry in (θ, ϕ). A general Ansatz for such ω then takes the form9

ωk = f1(ρ) dρ ∧ dχ̃ ∧ σ̃z + f2(ρ) dρ ∧ σx ∧ σy + f3(ρ) dχ̃ ∧ σx ∧ σy , (3.10)

where dχ̃ and σ̃z were defined in (2.9), (2.14), (2.16). Then the equation (3.7) relates f1
and f2 to f3 with the latter being subject to a 2nd order ordinary differential equation (see
appendix C). This equation can be put into the Schrödinger-type form

f̃ ′′3 (ρ)−U(ρ) f̃3(ρ) = 0 , (3.11)

where f̃3 is related to f3 via rescaling by a function of ρ (see (C.10)). The potential U(ρ) is
depicted in figure 2 for some special values of the parameters.

At a = 0 the potential has the form of a well between two second-order poles and
the equation (3.11) can be solved explicitly, generating a discrete spectrum of solutions.
In the case of

M = −k , (3.12)

we find for the 2-form Ω in (3.6), (3.9), (3.10)

Ω= eikχΩk , Ωk=
cosk ρ
sin2 ρ

[
(2+k sin2 ρ)σx∧σy+ik sin2 ρdχ∧σz−

2cos2 ρ+k sin2 ρ

cosρsinρ dρ∧σz

]
.

(3.13)
This solution is not normalisable as it diverges near ρ→ 0. It does not have an analogue in the
KK spectrum [29] of the usual S5 compactification, which starts with the first normalisable
solution at M = k + 2 (see appendix C).

For a > 0 the potential U(ρ) develops a pole at ρ = a (cf. figure 2):

U(a+ ϵ) = − 1
4ϵ2 − κµ

ϵ
+ µ2

4 +O(ϵ) , κ ∼ 1
2
√
5
+O

(
a2
)
, µ ∼ 16

√
5

k2a3 +O
(
a−1

)
,

(3.14)
9We do not include f0(ρ)σx ∧ σy ∧ σ̃z as this form is not closed.
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Figure 3. Whittaker equation potential and solutions for small a.

where we gave the small-a expansions of the coefficient functions κ(a, k,M) and µ(a, k,M)
entering the expression for U(ρ). Near ρ = a the equation (3.11) can be transformed into
the standard Whittaker equation form by a rescaling ϵ = ρ− a→ µ−1t (here the derivatives
are w.r.t. t)

f̃ ′′3 (t) +
(
−1
4 + κ

t
+ 1

4t2
)
f̃3(t) = 0 . (3.15)

This equation is solved by the Whittaker functions Mκ,0(t) and Wκ,0(t), which may be
expressed in terms of confluent hypergeometric functions. We plot these functions and the
potential U(t) of (3.15) in figure 3 . Both functions vanish asymptotically at ρ→ a, i.e. the
resolution provides a regularisation of the ρ = 0 singularity present in the orbifold limit.

In general, as the potential U(ρ) in (3.11) is smooth, there are two solutions of (3.11).
Close to ρ = a they look like the Whittaker functions, while away from this point they
look like the solutions found in the a = 0 case (cf. (3.13)). The full solution may be
constructed numerically.

This implies that a full solution generalizing the one in (3.13) found for a = 0 (which
was divergent at ρ = 0 and thus potentially discarded as non-normalisable) is regular and
normalisable for a ̸= 0. In the limit a→ 0 such solutions appear to be localised near ρ = 0.
This suggests that taking the limit a → 0 we need to keep these modes in the spectrum,
and they should represent the light twisted sector states.

3.2 Effective action for twisted sector modes

The localised modes of 2-form fields discussed above propagate on the AdS5 × S1 subspace
at the north pole of AdS5 × M5. Expanding in modes of M5 in general yields a KK tower
of massive fields in AdS5 (cf. (3.4)). We focus on the twisted sector solutions corresponding
to (3.13) for which

M = ±k , m2 = k2 ± 4k , (3.16)

where k is the S1 mode number. As the “transverse” part Ω(y) of the field A2 = C2 + iB2
in (3.3) depends on k we label the corresponding AdS5 part as φk(x).

We may then reconstruct the corresponding 5d effective action for φk(x) by starting
with the 10d supergravity action in (1.9). Written in terms of G3 defined in (3.2) the
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relevant part reads

S10 = − 1
4κ2

∫ [
Ḡ3 ∧ ∗G3 + iĀ2 ∧G3 ∧ F5

]
. (3.17)

Inserting here the Ansatz (3.3) with Ω given by (3.6), (3.7) and integrating over M5 we
get the effective action for φk propagating in AdS5

S5 ∼ 1
2V
∫

d5x
√
−g

AdS5
φk
(
∇2

AdS5
−m2)φk , m2 = k(k − 4) , (3.18)

V ≡
∫
M5

ω̄k ∧ ⋆ωk . (3.19)

For every real φk there is also mode φ−k arising from ω̄ (3.8) with m2 = k(k + 4). For the
Ansatz (3.10) the prefactor (3.19) becomes

V = 1
8

∫
sin θ dχdθdϕdψ

∫ π
2

a
dρ sin2 ρ|f1(ρ)|2 + cos2 ρ V (ρ)|f2(ρ)|2 + |f3(ρ)|2

cos ρ sin ρ . (3.20)

Inserting the solution (3.13) corresponding to the twisted sector mode of interest we find
for a → 0

V ∼ 4π3

a4 +O
(
a−2

)
. (3.21)

This suggests that we should rescale φk by a2, getting V → a4V and thus a finite action
in the a → 0 limit.10

Alternatively, instead of starting with the 5+5 Ansatz (3.3) we may follow the idea of [5]
and attempt to construct an effective 6d action for twisted modes localised on AdS5 × S1.
Locally, near ρ = 0, we may approximate S5/Z2 as C2/Z2 × S1, so that the S1 dependence
factorises. One may try to justify this approach by using the solution on the resolved manifold
M5 found above. The solution for the 2-form Ω in (3.3) given by (3.13) is regular everywhere
apart from ρ = 0, where

Ω ρ→0∼ 2eikχ

sin2 ρ

(
σx ∧ σy −

d(sin ρ)
sin ρ ∧ σz

)
→ eikχΘ(ρ, θ, ϕ, ψ) , Θ ≡ d

( 1
sin2 ρ

σz

)
.

(3.22)
In the vicinity of ρ = 0 we thus find that Ω is an exact 3-form up to an eikχ phase factor.
This suggests that for a → 0 (when the relevant modes localise close to ρ = 0) we may
effectively decouple the S1

χ from the rest of M5. Then starting with the factorised form
of the field A2 in (3.3) and summing over positive and negative k-modes we find that the
part of A2 that is divergent for ρ → 0 factorises as

A2 =
∞∑

k=−∞
φk(x)eikχΩk(ρ, θ, ϕ, ψ)

ρ→0∼ φ̂(x, χ)Θ(ρ, θ, ϕ, ψ) , (3.23)

φ̂(x, χ) =
∞∑

k=−∞
eikχ φk(x) . (3.24)

10With this a4 factor added, the integrand of the ρ-integral in the region where ρ → a → 0 takes the form
of δ(ρ − a) restricting the integration to a small S3/Z2-shell around ρ = 0. This may be interpreted as the
orbifold singularity being cut off at scale a.
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Assuming that this divergent part which is regularised by the blow-up procedure dominates
over contributions coming from the regular part of Ωk in (3.13) we may thus approximate
our 2-form fields as in (1.11) by

B2 = β(x, χ)Θ , C2 = γ(x, χ)Θ , φ̂(x, χ) = β(x, χ) + iγ(x, χ) , (3.25)

where the real 2-form Θ is independent of the S1 coordinate χ. The resulting action for the
6d fields β and γ following from (1.9) or (3.17) has the following structure

S6 ∼ 1
2

∫
AdS5×S1

d5x dχ
√
−g6

[
c1(∂iβ)2 + c2(∂χβ)2 + c1(∂iγ)2 + c2(∂χγ)2 − 8c3 β ∂χ γ

]
,

(3.26)

c1 = π

∫
d4y

√
ggacgbdΘabΘcd , c2 = π

∫
d4y

√
ggacgbdΘabΘcdg

χχ , c3 = −2π
∫

Θ ∧Θ ,

(3.27)

where the integrals go over the local factor-space M5/S1.
In the case of the flat-space orbifold we may choose an anti-self-dual Θ and gχχ = 1

so that c1 = c2 = c3. In the S5/Z2 orbifold case using the approximation (3.25) and the
definition of Θ in (3.22) as well as (2.8),11 we find that integrands of c1, c2 and c3 in (3.27)
diverge as ρ−5 for ρ → a → 0 implying that

c1 ∼ c2 ∼ c3 ∼ 4π3

a4 +O
(
a−3

)
. (3.28)

Notice that this divergence is of the same order as in (3.21) and should be treated similarly.
As a result, we get essentially the same expression as in (1.12) for the leading contribution
to the 6d effective action

S6 ∼ 1
2V
∫
AdS5×S1

d5x dχ
√
−g6

[
(∂iβ)2 + (∂χβ)2 + (∂iγ)2 + (∂χγ)2 − 8β ∂χγ

]
. (3.29)

Expanding β and γ in Fourier modes along χ and diagonalising the action (cf. (1.13)) results
in the same spectrum and 5d action as in (3.16), (3.18).

4 Matching to gauge theory: leading and subleading corrections

Let us now address the question of reproducing the gauge theory prediction for the 2-point
correlator of twisted sector modes in (1.5). We shall first comment on the matching at the
leading order in strong coupling [22] based on the low-energy action (1.12) and then discuss
how to modify this action to include leading α′3-corrections.

11Explicitly, one has

1
2gacgbdΘabΘcd = 8

sin8 ρ
, gχχ = 1

cos2 ρ
,

√
g = 1

8 sin3 ρ cos ρ sin θ .
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4.1 Normalisation factors

Let us start with an action for a massive scalar in AdS5

S[φ] = 1
2Vφ

∫
d5x

√
−g

AdS5
φ
(
∇2

AdS5
−m2)φ , ∆(∆− 4) = m2 , (4.1)

where for generality we introduced a normalisation factor Vφ. Fixing the Dirichlet boundary
condition φ|

∂AdS
= φ0 one gets for the value of the action [30, 31]

S[φ0] =
1
2Vφ n∆

∫
∂AdS5

d4xd4x′
φ0(x)φ0(x′)
|x− x′|2∆ , n∆ = 2

π2
∆− 2
∆

Γ(∆ + 1)
Γ(∆− 2) . (4.2)

We assume that the generating functional for the correlators of the corresponding dual
operator O contains the source term CO

∫
∂AdS5

φ0O . The resulting prefactor in the 2-point
function of O is given by (cf. (1.2))

GO = n∆ VφC2
O . (4.3)

In general, the value of GO is ambiguous depending on normalisations of the field φ and
the dual operator O.

In ref. [20] the dimensionless action normalisation constants Vφ in the 5d actions corre-
sponding to the untwisted and twisted scalar fields dual to the operators Uk and Tk in (1.1)
were given as12

Vφ
Uk

= 1
2κ2 · L3 · π

3

2 L
5 · sk =

N2

2k−4π2
k(k − 1)
(k + 1)2 , (4.4)

Vφ
Tk

= 1
2κ2 (πα

′)2 · L3 · 2πL = N2

λπ2 . (4.5)

In (4.4) the factor π3

2 L
5 is the volume of S5/Z2 and sk comes from the KK-mode overlap

integral on the compact space (cf. [32]). With the choice of normalisation (1.1) of Uk
(corresponding to a particular Cφ

Uk
in (4.3)) we have GUk

= 1 in (1.4).
The presence of the factor (πα′)2 in the twisted field normalisation (4.5) appears to

be an ad hoc choice required to explain the presence of the non-trivial λ−1 prefactor in
GTk

in (1.5).13 It may be attributed to the “stringy” nature of the twisted sector modes
described by a 6d action (1.12) that should have an overall normalisation fixed directly
from the string theory computation involving twisted-state vertex operators normalised in
a particular way. It should be related to the localisation of the twisted-sector modes to
the fixed 6d subspace with the factor α′2 effectively replacing the “transverse” 4-volume
factor L4 in the untwisted case (4.4).

In our present approach where the starting point is the 10d supergravity action expanded
near the resolved orbifold background AdS5×M5 the role of this extra scale factor is effectively
played by the resolution parameter a. Indeed, as we discussed above, compactifying from

12Here L is the scale of AdS5 and 1
2κ2 = 1

(2π)7α′4g2
s
= 4(2N)2

(2π)5L8 , sk = 26−k k(k−1)
(k+1)2 , where 2N is the rank of

the gauge group before orbifolding.
13In [20], the factor (2πα′)2 was introduces as a rescaling to make the boundary value of the field φ0

dimensionless (with extra 4 to cancel 1/4 factor in the 6d action there).
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10d to 5d we get the twisted-mode action (3.18) with a−4 scaling (3.21) representing the
delta-function in 4 transverse directions (see also footnote 10) that can be eliminated by a
rescaling φ → a2φ. Interpreting a as an effective counterpart of the string scale

√
α′ in a

direct string theory computation, this produces an extra ( α′

L2 )2 factor in the twisted case (4.5)
relative to the untwisted one (4.4).

Going beyond the leading order in large λ the form of the localisation result for GTk

in (1.5) implies that one is to replace
√
λ by

√
λ′ according to (1.7) [10, 11]. This redefinition

may be interpreted on the string side as being related to a renormalisation of the effective
string tension or of the AdS5 radius which should be due to the fact that orbifolding breaks
half of the maximal supersymmetry of AdS5 × S5, i.e.

√
λ = L2

α′ →
√
λ′ = L2

α′ − 4 log 2 . (4.6)

The extra factor
(
λ′

λ

)k in (1.5) may be absorbed into the normalisation of the twisted
sector operators. Up to the overall factor the subleading corrections in the strong-coupling
expansion (1.5) of GTk

have the same pattern as c1α
′3 + c2α

′5 + . . . corrections in type IIB
string theory. The first subleading term is

GTk
∼ 1 + 1

2(2k − 1)(2k − 2)(2k − 3)ζ(3)
λ′

3
2

+O(λ′−5/2) . (4.7)

Let us now discuss a possible tree-level string theory origin of this large-N strong coupling
correction.

4.2 α′3-corrections

Our strategy is to find a higher-derivative correction to the 6d action (3.29) quadratic in the
twisted sector modes by starting with the tree level type IIB string effective action including
α′3ζ(3)R4 + . . . terms and repeating the procedure that led from the 10d supergravity action
to the action (3.29).

In section 3 we have shown that the fields B2 and C2 develop additional normalisable
modes on the resolved orbifold background M5. Sending the resolution parameter a to zero,
we observed that these modes localise close to the emerging orbifold singularity and can be
described by the effective 6d action (3.29). We now expand the relevant α′3-terms which
are quadratic in A2 = B2 + iC2 near the deformed orbifold background AdS5 × M5 and
use that the relevant modes localise on AdS5 × S1 to integrate over the internal 4-space.
This should result in α′3-corrections to the 6d action (3.29) responsible for the subleading
ζ(3)-term in (4.7).

To recall, the tree-level type IIB string low-energy effective action has the following
schematic form (see, e.g., [33–35])

Seff = S10 + α′3ζ(3)
∫

d10x
√
−g
[
R4 + L8(R, F5, G3)

]
+O

(
α′5
)
. (4.8)

Here S10 is the type IIB supergravity action, R4 indicates the curvature-dependent invariant
and L8 depends on RR fields (we ignore numerical constants and dependence on dilaton, RR
scalar and fermions). Expanded near flat space, L8 involves at least four fields and eight
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derivatives as the 2-point and 3-point string amplitudes for the massless modes do not receive
α′-corrections. The explicit form of L8 should be fixed by supersymmetry but is presently
not known (cf. appendix B) so our discussion below is partly qualitative.

Assuming a scheme (field redefinition) choice in which the curvature dependence of the
string effective action is expressed in terms of the 10d Weyl tensor C (i.e. replacing R4 in (4.8)
by C4, etc.) one concludes that the 2-point and 3-point functions of the massless string modes
do also not receive corrections near the conformally flat AdS5 × S5 background (cf. [24, 25]).
The same then applies to the untwisted sector BPS modes in the AdS5 × S5/Z2 orbifold
case (the Weyl tensor here is again zero away from the orbifold singularity).

To find the correction to the action (3.29) of the twisted sector modes we need to
consider (4.8) expanded near the resolved AdS5 × M5 background and determine terms
quadratic in the A2-field that survive in the a→ 0 limit. For AdS5 × M5 the Ricci tensor
and F5 have the same structure as for AdS5 × S5 (see (2.11), (2.22))

Rij = − 4
L2 gij , Rab =

4
L2 gab , F5 = 4

L

(
volAdS5 +volM5

)
, (4.9)

but the Weyl tensor of M5 is no longer zero (cf. (2.18), (D.7))

Cabcd(M5) ∼ sin4 a

sin6 ρ
. (4.10)

The leading correction to the term quadratic in G3 = dA2 should then come from the
structures in L8 in (4.8) that are at least linear in the Weyl tensor C(M5), i.e.

L8 ∼ C F5 Ḡ3∇3G3 + . . . . (4.11)

Here we indicated only the term with highest possible (third) power of covariant derivatives
as one can see on dimensional grounds. This term may be related to the k3-term in (4.7).
Its detailed index structure is discussed below.

In general, assuming that the relevant modes of B2 and C2 “localise” to 6d space as
in (3.25) we are led to the following correction to the 6d action (3.26)

∆S6 ∼ α′3ζ(3)V
∫
AdS5×S1

d5x dχ
√
−g6

(
βK1 β + γK2 γ + βK3 γ

)
, (4.12)

Kr =
2∑

n=0

5−2n∑
l=0

knl,r (∇2
AdS5

)n (∂χ)l . (4.13)

The masses of the β and γ fields are expected to be protected by supersymmetry so K1
and K2 should depend only on the 6d covariant combination ∇2

AdS5
+ ∂2

χ. The terms with
second power of ∇2

AdS5
in (4.13) can then be eliminated using field redefinitions (cf. (3.26))

so we may ignore them. Furthermore, the mixing of β and γ in (4.12) may only affect
normalisations at subleading order in α′. We may then assume that the only relevant effect
of adding the correction ∆S6 to the leading-order action (3.29) is a possible change of the
overall normalisation due to an extra operator P (∂χ) = p3∂

3
χ + p2∂

2
χ + p1∂χ + p0 factor

in Kr operators, i.e.

K1 = K2 = P (∂χ)
(
∇2

AdS5
+ ∂2

χ

)
, Oβγ = 8P (∂χ) ∂χ . (4.14)
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After expanding in S1
χ modes we have ∂χ → ik so to reproduce the correction in (4.7) we need

P (∂χ) ∼ 1
2(2i∂χ + 1)(2i∂χ + 2)(2i∂χ + 3) . (4.15)

This peculiar structure should be dictated by supersymmetry.

5 Matching the k3-term

Let us now try to substantiate the above procedure and fix the required structure of the
correction in (4.11) by focussing on the leading ∂3

χ-term in (4.15) that should reproduce
the k3-term in (4.7).

This term is dominant in the large R-charge limit k → ∞ which, combined with the
large-λ expansion in (1.5), should be analogous to the familiar BMN limit [36]. Indeed, the
strong coupling expansion of the gauge theory expression in (1.5) expanded also at large
k admits a regular limit

GTk

∣∣∣
λ, k→∞

= (2πν)2 e−8ν log 2
[
1+4ζ(3) ν3 − 9ζ(5) ν5 +8ζ(3)2 ν6 + . . .

]
, ν ≡ k√

λ
.

(5.1)
This gives a hint that one may be able to reproduce (5.1) on the string theory side by starting
with a pp-wave limit of the orbifold background.14 The parameter ν = k√

λ
is the analogue of

the semiclassical BMN-momentum along S1
χ which is fixed in the large-k, large-λ limit.

Below we suggest a strategy to reproduce the ν3-term in (5.1) by starting with the
pp-wave limit of the resolved orbifold background AdS5 × M5. This provides a substantial
simplification allowing one to see more explicitly that α′3-corrections as in (4.11) indeed lead
to the k3ζ(3)-term in (1.5), (4.7) or the ν3ζ(3)-term in (5.1).

At the end of this section we shall return to the case of the original AdS5 × M5 and
identify a particular structure in (4.11) that may correspond to the k3-term without first
taking the pp-wave limit.

5.1 Large-k limit: pp-wave analogue of the resolved orbifold

In the familiar AdS5 × S5 case the Penrose limit [37] corresponds to focussing on states with
a large momentum k along S1 ⊂ S5, i.e. expanding near a light-like geodesic along the time
direction of AdS5 and an isometry circle of the S5. This is equivalent to a scaling limit

L√
α′

→ ∞ , k → ∞ , ν = k√
λ
= α′

L2k = fixed . (5.2)

In the present orbifold case we may consider a similar limit of AdS5 × M5 with S1 being
the fixed χ-circle. Starting with

ds2
10 = L2

(
ds2

AdS5 + ds2
M5

)
, ds2

AdS5 = −dt2 cosh2 r + dr2 + sinh2 r ds2
S3 , (5.3)

14While this may work for the 2-point correlator, in general, the pp-wave limit may not be enough for
reproducing 3-point functions. Still, it is interesting to note that according to (1.4) and (1.6) in the large-k
limit, we get GUk,Uk,Ū2k

→ k3/2

N
, GTk,Tk,Ū2k

→ k3/2

N
(2πν)2 e−8ν log 2[1 + 4ζ(3)ν3 +O(ν5)

]
. Thus the ratio

GTk,Tk,Ū2k
/GUk,Uk,Ū2k

has a well-defined limit depending only on ν.
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where ds2
M5 is given by (2.17), we perform the rescaling

x− → 1
L2 x

− , r → 1
L
r , ρ→ 1

L
ρ , a→ 1

L
a , x± ≡ 1

2(t± χ) . (5.4)

At leading order in large L this results in the following pp-wave metric

ds2
10 =−4dx+dx−−

(
x2+ρ2)(dx+)2+dxidxi+V0(ρ)−1dρ2+ρ2

[
σ2
x+σ2

y+V0(ρ)σ2
z

]
, (5.5)

V0(ρ)= 1− a4

ρ4 , (5.6)

where xi (i = 1, 2, 3, 4) are originating from the AdS5 coordinates. This background is a pp-
wave with the transverse space being the product of R4 and the EH space with metric (2.4).
The 5-form (2.22) becomes

F5 = 4dx+ ∧
(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 − ρ3dρ ∧ σx ∧ σy ∧ σz

)
. (5.7)

One can check directly that this background solves the 10d supergravity equations and
preserves half of the maximal supersymmetry.

Alternatively, we may arrive at this background by first taking the Penrose limit of
the orbifold AdS5 × S5/Z2, resulting in an orbifolded pp-wave background [38–42] with
the transverse space being R4 × C2/Z2. To resolve the orbifold singularity [41] we may
replace C2/Z2 by its EH resolution (2.4). One is then to check that the resulting pp-wave
metric satisfies the supergravity equations. As the EH metric is Ricci flat, this requires that
the coefficient H(x, ρ) of the (dx+)2-term in the pp-wave metric should satisfy the Laplace
equation ∇2H = 0 on the transverse space R4 × EH4. Choosing H = x2 + h(ρ) one finds
that h should solve the Poisson equation on the EH space

∇2
EHh(ρ) = 8 . (5.8)

It has h(ρ) = ρ2 as its simplest solution which reproduces (5.5).15

Next, we also need to find a similar limit in the solution (3.3), (3.13) for the twisted
sector mode. The eikχ mode in (3.13) should correspond to a particle moving fast along
the S1. We get

Ω→L2 e−2iν̄x− e
− ν̄

2 ρ
2

ρ2

[(
2+ν̄ρ2)σx∧σy+iν̄ρ2dx+∧σz−

2+ν̄ρ2

ρ
dρ∧σz

]
, ν̄≡ k

L2 = ν

α′ .

(5.9)
Indeed, starting with the analogue of the supergravity equations (3.1), (3.2) in the pp-wave
background (5.5), (5.7) we get for the pp-wave analogue of the solution (3.3), (3.13)

A2 = φ(x+, xi) Ω ,
(
2iν̄∂+ + ∂i∂

i − ν̄2x2 − 4ν̄
)
φ = 0 . (5.10)

The xi dependence is found as in the harmonic oscillator problem. For the ground-state
solution we get the dispersion relation corresponding to a particle with m2 = ν̄2 − 4ν̄.

Like the original solution (3.13), the pp-wave solution (5.9) diverges for ρ → 0 with
the leading term being (cf. (3.22))

Ω ρ→0∼ L2e−2iν̄x−ΘEH , ΘEH = d
(
ρ−2 σz

)
, (5.11)

15Note that ref. [41] discussed a different solution for h(ρ).
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where ΘEH is the anti-self-dual exact 2-form on the EH space with non-zero integral over
the resolution cycle [28]. Rescaling A2 by a2 we thus get

A2 = L2a2 φ̂(x−, x+, xi)ΘEH , φ̂(x−, x+, xi) = e−2iν̄x− φ(x+, xi) , (5.12)

which satisfies the equations of motion up to terms of order ρ2

∇2AAB + iFAB
CDE∇CADE = (∇2 − 2i∂−)AAB = ρ2

4 ∂
2
−AAB . (5.13)

This is not an issue for the interpretation of A2 as the origin of the twisted modes as according
to the discussion in section 3.2 these modes localise near ρ = 0. However, we will see below
that the ρ2-terms are still important to render the α′3-correction finite.

Let us return to the analysis of α′3-corrections (4.11) in section 4.2 now using the pp-wave
background. The Weyl tensor corresponding to the pp-wave metric (5.5) (see appendix D)
splits into two parts

C = CEH + Cmix , CEH ∼ O
(
a4

ρ6

)
Cmix ∼ O

(
a4

ρ4

)
, (5.14)

where CEH = Cbcde is the Weyl tensor of the EH space and Cmix has non-zero components
of the form

(Cmix)+b+b = ±a
4

ρ4 , (5.15)

where b = 1, . . . , 4 is a Vierbein index of the EH space. The invariant in (4.11) involves one
power of the Weyl tensor and two powers of the G3 = 2A2 field, which according to (5.12) is
proportional to ΘEH. One can check that contractions of the form CmixΘEHΘEH vanish. We
thus need to consider only contractions with CEH = (Cbcde) with the relevant ones being

CbcdeΘde
EH = 16a

4

ρ6ΘEH,bc , CbdceΘde
EH = 8a

4

ρ6ΘEH,bc . (5.16)

The EH Weyl tensor diverges as CEH ∼ O
(
a−2) in the orbifold limit ρ→ a→ 0. Therefore, an

insertion of CEH should be accompanied by an additional factor proportional to a2 or ρ2 to get
a finite correction. According to (5.13) such a factor may come from a (∇2 − 2i∂−)A2-term.

We can now specify more explicitly the conjectured structure of the α′3-invariant
in (4.11) required to reproduce the leading k3-term in (4.7). Staring with the term
FABCDECDE FG∇AḠBC

H□GFGH we need to add to it other terms with a smaller number
of covariant derivatives in order to get the combination ∇2 − 2i∂− and to reproduce the
right spectrum. This is achieved by starting with

L8 ∼ FABCDECDE FG
(
i∇AḠBC

H∇2GFGH + 1
2FFG

HIJ∇AḠBC
K∇HGIJK

+ FFG
HIJḠABC∇2GHIJ − i

2FFG
HIJFIJ

KMN ḠABC∇HGKMN + c.c.
)
.

(5.17)

Using the equations of motion and integrating over the EH space we then find the following
α′3-correction to the 6d effective action (cf. (4.12))16

∆S6 ∼ α′3ζ(3)V
∫
AdS5×S1

d5x dχ
√
−g6

(
i∇A ¯̂φ∇3

−∇Aφ̂+ 4 ¯̂φ∇4
−φ̂+ c.c.

)
. (5.18)

16Note that any contraction of F5 with ΘEH, C and another F5 can only involve indices from the EH space,
leaving at least the + index of F5 uncontracted. This then requires a contraction with ∇−.
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This correction has the same structure as the leading-order action in (1.12) (with φ̂ = β+iγ as
in (3.25)) but with an extra insertion of the operator ∇3

−. It thus corresponds to the ∂3
χ-term

in (4.15). Acting on φ̂ in (5.12) it produces the expected ν3-term in the 2-point function (4.7).
Let us note that the suggested structure (5.17) of the required α′3-term is not unique. For

example we could use other contractions of internal indices, like the second option in (5.16),
or a different ordering of the F5 and C factors. The structure of L8 in (4.8) dictated by
supersymmetry should be a combination of all such terms that leads to (5.18) with the right
overall coefficient to match the one in (4.7).

5.2 Back to AdS5 × M5

Let us now see how to reproduce the k3-term in (4.7) without first taking the pp-wave limit,
i.e. by starting with the string effective action expanded near AdS5 × M5

The Weyl tensor AdS5 × M5 written in Vielbein components (see appendix D) can
be split, like in (5.14), into two parts

C = Cint + Cmix , Cint ∼ O
(
sin4 a

sin6 ρ

)
, Cmix ∼ O

(
sin4 a

sin4 ρ

)
, (5.19)

where Cint resembles the EH Weyl tensor CEH for small ρ

Cint
ρ→0∼ CEH +O

(
a4

ρ4

)
, (5.20)

and Cmix only has entries of the form

(Cmix)χbχb = ±sin4 a

sin4 ρ
. (5.21)

Expanding the approximate solution for Ω = eikχΘ in (3.22) for small ρ yields ΘEH as the
leading O(ρ−2)-term in Θ

Ω = eikχΘ ρ→0∼ eikχΘEH +O
(
ρ0
)
. (5.22)

We check that like in the pp-wave limit in (5.13), the field A2 = φ̂(x, χ)Θ in (3.23) satisfies
the equations of motion (3.2) up to O

(
ρ2)-terms

∇2AAB + iFAB
CDE∇CADE = −k2ρ2AAB +O

(
ρ4A

)
= ρ2∂2

χAAB +O
(
ρ4A

)
. (5.23)

Given that only the leading term in ρ → 0 should contribute to the relevant part of the
action, we may use the same α′3-combination as in (5.17), now starting with the AdS5 ×M5

background. It evaluates to the same 6d correction (5.18) reproducing again the k3-term
in (4.7).

In addition, we expect also other corrections that should correspond to ζ(3)-terms with
lower powers of k in (4.7). Various cancellations that prevent divergence of the α′3-corrections
in the pp-wave limit should still occur here, but only up to subleading finite terms.17 To

17Consider, for example, the C2
int-term which diverges as a8

ρ12 . We expect this divergence to cancel algebraically
up to order a8

ρ10 , where finite contributions can arise when multiplied with the operator in (5.23). These
finite contributions did not arise in the large-k limit, so they should be due to the ρ2-corrections to the
AdS5 × M5 quantities.
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illustrate the cancellation structure we expect, let us consider the contraction
√
−g CABCDCCD EF (Ω̄ABΩEF − 8Ω̄AEΩBF ) . (5.24)

As this term involves two Weyl tensors C and two 2-forms Ω, we would expect a small-ρ
divergence of order a12

ρ17 . In fact, this contraction vanishes on the pp-wave background of
section 5.1 and behaves as a12

ρ13 in the AdS5 × M5 case. Supplementing (5.24) with other
terms involving factors of derivatives and F5 we may be able to build an invariant like (5.17)
that reproduces the k2-term in (4.7) but vanishes when evaluated on the pp-wave background.

At this point, the appearance of such cancellations in an eventual complete description of
the α′3-terms is speculative. However, let us mention that precisely this cancellation pattern
is observed in the explicitly known α′3ζ(3)R4 term in (4.8): despite involving four powers
of the Weyl tensor it vanishes on the pp-wave background and is finite in the ρ → a → 0
limit on AdS5 × M5.

6 Concluding remarks

In this paper we suggested a strategy of matching the large-coupling expansion of twisted
sector correlators in planar 4d N = 2 superconformal SU(N) × SU(N) quiver gauge theory
to α′-corrections in the dual orbifold string theory. Specifically, we considered the 2-point
function of the twisted sector operators Tk in (1.1).

The corresponding twisted sector string modes localise on the fixed AdS5 × S1 subspace.
To access these localised modes, we proposed an explicit resolution of the S5/Z2 orbifold
singularity (2.17), represented by a (non-supersymmetric) solution of 10d type IIB supergravity.
The resolved space has a non-trivial 2-cycle on which the 2-form supergravity fields can “wrap”.

These extra modes should effectively represent the lightest twisted sector string modes
that should be present in the first-principles string theory approach (which is possible in
flat space but is not directly available in the AdS5 × S5/Z2 case). We derived an effective
6d action for these 2-form modes following from the supergravity action expanded near the
resolved background. An analogous treatment for other light modes in the twisted sector
should be possible, too (cf. [5]).

We then suggested how the inclusion of the α′3-corrections to the type IIB effective
action may allow one to match the subleading term in the localisation result (1.5). Our
discussion remained at a qualitative level due to lack of knowledge about the full expression
for the supersymmetric completion of the α′3R4 invariant. We pointed out the important
simplification that happens in the large R-charge limit k → ∞ when the resolved orbifold
background simplifies to a pp-wave one.

It would be interesting to extend our approach to the 3-point function (1.6) and understand
the string theory origin of the relation between the 2-point and 3-point coefficients mentioned
in footnote 4. Another possible extension is to the case of the AdS5 × S5/ZL orbifold
dual to the L-node quiver in which case the generalisation of the expansions in (1.5), (1.6)
where recently found (see [43] and refs. there). Ref. [43] observed interesting simplifications
occurring in the large-L limit correlated with taking k or λ large; this may be suggesting
the existence of a similar well-defined limit on the string theory side.
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A String spectrum for a flat-space orbifold

Here we review some facts about the superstring spectrum on a particular R1,6 × C2/Z2
orbifold (see [26, 44, 45]). Starting with R1,9 we identify coordinates as (x5, x6, x7, x8) ∼
(−x5,−x6,−x7,−x8).18 We shall use the Green-Schwarz formulation in light-cone gauge
with the action (i = 1, 2 . . . , 8)

S = 1
πα′

∫
d2σ

(
∂+x

i∂−x
i + iSαR∂+S

α
R + iSαL∂−S

α
L

)
. (A.1)

We are to keep only states that are invariant with respect to the Z2-symmetry. In particular,
states localised at the singularity (i.e. with xa0 = pa0 = 0, where a ∈ {5, 6, 7, 8}) can only have
even numbers of Z2-odd excitations, as, for example, the bosonic modes αa−n and α̃a−n. To
analyse the fermionic modes, we need to decompose the two SO(8)-spinors SL and SR, which
in type IIB theory have equal chirality, according to the splitting rules

SO(8)→ SU(2)×SU(2)×SU(2)×SU(2) , (A.2)
8v → (2,2,1,1)⊕(1,1,2,2) , 8s → (2,1,2,1)⊕(1,2,1,2) , 8c → (1,2,2,1)⊕(2,1,1,2) .

The orbifold action in this decomposition is represented by

Γ = 12 ⊗ 12 ⊗ 12 ⊗
(
−1 0
0 −1

)
. (A.3)

We interpret the first two quantum numbers as determining the representation in the 4d-space
spanned by xi with i ∈ 1, 2, 3, 4. The remaining untwisted SU(2) will become an R-symmetry
in an eventual compactification.

The localised states belong to two distinct sectors, the untwisted one, which is just the
Z2-invariant part of the usual type IIB spectrum, and the twisted one which closes up to
a Γ-transformation. Let us analyse them in turn.

Untwisted sector. We can follow the usual IIB construction and use (A.2) to split

(8c ⊕ 8v) →
(
(2,2,1,1)⊕ (1,2,2,1)

)
1
⊕
(
(1,1,2,2)⊕ (2,1,1,2)

)
−1
, (A.4)

where the subscript denotes the eigenvalue under Γ. When we combine left- and right-movers,
we only keep Γ-invariant states, so we can ignore cross-terms and drop the 3-representations
of the last SU(2). This results in the spectrum

I : (3,3;1)⊕ (2,3;2)⊕ (2,3;2)⊕ (1,3,1)⊕ (1,3;1)⊕ (1,3;3) ,
II : (3,1;1)⊕ (2,1;2)⊕ (2,1;2)⊕ (1,1;1)⊕ (1,1;1)⊕ (1,1;3) ,
III : (3,1;1)⊕ (2,1;2)⊕ (2,1;2)⊕ (1,1;1)⊕ (1,1;1)⊕ (1,1;3) .

(A.5)

18We can also describe this as simultaneously rotating two C-planes by an angle π.
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Here, we dropped the last SU(2) factor (all fields are in the representation 1) and separated the
R-symmetry. The three sets form representations of 6d N = (2, 0) supergravity, namely the
gravity multiplet I and two tensor multiplets II and III. Alternatively, we could have arrived
at these multiplets by expanding the known type IIB spectrum in SU(2) representations
and projecting upon the 1 of the fourth SU(2) factor.

Twisted sector. In the twisted sector, half of the bosonic and fermionic oscillators have
to be glued with antisymmetric boundary conditions. In general, such twisted boundary
conditions can affect the normal ordering constant, but here it receives equal contributions
from fermions and bosons and therefore vanishes. However, only the fermions with symmetric
boundary conditions have zero modes, so at the massless level, the usual ground-ground-
statestate degeneracy is generated only by one spinor Ŝα0 in the representation (2,1,2,1).
Starting with a Γ-charged state |a⟩ ∈ (1,1,2,2), we can act with Ŝα0 and create

˙|β⟩ = Γa
β̇α
Ŝα0 |a⟩ ∈ (2,1,1,2) . (A.6)

Another action with Ŝα0 leads back to (1,1,2,2). Therefore the massless states generated in
both left- and right-moving sector furnish the reduced representation

(1,1,2,2)⊕ (2,1,1,2) . (A.7)

Combining the left- and right-moving states we get

T : (3,1;1)⊕ (2,1;2)⊕ (2,1;2)⊕ (1,1;1)⊕ (1,1;1)⊕ (1,1;3) , (A.8)

which is another tensor multiplet of 6d N = (2, 0) supergravity.

B Comments on α′3-terms in the type IIB string effective action

The familiar R4-term in the tree level type II superstring effective Lagrangian may be
written as19

L = α′3

3 · 211 ζ(3)
(
t8t8 −

1
4ϵ8ϵ8

)
R4 . (B.1)

Here the t8t8-term is fixed from 4-graviton amplitude [34] while the presence of the ϵ-term may
be deduced from sigma model considerations [46, 47] or by computing a 5-point amplitude
(see a review in [48]). Other α′3-terms should be related to (B.1) by supersymmetry. We
are interested, in particular, in the terms quadratic in G3 = H3 + iF3 but they appear to
be not known completely.

Ref. [49] discussed some subset of terms with R4 → R4 + 6R2|∇G|2 + . . . in (B.1) and
extra |∇G|4 that have different index structure. Another approach followed in [50] was to
use contraction tensors tm which are expected to arise from 10d superspace integrals. In

19We shall ignore the dependence on the dilaton and set ϵ8ϵ8 = − 1
2 ϵ10ϵ10.
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particular, they considered the following subset of terms (cn and c5 are numerical constants)

L ∼
4∑

n=0
cn t24G

2n
3 R̄4−n

(6) , (B.2)

R̄ABCDEK = 1
8gCKCABDE + i

48∇AFBCDEK (B.3)

+ 1
768

(
FABCLMFDEK

LM − 3FABKLMFCDE LM
)
+ c5GABCḠDEK , (B.4)

where CABCD is the Weyl tensor and F5 is the RR 5-form. We refer to [50] for details.

C Solution of the 2-form equations of motion

In this appendix we solve the equation (3.7) by imposing the spherically symmetric
Ansatz (3.10). At finite value of the resolution parameter a it is useful to define k̃ = p−1k

such that kχ = k̃χ̃ (cf. (2.9), (2.16)). In the orbifold limit a → 0 the distinction between
k̃ and k disappears.

Demanding closure of the 3-form ω results in the equation

2f1(ρ)− ik̃f2(ρ) + f ′3(ρ) = 0 . (C.1)

Eq. (3.7) takes the form of 3 coupled ordinary differential equations

−iMf1(ρ) = ∂ρ
[
cot ρ V (ρ) f2(ρ)

]
+ ik̃

1
cos ρ sin ρ f3(ρ) , (C.2)

−iMf2(ρ) = ∂ρ
[
tan ρ f1(ρ)

]
+ 2

cos ρ sin ρ f3(ρ) , (C.3)

−iMf3(ρ) = ik̃ tan ρ f1(ρ)− 2 cot ρ V (ρ) f2(ρ) , (C.4)

which are consistent with (C.1). We can solve algebraically for f1 and f2

f1(ρ) = − k̃M tan ρ f3(ρ) + 2V (ρ)f ′3(ρ)
W (ρ) , f2(ρ) = i

2M tan ρ f3(ρ)− k̃ tan2 ρ f ′3(ρ)
W (ρ) ,

(C.5)

W (ρ) = k̃2 tan2 ρ+ 4V (ρ) . (C.6)

We then get a second order linear ODE for f3 of the form

f ′′3 (ρ) + P (ρ)f ′3(ρ) +Q(ρ)f3(ρ) = 0 , (C.7)

P (ρ) = 1
cos ρ sin ρ − W ′(ρ)

W (ρ) + V ′(ρ)
V (ρ) , (C.8)

Q(ρ) = 1
V (ρ)

[
−W (ρ)
sin2 ρ

+M2 − k̃M

(tan ρ
2

W ′(ρ)
W (ρ) − 1

cos2 ρ

)]
. (C.9)

Introducing f̃3(ρ) defined as

f3(ρ) = exp
[
−1
2

∫
P (ρ)

]
f̃3(ρ) =

√
cot ρ W (ρ)

V (ρ) f̃3(ρ) , (C.10)
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we get for it the Schrödinger type equation (3.11), with the potential

U(ρ) = 1
4P

2(ρ) + 1
2P

′(ρ)−Q(ρ) . (C.11)

U(ρ) has the form of a smooth well between two poles at ρ = 0 and ρ = π
2 (ϵ → 0)

U(0 + ϵ) ∼ 15
4ϵ2 +O(1) , U

(
π

2 − ϵ

)
∼
k2 − 1

4
ϵ2

+O(1) . (C.12)

For a > 0 we also find a pole at ρ = a as is evident from (3.14) and is illustrated in 2.
Imposing appropriate boundary conditions restricts the value of the parameter M

in (C.9) to a discrete set for every given k̃.
For a = 0 the spectrum of normalisable modes corresponds to a subsector of the usual

Kaluza-Klein spectrum on the (orbifolded) sphere [29]. It is instructive to study this case
in more detail.

Solutions for a = 0. At a = 0 the coefficient functions P and Q take the form

P0(ρ) =
1

cos ρ sin ρ

(
1− 2k2 tan2 ρ

W0(ρ)

)
, Q0(ρ) = −W0(ρ)

sin2 ρ
+M2 + 4kM

W0(ρ) cos2 ρ
,

(C.13)
where W0(ρ) = k2 tan2 ρ + 4 is the value of W (ρ) in (C.6) at a = 0. We can put (C.7)
in the Sturm-Liouville form

∂ρ

[ tan ρ
W0(ρ)

∂ρf3(ρ)
]
+ tan ρ
W0(ρ)

Q0(ρ)f3(ρ) = 0 . (C.14)

The corresponding norm of f3 is then

∥f3∥2 =
∫ π

2

0
dρ tan ρ

W0(ρ)
f3(ρ)f̄3(ρ) . (C.15)

Normalisability is guaranteed if f3 vanishes at both singularities. Close to the singulari-
ties, (C.7) takes the form of the Bessel equation, and we can extract the leading asymptotics
of the solution as

f3(ρ)
ρ→0∼ c sin2 ρ+ c̃ sin−2 ρ , f3(ρ)

ρ→π
2∼ d cosk ρ+ d̃ cos−k ρ . (C.16)

Then normalisability restricts c̃ = d̃ = 0. Introducing h(ρ) defined by

f3(ρ) = sin2 ρ cosk ρ h(ρ) , (C.17)

we get for it the following equation

∂ρ
[
µ(ρ)∂ρh(ρ)

]
+ µ(ρ)(M − k − 2)

[
(M + k + 2) + 4k

W0 cos2 ρ

]
h(ρ) = 0 , (C.18)

where
µ(ρ) = cos2k−1 ρ sin5 ρ

W0(ρ)
, (C.19)
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is again the relevant measure that defines the Sturm-Liouville norm. We shall assume
Neumann boundary conditions.

The potential in (C.18) vanishes for M = k + 2, in which case this equation is solved
by constant h(ρ). This corresponds to the effective 5d masses

m2 = (k + 2)(k + 6) , m̄2 = (k + 2)(k − 2) , (C.20)

which match the spectrum found in [29]. We also find normalisable modes at every successive
value M = k + 2(n + 1), where n ∈ N0 denotes the number of zeros of the function h(ρ).
This is the KK tower of 2-form excitations obeying our symmetry requirements. If we try
to extend this tower to n < 0 we instead find that the boundary asymptotics change to
f3(ρ) ∼ sin−2 ρ. We also find a tower of non-normalisable solutions at M = k − 2n, n ∈ N0.

Twisted sector solutions. Turning to the discussion of solutions corresponding to the
twisted sector, let us now pretend that the boundary conditions at ρ = 0 can be violated and
f3 ∼ sin−2 ρ is still a valid solution. We can then again extract a factor from f3 by setting

f3(ρ) =
cosk ρ
sin2 ρ

h̃(ρ) , (C.21)

which results in the following equation for h̃

∂ρ
(
µ̃(ρ)∂ρh̃(ρ)

)
+ µ̃(ρ)(M + k − 2)

(
(M − k + 2) + 4k

W0 cos2 ρ

)
h̃(ρ) = 0 , (C.22)

µ̃(ρ) = cos2k−1 ρ sin−3 ρ

W0(ρ)
, (C.23)

which is again solved with Neumann boundary conditions.
To make contact with the relevant solution in (3.22), we need to require that the

component
Ωχz = V (ρ) cot ρ f2(ρ)

a=0= cot ρ f2(ρ) (C.24)

is finite at ρ→ 0. This singles out the non-normalisable solution at M = −k given by20

f3 = cosk ρ
sin2 ρ

(
2 cos2 ρ+ k sin2 ρ

)
, (C.25)

which reproduces the spectrum of twisted states dual to the Tk operators in (1.1). The other
two functions in the full Ansatz (3.10) are given by

f1(ρ) =
cosk+1 ρ

sin3 ρ

(
2 + k sin2 ρ

)
, f2(ρ) = ik cosk−1 ρ sin ρ . (C.26)

Then

Ω = eikχ
(
tan ρ f1(ρ)σx ∧ σy + cot ρ f2(ρ) dχ ∧ σz −

f3(ρ)
cos ρ sin ρ dρ ∧ σz

)
, (C.27)

takes the form given in (3.13).
20From the previous perspective, this is a diagonal cross-section through the tower M = k − 2n at n = k.
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D Weyl tensors in Vielbein basis

pp-wave background. We can write the metric (5.5) in a partial Vielbein basis

ei=dyi , e5 = 1√
V0(ρ)

dρ, e6 = ρσx , e7 = ρσy , e8 = ρ
√
V0(ρ)σz , (D.1)

ds2
10 =−4dx+dx−−

(
y2+ρ2

)
(dx+)2+

8∑
A=1

deAdeA . (D.2)

The corresponding components of F5 in (5.7) are then F+1234 = F+5678 = 4. In this basis,
the non-vanishing components of the Weyl tensor C are

C5656 = C5757 = C6868 = C7878 = −C5678 = C5768 = −2a
4

ρ6 , C5858 = C6767 = −C5867 = 4a
4

ρ6 ,

(D.3)

C+5+5 = −C+6+6 = −C+7+7 = C+8+8 = a4

ρ4 , (D.4)

and other components related by the usual symmetries CABCD = −CBACD = −CABDC =
CCDAB . Eqs. (D.3) represent the Weyl tensor CEH of Eguchi-Hanson space and (D.4) are the
mixed components Cmix. This Weyl tensor vanishes in the orbifold limit a → 0.

Resolved background M5. Similarly, we may introduce the following Vielbein-basis
for the metric (2.17) (see (2.3) and (2.9))

eχ = cos ρ√
1− sin4 a

dχ , e5 = 1√
V (ρ)

dρ ,

e6 = sin ρ σx , e7 = sin ρ σy , e8 = sin ρ
√
V (ρ) σ̃z , (D.5)

ds2
10 = ds2

AdS5 + eχeχ +
8∑

a=5
eaea . (D.6)

The 5-form components on M5 are then Fχ5678 = 4.
We find that the corresponding Weyl tensor expanded in small ρ is given by CEH (D.3)

of the Eguchi-Hanson space plus higher order corrections O
(
ρ−4). The remaining mixed

components representing Cmix are

Cχ5χ5 = −Cχ6χ6 = −Cχ7χ7 = Cχ8χ8 = sin4 a

sin4 ρ
. (D.7)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
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References

[1] S. Kachru and E. Silverstein, 4-D conformal theories and strings on orbifolds, Phys. Rev. Lett.
80 (1998) 4855 [hep-th/9802183] [INSPIRE].

[2] A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four-dimensions, Nucl.
Phys. B 533 (1998) 199 [hep-th/9803015] [INSPIRE].

– 28 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.80.4855
https://doi.org/10.1103/PhysRevLett.80.4855
https://arxiv.org/abs/hep-th/9802183
https://inspirehep.net/literature/467562
https://doi.org/10.1016/S0550-3213(98)00495-7
https://doi.org/10.1016/S0550-3213(98)00495-7
https://arxiv.org/abs/hep-th/9803015
https://inspirehep.net/literature/467729


J
H
E
P
0
3
(
2
0
2
4
)
0
4
5

[3] M. Bershadsky, Z. Kakushadze and C. Vafa, String expansion as large N expansion of gauge
theories, Nucl. Phys. B 523 (1998) 59 [hep-th/9803076] [INSPIRE].

[4] M. Bershadsky and A. Johansen, Large N limit of orbifold field theories, Nucl. Phys. B 536
(1998) 141 [hep-th/9803249] [INSPIRE].

[5] S. Gukov, Comments on N = 2 AdS orbifolds, Phys. Lett. B 439 (1998) 23 [hep-th/9806180]
[INSPIRE].

[6] I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau
singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

[7] I.R. Klebanov and N.A. Nekrasov, Gravity duals of fractional branes and logarithmic RG flow,
Nucl. Phys. B 574 (2000) 263 [hep-th/9911096] [INSPIRE].

[8] A. Gadde, E. Pomoni and L. Rastelli, The Veneziano Limit of N = 2 Superconformal QCD:
Towards the String Dual of N = 2 SU(N(c)) SYM with N(f) = 2 N(c), arXiv:0912.4918
[INSPIRE].

[9] M. Beccaria and A.A. Tseytlin, 1/N expansion of circular Wilson loop in N = 2 superconformal
SU(N)× SU(N) quiver, JHEP 04 (2021) 265 [Erratum ibid. 01 (2022) 115] [arXiv:2102.07696]
[INSPIRE].

[10] M. Beccaria, G.P. Korchemsky and A.A. Tseytlin, Strong coupling expansion in N = 2
superconformal theories and the Bessel kernel, JHEP 09 (2022) 226 [arXiv:2207.11475]
[INSPIRE].

[11] M. Beccaria, G.P. Korchemsky and A.A. Tseytlin, Non-planar corrections in orbifold/orientifold
N = 2 superconformal theories from localization, JHEP 05 (2023) 165 [arXiv:2303.16305]
[INSPIRE].

[12] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,
Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[13] T. Skrzypek, Integrability treatment of AdS/CFT orbifolds, J. Phys. A 56 (2023) 345401
[arXiv:2211.03806] [INSPIRE].

[14] A. Pini, D. Rodriguez-Gomez and J.G. Russo, Large N correlation functions N = 2
superconformal quivers, JHEP 08 (2017) 066 [arXiv:1701.02315] [INSPIRE].

[15] M. Billò et al., Two-point correlators in N = 2 gauge theories, Nucl. Phys. B 926 (2018) 427
[arXiv:1705.02909] [INSPIRE].

[16] M. Beccaria et al., N = 2 Conformal SYM theories at large N , JHEP 09 (2020) 116
[arXiv:2007.02840] [INSPIRE].

[17] F. Galvagno and M. Preti, Chiral correlators in N = 2 superconformal quivers, JHEP 05 (2021)
201 [arXiv:2012.15792] [INSPIRE].

[18] M. Beccaria et al., Exact results in a N = 2 superconformal gauge theory at strong coupling,
JHEP 07 (2021) 185 [arXiv:2105.15113] [INSPIRE].

[19] B. Fiol and A.R. Fukelman, The planar limit of N = 2 chiral correlators, JHEP 08 (2021) 032
[arXiv:2106.04553] [INSPIRE].

[20] M. Billò et al., Strong-coupling results for N = 2 superconformal quivers and holography, JHEP
10 (2021) 161 [arXiv:2109.00559] [INSPIRE].

[21] M. Billò et al., Structure Constants in N = 2 Superconformal Quiver Theories at Strong
Coupling and Holography, Phys. Rev. Lett. 129 (2022) 031602 [arXiv:2206.13582] [INSPIRE].

– 29 –

https://doi.org/10.1016/S0550-3213(98)00272-7
https://arxiv.org/abs/hep-th/9803076
https://inspirehep.net/literature/467970
https://doi.org/10.1016/S0550-3213(98)00526-4
https://doi.org/10.1016/S0550-3213(98)00526-4
https://arxiv.org/abs/hep-th/9803249
https://inspirehep.net/literature/468714
https://doi.org/10.1016/S0370-2693(98)01005-3
https://arxiv.org/abs/hep-th/9806180
https://inspirehep.net/literature/472171
https://doi.org/10.1016/S0550-3213(98)00654-3
https://arxiv.org/abs/hep-th/9807080
https://inspirehep.net/literature/473137
https://doi.org/10.1016/S0550-3213(00)00016-X
https://arxiv.org/abs/hep-th/9911096
https://inspirehep.net/literature/510092
https://arxiv.org/abs/0912.4918
https://inspirehep.net/literature/841224
https://doi.org/10.1007/JHEP04(2021)265
https://arxiv.org/abs/2102.07696
https://inspirehep.net/literature/1846730
https://doi.org/10.1007/JHEP09(2022)226
https://arxiv.org/abs/2207.11475
https://inspirehep.net/literature/2122418
https://doi.org/10.1007/JHEP05(2023)165
https://arxiv.org/abs/2303.16305
https://inspirehep.net/literature/2646956
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://inspirehep.net/literature/770728
https://doi.org/10.1088/1751-8121/ace947
https://arxiv.org/abs/2211.03806
https://inspirehep.net/literature/2178102
https://doi.org/10.1007/JHEP08(2017)066
https://arxiv.org/abs/1701.02315
https://inspirehep.net/literature/1508499
https://doi.org/10.1016/j.nuclphysb.2017.11.003
https://arxiv.org/abs/1705.02909
https://inspirehep.net/literature/1598498
https://doi.org/10.1007/JHEP09(2020)116
https://arxiv.org/abs/2007.02840
https://inspirehep.net/literature/1805325
https://doi.org/10.1007/JHEP05(2021)201
https://doi.org/10.1007/JHEP05(2021)201
https://arxiv.org/abs/2012.15792
https://inspirehep.net/literature/1838936
https://doi.org/10.1007/JHEP07(2021)185
https://arxiv.org/abs/2105.15113
https://inspirehep.net/literature/1866177
https://doi.org/10.1007/JHEP08(2021)032
https://arxiv.org/abs/2106.04553
https://inspirehep.net/literature/1867515
https://doi.org/10.1007/JHEP10(2021)161
https://doi.org/10.1007/JHEP10(2021)161
https://arxiv.org/abs/2109.00559
https://inspirehep.net/literature/1915662
https://doi.org/10.1103/PhysRevLett.129.031602
https://arxiv.org/abs/2206.13582
https://inspirehep.net/literature/2102680


J
H
E
P
0
3
(
2
0
2
4
)
0
4
5

[22] M. Billò et al., Localization vs holography in 4dN = 2 quiver theories, JHEP 10 (2022) 020
[arXiv:2207.08846] [INSPIRE].

[23] M. Billò et al., Strong coupling expansions in N = 2 quiver gauge theories, JHEP 01 (2023) 119
[arXiv:2211.11795] [INSPIRE].

[24] T. Banks and M.B. Green, Nonperturbative effects in AdS5 × S5 string theory and d = 4 SUSY
Yang-Mills, JHEP 05 (1998) 002 [hep-th/9804170] [INSPIRE].

[25] S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the
thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202
[hep-th/9805156] [INSPIRE].

[26] M.R. Douglas and G.W. Moore, D-branes, quivers, and ALE instantons, hep-th/9603167
[INSPIRE].

[27] D. Berenstein and R.G. Leigh, Discrete torsion, AdS / CFT and duality, JHEP 01 (2000) 038
[hep-th/0001055] [INSPIRE].

[28] T. Eguchi and A.J. Hanson, Selfdual Solutions to Euclidean Gravity, Annals Phys. 120 (1979) 82
[INSPIRE].

[29] H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The Mass Spectrum of Chiral N = 2D = 10
Supergravity on S5, Phys. Rev. D 32 (1985) 389 [INSPIRE].

[30] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253
[hep-th/9802150] [INSPIRE].

[31] D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFTd /
AdSd+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].

[32] S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in
D = 4, N = 4 SYM at large N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074]
[INSPIRE].

[33] M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 Supergravity as Limits of
String Theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].

[34] D.J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations, Nucl. Phys. B 277
(1986) 1 [INSPIRE].

[35] N. Sakai and Y. Tanii, One Loop Amplitudes and Effective Action in Superstring Theories, Nucl.
Phys. B 287 (1987) 457 [INSPIRE].

[36] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from
N = 4 superYang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].

[37] M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, A new maximally
supersymmetric background of IIB superstring theory, JHEP 01 (2002) 047 [hep-th/0110242]
[INSPIRE].

[38] N. Itzhaki, I.R. Klebanov and S. Mukhi, PP wave limit and enhanced supersymmetry in gauge
theories, JHEP 03 (2002) 048 [hep-th/0202153] [INSPIRE].

[39] M. Alishahiha and M.M. Sheikh-Jabbari, The pp wave limits of orbifolded AdS5 × S5, Phys. Lett.
B 535 (2002) 328 [hep-th/0203018] [INSPIRE].

[40] N. Kim, A. Pankiewicz, S.-J. Rey and S. Theisen, Superstring on PP wave orbifold from large N
quiver gauge theory, Eur. Phys. J. C 25 (2002) 327 [hep-th/0203080] [INSPIRE].

– 30 –

https://doi.org/10.1007/JHEP10(2022)020
https://arxiv.org/abs/2207.08846
https://inspirehep.net/literature/2116944
https://doi.org/10.1007/JHEP01(2023)119
https://arxiv.org/abs/2211.11795
https://inspirehep.net/literature/2513682
https://doi.org/10.1088/1126-6708/1998/05/002
https://arxiv.org/abs/hep-th/9804170
https://inspirehep.net/literature/469693
https://doi.org/10.1016/S0550-3213(98)00514-8
https://arxiv.org/abs/hep-th/9805156
https://inspirehep.net/literature/470903
https://arxiv.org/abs/hep-th/9603167
https://inspirehep.net/literature/417064
https://doi.org/10.1088/1126-6708/2000/01/038
https://arxiv.org/abs/hep-th/0001055
https://inspirehep.net/literature/522880
https://doi.org/10.1016/0003-4916(79)90282-3
https://inspirehep.net/literature/132127
https://doi.org/10.1103/PhysRevD.32.389
https://inspirehep.net/literature/16272
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/literature/467400
https://doi.org/10.1016/S0550-3213(99)00053-X
https://arxiv.org/abs/hep-th/9804058
https://inspirehep.net/literature/469050
https://doi.org/10.4310/ATMP.1998.v2.n4.a1
https://arxiv.org/abs/hep-th/9806074
https://inspirehep.net/literature/471608
https://doi.org/10.1016/0550-3213(82)90336-4
https://inspirehep.net/literature/11558
https://doi.org/10.1016/0550-3213(86)90429-3
https://doi.org/10.1016/0550-3213(86)90429-3
https://inspirehep.net/literature/227371
https://doi.org/10.1016/0550-3213(87)90114-3
https://doi.org/10.1016/0550-3213(87)90114-3
https://inspirehep.net/literature/235054
https://doi.org/10.1088/1126-6708/2002/04/013
https://arxiv.org/abs/hep-th/0202021
https://inspirehep.net/literature/582561
https://doi.org/10.1088/1126-6708/2002/01/047
https://arxiv.org/abs/hep-th/0110242
https://inspirehep.net/literature/564998
https://doi.org/10.1088/1126-6708/2002/03/048
https://arxiv.org/abs/hep-th/0202153
https://inspirehep.net/literature/583290
https://doi.org/10.1016/S0370-2693(02)01771-9
https://doi.org/10.1016/S0370-2693(02)01771-9
https://arxiv.org/abs/hep-th/0203018
https://inspirehep.net/literature/583620
https://doi.org/10.1007/s10052-002-0986-y
https://arxiv.org/abs/hep-th/0203080
https://inspirehep.net/literature/583889


J
H
E
P
0
3
(
2
0
2
4
)
0
4
5

[41] E. Floratos and A. Kehagias, Penrose limits of orbifolds and orientifolds, JHEP 07 (2002) 031
[hep-th/0203134] [INSPIRE].

[42] E.M. Sahraoui and E.H. Saidi, Metrics building of pp wave orbifold geometries, Phys. Lett. B
558 (2003) 221 [hep-th/0210168] [INSPIRE].

[43] M. Beccaria and G.P. Korchemsky, Four-dimensional N = 2 superconformal long circular
quivers, arXiv:2312.03836 [INSPIRE].

[44] L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on Orbifolds, Nucl. Phys. B 261 (1985)
678 [INSPIRE].

[45] K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: A modern introduction,
Cambridge University Press (2006) [DOI:10.1017/CBO9780511816086] [INSPIRE].

[46] M.T. Grisaru and D. Zanon, σ Model Superstring Corrections to the Einstein-hilbert Action,
Phys. Lett. B 177 (1986) 347 [INSPIRE].

[47] M.D. Freeman, C.N. Pope, M.F. Sohnius and K.S. Stelle, Higher Order σ Model Counterterms
and the Effective Action for Superstrings, Phys. Lett. B 178 (1986) 199 [INSPIRE].

[48] J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: dualities and the B-field,
Nucl. Phys. B 874 (2013) 413 [arXiv:1304.3137] [INSPIRE].

[49] J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: five-point contact terms,
Nucl. Phys. B 967 (2021) 115386 [arXiv:1912.10974] [INSPIRE].

[50] J.T. Liu, R. Minasian, R. Savelli and A. Schachner, Type IIB at eight derivatives: insights from
Superstrings, Superfields and Superparticles, JHEP 08 (2022) 267 [arXiv:2205.11530]
[INSPIRE].

– 31 –

https://doi.org/10.1088/1126-6708/2002/07/031
https://arxiv.org/abs/hep-th/0203134
https://inspirehep.net/literature/584129
https://doi.org/10.1016/S0370-2693(03)00279-X
https://doi.org/10.1016/S0370-2693(03)00279-X
https://arxiv.org/abs/hep-th/0210168
https://inspirehep.net/literature/600046
https://arxiv.org/abs/2312.03836
https://inspirehep.net/literature/2732686
https://doi.org/10.1016/0550-3213(85)90593-0
https://doi.org/10.1016/0550-3213(85)90593-0
https://inspirehep.net/literature/17034
https://doi.org/10.1017/CBO9780511816086
https://inspirehep.net/literature/744404
https://doi.org/10.1016/0370-2693(86)90765-3
https://inspirehep.net/literature/18636
https://doi.org/10.1016/0370-2693(86)91495-4
https://inspirehep.net/literature/233185
https://doi.org/10.1016/j.nuclphysb.2013.06.002
https://arxiv.org/abs/1304.3137
https://inspirehep.net/literature/1227957
https://doi.org/10.1016/j.nuclphysb.2021.115386
https://arxiv.org/abs/1912.10974
https://inspirehep.net/literature/1772304
https://doi.org/10.1007/JHEP08(2022)267
https://arxiv.org/abs/2205.11530
https://inspirehep.net/literature/2087198

	Introduction
	Gauge theory results
	6d effective action for twisted sector modes
	Structure of the paper

	Resolution of the S**(5) /Z(2) orbifold
	Eguchi-Hanson space as resolution of C**(2) /Z(2)
	S**(5) /Z(2) orbifold and its resolution M**(5)

	Twisted sector modes from 2-form fields in AdS(5) x M**(5)
	Solution of supergravity equations for 2-form fields
	Effective action for twisted sector modes

	Matching to gauge theory: leading and subleading corrections
	Normalisation factors
	alpha'**(3)-corrections

	Matching the k**(3)-term
	Large-k limit: pp-wave analogue of the resolved orbifold
	Back to AdS(5) X M**(5)

	Concluding remarks
	String spectrum for a flat-space orbifold
	Comments on alpha'**(3)-terms in the type IIB string effective action
	Solution of the 2-form equations of motion
	Weyl tensors in Vielbein basis

