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In the conformal field theories given by the Ising and Dirac models, when the system is in the ground
state, the moments of the reduced density matrix of two disjoint intervals and of its partial transpose have
been written as partition functions on higher genus Riemann surfaces with Zn symmetry. We show that
these partition functions can be expressed as the grand canonical partition functions of the two-dimensional
two component classical Coulomb gas on certain circular lattices at specific values of the coupling
constant.
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Introduction.—Entanglement in 1þ 1 dimensional con-
formal field theories (CFT) has attracted a lot of interest
during the last two decades, allowing us to explore many-
body quantum systems at criticality and quantum gravity
through the AdS=CFT correspondence (see the reviews in
Ref. [1]). The classical Coulomb gas in two spatial
dimensions (2D) occurs in many interesting models of
statistical physics [2–5]. In this Letter we find that some
entanglement quantifiers in two 1þ 1 dimensional CFTs
can be interpreted in terms of a classical 2D Coulomb gas
on specific circular lattices.
Consider a spatial bipartition A ∪ B of a quantum system

whose Hilbert space is factorized as H ¼ HA ⊗ HB.
When the entire system is in a pure state jΨi (e.g., the
ground state), the bipartite entanglement is measured
by the entanglement entropy SA ¼ −TrðρA log ρAÞ, i.e.,
the von Neumann entropy of the reduced density matrix
ρA ¼ TrHB

jΨihΨj of the subsystem A (normalized by
TrHA

ρA ¼ 1). The entanglement entropy can be obtained
through the replica limit [6]

SA ¼ −∂nTrρnAjn¼1; ð1Þ

which requires the analytical continuation in n of the
moments TrρnA of ρA, defined for integer n⩾2. The replica
limit (1) can be written also in terms of the Rényi entropies

SðnÞA ¼ ½1=ð1 − nÞ� log TrρnA as SA ¼ limn→1S
ðnÞ
A .

When the subsystem A ¼ A1 ∪ A2 is the union of two
disjoint regions A1 and A2, its reduced density matrix ρA
describes a mixed state whose bipartite entanglement can
be evaluated by the logarithmic negativity E ¼ log TrjρT2

A j
[7]. This entanglement quantifier requires us to evaluate
the trace norm of the partial transpose ρT2

A , normalized
by TrρT2

A ¼ 1, whose matrix elements are defined as

heð1Þi eð2Þj jρT2

A jeð1Þk eð2Þl i ¼ heð1Þi eð2Þl jρAjeð1Þk eð2Þj i, with jeð1Þi i
and jeð2Þi i being bases for the Hilbert spaces HA1

and
HA2

, respectively. The logarithmic negativity E can be
found also through the following replica limit [8]:

E ¼ lim
ne→1

log TrðρT2

A Þne ; ð2Þ

where the analytic continuation involves the moments
TrðρT2

A Þn having even n ¼ ne.
In the case of a 1þ 1 dimensional CFTon the line and in

its ground state, the moments TrρnA and TrðρT2

A Þn with
integer n⩾2 are insightful entanglement quantifiers
because they encode all the CFT data of the model
[8–11]. They can be obtained as the partition functions
of the CFT on genus g ¼ n − 1 Riemann surfaces with Zn
symmetry [8,10–12]. Analytic expressions for TrρnA and
TrðρT2

A Þn have been found only for a few models (the
compact massless boson, the critical Ising model and the
massless Dirac model) [8,10,11,13,14]. However, since
these formulas have a nonalgebraic form, the replica limits
(1) and (2) for a generic configuration of the two intervals
are very challenging (see Ref. [15] for numerical
extrapolations).
In this Letter we express the analytic formulas for the

moments TrρnA and TrðρT2

A Þn in algebraic form for the
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critical Ising model and the massless Dirac model. This is a
useful step towards the analytic continuations (1) and (2).
Furthermore, we relate the resulting expressions to the 2D
Coulomb gas model on specific lattices.
The two component classical 2D Coulomb gas is a

neutral mixture of point particles with positive and negative
charge�q. Their interaction potential, repulsive (attractive)
for particles with the same (opposite) charges, is propor-
tional to q2 logðd=aÞ, where d is the distance between the
particles and a is some length scale [2,4]. At inverse
temperature β, the dimensionless coupling constant in the
Boltzmann factor is Γ ¼ βq2 and the model exhibits a
Kosterlitz-Thouless phase transition at Γc ¼ 4 [16]. The
necessity to introduce a short range repulsion led to studies
of the 2D Coulomb gas also on certain lattices [17–19].
When Γ ¼ 2, the model is solvable [17,20].
We find that the moments TrρnA and TrðρT2

A Þn for the
Ising and Dirac models can be written as the grand
canonical partition functions of the two-component
classical 2D Coulomb gas on certain circular lattices at
specific values of Γ, which are Γ ¼ 1=2 for the Ising
model and Γ ¼ 1 for the Dirac model. The 2D Coulomb
gas model corresponding to the Rényi entropies is very
similar to the lattice discretization [18] of the Coulomb
gas originally introduced to study the simplest Kondo
problem [21].
Entanglement of two disjoint intervals in CFT.—In a 1þ

1 dimensional CFT on the line and in the ground state,
A ¼ A1 ∪ A2, where A1 ¼ ðu1; v1Þ and A2 ¼ ðu2; v2Þ with
u1 < v1 < u2 < v2. The moments TrρnA and TrðρT2

A Þn
contain all the CFT data of the model (the central charge
c, the conformal spectrum, and the OPE coefficients)
[8–11]. They can be obtained as the four-point functions
TrρnA ¼ hT nðu1ÞT̄ nðv1ÞT nðu2ÞT̄ nðv2Þi and TrðρT2

A Þn ¼
hT nðu1ÞT̄ nðv1ÞT̄ nðu2ÞT nðv2Þi on the sphere of the twist
fields T n and of their conjugate fields T̄ n. The ordering of
the fields given by the sequence of the end points is crucial.
The global conformal invariance on the sphere leads to
[8,10,11]

TrρnA ¼ c2nP
2Δn
A RnðxÞ; TrðρT2

A Þn ¼ c2nP
2Δn
A N nðxÞ; ð3Þ

where Δn ¼ ðc=12Þ½n − ð1=nÞ� is the scaling dimension
of the twist fields, cn is a constant, x ¼ ðu1 − v1Þ
ðu2 − v2Þ=½ðu1 − u2Þðv1 − v2Þ� is the harmonic ratio of
the end points of the two intervals, and PA ¼
1=½ðv1 − u1Þðv2 − u2Þð1 − xÞ�. We remark that x ∈ ð0; 1Þ.
The functions RnðxÞ and N nðxÞ originate from the same
function F nðzÞ with z ∈ C as follows

RnðxÞ ¼ F nðxÞ; N nðxÞ ¼ ð1− xÞ4ΔnF n

�
x

x− 1

�
: ð4Þ

Equivalently, the moments in Eq. (3) can be evaluated as
the partition functions of the CFT on the one-parameter

family of Riemann surfaces defined by the complex
curve

C ¼ fðλ; μÞ ∈ C2jμn ¼ λðλ − 1Þðλ − zÞn−1g; ð5Þ

where z ∈ Cnf0; 1g. These Riemann surfaces have Zn
symmetry and genus g ¼ n − 1. To determine TrρnA and
TrðρT2

A Þn, we have to consider the Riemann surfaces
corresponding to z ¼ x and z ¼ x=ðx − 1Þ, respectively.
The period matrix τnðzÞ of the curve C with respect to a

given canonical homology basis takes the form [8,10]

τnðzÞi;j ¼
2

n

Xn−1
k¼1

sinðπk=nÞτk=nðzÞ cos½2πkði − jÞ=n�; ð6Þ

where τpðzÞ ¼ i 2F1ðp;1−p; 1; 1− zÞ=2F1ðp;1−p; 1; zÞ,
with 2F1ða; b; c; zÞ being the hypergeometric function. The
Riemann theta functionΘ½e�(τnðzÞ)with characteristic et ¼
ðδt; εtÞ ∈ C2ðn−1Þ is defined as [22]

Θ½e�(τnðzÞ) ¼
X

m∈Zn−1

eiπðmþεÞtτnðzÞðmþεÞþ2πiðmþεÞtδ: ð7Þ

We focus on the CFTs given by the Ising model and the
Dirac model, whose central charges are c ¼ 1=2 and c ¼ 1,
respectively. By employing some results about CFTs of
orbifolds and on higher genus Riemann surfaces [23], it
was found that F nðzÞ in Eq. (4) is [8,10,11,13,14]

F nðzÞ ¼
1

2n−1

X
e

����Θ½e�(τnðzÞ)Θ½0�(τnðzÞ)
����
2γ

; ð8Þ

where γ ¼ 1=2 for the Ising model and γ ¼ 1 for the Dirac
model, and the sum runs over all half-integer characteristics
et ¼ ðδt; εtÞ, namely, δj; εj ∈ f0; 1

2
g. The sum in Eq. (8)

contains 1
2
ð2nn Þ terms because the Riemann theta function

(7) is nonvanishing only for the 1
2
ð2nn Þ nonsingular even

half-integer characteristics [22].
Since the ground state is pure, SðnÞA ¼ SðnÞB , which leads to

Rnð1 − xÞ ¼ RnðxÞ. This relation is found also from the
modular invariance of the partition function [10,11].
The fermionic model obtained by taking only the term
with e ¼ 0 in (8), which is not modular invariant, has also
been explored [24].
The CFT formulas for TrρnA and TrðρT2

A Þn resulting from
Eqs. (3), (4) and (8) with either γ ¼ 1=2 or γ ¼ 1 have been
checked through numerical analyses for the critical Ising
chain and for the XX chain at the critical point, respectively
[25,26]. Finding the analytic continuations required by the
replica limits (1) and (2) with the expression (8) for any
x ∈ ð0; 1Þ is a very challenging task [11,27]. Numerical
extrapolations have been studied [15].
Hyperelliptic covering and Thomae formula.—In this

section we reduce the expression of F n in Eq. (8) to an
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algebraic expression in z by applying the Thomae formula
for hyperelliptic curves. A hyperelliptic curve of genus
n − 1 has the form ν2 ¼ PnðwÞ, where PnðwÞ is a poly-
nomial of degree 2n and ν; w ∈ C. In 1870 Thomae [28]
showed that, for hyperelliptic curves, the Riemann theta
function (7) with ej ∈ f0; 1

2
g, j ¼ 1;…; 2n − 2, is propor-

tional to an algebraic expression in terms of the zeros of the
polynomial PnðwÞ.
We first recognize that, under the change of coordinates

given by w ¼ μ=ðλ − zÞ and ν ¼ ðλ2 − 2λzþ zÞ=ðz − λÞ,
the curve (5) becomes hyperelliptic [12]

Chyp ¼ fðw; νÞ ∈ C2jν2 ¼ w2n þ 2ð1 − 2zÞwn þ 1g: ð9Þ

The zeros of the polynomial w2n þ 2ð1 − 2zÞwn þ 1 are

w�
j ðzÞ¼ ξ�n ðzÞe

2πij
n ; ξ�n ðzÞ¼ð ffiffiffi

z
p � ffiffiffiffiffiffiffiffiffi

z−1
p Þ2=n; ð10Þ

where 1⩽j⩽n. We remark that ξþn ðzÞξ−n ðzÞ ¼ 1. The points
w�
j define the circular lattice Iþ

0 ∪ I−
0 in the plane, where

I�
0 ¼ fw�

j ¼ e2πij=nξ�n ðzÞ; 1⩽j⩽ng: ð11Þ

For the Rényi entropies, z ¼ x ∈ ð0; 1Þ, hence jξþn ðxÞj ¼
1 and the points w�

j ðxÞ lie on the unit circle. In this case the
sublattices Iþ

0 and I−
0 are interwoven along the unit circle

and the harmonic ratio x parameterizes their angular
separation (see Fig. 1, left panel). Moreover, we have that
ξþn ð1 − xÞ ¼ eiπ=nξ−n ðxÞ.
Considering the moments TrðρT2

A Þn, by setting
z ¼ x=ðx − 1Þ in Eq. (10) one finds ξþn (x=ðx − 1Þ) ¼
ð ffiffiffi

x
p þ 1=

ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p Þ2=neiπ=n; hence in this case the harmonic
ratio x parameterizes the radial separation between Iþ

0 and
I−
0 (see Fig. 1, right panel).
An appropriate choice of the homology basis of the

Riemann surface of the curve Chyp provides the period
matrix of the surface in the form (6) [12,29]; hence Eq. (8)
can also be associated to the hyperelliptic curve (9).
For hyperelliptic curves, the nonsingular even half

integer characteristics e are in one-to-one correspondence
with the elements of the set Pn of partitions of the branch
points (10) into two subsets of cardinality n [22]. For our
choice of the homology basis of Chyp and the base point of
the Abel map, the characteristic e ¼ 0 corresponds to
the partition fIþ

0 ; I
−
0 g, with I�

0 defined in Eq. (11). A
correspondence between the characteristics e and the terms
occurring in TrρnA and TrðρT2

A Þn for the critical Ising chain
and the XX chain at the critical point has been also
discussed [26].
The Thomae formula [28] expresses the Riemann theta

functions with nonsingular half-integer characteristics in
Eq. (7) as a function of the branch points of the
hyperelliptic curve (9). Generalizations appeared in
Refs. [30–32]. The crucial observation that the curve (5)

has the hyperelliptic cover (9) is essential to apply the
original Thomae formula. For example, jΘ½0�(τnðzÞ)j4 ¼
CjΔðIþ

0 ÞΔðI−
0 Þj, where C is a constant (irrelevant for our

purpose) and

ΔðIþ
0 Þ ¼

Y
i<j

ðwþ
i − wþ

j Þ

is the Vandermonde determinant of the points in Iþ
0 , and

similarly for ΔðI−
0 Þ. For any partition fIþ; I−g ∈ Pn, we

denote by ΔðI�Þ the Vandermonde determinant of the
points contained in I� and by e the even half-integer
characteristic associated to the partition fIþ; I−g. Then the
Thomae formula gives

jΘ½e�(τnðzÞ)j4 ¼ CjΔðIþÞΔðI−Þj; ð12Þ
where the constant C is independent from e. The Thomae
formulas (12) allow us to write Eq. (8) as

F nðzÞ ¼
1

2n−1

X
fIþ;I−g∈Pn

����ΔðI
þÞΔðI−Þ

ΔðIþ
0 ÞΔðI−

0 Þ
����
γ=2

: ð13Þ

Notice that jΔðIþ
0 ÞΔðI−

0 Þj ¼ nn. Now F nðzÞ has an
algebraic dependence in z. This significantly simplifies
both the numerical evaluation of the moments for large n
and the analysis of their short length expansions [11].
A 2D Coulomb gas in circular lattices.—Denote

by fIþ
r ; I−

r g ∈ Pn the partition obtained from fIþ
0 ; I

−
0 g

by exchanging r elements between Iþ
0 and I−

0 . For each
r < n=2 there is an equal partition of the form
fIþ

n−r; I−
n−rg. Given 0⩽r⩽n, the number of partitions of

the form fIþ
r ; I−

r g is dn;rðnrÞ2, where dn;r ¼ 1 − 1
2
δr;n=2,

thus the cardinality of Pn is 1
2
ð2nn Þ ¼ 1

2

P
n
r¼0 ðnrÞ2 ¼Pbn=2c

r¼0 dn;rðnrÞ2. Let us introduce

F n;rðzÞ ¼
1

dn;rnnγ=2
X

fIþ
r ;I−

r g∈Pn

jΔðIþ
r ÞΔðI−

r Þjγ=2: ð14Þ

Since F n;rðzÞ ¼ F n;n−rðzÞ, the sum (13) becomes

FIG. 1. Lattices Iþ
0 (red circles) and I−

0 (blue circles) in
Eq. (11) for TrρnA (left) and TrðρT2

A Þn (right), when n ¼ 9 and
x ¼ 0.2 (in both panels the unit circle is indicated by the
dashed line).

PHYSICAL REVIEW LETTERS 127, 141605 (2021)

141605-3



F nðzÞ ¼
1

2n

Xn
r¼0

F n;rðzÞ ¼
1

2n−1

�
1þ

Xbn=2c
r¼1

dn;rF n;rðzÞ
�
;

ð15Þ
where we used F n;0ðzÞ ¼ 1.
After some nontrivial algebra [29], we find that Eq. (14)

can be written as

F n;rðzÞ ¼
���� ζðzÞn

����
γrX

iðrÞ

X
jðrÞ

jDn;rðz; i; jÞjγ; ð16Þ

where ζðzÞ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp ¼ −iðξþn ðzÞn − ξ−n ðzÞnÞ and

Dn;rðz; i; jÞ ¼
Q

1⩽a<b⩽rðwþ
ib
− wþ

ia
Þðw−

jb
− w−

ja
ÞQ

r
a;b¼1ðwþ

ia
− w−

jb
Þ : ð17Þ

In (16), the sum over iðrÞ is defined as the multiple sum
over the r-dimensional vectors i made by integers ia such
that 1⩽i1 < i2 < … < ir⩽n, and similarly for the sum
over jðrÞ. These multiple sums can be taken over 1⩽ia⩽n
and 1⩽jb⩽n, introducing also a multiplicative factor
1=ðr!Þ2. The Cauchy’s double alternant formula allows
us to write Eq. (17) as a single determinant. Notice that the
numerator of Eq. (17) is independent of z.
From Eqs. (15), (16), and (17) we recognize that

2nF nðzÞ is the grand canonical partition function of the
2D classical Coulomb gas on a lattice where the positive
and negative charges are constrained to occupy the sites of
Iþ
0 and I−

0 , respectively. Each site can be either empty or
occupied by one particle. The parameter γ is identified with
the dimensionless coupling constant Γ ¼ βq2 of the
Coulomb gas, the expression jζðzÞ=nj with λa, where λ
is the fugacity, and the integer 0⩽r⩽n with the number of
positive charges in Iþ

0 and of negative charges in I−
0 .

The Coulomb gas with Γ ¼ 1 on the circular lattice
studied in Ref. [18] is closely related to TrρnA at x ¼ 1=2 for
the Dirac model. As for the moments TrðρT2

A Þn, it can be
insightful to map the corresponding sublattices I�

0 on the
sphere through the stereographic projection [19].
For the Rényi entropies, w�

j ð1 − xÞ ¼ eπi=nw∓
j ðxÞ. This

implies that, in Eq. (16), F n;rð1 − xÞ ¼ F n;rðxÞ for any r.
Thus, we reobtained the relation Rnð1 − xÞ ¼ RnðxÞ, as
expected from the purity of the ground state and from the
modular invariance [11].
When r ¼ 1, the expression (16) can be written as

F n;1ðzÞ ¼ n
Xn
k¼1

���� ðξ
þ
n Þn − ðξ−n Þn

nðξþn − ηknξ
−
n Þ
����
γ

¼
X⌈n=2⌉
p¼1

dnþ1;pF
ðpÞ
n;1ðzÞ;

ð18Þ
where ηn ¼ e2πi=n and FðpÞ

n;1ðzÞ is defined as the sum of two
summands with k ¼ p and k ¼ n − pþ 1. We remark that,

considering the Rényi entropies, we have FðpÞ
n;1ð1 − xÞ ¼

FðpÞ
n;1ðxÞ for any 1⩽p⩽⌈n=2⌉.

The large n limit, which allows us to study the largest
eigenvalues of ρA and ρT2

A , can be explored through the
Coulomb gas in the continuum, also by employing its
equivalence with the sine-Gordon model [2,5]. For in-
stance, when γ < 1, the leading order of Eq. (18) as n → ∞
is n2−γjζðzÞjγΓð1 − γÞ=Γð1 − γ=2Þ2, in agreement with
Ref. [33].
Special cases.—When n ¼ 2, the tori occurring in TrρnA

and TrðρT2

A Þn are equivalent because their modular para-
meters are related through a modular transformation [8]. In
this case, the last expression in Eq. (15) contains only the
term (18) specified to n ¼ 2 and Eq. (4) becomes

R2ðxÞ ¼ N 2ðxÞ ¼
1

2
f1þ xγ=2 þ ð1 − xÞγ=2g;

which is invariant under x ↔ 1 − x, as expected.
When n ¼ 3, the genus two Riemann surfaces for TrρnA

and TrðρT2

A Þn are not equivalent. Also in this case only (18)

contributes to F 3ðzÞ ¼ 1
4
½1þ Fð1Þ

3;1ðzÞ þ Fð2Þ
3;1ðzÞ� with

Fð1Þ
3;1ðzÞ ¼

3

3γ
½jðξþ3 − ξ−3 Þðξþ3 − η23ξ

−
3 Þjγ

þ jðξþ3 − η3ξ
−
3 Þðξþ3 − η23ξ

−
3 Þjγ�

Fð2Þ
3;1ðzÞ ¼

3

3γ
jðξþ3 − ξ−3 Þðξþ3 − η3ξ

−
3 Þjγ:

In the case of n ¼ 4, the genus three Riemann surfaces
for TrρnA and TrðρT2

A Þn are not equivalent too. The last
expression in Eq. (15) becomes

F 4ðzÞ ¼
1

23

�
1þ F 4;1ðzÞ þ

F 4;2ðzÞ
2

�
;

where F 4;1ðzÞ is Eq. (18) specialized to n ¼ 4 and

F 4;2ðzÞ ¼
16jζðzÞjγ

8γ

�
2

γ
2 þ Fð1Þ

4;2ðzÞ
8

þ Fð2Þ
4;2ðzÞ þ Fð3Þ

4;2ðzÞ
4

�

with

Fð1Þ
4;2ðzÞ ¼

���� 2ζðzÞ
ðξþ4 − ξ−4 Þ2ðξþ4 − η24ξ

−
4 Þ2

����
γ

þ
���� 2ζðzÞ
ðξþ4 − η4ξ

−
4 Þ2ðξþ4 − η34ξ

−
4 Þ2

����
γ

and

Fð2Þ
4;2ðzÞ ¼

���� ξþ4 − ξ−4
ξþ4 − η24ξ

−
4

����
γ

þ
���� ξ

þ
4 − η4ξ

−
4

ξþ4 − η34ξ
−
4

����
γ

Fð3Þ
4;2ðzÞ ¼

���� ξ
þ
4 − η24ξ

−
4

ξþ4 − ξ−4

����
γ

þ
���� ξ

þ
4 − η34ξ

−
4

ξþ4 − η4ξ
−
4

����
γ

:

When z ¼ x ∈ ð0; 1Þ, each FðpÞ
4;2 ðxÞ is x ↔ 1 − x invariant.

Conclusions.—We studied the moments of the reduced
density matrix TrρnA and of its partial transpose TrðρT2

A Þn
when A is the union of two disjoint intervals on the line, in
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the CFTs given by the Ising and the Dirac model in their
ground state. We found that the existing results, given by
Eqs. (3) and (8), can be expressed through Eq. (13), where
the dependence on the harmonic ratio x is algebraic. This
significantly simplifies the numerical evaluation of these
quantities. Furthermore, this leads to Eqs. (15), (16), and
(17), establishing a remarkable equivalence between the
moments TrρnA and TrðρT2

A Þn and the grand partition
functions of the classical 2D Coulomb gas in the circular
lattices defined by Eq. (11) (see Fig. 1) at Γ ¼ 1=2 for the
Ising model and at Γ ¼ 1 for the Dirac model.
These results provide a new tool to tackle the analytic

continuations (1) and (2), in order to obtain SA and E
analytically for x ∈ ð0; 1Þ. We find it worth exploring also
the limit of large n [29]. It would be interesting to extend
our analysis by considering other models (e.g., the massless
compact boson [10]) or more complicated configurations
(e.g., when A is made by N disjoint intervals [13]) or other
physically relevant situations (e.g., when the temperature or
the volume of the system are finite [34,35]). In particular,
understanding whether an equivalence similar to the one
found in this Letter occurs also when the central charge is
large (considering the system on the line and in its ground
state, different partition functions on the family of Riemann
surfaces (5) must be studied) would provide useful insights
in the study of entanglement in the AdS=CFT correspon-
dence [36].
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