PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: December 24, 2020
REVISED: January 28, 2021
ACCEPTED: January 28, 2021
PUBLISHED: March 23, 2021

Wormbholes and holographic decoherence

Takanori Anegawa,” Norihiro lizuka,* Kotaro Tamaoka® and Tomonori Ugajin®*

@ Department of Physics, Osaka University,
Toyonaka, Osaka 560-0043, Japan

bCenter for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,
Kyoto 606-8502, Japan

¢The Hakubi Center for Advanced Research, Kyoto University,
Kyoto 606-8501, Japan
E-mail: takanegawa@gmail.com, iizuka@phys.sci.osaka-u.ac. jp,
kotaro.tamaoka@yukawa.kyoto-u.ac. jp,
tomonori.ugajin@yukawa.kyoto-u.ac. jp

ABSTRACT: We study a class of decoherence process which admits a 3 dimensional holo-
graphic bulk. Starting from a thermo-field double dual to a wormhole, we prepare another
thermo-field double which plays the role of environment. By allowing the energy flow be-
tween the original and environment thermo-field double, the entanglement of the original
thermo-field double eventually decoheres. We model this decoherence by four-boundary
wormhole geometries, and study the time-evolution of the moduli parameters to see the
change of the entanglement pattern among subsystems. A notable feature of this holo-
graphic decoherence processes is that at the end point of the processes, the correlations
of the original thermo-field double are lost completely both classically and also quantum
mechanically. We also discuss distinguishability between thermo-field double state and
thermo mixed double state, which contains only classical correlations, and construct a
code subspace toy model for that.
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1 Introduction and summary

Wormbholes are quite interesting geometries which connect disjoint spacetimes. Even though
their phenomenological role has been discussed long [1-7] (See also [8] for a review), recently
wormholes was paid attention again since they refined our understanding of holography and
quantum gravity. To see the roles of Fuclidian wormholes in holography, let us consider
boundary theory partition function where the boundary has several disjoint components
and assuming no interactions between disjoint components. Then the boundary partition
function should be factorized into the contributions of each boundary component. On
the other hand, the gravitational path integral is not, if we take into account the contri-
butions of the Euclidean wormholes connecting disjoint boundaries through the emergent
bulk. This is the factorization paradox pointed out in [9], where such Euclidian wormholes
connecting multiple disjoint boundaries are explicitly constructed.

It was found that this non-factorization is naturally understood, once we interpret
the boundary theory is not a single theory, but rather an ensemble of boundary theories.



Indeed, in a remarkable paper [10], it was shown that JT gravity path integral shows the
ensemble nature of the boundary theory, once we include all possible wormholes dual to
a matrix model. Also [11] studied a toy model of gravitational path integral, providing a
strong evidence of the claim. See also [12-20] for related discussions.

In addition to these effects of Euclidean wormholes, Lorentzian wormholes also play
an important role in quantum gravity. One of the concrete examples of such Lorentzian
wormbhole is the Einstein Rosen (ER) bridge of an eternal black hole, which connects two
asymptotic regions. Motivated by the holographic correspondence between this ER bridge
and thermo-field double state in the dual field theory [21-23], it was conjectured in such
ER bridge is a geometric manifestation of entanglement structure of the underlying state
in quantum gravity [24]. This conjecture, called ER= EPR, has been applied to various
topics on the relation between quantum information theory and gravity.

Most remarkable point of this ER=EPR conjecture is that it suggests that quantum
entanglement is an indispensable ingredient for the emergence of smooth geometry in the
semi-classical limit of gravity [25]. On the other hand, correlation is not always induced
quantum mechanically, and it might be possible that classical correlation can induce similar
effects. Therefore to understand the conjecture more, a natural question we would like to
address in this paper is; instead of quantum entanglement, can classical correlation have
such a smooth geometric description in dual gravity? Recently Verlinde in [26] argued that
classical correlation can also have an ER bridge type of smooth geometry.

To see if an ER bridge can have only classical correlation, we consider the following
decoherence process. Let us start from an AdS eternal black hole. The ER bridge of the
eternal black hole is induced purely by quantum entanglement, since this two-sided eternal
black hole is dual to a thermo-field double state on a bipartite system. Let us call this
bi-partite system as A and B. See figure 1. We then prepare an auxiliary bipartite system
A’ and B’ which is again modeled by another eternal black hole. This auxiliary bipartite
system A’ and B’ plays the role of heat bathes/environment. We then attach this auxiliary
black hole (A" and B’) to the original two sided black hole (A and B) and allow the energy
flow from A to A’, and similarly, from B to B’. In the dual conformal field theory point
of view, this process induces equilibration between A and A’ and similarly B and B’ and
simultaneously, induces decoherence between A and B. What we would like to see is, as
the initial thermo-field double state (A and B) interacts with heat bathes (A’ and B’), how
the original quantum entanglement between A and B can be washed out, and leave, even
if exist, only classical correlation.

In this paper, we concretely study this decoherence process in the AdSs;/CFTy setup.
It is well known that in AdS3 gravity contains various multi-boundary wormholes which
are natural generalizations of two sided BTZ black hole to the setups with multiple bound-
aries. Moreover, thanks to the topological nature of pure AdSs gravity, this class of multi-
boundary wormholes are constructed by taking quotient of the pure AdSs [27-30]. There-
fore we model the decoherence process described in the previous paragraph, by such a
wormhole with four boundaries. This four boundary wormhole is dual to a pure state on
ABA'B’ with interesting entanglement structure [30]. Other previous studies on entangle-
ment in the class of multi-boundary wormholes include [31-35]. By tracing out the thermal
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Figure 1. Our toy model of holographic decoherence. We start from two thermo-field double states
(upper-left panel) and its dual two-sided blackholes (lower-left panel). Here blue dotted lines in
the upper-left panel represent the entanglement. First we attach these systems by introducing an
interaction between A and A’, B and B’ as well. Then, these interactions cause an energy flow
between A and A’, and one between B and B’. We would like to ask the entanglement structure
in the final process of this decoherence (upper-right panel). Our process can be holographically
viewed as a shrinking of a neck between A and B (or A’ and B’) which represents a magnitude of
the entanglement between them (lower-right panel).

bath A’B’, we in general obtain a mixed state on AB. Actual time evolution is modeled
by changing the masses of four horizons in the geometry, whose total is kept fixed. Under
the time evolution, we expect the quantum entanglement originally shared between A and
B is eventually swapped to the entanglement between A and A’ and that of between B
and B’. The monogamy of entanglement suggests, the correlation in the final state, if it is
still left, is only classical.

However, we find that the final state of the holographic decoherence process can not
have any correlation between A and B, both classically and quantum mechanically. This
in particular means that we cannot construct an ER bridge which only contains classical
correlation. Given that CFTs need to be sufficiently chaotic [36, 37] to have holographic



bulk dual, we believe that this loss of correlation holds generically in holographic system.
Indeed in such a theory, we expect in the final state, the mutual information between the
original black hole A and the bath A’ gets maximized. Then the monotonicity of mutual
information tells us that the mutual information of original thermo-field double, namely
between A and B, has to vanish, implying there is no correlation between A and B at the
final stage of the process.

This observation does not exclude the possibility that the classical correlation is in-
distinguishable from quantum entanglement, when the bulk observer can only probe code
subspace, which is low energy subspace of the total quantum gravity Hilbert space. In the
latter half of this paper, we explore this possibility in the toy model.

This paper is organized as follows. In section 2, we review how to construct multi-
boundary wormholes and in section 3, we study time evolution of the decoherence process
through the moduli change of the four-boundary wormholes and show that after holographic
decoherence, any correlation, both classical and quantum one, are left. Section 4 we discuss
distinguishability of thermo mixed double state with thermo-field double state, and also
toy model for that. Section 5 is discussion. In the appendix A, we summarize the known
properties of AdSs and constructions of multi-boundary wormholes there.

2 Construction of wormholes by quotients

We would like to discuss a model of holographic decoherence by using four wormbhole
geometries in AdS3. Imagine starting from two two-sided black holes (see left panel of
figure 1). One two-sided black hole has two boundaries A and B, whereas another one
does A" and B’. We will treat the boundaries of the latter two-sided black hole as two
thermal bathes. We then attach each heat bath (A" and B’) to one of the boundaries (A
and B) of the former black hole, and allow energy flows between them. Then the initial
entanglement shared between A and B starts to spread over the entire four party system.
In particular, the entanglement between A and A’ (B and B’) would become large, whereas
the original entanglement between A and B (A’ and B’) would get lost (see right panel of
figure 1). Hence, the resulting reduced density matrix pap is expected to reach a separable
state, where only classical correlations are left. In a forthcoming section, we would like
to check this statement explicitly by computing holographic entanglement entropies in a
specific four boundary wormhole system.

In order to construct such multi-boundary wormholes, it is useful to start from the
hyperbolic slicing of it, with the metric,

ds? = —dt* 4 cos® t d*syp. (2.1)

We can construct t = 0 time slice of a wormhole from a quotient of two-dimensional hyper-
bolic space H?/T. Here I is a discrete subgroup of its isometry, SL(2,R).! Such wormhole
construction has been well-studied in literature, see for example, [27-30]. For the sake of

!Since we focus on the time slice, we focus only on the isometry of H?. This SL(2,R) is a diagonal
subgroup of the original isometry for AdSs.
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Figure 2. Left: we display the upper half-plane and the Poincare coordinates. Gray shaded region
is a fundamental domain of the identification by ;. In particular, the smaller blue semi-circle is
identified by larger one. Right: after the identification, resulting cylindrical geometry becomes a
canonical timeslice of the (static) eternal BTZ. The area of horizon (the blue dotted curve in center)
can be computed as the length of blue dotted line in the left panel.

clarity and fixing our notation, here we will discuss two-, three- and four-boundary worm-
holes in order. The reader who is familiar with the construction of wormhole geometries
can skip the rest part of this section. Unfamiliar one may also see the appendix A.

A) Eternal BTZ black holes. The simplest example is the eternal BTZ black hole. In
what follows, we will take the Poincare coordinates as a coordinate of H?,

dz? + da?

_ (2.2)

d2 SH2 =
z

We will construct a time slice of a BTZ black hole by a quotients of this Poincare coordinates
(namely, an upper half plane). The corresponding group I' only has one generator 7;, which

%:(g?), (23)

n

can be diagonalized

which acts as a dilatation for Poincare coordinates z — p’z,z — p?z. We shall take
@ = ™+ since as we will see, then the area of horizon becomes 27r,. The fundamental
region after the quotients can be chosen to be the region bounded by two semi-circles,

Co:2?4+22=1, Cy:a2%+ 22 =", (2.4)

and the boundary of the upper half plane z = 0. After these two semicircles are identified,
we obtain a cylinder which is the time slice of the eternal BTZ black hole. See figure 2.

We can compute the area of the horizon L; = L(7) from the minimal distance between
C, and Cy (centered blue dotted line in the left panel of figure 2). In our setup, it is easily
computed as the length of the straight line,

2

K d
L, = / ~_ 2log pu = 27r. (2.5)
1

z
For more general minimal distance, one may also refer the formula in appendix A. From
the viewpoint of group elements, this simplification happens thanks to the diagonalization
of 1. In particular, one can also relate the L to a trace of the group element ~;,

1 L
itr’yl = cosh 71 (2.6)



Figure 3. Three-boundary wormhole obtained from the identification (2.8). Left: gray shaded
region is a fundamental domain of the identification by {v1,72} € T'. Colored circles with arrows
will be seen as identical to each other, including their orientation. Right: the resulting three
boundary-wormhole. A blue (An orange) circle will be calculated from trvy; (trvys). A half blue and
half orange circle will be obtained via tr(y;72)-

Applying an appropriate coordinate transformation, one can also relate the length of more
general closed geodesics to a straight line computation as the present BTZ example. There-
fore, we can also compute more general ones from the trace of a certain group element
as (2.6). In what follows, we denote L(7) as a length which can be calculated as

1 L
§]tr'y| = cosh (27) (2.7)
See the appendix A.5 for the derivation of this eq.

B) Three boundary wormholes. Next, let us consider a slightly involved example, a
three-boundary wormhole. In doing so, we consider identification group I' generated by
the previous ~y; and

o c2 cicot+R1Ro
\/Rlle VR1R2 . (2.8)

C1

VRiR:  VRiR:

Y2 =

The role of +;1 is just the same as previous example, namely it identifies C, and Cp. The
second generator vy consists of two translations, an inversion and a dilatation so that it
can identify

Cr:(x—c)*+2°=R3, Cy:(z—c2)? + 22 = R, (2.9)
with the flip of orientation. For more detail, see around (A.36) of the appendix A.4. Then,

the fundamental domain of H?/T" is the region bounded by these four circles as well as the
boundary of the upper half plane. See figure 3.
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Figure 4. Four boundary wormhole of our interest. Here we assign the boundary subregions
A=lca+Ra,c1—Ry],B=[cy + Ry, chb— Ry, A" =[1,co — Ry]UJc1 + Ry, p2], A’ = [—p?, ¢} — RjJU
[¢h + Ra, —1]. The resulting four boundary-wormhole has a shape of lower-right panel of figure 1.

Then we have three horizons associated with each boundary. Following the previous
formula (2.7), these area can be calculated via tryy, trys, and try;y, respectively,

L(m1) = 2log 1, (2.10)

L(7) = 2cosh™! {M] : 2.11

(72) Co8 2\/m ( )
ap”t —cop

L(v17y2) = 2cosh™?

TR 1 . (2.12)

C) Four boundary wormholes. The extension to four boundary wormholes of our
interest is almost straightforward. For the identification, we reuse 1 and 2 in the previous
examples. We also include the following group element,

/ ! ) / !
) cico+ Ry Ry

- J/RR] R R
\/11 2 \/6/1 2 7 (2‘13)

— 1
VER,  RE,

Yy =

where ¢; and R} corresponds to position of center and radius for semi-circles C] and C5
(see figure 4). Clearly ~/ plays the same role as 2. Following the same prescription as the



three boundary wormhole, it is straightforward to compute the area of horizons,

(2.14)

Ly = L(v) = 2cosh™! [ e } ,

2V R1 Ro

—1
| |ap” —cp
Ly=L =2cosh™! || ————251 |, 2.15
A (7172) COs [ N 1 ( )
7 /
Lp = L(+) = 2cosh™ L/Cf (2.16)
2,/ R R}
-1 /
Lp = L(y17%) = 2cosh™* [ (= +n) (2.17)
2. /R\R),

3 Holographic decoherence

Now we are ready to model an explicit model of holographic decoherence by using the four-
boundary solutions constructed above. Remind that we were interested in a holographic
setup discussed in the very first of section 2 (see also figure 1). We first discuss an explicit
example in section 3.1 and then move to a more general argument 3.2. The discussion in
this section is very similar to the one found in [33, 34] where the entanglement between a
black hole and Hawking radiation was studied using such multiboundary wormholes.

3.1 A model

We use the four-boundary wormhole constructed in the previous section. For simplicity,
we always assume an Zo symmetry, ¢; = —c; and R; = R} so that we can focus on the half
of the whole system, say AA’, and AB.

First, we start a thermo-field double state on AB, which is dual to an eternal BTZ
black hole. We then attach these two systems A and B to two heat bathes/environments, A’
and B’. In this paper, we implicitly assume that the dimensions of the Hilbert space of the
heat bathes/environments, A’ and B’ are the same order as the one of A and B. The total
system ABA’B’ has a holographic description by a four boundary wormhole. See figure 1.

Once the heat bathes/environments A’ (and B’) are attached to the original system A
(and B), an energy current goes between A (and B), and A’ (and B’), which induces black
hole mass change. Since the mass M of BTZ black hole is related to the horizon length L
as L = 27v/8GnM, we model this energy current as following time evolution,

Ly Moa — ot Ly /Moy +at

SA:4GN: 4Gy ’SA’:4GN: e (3.1)

where « is a parameter we set as a velocity of the energy flow.? My, Mgas imply initial
values of mass parameters. Here we implicitly absorbed 8(27)2G into the definition of
mass and velocity parameters for simplicity in such a way that BTZ horizon length L and
its mass M is related as L = /M. Zy symmetry implies the same for B and B’. In this

2Here we abused the notation. We must not regard ¢ in (3.1) as the time coordinate appeared in the
metric (2.1). As discussed below, here we treat “time” ¢ as an order of snapshot solutions on a fixed time slice.



way, the conservation law of total energy in A and A’ (and also B and B’) is satisfied. Note
that, since an energy current goes to reach equilibrium, we restrict our time evolution in
the following range of time;

Moa — Moya

M()A—OttZMOA/—f—OZt &S 0<t< 5
«

(3.2)

We model this time-evolution as a bunch of snapshot of the wormhole, where throats be-
come smaller/larger as moduli changes. This is our time evolution model of the decoherence
process, where through the energy flow between A and bath A’ (and similarly B and B’),
system A get entangled and becomes equilibrium with bath/environment A’.

Since our primary interest is how the amount of correlation, between A and bath A’
and also between A and B evolves through the time evolution of decoherence, we need to
evaluate the mutual information of between them. For that purpose, we need to identify
how the moduli parameters of four boundary wormhole changes by the time evolution of
our decoherence process. Under the Zo symmetry, we have 5 moduli parameters; u, c1, ca,
Ry, Ry. First, the length of horizon obeys the formula discussed in the previous section:

L c1 — Cy Moys — ot

h—=_——- =cosh | ——— |, 3.3

cosh — NI cos ( 5 > (3.3)

Ly B Clu_l—CQ,u . vVMyar + at
=——= —cosh| —— .

2 2v/ R1 Ry 2

In above second equalities, we use our time evolution model eq. (3.1). Second, as is seen

cosh

(3.4)

in figure 4, the 5 moduli should obey following geometric inequalities
l1<e—Ry, c+Ry<eci—Ri, ¢ +Ri<p? (3.5)
for consistency. This can be satisfied by introducing the following positive function g > 0;
l+g=cy— Ry, co+Rotg=c1—Ri, c1+Ri+g=p? (3.6)

In other words, we tune moduli of wormholes by hand as (3.6).3

What is the appropriate function for g(¢)? To choose an appropriate one, let us discuss
what we expect by the endpoint of the decoherence process. From our assumption that
the dimension of the Hilbert space of the heat bathes/environments A’ is the same order
as the one of A, at the final stage of the energy flow between A and A’, they are expected
to reach equilibrium. Therefore their masses become the same, and so are their areas;

Moa — Moyar
La— Ly at t— 2404 (3.7)
2a
Then, from eq. (3.3) and (3.4), this implies that we need
Moa — Moar
p—1 at t—)%, (3.8)
a

3Generically, (3.5) can be satisfied by using 3 unknown positive functions g; > 0 (i = 1,2,3); 1 + g1 =
ca—Ra,co+Ro+g2o=c1—Ri,ci+Ri+g3 = uz. However since we do not know its full CFT description,
just for simplicity in this paper, we set all g; the same function g.



at the end point of the decoherence. This forces following constraints ¢y,co — 1, R;, R — 0
from the geometric constraint of figure 4 or eq. (3.5), and this is possible if and only if
g — 0 at the end point of the decoherence. Therefore we impose

d
g(t) >0, ?§<0’ (3.9)
Mo — Mo
and ¢g—0 at t%% (3.10)
«

as an appropriate function for g(t). More concretely, we will choose following function for
g(t),

g(t) = €(t) x (1+e7) (3.11)
where €(t) is smooth monotonically decreasing function satisfying followings,
Moa — My
€(t)~1 when t< M (3.12)
o
Moa — My ar
and €(t) >0 as t— % (3.13)
o

we seek the time evolution of the moduli parameters under this.
Now our task is to determine the time evolution of the 5 moduli parameters pu, c1, ca,
R1, Ry, by solving 5 constraint equations (3.3), (3.4), (3.6), with an appropriate choice of
g satisfying (3.10). With that, we evaluate the time evolution of the mutual information
between A and A’ and also between A and B. For that purpose, let us solve the constraint
equations (3.6) for ¢;, Ry and Ry as,
p—1—g 1+p*—yg

C1 :CQ-Ff, Rl :_CQ‘F#, RQZCQ—l—g. (314)

Then, by plugging these equation into (3.3) and (3.4), we obtain equations for u and ¢y as

follows )
cosh % = pwol-9 , (3.15)
4\/<—02 + %) (ca—1—g)
and
mﬁ%@ﬁ%@ﬁ—@+ﬁ—h@ (3.16)
cosh LTA —u2+14g ' .

We proceed as follows; for given g(t), we first solve the equations (3.15) and (3.16) nu-
merically to determine ¢y and p, then c¢;, Ry, Re are determined from (3.14). In this way,
all time-dependence of the moduli are specified. Then from these moduli, we can plot the
mutual information between A and A’ I(A : A’) as a function of time, where I(A: A) is

I(A:A/)ZSA—i-SA/—SAA/, (3.17)
Ly

Saa =min |Sq+ Sa, —— |, Li=2logpu. (3.18)
4G N

We will call it a disconnected phase when the relationship Sqar = Sa + Sas is satisfied,
and a connected phase when the relationship Sa4r = L1 /4Gy is satisfied.

~10 -
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Figure 5. A numerical plot of S44/ (blue dots) and an analytical plot of |S4(t) — Sa/(t)| (blue line)
for the choice of g(t) given by eq. (3.11), (3.20). where ¢y = 1.0 x 1072. As an initial condition, we
took Mya = 100, Mya» = 10, with o = 1. In this plot, we set 4Gy = 1.

We have solved numerically the time-dependence of the moduli for the choice of My4 =
100, Mya = 10, and o = 1. Mass equilibrium is reached at

_ Moa — My

t
2a0

= 45. (3.19)
g(t) is given by eq. (3.11), i.e., g(t) = €(t) x (1 +e ). Given the mass parameters, our
choice for smooth function €(¢) is

1 — tanh (¢ — 40)
2

(3.20)

€ =¢€p

with g = 1.0 x 1072, This satisfies eq. (3.12) and (3.13) in good accuracy.* We also set
4G N = 1. The results are shown in figure 5 and figure 6.

Some comments are in order;

1. The von-Neumann entropy always satisfy so-called Araki-Lieb inequality,?

|S4 — Sar| < Saa < Sa+ Sar. (3.21)

“In fact, one can confirm that our results are unaffected as long as we choose any €(t), satisfying eq. (3.12)
and (3.13).

5We thank an anonymous referee for pointing out the related discussion which improves our previous
numerical results.
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Figure 6. A numerical plot of S44 = L1/4Gy (blue line) and an analytical plot of S4(t)+ Sa/(t)
(red dashed line) with the same choice of parameters as figure 5. Clearly at the end of the deco-
herence process at t = 45, Ly goes to zero. For the illustration of the geometry, see figure 7 as well.

In our context, the upper bound corresponds to the disconnected phase. Note that
during the decoherence process, S4 > 0 and Sy > 0 hold. Then our numerical
solution shows that the lower bound of the Araki-Lieb inequality, i.e.,

|SA—SA/‘:SAA/<SA—I-SA/. (3.22)
is always saturated during the decoherence process.

. Therefore our numerical solution always show the connected phase during the deco-
herence process and

_ Li_ logp
" 4Gy 2Gw
always holds during the process. At the end of the decoherence process at ¢t — 45,
Saar(t) — 0, therefore Ly — 0 (u — 1) and the bulk of a four-boundary wormbhole
pinches off. See figure 7.

Saa (3.23)

. This parameter range of time ¢ is consistent with (3.2), where we have
(Moa — Moar) /200 = 45.

4. We have also found similar behavior for different parameter regimes.

Note that even though in the limit © — 1, we have ¢;,co — 1, R1, Ro — 0 and therefore

the inner and outer blue semi-circle in figure 4 collapses and coincides, in such a limit the

area of A for Sy and A’ for S, does not vanish as is seen for Sy + Sy in figure 6. This

is because figure 4 omits the warped factor [Im Z|=2 of the metric (A.6). Therefore the

- 12 —



Figure 7. Four boundary wormhole. The “areas” of the neck region L, L4/, and L; are shown
pictorially. As decoherence process evolves, Ly shrinks to zero.

enhancement by this warped factor makes the area finite. The resulting four boundary
wormbhole is drawn in figure 7.

Once we confirm the time-evolution to u — 1 < L; — 0 and therefore to Sqar — 0
exists, then we can see that there is no correlation between A and B, both classically
and also quantum mechanically. This can be understood as follows; since the whole sys-
tem AA'BB’ is pure state and due to Zs symmetry, Sq4 — 0 implies that the mutual
information between AA’ and BB’ is zero,

I(AA,:BB,):SAA’+SBB’_SAA’BB’:07 (324)

namely, the final state should possess a product structure paa ® pgpr, where paar (ppp’)
represents the density matrix of AA’” (BB'). Due to strong subadditivity inequality, the
mutual information never increases by tracing out subsystems, A’ and B’ in this case.
Therefore we conclude that

I(AA": BB') > I(A: B) =0. (3.25)

This means that the original entanglement between A and B completely disappears, both
classically and also quantum mechanically.

3.2 Absence of correlation at the end point

One can show that, under the mild assumptions, the end point of any holographic deco-
herence process cannot have correlations either classically and also quantum mechanically.
The argument is closely related to the absence of holographic duals of GHZ type states [38].

For that purpose, we need following two assumptions at the end point of the holo-
graphic decoherence processes:
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1. The entropies of each subsystem are identical,
Sq4=8x4=8=5p. (3.26)
This is motivated by the thermal equilibrium of the end point.

2. The mutual information between the system and the bath/environment, i.e., A and
A’ saturates the bound,

I(A: A") < Sa+ Sa, (3.27)

namely, Saa- = 0. This also implies I(B : B’) saturates the bound, since Sqa =
SBpr-

Because the mutual information is monotonic, we have®

I(AA: B)
I(AA": B)

>1(A: B), (3.28)
> I(A": B). (3.29)
Each left hand side I(AA’ : B) = Saa + Sp — Saap is vanishing, due to the conditions
Saa = 0,Saap = Sp. This implies I(A : B) = I[(A’ : B) = 0, i.e., there is no classical
and quantum correlations between two systems A and B. This is exactly what we have
seen in our decoherence model of the previous subsection.

Since our assumptions (3.26) and (3.27) are quite natural, we conjecture that under the
decoherence process which admits holographic duals, no classical and quantum correlations
between two systems. We will discuss this issues more in the discussion section.

3.3 Loopholes

There are several loopholes in this argument.

1. We assume that the dimensions of the Hilbert space of A and A’, and through the
Zo symmetry the ones of B and B’, are the same, therefore at the equilibrium, their
entropy is the same as (3.26). Obviously if we relax this condition, then the argument
of this subsection breaks down and there is no guarantee that under the decoherence
process, one obtain I(A’ : B) = 0.

2. Another loophole of the discussion in this section is that even though there is no
classical and quantum correlations between two systems, if we consider only the low
energy subspace (so-called “code subspace”), then there is a possibility that in that
subspace, one might see the state as if it admits some correlations.

Regarding the second possibility, in fact, in [26] Verlinde proposed an interesting connection
between a particular separable state, dubbed thermo mixed double (TMD) state, and the

SWe thank Zixia Wei for discussion on this.

— 14 —



thermo-field double (TFD) state in the light of the low energy subspace (so-called code
subspace). They are defined in bi-partite system as follows;

ITFD) = > /pu [nn) (3.30)

PTMD = an [nn)(nn|, (3.31)

where p,, is the standard Boltzmann factor p, = e #F»/Z(j3). Obviously |TFD) is a pure
state and pryp is a mixed state. The former has quantum correlation (entanglement)
and the latter has only classical correlation. Note that these both states are particular
extensions of thermal state. Verlinde [26] pointed out that for a low energy observer (code
subspace), it might be impossible to distinguish the two, namely,

Peode prMD Peode = Peode ’TFD><TFD| Peode, (332)

where P.yqe is a projection operator onto the code subspace. We discuss this possibility in
next section in detail.

4 Thermo mixed double state and code subspace

As we have seen in previous section, in the full space, one can distinguish these two states,
thermo mixed double (TMD) state and the thermo-field double (TFD) state,” and we have
seen explicitly that no correlation are left after the decoherence both classically and also
quantum mechanically in our holographic model. However if we restrict only to a code
subspace (low-energy) observer, this might be possible. We now discuss this possibility.
An important remark is that the argument in [26] is based on the perturbation theory in
Newton constant G . In other words, the above relation is true only up to non-perturbative
corrections.

In this section, we would like to clarify a possible (in)distinguishability of TFD and
TMD states by utilizing the local operator correlation functions. This illustrates what is
necessary to distinguish TFD and TMD states. Here, we implicitly assume the system
is chaotic enough and the eigenstate thermalization hypothesis (ETH) [50] is satisfied for
local operators. The ETH demands local operators A = O, Or obey the following matrix
elements,

<Em|A|En> = 6mnA(Emn) + eis(Emn)/szan(EmnyWmn)a (41)

where Epp = (B + Ep)/2, wmn = (B — Ep)/2. Here A(Ep), fA(Emn, Wmn) are the
smooth functions depend on the given operator A. In the second term, S(E,,,) is the
thermodynamic entropy at energy E., and R, is a random distribution with zero mean
and unit variance.

It is also clear from various measures for mixed states conjectured to be related to the entanglement
wedge cross-section [39-43]. For example, the logarithmic negativity [44] and the (regularized) odd en-
tropy [42] are clearly zero for the TMD state as prmp is invariant under the partial transposition. This
kind of indistinguishablity in CFT was studied using relative entropy in [45].
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4.1 TMD vs TFD — round 1: two-point function

To discuss the difference between TMD and TFD, we study the two-point correlation
function of certain operators,

(OL(tL)Or(tr))ryp = Tror(prMpOL(tL)Or(tr)), (4.2)
(OL(tL)OR(tR))rrp = Tror(ITFD) (TFD| O (tL)Or(tr)).

Discussion in this subsection needs ETH, but other than that, it is generic and does not
need to assume holographic CFT. First of all, even if we focus on such low-energy operators,
we can see that (4.2) and (4.3) behave differently. In particular, the expectation value for
the TMD state (4.2) has no time-dependence,

(OL(tL)OR(tR))rmp = Y Pn (n|OL(tL)|n) (n|Or(tr)|n)
= > P (n|OL(0)|n) (n|OR(0)|n)
= <OL(0)@R(O)>TMD : (4-4)

On the other hand, the one for the TFD state (4.3) can be used to probe the black hole
interior [21-23]. This difference obviously comes from the contribution from off-diagonal
elements in the TFD state. Notice that these elements are directly related to entanglement
of the TFD state between L and R.

Given that off-diagonal elements manifestly distinguish the two, one possible way to
identify (4.2) with (4.3) is to take the time average and smear out the off-diagonal elements.
For example, the standard time average gives the exact agreement,

T 5 T -
Jin = [ 4t OO0 = Jim 7 [ dtOLOORO) gy (45)

because the time-average of the off-diagonal elements in ETH gives zero. In [26], it is
argued that a more discrete average based on the Poincare recurrence time should be
possible. Note that, however, in any cases, the (4.4) suggests that we cannot see the
growth of Kinstein-Rosen bridge by using such correlation functions, which is manifest
difference between TMD vs TFD.

4.2 TMD vs TFD — round 2: four-point function

Next, we would like to evaluate the following four point function
Iy(w) = Tr | prup OL () OL(1)Or()Or(1)] , (4.6)
for the TMD state in the holographic CFT. One can write this as follows;
Ii(z) = / dh dh p(h, h) P(h, h) [(h, BlOL(2)OL(1)|h, h)] [(h, h|OR(z)Or(1) |k, B)] . (4.7)

As is clear in this example, this four-point function essentially has the same structure as
two-point function seen in previous subsection; if replace Op(t1,) of (4.4) as Or(z)OL(1),
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and so is for Op(tgr), we obtain this expression. The integral naturally factorized into
chiral and anti-chiral parts I, = IT due to the factorizaiton

p(h,h) = p(h)p(h)  P(h,h) = P(h)P(h), (4.8)
where
p(h) = exp [27r % . P(h) = exp[—Bh]. (4.9)
An explicit form of T is given by
I= /dhp(h)P( exp [—g (h,e, 2 } /dheK(hZ (4.10)

where we assume the vacuum contribution is dominant [46]® and use the ‘heavy-heavy-
light-light’ conformal block [49],

(hO@@)O(1)|R) = exp [—gg(h,s, o) — gg(h,g,z)} (4.11)
with .
g(h,e;1—2) = ;log<1_az ) —i—ilogz, (4.12)
where
o=1/1- ? (4.13)

We can evaluate this integral by a saddle point approximation once assuming the saddle
hs is O(c), h = ~ye. In this case K(h,z) = cL(7, z) and

L(v,z) = QW\/Z — By - ég(’y,a, z). (4.14)

The saddle v = ~, satisfies
oL
2l
Because € < 1, g(7,¢,2) < 1, therefore the saddle is approximated by

s(Z) o

This just usual thermal temperature-energy relation, which is plausible. This means, in

=0. (4.15)

the large ¢ limit where one can use saddle point approximation, the four point function
always gets factorized into the 2 point functions,

Tr [praip O (2) Or(1)Or(2)Op(1)] = (Tr [efﬁHoL(x)oLu)])Q (4.17)

On the other hand the four point function of the thermo-field double state does not
get factorized due to the off-diagonal elements. This difference results in the difference of
the bulk causal structures [21-23], in particular the existence of the horizon interior.

Given these, if we define code subspace as low-energy observers who are blind to the
off-diagonal elements, then in code subspace, it is not possible to distinguish the difference.

8For simplicity, we tuned the value of 2 so that another possible channel [47, 48] is not dominant.
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4.3 TMD vs TFD — round 3: code subspace toy model

Since off-diagonal elements give the difference between thermo mixed double (TMD) and
thermo-field double (TFD) state, if one defines code subspace as a low energy observer who
is blind to the off-diagonal elements, then one can also construct a simple toy model, sat-
isfying (3.32), and furthermore still maintain low energy entanglement. In this subsection,
we provide such a toy model example.
Let us consider the two spin systems, say spin A and B, whose Hamiltonian is given by
R2
H=-N?J%5= —G—NJiB, (4.18)
where N? = % is some large number and J ?4 p is the square of the total angular momen-
tum, namely the Casimir operator for SU(2). We have two energy levels Fy < E; whose
eigenvectors are generically given by

0aB) = N2 |ar [Tats) + ax([Tads) + [Lats)) + oy [Lals) |, (4.19)
lap) = —
AB _\/i

where oy, @y, o are arbitrary constants and A is a normalization factor. Note that our

([tals) — Hats)), (4.20)

ground states degenerate.
In this Hamiltonian, “Gibbs ensemble” is given by

1 _ _
p(B) = m(i’)@ PP 104p)(0a8] + e Pt [1ap)(1ag)), (4.21)
thus, the corresponding thermo-field double state should have the following form,
1
ITFD) s p s e = NG (\/§e*/3E0/2 0450 4+ 5+ ) + e PE/2 y1AB1A*B*>) : (4.22)

On the other hand, the thermo mixed double state is given by

3e—BEo —BE1

(&
————104B04*B*){04B0A+p+| + ——=— [1apla=B-)(1apla<p-|.
Z(B) (B)

Z
Suppose one take the G — 0 limit. Then a natural low energy code subspace is the

PTMD = (4.23)

space with energy Ej. This is because a excited state with energy E; is suppressed by the

exponential factor

2
~ 67%(E17E0)

<1 (4.24)

which is tiny in the large N, equivalently Gy — 0 limit. Therefore after projection onto
the low energy (=ground state) code subspace, one can see that (3.32) is satisfied in this
model. Note that due to the degeneracies of the ground states, i.e., dim Heoge > 1, even in
the code subspace, we can maintain certain amount of entanglement. One can easily extend
the above argument to the generalized thermo mixed double states discussed in (3.32). It
might be worth noting that the resulting entangled state has only O(N') degeneracy in
the light of the AdS/CFT as we are looking at the low-energy code subspace.
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5 Conclusions and discussion

The question we addressed in this paper is, to what extent correlation contained in the
boundary state can affect the structure of the bulk spacetime in AdS/CFT correspon-
dence. More concretely, we tried to find an Einstein Rosen bridge, which is supported
only by classical correlation of the boundary state [26]. To construct this, we considered a
decoherence process in which an initial thermo-field double state evolves to an mixed state,
due to interaction with environment. In this process, the quantum entanglement that the
initial TFD state has is eventually turned to classical correlation. In the holographic dual
gravity description of this process involves an eternal BTZ black hole dual to the TFD
state, attached to another eternal black hole modeling the heat bath. The total system is
dual to a four boundary wormhole, with a particular entanglement structure. We studied
time evolution of various bipartite correlations in the system. We then find that the final
state can not have any correlation. This implies that we can not construct an ER bridge
dual to classical correlation in this way. We believe this is a distinguishing property of
holographic theory, which is genuinely chaotic. For example, in a generic quantum field
theory, a decherence process whose final state contains classical correlation can be explicitly
constructed as in [51]. Although this non existence of correlation is a simple observation
in this particular multiboundary wormhole setup, we argued that MHH inequality [38]
prohibits to produce such ER bridge from decoherence in general in holographic setup.

We also discuss the distinguishability between thermo-field double and thermo mixed
double state, which contains only classical correlations. Assuming the eigenstate thermal-
ization hypothesis (ETH), our conclusion is that as far as low energy observer are blind to
the off-diagonal elements, then it is impossible to distinguish these two states. Furthermore
we also construct a simple toy model which realizes this. An important aspect of our toy
model is that it contains low energy degeneracy and therefore one can have entanglement
structure even for low energy observer.

This conclusion can be test in simple quantum models admitting a gravity dual. For
example one can imagine studying this process in four copies of the SYK model [52-54].
First of all, out of two coupled SYKs, one can construct a TFD state. By preparing two
such TFD states in this way, the decoherence process can be concretely realized. We expect,
due to highly chaotic nature of this model, the final state of the decoherence process in this
model is very similar to the one we obtained from the holographic point of view, namely
that it does not contain any correlation even classically. It would be interesting to check
this conjecture. Related discussion can be found, for example in [55, 56].

It would be also interesting to further study the time dependent gravity solution dual
to the decoherence. Our treatment of time evolution is heavily using the topological na-
ture of three dimensional pure gravity. The initial time slice of four boundary wormhole
solution we dealt with, depends on several moduli parameters since it is a Riemann surface
with four boundaries. We studied the holographic decoherence, by making these moduli
time dependent. We saw this is still a solution of the Einstein equations in three dimen-
sions, and exhibits interesting dynamics. In principle, we can construct a full fledged time
dependent spacetime, by preparing two BTZ black holes, attaching them, and following
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the time dependence by solving the equations of motion. In our analysis, we assumed a Zo
symmetry between subsystems AA’ and BB’ as we did not introduce interactions between
them. Introducing interactions which break this Zs symmetry would be interesting since
traversable (multi-boundary) wormholes can realize.

Another avenue which deserves further investigation is, to understand better why it is
hard to geometrize classical correlations, compared to quantum correlations. The fact that
separable states in a bipartite system can not have gravity dual with smooth geometry is
closely related, to the fact that a GHZ type state in a tripartite system in CFT side can not
be realized by classical three boundary wormhole. This is because, such separable states
can be constructed by tracing out one of the Hilbert space of the tripartite system.
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A Review of known properties of AdS3

In this appendix, we review the properties of the AdSs; geometry and its isometry, which
we will use to obtain wormholes as quotient. See [28] for example. We use AdS length
scale fpqs = 1 convention.

A.1 AdS3

AdSs is defined by embedding it as

ds®* = —dU? —dV? + dX? +dY?, (A1)
~U? - V24 X?24+YV? =1, (A.2)

in R22,

Poincaré coordinates are defined as

Lo o o _t
= i (l’ -+ 2+ 1) y V = ; ,
_ 1 2 2 2 _
and we obtain the Poincaré metric
—dt? + da? + dz?
ds? = LT AT (A.4)

z
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Especially, ¢t = 0 slice in Poincaré coordinate is expressed as

2 2
1

v=o, v=2 v+x=""2 pox=- (A.5)
z z z

Then, the ¢ = 0 slice in Poincaré coordinate (which is equivalent to V' = 0 slice) becomes
hyperbolic space H? with its metric

dz? +dz?  dzdZ
22 [ImZ2’

dS?ZO = (A6)

In the second inequality, we define Z = x + iz.

A.2 Geodesic length in AdSs

Here we derive the length of geodesics in AdS [57]. Let us define the vector W4 in the
embedding space R%?, where

W4 =(U,V,X,Y), nap=diagonal{—1,-1,1,1} (A7)
W2=WAWEnp = -U? - V2 + X2+ V2. (A.8)

Geodesic equation can be derived from the following Lagrangian for the worldline,

1. ..
L= §WAWBnAB +AW?241), (A.9)
. dw4
where 7 is the affine parameter with W4 = ZV , and A is the Lagrange multiplier, to
T

force trajectory on AdSs3. Then, the equation of motion is,

WA =2aw4, (A.10)
and this yields
WA(T) = cteV?T 4 Ao VT (A.11)

where cjﬁ, ¢ are null and orthogonal constant vector in R?2, satisfying

cﬁCfUAB = cf‘c???AB =0, 2cfc]§77AB =—1. (A.12)

Note that from the Lagrange multiplier, we have
W2=-1 = WAWPnp=0. (A.13)

Taking the 7 derivative twice of this equation, we see

V2X\ = VW2 = constant . (A.14)

and that the geodesic follows constant velocity motion in R*2 with its velocity v2X\ = VIV2.
Then the geodesic distance o between the affine parameter 7 and 75 is given by

o= VW2(r] — ). (A.15)
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If we define a parameter £ as
&' = WA W (12) nap = cosh [VIV2(ry — 1)
= cosh [o(X (71), X (12))] , (A.16)

where we used (A.11) and (A.12), then,

JLX(H)“X(Q))::th1(1> :log< (A.17)

£

A.3 Matrix representation of AdSs and its isometry

1+\/@>
—

We will construct wormhole geometry by quotient (dividing our ¢ = 0 slice). For that
purpose, it is more convenient to express the embedding formalism of AdS3 expressed in
terms of the 2 x 2 matrices M;

= U+XY+V AN = dU +dX dY +dV , (A.18)
Y-VU-X dY —dV dU —dX
Then the AdSs is written simply as
ds? = —detdM , where detM =1. (A.19)

Isometry. This representation of AdS; has manifest symmetry under the following trans-
formation;

A2
Y-VU-X Y_vU-—x) " (A-20)

where (v1,72) € SL(2,R) x SL(2,R).
We will consider the spacelike slice ¢ = 0, and divide that slice by the isometry, namely,

<U+XY+V> <U+XY+V>T
= 7

we will construct wormholes as quotients of V' = 0 slice (¢ = 0 slice) of the AdS3 . Fur-
thermore, one can easily check that V' = 0 subspace is invariant under the transformation
v1 = v2 = 7. Therefore the isometry we will use is v € SL(2,R) transformation under
which V' = 0 slice of the AdS3 transforms as

U+X Y U+x Y O\ p
. A21
< Y U—X>H7< Y U—X)7 (4-21)

To see how this transforms the hyperbolic space coordinate (z,z), we set

7::<ZZ>, (A.22)

with ad — bc = 1. Then using the relationship (A.5), one can confirm by explicit calcu-
lation that the transformation of (U, X,Y’) under (A.21) is exactly the following Mobius
transformation of Z = x + iz,

J 7l is — aZ+b _ {(ax+b)(cx+d)+acz2}+iz.
cZ +d (cx + d)* + (c2)?

(A.23)
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In summary, the isometry (A.21) transforms the Poincaré coordinate as following ¢ = 0
slice Mébius transformation

(A.24)

(t:O,Z:x+iz) = (t’zO,Z’: “ZH’) .

cZ +d

An important point is that an SL(2,R) transformation maps a circle to another circle,
which we will review in the next subsection.

In terms of this matrix representation for two points p and ¢ as P and @, where P
and @ are matrix representation of point p, ¢ following (A.3) and (A.18), its length o(p, q)
is given by the formula

1

coshlo(p,q)] = 5Tt (P - Q)

1

=5 Tr (p . Q—1> . (A.25)

This formula is manifestly invariance under the isometry (A.20).

A.4 Elements of SL(2,R) and its transformations

A Mébius transformation (A.24) can be decomposed into three basic transformation ele-
ments: 1) dilatation, 2) translation, and 3) special conformal transformation.

1. Dilatation: this corresponds to the M&bius transformation g = gp(a) with

gp(a) = (a ’ ) (A.26)

0a !
Under this, the hyperbolic space coordinate transforms as

Z — ad*Z. (A.27)

2. Translation: this corresponds to the Mébius transformation g = gr(b) with

10
b) = . A2
gr(b) (0 1) (A.28)
Under this, the hyperbolic space coordinate transforms as

Z—Z+b. (A.29)

3. Special conformal transformation: this corresponds to the Mobius transformation

g9 = gsc(c) with
gsole) = <i ?) (4.30)

Under this, the hyperbolic space coordinate transforms as

Z
— . A.31
cZ+1 ( )
Note that the spacial conformal transformation acts like
20,2 4 L2
. x+ (x4 2°) z (A.32)

- :
1+ 2cx + (a2 + 22)’ : 1+ 2cx + (22 + 22)
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4. Inversion: in addition, it is also useful to define an inversion I(R)

I(R) = gr(R) gsc (—;) gr(R) = (_0}2 g) (A.33)

Notice that the action of the inversion I(R) is

, R? 9 x -
Z::1:+1z—>—7:R [—$2+Z2+1x2+22}, (A.34)

which maps the circle 22 4+ 22 = R? to itself, but flips its orientation # — —z. This
inversion maps the exterior of the circle 2 + 22 > R? to the interior z? + 22 < R? .

An SL(2,R) transformation maps a circle to another circle. Since in AdSj3 , spatial
geodesic is semicircle, this means that SL(2,R) transforms geodesic to another geodesic.
Let C1, C5 be two semicircles on upper half plane,

Cr:(x—c1)* +2°=R?, Cy:=(x—c)*+2*=R3. (A.35)

Furthermore, suppose that two semicircles C7 and Cs have opposite orientations. Then
the element of SL(2,R) which maps the circle C; to Cs is given by

_ R
g=gr(c2) gplai2) I(Ry) ng(cl), where ajo = ”Rii' (A.36)

Accordingly, the total action g (A.36) maps interior of C; to exterior of Cy and vice versa.
An explicit expression for g is

__ ¢  ccatRiRy
g= \/R1132 VEiR2 . (A.37)

PR — C1

VvVRi1R2 vV R1R3

For a more detailed treatment, see also [58].

A.5 Length of closed geodesics from group elements

In the main body, we have seen the length of closed geodesics in the eternal BTZ can be
mapped to the calculation of trace of identification group (see equation (2.6)). Here we
explain the similar formula (2.7) for more general closed geodesics, characterized by an
identification group ~.

In the case of eternal BTZ, we computed the length of geodesics from a straight line
anchored on the bulk points as (2.5). Then, we argued this calculation is equivalent to
calculate the trace of v; as (2.6). This group element 7 specifies two boundary points as
follows. In the hyperbolic space H?, we have two fixed point of this dilatation ;. To make
illustration simpler, let us map our upper half-plane to the Poincare disk. Then, these two
fixed points are antipodal points on the boundary S!. In particular, the straight line of
our interest can be uniquely extended to these two boundary points. One may see (c) of
figure 8 as a reference.

— 24 —



(a) (b) ©

Figure 8. (a) We would like to compute the length of the closed geodesic (dotted line) in the
wormhole geometry. (b) We can relate this calculation to the one in the Poincare disk. There are
two fixed points of our geodesics and these correspond to the fixed points of a group element ~. (c)
We can diagonalize v or equivalently we can move these two points to antipodal points. Then, our
calculation of closed geodesics reduce to the calculation of the Tr+y.

Having this fact in mind, let us start from a given closed geodesics constructed from the
Poincare disk and its identification. (One may refer to (a) and (b) of figure 8.) Then, we
can extend our geodesics anchored on the bulk points to the one anchored on two boundary
points. Notice that this specification of boundary points should determine the correspond-
ing group element, say -y, as we can always diagonalize it. Thanks to the isometry of AdS,
we can map these boundary fixed points to antipodal ones as like the BTZ example. After
all, our calculation reduces to the previous BTZ calculation, thus (2.7) holds.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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