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Abstract This work is devoted to investigate some of the
interior configuration of static anisotropic spherical stellar
charged structures in the regime of f (G) gravity, where G
is the Gauss Bonnet invariant. The structure of particular
charged stars is analyzed with the help of solution obtained by
Krori and Barua under different viable models in f (G) grav-
ity theory. The behavior of some physical aspects is investi-
gated with the help of plots and the viability of our modeling
is analyzed through different energy conditions. We have
also studied some behavior of these realistic charged com-
pact stars and discuss some aspects like density variation,
evolution of stresses, different forces, stability of these stars,
measure of anisotropy, equation of state parameters and the
distribution of charges.

1 Introduction

Despite of the great, well established and successful theory,
the general theory of relativity, in the past century, numerous
valuable modifications are being suggested by researchers. In
these modification, the Ricci scalar is replace by some arbi-
trary function, like f (R) in which R is Ricci scalar, f (G),
where G in Gauss–Bonnet invariant and many others as dis-
cussed in Refs. [1–9].

The expansion of the universe is the remarkable phe-
nomenon which is being addressed by these modified theo-
ries [10]. The well-established fact is, the accelerated expan-
sion of universe cannot be explaining by GR alone in its
regular arrangement without adding extra term in the grav-
itational Lagrangian or exotic matter [11,12]. The simplest
modification was given by Buchdal in 1970 [13] with the
help of replacement of R by f (R) arbitrary function of
R in the Hilbert–Einstein gravitational action. In literature,
lot of information regarding modified theories of gravity is
available [14–20]. One of the well-known modified theory is,
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Gauss Bonnet gravity, which has been studied many times
in the recent past years [22,23]. In this modified gravity, the
Hilbert–Einstein action consist of a function f (R,G) instead
ofR. This is one of the fact that the additional Gauss–Bonnet
term resolve the shortcomings of f (R) gravity theory in the
background of large expansion of universe [21–25]. The sim-
plest form of f (R,G) modified gravity is the f (G) gravity
which is widely addressed and can reproduce any kind of
cosmological solutions.

Like, it could help out in the possible study of an accel-
eration regimes, and their transition to decelerated regimes,
inflationary epoch and passes all tests evoked by solar sys-
tem experiments and crossing phantom divide line [26,27].
The f (G) gravity is less constrained than f (R) gravity as
discussed in [28]. In addition, the f (G) gravity offer an effi-
cient platform to analyze several cosmic issues as an alter-
nate to dark energy [29]. similarly, the f (G) gravity is very
supportive to study the behavior of finite time future singu-
larities along with late time eras of an accelerating universe
[30,31]. Furthermore, in the background of some viable mod-
els in f (G) gravity, the cosmic accelerating nature followed
by matter era is also studied [28,29]. Several viable f (G)

gravity models were suggested for the purpose to pass some
certain solar system constraints [28,29] which are studied in
[32] and further bounds on f (G) gravity models may develop
from the behavior of energy conditions [33–35].

Observations of compact objects like pulsars, neutron stars
and black holes have attracted the researchers towards the
useful physical modeling stuff based on highly precise obser-
vational data instead of just finding the mathematical expe-
ditions [36].

Recently, some of the physical properties of different
strange compact stars were studied in the framework of dif-
ferent modified gravity theories and it was concluded that
all these strange stars under consideration are stable, mat-
ter content is realistic and obeys all the energy conditions
[37–39]. In favor of modeling static objects, supposition
of spherical symmetry geometry is very useful and natural
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while there are more options in the choice of matter content.
In past, many researchers focused their attention on perfect
fluid matter content. While fluids with viscosity and pressure
anisotropic fluids have also been studied and concluded that
the anisotropy disturb the stability of the configuration rela-
tive to local isotropic case. Furthermore, the effects of local
anisotropy have been elaborated with the help of equation of
state [40]. Therefore it looks suitable to deal the anisotropic
pressure with modified gravity models. Some of the physical
properties of compact stars have been studied in the presence
of pressure anisotropy and charge [41–44].

The aim of this research work is to investigate the role
of f (G) gravity models in modeling of realistic charged
compact stellar structures. We investigate the different struc-
tural properties, like evolution of charged matter density
and anisotropic pressure, the Tolman–Oppenheimer–Volkoff
equation, the stability, the equation of state parameters as well
as the different energy conditions, for different observational
data of compact stars. This paper is design as, in a very next
section, we discuss the modified f (G) gravity with charged
anisotropic matter distribution of the static spherically sym-
metric geometry. In Sect. 3, we demonstrate some of viable
f (G) gravity models. Section 4 is dedicated to check the
physical analysis and viability of different well known com-
pact stars through plots. And finally, we summarize the main
results in last section.

2 f (G) gravity

This section is to provide the extended version of Gauss–
Bonnet gravity with its equations of motion. For f (G) grav-
ity, the usual Einstein–Hilbert action is modified as follows

S =
∫

d4x
√−g

[R
2

+ f (G)

]

+ Sm
(
gμν, ψ

) + Se
(
gμν, ψ

)
, (1)

where κ2 = 8πG ≡ 1, R, f, Sm(gμν, ψ), Se(gμν, ψ) are
the Ricci scalar, arbitrary function of Gauss–Bonnet invari-
ant, the matter action and the charged action ,respectively.
The Gauss–Bonnet invariant quantity is

G = R2 − 4RμνR
μν + Rμναβ R

μναβ, (2)

where Rμν , Rμναβ are the Ricci and the Riemannian tensors.
Upon varying the above action with respect to gμν , we get
the modified field equations for f (G) gravity as

Rμν − 1

2
Rgμν = T eff

μν , (3)

where T eff
μν is named as effective stress-energy tensor with its

expression as follows

T eff
μν = κ2(Tμν + Eμν) − 8

[
Rμρνσ + Rρνgσμ − Rρσ gμν

− Rμνgρσ + Rμσ gνρ

+ 1

2
R(gμνgρσ − gμσ gνρ)

] ∇ρ∇σ fG

+ (G fG − f ) gμν, (4)

where subscriptG defines the derivation of the corresponding
term with the GB term, while Tμν is the usual stress energy
momentum tensor and

Eμν = gμμ

2

[
−FμαFαν + 1

4
δμ
ν F

αβFαβ

]
(5)

2.1 Anisotropic matter distribution in f (G) gravity

Here, we wish to examine the effects of anisotropic stresses
over the stability of compact charged stars. For this pur-
pose, we take the distribution of matter content source to be
anisotropic having the following mathematical formulation

Tαγ = (ρ + Pr )VαVγ − Pt gαγ + �UαUγ , (6)

where ρ is fluid energy density, Pt is tangential pressure
component, Pr is radial pressure component and � is equal
to Pr − Pt . Furthermore, Vγ and Uγ are four velocity and
four vector of the fluid, respectively. These quantities obey
V γ Vγ = 1 and UαUα = − 1 relation under the comoving
coordinate system,.

Now, we suppose the interior relativistic structure to be
static and spherical symmetric everywhere. In this direction,
we take the general line element static spherical symmetric
geometry as following

ds2 = ea(r)dt2 − eb(r)dr2 − r2
(
dθ2 + sin2θdφ2

)
, (7)

Where a and b are arbitrary constant. Now by solving the
field equations (3), we get

ρ + E2 = 1

2r2 e−2b
[
−2eb + 2e2b − e2b f r2 + e2br2 fGG

+ 2b′(ebr − 2(eb − 3) fG
′) − 8 fG

′′ + 8 eb fG
′′],

(8)

pr − E2 = e−2b

2r2

[
eb(2 + eb(r2 f − 2)) − e2br2 fGG

+ 2a′(ebr − 2(eb − 3) fG
′)
]
, (9)

pt + E2 = 1

4r
e−2b

[
−2e2br fGG + a′2(ebr + 4 fG

′)

+ 2(e2br f − ebb′ + (ebr + 4 fG
′)a′′)
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+a′(−b′(ebr + 12 fG
′) + 2(eb + 4 fG

′′))
]
.

(10)

Here, E2 = Q2

8πr4 . We suppose a = r2B+C and b = r2A
as suggested by Krori and Barua [45], here A, B and C are
the arbitrary constant. Using these definitions, we reach at

ρ = 2Ae−Ar2 − f

2
+ 1

r2 − e−Ar2

r2 + 1

2
fGG − Q2

8πr4

+ 12Ae−2Ar2
fG ′

r

− 4Ae−Ar2
fG ′

r
− 4e−2Ar2

fG ′′

r2 + 4e−Ar2
fG ′′

r2 , (11)

pr = 2Be−Ar2 + f

2
− 1

r2 + e−Ar2

r2 − 1

2
fGG + Q2

8πr4

+ 12Be−2Ar2
fG ′

r
− 4Be−Ar2

fG ′

r
, (12)

pt = 2Be−Ar2 − Ae−Ar2 + f

2
− ABe−Ar2

r2

+ B2e−Ar2
r2 − 1

2
fGG − Q2

8πr4

+ 4Be−2Ar2
fG ′

r
− 12ABe−2Ar2

r fG
′

+ 4B2e−2Ar2
r fG

′ + 4Be−2Ar2
fG

′′ (13)

We will use these equations with different models. Here,
we see charge contribute in ρ, pr and pt . Now consider the
quark matter EoS

pr = 1

3

[
ρ − 4Bg

]
(14)

where Bg is bag constant. Using this equation, we find the
expression for charge, read as

Q = 2e−Ar2√
πr

[
e2Ar2

(2 − 2Bgr2 + r2(− f + G f ′))

+ 2 f ′′(3(A − 3B)rG′ − G′′)
− 2G′2 f (3) + eAr

2
(−2 + (A − 3B)r2

+ 2 f ′′(− (A − 3B) rG′ + G′′) + 2G′2 f (3))
] 1

2

(15)

The expression for Q contain a square-root which means
both sign for charge are acceptable but we will consider the
positive sign of charge for further investigation.

3 Matching condition and different models

In this section, we consider a hypersurface � that is a bound-
ary of both exterior and interior regions. Furthermore, we

suppose Reissner–Nordstrm metric for the description of
exterior geometry, written as

ds2 =
[

1 − 2m

r
+ Q2

r2

]
dt2 −

[
1 − 2m

r
+ Q2

r2

]−1

dr2

− r2
(
dθ2 + sin θ2dϕ2

)
, (16)

where m, r and Q is the mass, radius and charge, respec-
tively. The interior of given metric in Eq. (7) for the charged
fluid distribution join smoothly with the above exterior
of Reissner–Nordstrm metric. By matching the these two
geometries at r = R and m(R) = M , we get

A = − 1

R2 ln

[
1 + Q2

R2 − 2M

R

]
, (17)

B =
(
M

R3 + Q2

R4

)[
1 + Q2

R2 − 2M

R

]−1

, (18)

C = ln

[
1 + Q2

R2 − 2M

R

]

−
(
M

R
− Q2

R2

) [
1 + Q2

R2 − 2M

R

]−1

. (19)

We find the numerical values of these constat for three
different strange compact physical stars as shown in Table 1.
Furthermore, we will take some of the viable models for the
study of different compact star properties like the stability
analysis energy conditions etc As

f (G) = fi (G)

where we will take three different models i = 1, 2, 3

3.1 Model 1

First, we assume the power-law model with the additional
logarithmic correction term [46]

f1 = α1Gn1 + β1G log(G), (20)

where α1, n1 and β1 are arbitrary constants. This model
could provide observationally well-consistent cosmic results
because of its extra degrees of freedom allowed in the dynam-
ics.

3.2 Model 2

Next, we take another model having the form [47]

f2 = α2Gn2
(
β2Gm + 1

)
, (21)

where α2, β2 and m are any constant number, while n2 > 0.
This model is very helpful for the treatment of finite time
future singularities.
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Table 1 The approximate values of the masses, radii and compactness for charged compact stars, Vela X-1, SAXJ 1808.4-3658, and 4U 1820-30
and their numerical values of the constants A, and B

Compact stars M R (km) μM = M
R A B μC = Q2

R2

Vela X-1 (CS1) 1.77M� 9.56 0.273091 0.00832706 0.00608302 0.0133624

SAXJ1808.4-3658 (CS2) 1.435M� 7.07 0.299 0.0169456 0.0127081 0.0266898

4U1820-30 (CS3) 2.25M� 10 0.332 0.00760739 0.00555676 0.0133208

Table 2 The approximate values of the constant Bg for the three dif-
ferent stars under three different models

Models Bg for CS1 Bg for CS2 Bg for CS3

Model 1 0.00336605 0.00635613 0.00307594

Model 2 0.00336605 0.006356117 0.003075942

Model 3 0.00336603 0.006355635 0.003075926

3.3 Model 3

Further, we assume another viable model of the form

f3 = a1Gn3 + b1

a2Gn3 + b2
, (22)

here a1, a2, b1, b2 and n3 are arbitrary constants with n3 > 0.
From the condition pr (R) = 0, We find the value of Bg

as shown in Table 2.
Using these model with Eqs. (11–13), we get ρ, pr and pt

from which we check the different aspect of compact stars
as shown in Table 1. We will discuss these aspect one by one
in the following section.

4 Aspects of f (G) gravity models

In this section, we discuss some of physical aspects of the
above charged stars from the interior solution. We present
the anisotropic behavior and stability of these charged stars
under consideration of three different f (G) viable models.
We discuss these aspects one by one in following

4.1 Variation of energy density and anisotropic stresses

We study the influence of quark matter EoS with the
anisotropic stresses at the center with modified f (G) grav-
ity models. The corresponding variations in the vicinity of
energy density along with anisotropic stresses are shown in
Figs. 1, 2 and 3, respectively.

The evolution of the density for the strange star candidate
Vela X-1, SAX J 1808.43658, and 4U 1820-30 are shown in
Fig. 1. Here, for r → 0, the density goes to its maximum
value. In fact, this indicates the high compactness of the core

of these stars and validating our models in f (G) gravity under
investigation for the outer region of the core.

In case of model 1: The density at core of Vela X-1
is 1.33881 × 1015 g cm−3, the density at core of SAX J
1808.43658 is 2.72436 × 1015 g cm−3, while 4U 1820-30
having density at core is 1.223106 × 1015 g cm−3.

Furthermore, the surface density of Vela X-1 under model
1 is 7.215861 × 1014 g cm−3, SAX J 1808.43658 hav-
ing 1.362573 × 1015 g cm−3, while 4U 1820-30 having
6.593945 × 1014 g cm−3.

The Central and surface density of these stars for different
models are shown in Table 3.

Similarly, the variation of the radial and traverser pres-
sure,are shown in Figs. 2, 3.

The behavior of radial pressure is, for r → 0, the radial
pressure 1.849116 × 1035 g cm−1 s−2 for Vela X-1 under
model 1. SAX J 1808.43658 having 4.0796995 × 1035 g
cm−1 s−2 at core and in case of 4U 1820-30, the radial pres-
sure at core is 1.688794 × 1035 g cm−1 s−2.

The transverse pressure in consideration of model 1,
For Vela X-1, the transverse pressure is 1.84911386 ×
1035 g cm−1 s−2, for SAX J 1808.43658 is 4.0795867 ×
1035 g cm−1 s−2 while for 4U 1820-30 is 1.6887926204 ×
1035 g cm−1 s−2.

The variation of radial derivative of density, dρ
dr , radial

derivative of radial pressure, dpr
dr , and radial derivative of

transverse pressure, dpt
dr are shown in Figs. 4, 5 and 6 respec-

tively.
We see that these variations are negative and for r = 0,

we get

dρ

dr

∣∣∣∣
r=0

= 0

d pr
dr

∣∣∣∣
r=0

= 0

which is expected. e.g. central density of stars ρ(r = 0) =
ρc.

4.2 Energy conditions

To deal with a physically viable and acceptable matter field,
there are some mathematical constraints which should be
obeyed by stress-energy tensor, these constraints are known
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Fig. 1 Variation of density profile for charged stars, Vela X-1, SAX J 1808.4-3658, and 4U 1820-30, under different viable f (G) models

Fig. 2 Evolution of radial pressure for charged stars, Vela X-1, SAX J 1808.4-3658, and 4U 1820-30, under different viable f (G) models

Fig. 3 Evolution of transverse pressure for charged stars, Vela X-1, SAX J 1808.4-3658, and 4U 1820-30, under different viable f (G) models

Table 3 The approximate
values of Central density ρc and
surface density ρR for three
different models

Density of Stars Model 1 Model 2 Model 3

Vela X-1 ρc (g cm−3) 1.33881 × 1015 1.33881 × 1015 1.33904 × 1015

Vela X-1 ρR (g cm−3) 7.21586 × 1014 7.21586 × 1014 7.21581 × 1014

SAX J 1808.43658 ρc (g cm−3) 2.72436 × 1015 2.72449 × 1015 2.72857 × 1015

SAX J 1808.43658 ρR (g cm−3) 1.36257 × 1015 1.36257 × 1015 1.36247 × 1015

4U 1820-30 ρc (g cm−3) 1.22311 × 1015 1.22311 × 1015 1.22327 × 1015

4U 1820-30 ρR (g cm−3) 6.59394 × 1014 6.59394 × 1014 6.59391 × 1014

Fig. 4 Evolution of dρ/dr for charged stars, Vela X-1, SAX J 1808.4-3658, and 4U 1820-30, under different viable f (G) models

Fig. 5 Evolution of dpr/dr for charged stars, Vela X-1, SAX J 1808.4-3658, and 4U 1820-30, under different viable f (G) models
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Fig. 6 Evolution of dpt/dr for charged stars, Vela X-1, SAX J 1808.4-3658, and 4U 1820-30, under different viable f (G) models

Fig. 7 Different energy conditions for Model 1

as energy conditions. These energy conditions are coordinate
invariant and can be written as following.

• NEC: ρ + pi ≥ 0 .
• WEC: ρ ≥ 0, ρ + pi ≥ 0 .
• SEC: ρ + pi ≥ 0, ρ + pi + pt ≥ 0 .
• DEC: ρ ≥ |pi | .

Here i = r, t and ρ, pr and pt include electric charge
contributions as well.

All these above energy conditions for three different
charged compact relativistic structures are well satisfied
under consideration of different viable f (G) gravity models.
The evolution of these energy conditions are shown graphi-
cally in Figs. 7, 8 and 9.

4.3 Equilibrium condition

To investigate the equilibrium of inner structure of these
charged compact stars, we use the generalized Tolman–
Oppenheimer–Volko (TOV) equation. For charged spherical
anisotropic stellar interior geometry, this equation is written

d pr
dr

+ ν′(ρ + pr )

2
+ 2(pr − pt )

r
+ σQ

r2 eλ/2 = 0, (23)

where σ is charge density. Furthermore, the above Eq. (23)
may be written as a sum of different forces e.g. gravitational,
hydrostatic, anisotropic and electric forces

Fg + Fh + Fa + Fe = 0, (24)

which yields

Fg = −r B(ρ + pr ), Fh = −d pr
dr

,

Fa = 2
(pr − pt )

r
, Fe = σQ

r2 eλ/2

By using these definitions with the values of different
parameters from Table 1, we check the variations of these
forces and their hydrostatic equilibrium, as shown in Fig. 10.

The left plot shows the evolution of these forces in back-
ground of first model, the middle one is for second model and
the right plot describe the variation of these forces because
of third model. It is clear from Fig. 10, that the electric force
has a very negligible effect in this balancing mechanism.

4.4 Stability analysis

In this section, we investigate the stability of the interior of
stars under modified f (G) theory. For the mathematical mod-
eling of compact stellar structures, it is to be noted that only
those stellar models are significant which are stable against
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Fig. 8 Different energy conditions for Model 2

Fig. 9 Different energy conditions for Model 3

Fig. 10 The variation of hydrostatic force (Fh), gravitational force (Fg), anisotropic force (Fa) and electric force Fe under consideration of different
viable f (G) models

the variations. Hence, the role of stability is very crucial and
burning issue in the modeling of compact objects. The stabil-
ity of stellar structure has been studied by many researches.
Here we adopt the techniques which is based on the concept
of overturning (or cracking) [48]. According to this, the radial
speed of sound v2

sr as well as transverse speed of sound v2
st

must be in the range of a closed interval [0, 1] to preserve the
causality condition and for stability the necessary condition
0 ≤ v2

sr − v2
sr ≤ 1 should be obeyed.

The radial and transverse speeds is defined as

d pr
dρ

= v2
sr

and

d pt
dρ

= v2
st
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Fig. 11 Variations of v2
st for different viable f (G) gravity models

Fig. 12 Variations of v2
st − v2

sr for different viable f (G) gravity models

Fig. 13 Variations of radial EoS parameter for different viable f (G) gravity models

In our case, v2
sr ∼ 1/3 and v2

sr is plotted in Fig. 11, which
obey the condition 0 ≤ v2

sr ≤ 1 and 0 ≤ v2
st ≤ 1 which is

the indication of causality preservation within these charged
compact stars.

Similarly, for stability, we plot v2
st − v2

sr as shown in
Fig. 12. It is to be noted that all of our charged stellar struc-
tures under consideration of different viable f (G) models
obey the constraint:

0 < |v2
st − v2

sr | < 1

We concluded that the stability is attained in f (G) gravity
models for three considered strange candidate stars, Vela X-
1, SAX J 1808.43658, and 4U 1820-30.

4.5 EoS parameter

Now for anisotropic stresses, there are two equation of state
parameters, written as

wr = pr
ρ

and

wt = pt
ρ

For a radiation dominant era, equation of state parameters
must lie between 0 and 1. More precisely, 0 < wr < 1 and
0 < wt < 1. Here, we check the evolution of EoS parameters
for three different charged stars and their behavior are shown
graphically in Figs. 13 and 14.

We can see that both wr and wt lies in given range.

4.6 Mass radius relationship, compactness and redshift
analysis

The mass of charged compact stars can be written as

m(r) =
r∫

0

4πr ′2ρdr ′ (25)

Here we know that massm is function of r andm(r = 0) = 0
while m(r = R) = M . The variation in masses of charged
compact stars are shown in Fig. 15.

We see that the mass is regular at core because it is directly
proportional to radial distance e.g. m(r) → 0 for r → 0.
The maximum mass is attained at r = R, as shown in fig. 15.
The mass radius relation is also compatible with the study of
neutron stars under f (G) gravity [49].

Furthermore, the compactness, μ can be define as
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Fig. 14 Variations of the transverse EoS parameter for different viable f (G) gravity models

Fig. 15 Variations of the mass function for different charged compact stars

Fig. 16 Variations of the compactness for different charged compact stars

μ(r) = 1

r

r∫

0

4πr ′2ρdr ′ (26)

The compactness for three different strange stars are shown in
Fig. 16. similarly, the Redshift, Zs can be define for compact
object

Zs = (1 − 2μ)−
1
2 − 1

The bound over Zs ≤ 2. In our case, wee check the variation
in redshift from the core to surface of stars. These evolution
are shown with the help of plots, as given in Fig. 17.

4.7 The measurement of anisotropy

In modeling of relativistic stellar interior structures, it is
important to discuss the anisotropicity or anisotropy which
is defined as

� = 2

r
(pt − pr ) (27)

We check the anisotropy for three different charged strange
stars under consideration of three viable models in f (G)grav-
ity. After plugging the constant values with these models, we
plot the anisotropy and get that � > 0 e.g. pt > pr . This
implies that the anisotropy is directed outward for all three

stars. These plots are shown in Fig. 18. It is important to note
that � → 0 at r → 0 and becomes monotonically increasing
outwards with the increase of r near the surface of the star.

4.8 Electric field and charge

We observed that the electric charge on the boundary for star
1 is 6.459234 × 1020C , for star 2 6.7510838 × 1020C and
for star 3 6.7460087 × 1020C and zero at the core of these
stars under consideration of model 1. The charge profile is
monotonically increasing away from the center, as shown in
Fig. 19.

Furthermore, the electric charge density is monotonically
decreasing outward and is maximum at the center of these
stars as shown in Fig. 20.

Similarly, the behavior of electric field intensity E2 is also
discuss and their variation for different stars are shown in Fig.
21.

From these plots, we conclude that the core of these stars
contain Q(r = 0) = 0, σ(r = 0) = σ0 and E2(r = 0) = 0
while at surface of these stars Q(r = R) = Qm σ(r =
R) = 0 and E2(r = R) = E2

m where σ0, Qm and E2
m is the

maximum charge density, charge and electric field intensity.
The stellar structure formation in the background of mod-

ified gravity are comparatively higher contraction in the col-
lapsing rate of spherical systems at its initial stages unlike
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Fig. 17 Variations of the Redshift for different charged compact stars

Fig. 18 Variations of anisotropic measure � with respect to the radial

Fig. 19 Variations of electric charge Q with respect to the radial

GR. The extra curvature (non-gravitational fluid) on the exis-
tence of compact structure could lead arena of having rela-
tively more compact stars than in GR.

Similarly, the influences of these additional dark source
terms on mass radius relationships for compact stars predict
more massive relativistic systems with comparatively smaller
radii than in GR. Perhaps, the calculated apparent masses of
neutron star models in modified gravity are more massive
star with smaller radii than in GR. Such type of investigations
could provide theoretical well-consistent way to handle and
study classes of massive and super massive structures at large
scales.

5 Summary

It has been attracting challenge to find the correct model for
charged realistic geometry of interior compact objects not
only in general relativity but also in extended theories of
gravity like f (G) gravity. For this purpose, we have consid-
ered the three-different observed compact stars, labeled as
Vela X-1, SAX J 1808.4-3658, and 4U 1820-30. Our desire
is to study the real composition of these compact objects in
their central regions under consideration of three different
viable models.

We have investigated several aspects of compact stars in
the regime of f (G) gravity with the anisotropic matter con-

tent under Einstein Maxwell spacetime. We have utilized the
solutions for the metric function suggested by Krori–Barua
for a spherical compact object whose arbitrary constants are
calculated across the boundary of interior and exterior geom-
etry. The values of these arbitrary constants are determined
with the help of charge, mass, and radius of any compact
object. We have used three different strange candidate stars
with their experimental observational data to study the effects
of additional degree of freedom coming from modified grav-
ity theories. For this purpose, we used three different viable
models in f (G) gravity. By using these models along with
calculated values for three different stars, we have plotted
the relevant quantities like variation of anisotropic stress and
energy density against radial distance. It is found that the
energy density is very high at core of these stars and gradu-
ally decreases with the increasing radius, thereby indicating
the high compactness structures of these stellar interiors.

We concluded our discussion as:

• The variation in energy density and both radial as well
as transverse stress are positive throughout these charged
stars configurations.

• The radial derivative of density and anisotropic pres-
sures (dρ/dr , dPr/dr , dPt/dr ) remains negative and for
r = 0, these values vanish which confirm the density and
anisotropic stress maximum value at core.
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Fig. 20 Variations of surface charge density σ with respect to the radial

Fig. 21 Variations of electric field square E2 with respect to the radial

• All the energy conditions are well satisfied which show
the realistic matter content.

• Both the radial and transverse sound speed remains
within the bounds, which mean the causality condition
is obeyed.

• All these stars are stable.
• Both radial and transverse EoS parameters lie in the range

of 0 and 1.
• The isotropy remains positive throughout these charged

stars.
• The distribution of charges increase from central to sur-

face of stars.
• Electric field intensity is maximum at the surface of these

stars.

We see that f (G) gravity is much attractive in the study
of compact stars. In this sense, to our knowledge, the exis-
tence and study of different charged stars and particle physics
inside their highly dense cores compelled the researchers
for more genuine solutions of field equations. Similarly, the
study of compact charged stellar configuration and better
observational data on the mass radius relation have the poten-
tial to exclude a larger region of the parameter space of alter-
native theories. There is of course the possibility that the-
oretical and observational work may give us a direction on
how to modify general relativity to make it compatible with
the standard model of particle physics, which would be even
more exciting.
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