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Abstract: The near-zone “Love” symmetry resolves the naturalness issue of black hole
Love number vanishing with SL (2,R) representation theory. Here, we generalize this pro-
posal to 5-dimensional asymptotically flat and doubly spinning (Myers-Perry) black holes.
We consider the scalar response of Myers-Perry black holes and extract its static scalar
Love numbers. In agreement with the naturalness arguments, these Love numbers are, in
general, non-zero and exhibit logarithmic running unless certain resonant conditions are
met; these conditions include new cases with no previously known analogs. We show that
there exist two near-zone truncations of the equations of motion that exhibit enhanced
SL (2,R) Love symmetries that explain the vanishing of the static scalar Love numbers in
the resonant cases. These Love symmetries can be interpreted as local SL (2,R)×SL (2,R)
near-zone symmetries spontaneously broken down to global SL (2,R)×U (1) symmetries by
the periodic identification of the azimuthal angles. We also discover an infinite-dimensional
extension of the Love symmetry into SL (2,R)nÛ (1)2

V that contains both Love symmetries
as particular subalgebras, along with a family of SL (2,R) subalgebras that reduce to the
exact near-horizon Myers-Perry black hole isometries in the extremal limit. Finally, we
show that the Love symmetries acquire a geometric interpretation as isometries of sub-
tracted (effective) black hole geometries that preserve the internal structure of the black
hole and interpret these non-extremal SL (2,R) structures as remnants of the enhanced
isometry of the near-horizon extremal geometries.
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1 Introduction

The engulfment of gravitational wave astronomy into the area of precision astronomy [1]
has attracted growing attention towards the tidal response problem of a compact body.
During the early stages of the inspiraling phase of a binary system, the tidal perturbations
of the bodies are parameterized by the static Love numbers [2, 3]. More importantly, Love
numbers are able to probe the equation of state of the involved relativistic configurations [4–
8], while their measurement has been proposed as a testing arena for strong-field gravity [9].

Love numbers’ imprint on gravitational wave signals can be calculated by means of
the worldline Effective Field Theory (EFT), a toolkit for the construction of gravitational
waveform templates during the inspiral phase [10–15]. Within the worldline EFT, a com-
pact body is approximated by its large-distance universal appearance as a point-particle
evolving along a worldline. Finite size effects are systematically captured by non-minimal
couplings of the worldline with various curvature operators. The Love numbers, in par-
ticular, appear as Wilson coefficients for operators quadratic in the curvature and their
computation reduces to a matching condition.

The static Love numbers for general-relativistic black holes have recently been gaining
a growing theoretical interest. In four spacetime dimensions, both static black holes [16–
19], as well as spinning black holes [20–28] have been shown to posses vanishing static Love
numbers. This fact raises naturalness concerns from the EFT point of view, calling upon
the existence of an enhanced symmetry structure [29, 30].

Black holes have been dubbed “the hydrogen atom of the 21st century” [31, 32]. This
statement has been given some rigor for asymptotically flat black holes in General Relativ-
ity [33–36]. It is ought to persisting hidden conformal structures of asymptotically flat black
holes, with the classic paradigms being the extremal [37–39] and the non-extremal [40, 41]
Kerr/CFT conjectures, while more efforts have recently been put forward to construct-
ing holographic-like dictionaries between black hole geometries and conformal field theo-
ries [42, 43]. It has also been suggested that conformal structures associated with black
holes can leave distinct signatures on polarimteric observations, see e.g. [44, 45].

We have recently proposed that one new form of such conformal structures of black
holes can be used to explain the vanishing of static Love numbers for general-relativistic
black holes in four spacetime dimensions [35, 36], see also [46] of its presence in SUGRA
black holes. This “Love” symmetry is an SL (2,R) symmetry manifesting itself in the near-
zone region, where perturbations have small frequencies compared to the inverse distance
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from the black hole. The Love symmetry outputs the vanishing of the static Love numbers
as a selection rule following from the fact that the relevant perturbation solution belongs to
a highest-weight representation. Geometrically, it can be realized as an approximate isom-
etry of the black hole geometry, in the sense that it is an exact isometry of an effective black
hole geometry which preserves the thermodynamic properties of the black hole but approx-
imates (”subtracts”) its environment. Such geometries have been introduced in [47, 48] and
go by the name “subtracted geometries”. Interestingly, the Love symmetry appears to be a
cousin of another well-known SL (2,R) symmetry associated with degenerate black holes:
the enhanced isometry of the near-horizon geometry for extremal black holes [37, 49]. This
hints at the interpretation of the Love symmetry as a remnant of this enhanced isometry
for extremal black holes. It should be remarked here that there have been other attempts
of explaining the vanishing of black holes Love numbers via symmetry arguments, notably,
the “ladder symmetries” proposal [50, 51] (see also [52, 53]), which bares resemblance to
the earlier notion of “mass ladder operators” for spacetimes admitting closed conformal
Killing vectors [54].

The static Love numbers have also been studied for higher-dimensional general-relativi-
stic black holes in [55–57], all of which have been spherically symmetric. In these exam-
ples, the static Love numbers are in general non-zero and exhibit no running. However,
there exist some resonant conditions between the multipolar order ` and the spacetime
dimensionality d, for which the static Love numbers vanish again, which hints again on
a symmetry explanation. Specifically, for the case of massless scalar perturbations, this
happens when the generalized angular momentum ˆ̀ = `/ (d− 3) is an integer. Despite
this more intricate structure of the black hole static Love numbers, the Love symmetry ex-
ists for any multipolar order and in any spacetime dimension, and explains these puzzling
results [35, 36]. Here, we extend this analysis to higher-dimensional asymptotically flat,
axisymmetric spinning (Myers-Perry) black holes [58]. We will devote the present work to
setting up the arena for this investigation by focusing to the d = 5 scalar Love numbers.

The structure of this paper is as follows. We begin by reviewing the definition of
the response coefficients in Newtonian gravity [3] and the subsequent generalization to
relativistic configurations within the worldline EFT formalism [10, 11] in section 2. We
also describe how it is natural to distinguish between the conservative and dissipative parts
of the response and we identify the former as the “Love” part of the response [25–27]. This
prescription is then applied to axisymmetric spinning bodies in 5 spacetime dimensions
whose background symmetries do not allow the mixing between different multipolar orders,
a case relevant for the Myers-Perry black hole, to extract a simple matching formula for
the extraction of the Love numbers from the microscopic computation.

In section 3, we treat massless scalar perturbations of the 5-d Myers-Perry black hole
with the scope of extracting the static scalar Love numbers. We introduce a near-zone ap-
proximation that allows us to analytically solve the equations of motion in terms of hyper-
geometric functions and extract the scalar response coefficients that are exact in the static
limit. We find some qualitatively new features compared to the case of higher-dimensional
non-spinning black holes, namely, that the static scalar Love numbers are always non-zero
and exhibit running for generic black hole spin and angular modes of perturbations. We
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also explore the resonant conditions for which the Love numbers extracted from the near-
zone approximation acquire some seemingly fine-tuned properties in the form of “magic
zeroes.”

These resonant conditions are addressed in section 4 by introducing two Love sym-
metries for the 5-d Myers-Perry black hole, that is, by two enhanced SL (2,R) symmetries
associated with the two near-zone truncations of the equations of motion that had been
employed. Similar to the Love symmetry argument for 4-dimensional black holes [35, 36],
these resonant conditions are in one-to-one correspondence with the states spanning the
highest-weight representations of the Love symmetries. The highest-weight property then
outputs the vanishing of Love numbers, while the absence of running is also realized from
algebraic local criteria.

In section 5, we begin investigating the properties of the Love symmetries. We start
by their geometric interpretation as exact isometries of effective black hole geometries
which are identified as relatives to subtracted geometries [47, 48]. We then reveal an
infinite-dimensional extension of the symmetry structure into SL (2,R) n Û (1)2

V that con-
tains both Love symmetries as particular subalgebras, similar to the infinite extension for
4-dimensional spinning black holes [35, 36].

This larger symmetry also contains a family of SL (2,R) subalgebras which are closely
related to the enhanced isometries of the near-horizon geometries in the extremal limit [37,
49, 59–62]. This is explicitly studied in section 6 where we show that appropriately taking
the extremal limit of these SL (2,R) subalgebras of the infinite extension precisely recovers
the Killing vectors of the near-horizon AdS2 throat. This further hints towards the inter-
pretation of the Love symmetries as remnants of this enhanced isometry associated with
the extremal black holes.

We close with a summary and discussion in section 7. We also supplement with a
number of appendices. In appendix A, we review the geometry of the 5-d Myers-Perry
black hole. In appendix B, we introduce a modified spherical harmonics basis which proves
more natural to employ for the study of axisymmetric bodies in 5 spacetime dimensions.
In appendix C, we collect the formulas for the source/response split of the black hole
perturbations as dictated by the matching with the worldline EFT. We also compare our
findings with known results for Schwarzschild black holes [55, 56] by taking the spinless limit
of the relevant expressions extracted in the current work. Last, in appendix D, we sketch
the derivation of the SL (2,R) symmetries associated with truncations of the equations of
motion that preserve the characteristic exponents of the black hole near the event horizon,
a subset of which contains near-zone truncations and the associated Love symmetries.

Notation and conventions. We will employ geometrized units with c = 1 and work
with the mostly-positive metric Lorentzian signature, (ηµν) = diag (−1,+1,+1, . . . ). Small
Latin letters from the beginning of the alphabet will denote spatial indices running from
1 to d − 1 for a d-dimensional spacetime, while small Greek letters will denote spacetime
indices running from 0 to d−1, with x0 the temporal coordinate, and repeated indices will
be summed over. We will also be employing the multi-index notation a1 . . . a` ≡ L, within
which xa1 . . . xa` ≡ xL and ∂a1 . . . ∂a` ≡ ∂L. Last, we will denote the symmetric trace-free
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(STF) part of a tensor with respect to a set of indices {a1, a2, . . . } by enclosing the indices
within angular brackets (“〈a1a2 . . . 〉”).

2 Response coefficients and Love numbers

In this section, we present the formulation of the response problem for general compact
bodies in terms of response tensors in any number of spatial dimensions with the eventual
goal to define the Love numbers in 5 spacetime dimensions.

2.1 Newtonian definition

Let us start with the standard formulation of the tidal response problem for a compact body
in Newtonian gravity [3]. This consists of solving the Poisson equation1 for the Newtonian
gravitation potential ΦN,

∇2ΦN = d− 3
d− 28πGρ , (2.1)

with ρ = ρ (t,x) the mass density of the mass configuration. In practice, this is accompanied
by two field equations; the continuity equation and Euler’s equations. Once supplemented
with an equation of state, the problem is well posed.

The setup for introducing the tidal response coefficients begins with an unperturbed
mass configuration at equilibrium, practically being hydrostatic equilibrium, which is per-
turbed by a weak distant mass configuration sourcing tidal forces parameterized by its
tidal moments ĒL (t). In response, the mass distribution of the body rearranges until a
new equilibrium state is reached. The response is encoded in induced mass multipole
moments δQL (t) [3]. The perturbation in the Newtonian gravitational potential in the
exterior of the body is then given by, in frequency space,

δΦN (ω,x) =
∞∑
`=2

(`− 2)!
`!

[
ĒL (ω)−N`G

δQL (ω)
r2`+d−3

]
xL , (2.2)

where we have defined the dimensionless constants

N` ≡
8π

(d− 2) Ωd−2

(2`+ d− 5)!!
(`− 2)! (d− 5)!! , (2.3)

with Ωd−2 = 2π(d−1)/2/Γ
(
d−1

2

)
the surface area of the unit (d− 2)-sphere Sd−2. Both the

tidal moments ĒL and the induced mass multipole moments δQL are rank-` STF spatial
tensors by virtue of the Laplace equation in the exterior.2 We also remark here that we are
working in the body-centered frame where the induced dipole moment vanishes identically
and all the sums start from ` = 2.

1Newton’s gravitational constant G is identified as the coupling constant appearing in the Einstein-
Hilbert action S = 1

16πG

∫
ddx
√
−g R such that the Einstein field equations Gµν = 8πGTµν preserve their

form in any number of spacetime dimensions.
2If V (x) is a harmonic function, then ∂LV are rank-` STF spatial tensors. In the same way, ∂L 1

rd−3 ,
which are involved in the multipole expansion defining the mass multipole moments, are STF tensors of
rank-`, since |x− x′|−(d−3) is a harmonic function of x in the exterior.
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Assuming that the body exhibits no gravitational hysteresis, i.e. that it develops no
new permanent multipole moments after the tidal source is switched off, we can apply
linear response theory and define the dimensionful tidal response tensor λLL′ in frequency
space as the corresponding retarded Green’s function,3

δQL (ω) = −
∞∑
`′=2

λLL′ (ω) ĒL′ (ω) , (2.4)

where the mixing of different `-modes is a necessary implementation for rotating and non-
spherically symmetric bodies and we are suppressing non-linear corrections. The tidal
response tensor λLL′ is STF with respect to the first multi-index L, while only λL〈L′〉 is
physically relevant. Although we have only displayed an ω-dependence, λLL′ will strongly
depend on other properties associated with the internal structure of the body, e.g. its
background multipole moments, including its mass and angular momentum, as well as other
parameters entering its equation of state. As a last conventional step, we introduce the
computationally favorable dimensionless tidal response tensor kLL′ (ω), defined according to

λLL′ (ω) ≡ kLL′ (ω) R
2`+d−3

N`G
, (2.5)

with R a scale associated to the unperturbed body’s size, e.g. its radius if it is spheri-
cally symmetric, such that the frequency space gravitational potential perturbation in the
exterior takes the form

δΦN (ω,x) =
∞∑

`,`′=2

(`− 2)!
`!

[
δL,L′ + kLL′ (ω)

(R
r

)2`+d−3
]
ĒL′ (ω)xL . (2.6)

Although we have presented an analysis for the tidal deformation of a self-gravitating body,
it can be extended to compact bodies supported by other types of long-range forces as well.
In particular, it can be extended to systems responding to spin-1 and spin-0 forces and
define the corresponding response tensors. Then, the `-sums will start from ` = 1 or ` = 0
respectively, but the general prescription outlined above can be carried away unaffected,
up to the conventional overall (`− s)!/`! factor for a spin-s force system, and define the
spin-s response tensors k(s)

LL′ ,

δΦ(s) (ω,x) =
∞∑

`,`′=s

(`− s)!
`!

[
δL,L′ + k

(s)
LL′ (ω)

(R
r

)2`+d−3
]
Ē(s)L′ (ω)xL . (2.7)

In this language, the above analysis of the tidal response of a gravitational system cor-
responds to the Newtonian definition of the k

(2)
LL′ response tensor. For s = 1, Φ(1) is

the electrostatic potential and k
(1)
LL′ defines the electric susceptibility tensor of the body,

while there is an analogous definition of the magnetic susceptibility tensor associated with
induced electric current multipole moments in the vector potential profile which we do
not write down here. Last, for s = 0, Φ(0) is a scalar field for the potential of a system
interacting via scalar forces and k(0)

LL defines the scalar susceptibility tensor of the body.
3Lower and upper spatial indices in Newtonian gravity are raised and lowered with the flat space metric.

– 5 –



J
H
E
P
0
7
(
2
0
2
3
)
2
2
2

2.2 General relativistic EFT definition and Newtonian matching

When relativistic effects are taken into account, the definition of the associated response
tensors is more subtle. To begin with, the response tensors should be gauge invariant
under diffeomorphisms. In addition, the growing mode in the profiles of the potentials,
the “source” part of the field, acquires relativistic corrections and results in an overlapping
with the decaying mode, the “response” part of the field, thus, raising concerns for a
source/response ambiguity [63].

These concerns are all addressed within the framework of the worldline EFT [10, 11]
whose starting point is the universal point-particle appearance of compact bodies from
large distances. We will only briefly review the EFT definition of Love numbers here. A
more complete review fitted to the tidal response problem can be found in [26, 27], while
comprehensive reviews of the worldline EFT formalism can be found in [12, 14]. One is
effectively integrating out the short-scale modes associated with the internal structure of
the body, leaving an effective action whose degrees of freedom are the worldline position
xcm (λ) along which the center of the mass of the body propagates and parameterized by an
affine parameter λ, a set of vielbein vectors eµa (λ) localized on the worldline and capturing
rotational degrees of freedom in the case the body is spinning,4 and the long distance
metric perturbations with respect to the Minkowski background hµν = gµν − ηµν . These
are supplemented with other types of bulk fields and symmetries in the case of non-pure
gravity, e.g. with a U (1) gauge field Aµ for the Einstein-Maxwell theory or a real scalar field
Φ for systems interacting via scalar forces. The effective action then contains a “minimal”
point-particle action, while finite-size effects are captured by non-minimal couplings of the
worldline with higher-derivative operators,

SEFT [xcm, e, h,A,Φ] = Sbulk [η + h,A,Φ]+Spp [xcm, e, h]+Sfinite-size [xcm, e, h,A,Φ] . (2.8)

Love numbers are defined as particular Wilson coefficients in front of quadratic cou-
plings of the worldline with field strength tensors. For the simplest case of a spherically
symmetric, non-rotating body, for example, the static Love numbers are defined from

Sfinite-size ⊃ SLove =
2∑
s=0

∞∑
`=s

C
(s)
el,`

2`!

∫
dτ E(s)

L (xcm (τ)) E(s)L (xcm (τ)) + (E ↔ B, T ) , (2.9)

where we have chosen the affine parameter to be equal to the proper time along the worldline
and E(s)

L ≡ E (s)
a1...a` are the multipole moments of the electric-type field strength tensors

projected onto spatial slices orthogonal to the d-velocity uµ = dxµcm
dτ of the body defined via

a set of local vielbein vectors eµa satisfying uµeµa = 0. For s = 0, 1, 2,

E(s=0)
L = eµ1

a1 . . . e
µ`
a`
∇〈µ1 . . .∇µ`〉Φ ,

E(s=1)
L = eµ1

a1 . . . e
µ`
a`
∇〈µ1 . . .∇µ`−1Eµ`〉 , Eµ = uνFµν ,

E(s=2)
L = eµ1

a1 . . . e
µ`
a`
∇〈µ1 . . .∇µ`−2Eµ`−1µ`〉 , Eµν = uρuσCµρνσ ,

(2.10)

4If the body is spinning, the notion of a “center of mass” is not invariant and one needs to supplement
with a spin gauge symmetry [11] to compensate for this. The center of mass is then fixed via a “Spin
Supplementary Condition” (SSC) corresponding to fixing the time-like vector of the worldline vielbein
eµa=0 [12, 14].
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and they are by construction rank-` STF spatial tensors. The Wilson coefficients C(s)
el,` define

the spin-s electric-type static Love numbers. Although not written here explicitly, there
is also a magnetic version of this interaction term defining the magnetic-type static Love
numbers, while, for s = 2 in d > 4, one should furthermore take into account tensor-type
gravitational perturbations which define the tensor-type tidal Love numbers, see e.g. [56].
In the rest of this section, we will focus to the electric-type responses for economy but
all the analysis below can be straightforwardly applied for magnetic-type and tensor-type
responses as well.

For a generic compact body, the Wilson coefficients C(s)
el,` become “Wilson tensors”

C
(s)
el,LL′ defining the static Love tensors,5

Selectric
Love =

2∑
s=0

∞∑
`,`′=s

∫
dτ

C
(s)
el,LL′

2`! E(s)L (xcm (τ)) E(s)L′ (xcm (τ)) . (2.11)

The time dependent conservative responses can be captured by operators like DEDE on the
world line, where D ≡ (dxµcm/dτ)∂µ. It is more practical, however, to switch to frequency
space in this case, and consider the “dynamical” Love number action of the form,

Selectric
dynamical Love =

2∑
s=0

∞∑
`,`′=s

∫
dω

2π
C

(s)
el,LL′ (ω)

2`! E(s)L (−ω) E(s)L′ (ω) . (2.12)

To compute the Love tensors, one matches onto observables of the full theory. We
will employ here the “Newtonian matching” condition consisting of inserting a pure 2`-pole
background Newtonian source at large distances,

Φ(s) (ω,x) = Φ̄(s) (ω,x) + δΦ(s) (ω,x) , Φ̄(s) (ω,x) = (`− s)!
`! Ē(s)

L (ω)xL , (2.13)

and matching EFT 1-point functions onto microscopic computations of perturbation the-
ory [26, 27, 55]. Diagrammatically,6

〈
δΦ(s) (ω,x)

〉
=

×

=

×

...

︸ ︷︷ ︸
“source”

+
C

(s)
el,LL′ (ω)

×

...︸ ︷︷ ︸
“response”

, (2.14)

where the double line represents the worldline, straight lines indicate propagators of the
fields δΦ(s), a “×” represents a Φ̄(s) insertion and wavy lines correspond to interactions of
the worldline with the graviton arising from the minimal point-particle action. We note
here that we are not including dissipative effects which will be addressed shortly. In the

5We are also assuming parity invariance of the geometry of the unperturbed body here, i.e. we are
omitting mixing between electric and magnetic components which would otherwise be allowed.

6We are employing the dimensional regularization scheme here which sets all the unphysical power-law
divergences to zero.
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above diagrammatic representation we have also demonstrated how the worldline EFT
definition allows to unambiguously separate relativistic corrections in the “source” part
of the field profile from tidal effects [26, 27]. This splitting is in fact equivalent to the
method of analytically continuing the spacetime dimensionality d [55] or the multipolar
order ` [24, 26, 27, 64] as the “source” and “response” diagrams have indicial powers rα

with α = ` and α = − (`+ d− 3) respectively. These receive PN corrections from the
interaction of the graviton with the worldline which have the form rα−n with positive
integer n.

In the Newtonian limit, in a gauge where the fields δΦ(s) are canonical variables up to
an overall normalization constant N (s)

prop in momentum space,

〈
δΦ(s)δΦ(s)

〉
(p) = N (s)

prop
−i
p2 , (2.15)

and in the body centered frame where xcm = (t,0) and uµ = (1,0), this gives

〈
δΦ(s) (ω,x)

〉
→

×

+ C
(s)
el,LL′ (ω)

×

= (`− s)!
`!

∞∑
`′=s

δL,L′ +
2`−2Γ

(
`+ d−3

2

)
π(d−1)/2 N (s)

prop

[
C

(s)
el,LL′ (ω)

]
TRS

r2`+d−3

 Ē(s)L′ (ω)xL ,

(2.16)

where, [
C

(s)
el,LL′ (ω)

]
TRS
≡ 1

2
(
C

(s)
el,LL′ (ω) + C

(s)
el,L′L (−ω)

)
, (2.17)

with “TRS” standing for time-reversal symmetric. From this, we identify the explicit
correspondence between the electric-type Love tensor and the Wilson tensor for a compact
body of size R,

k
(s)Love
LL′ (ω) =

2`−2Γ
(
`+ d−3

2

)
π(d−1)/2 N (s)

prop

[
C

(s)
el,LL′ (ω)

]
TRS

R2`+d−3 . (2.18)

We see therefore that the Love tensor is defined from the conservative response, i.e. the part
of the response tensor invariant under the time-reversal transformations which corresponds
to simultaneously flipping the sign of the frequency, ω → −ω, and the exchange L ↔ L′.
This is implicit by the definition at the level of the action and the use of the in-out formalism
since ∑

`,`′

∫
dω

2π

[
C

(s)
el,LL′ (ω)

]
TRS

2`! E(s)L (−ω) E(s)L′ (ω) =

∑
`,`′

∫
dω

2π
C

(s)
el,LL′ (ω)

2`! E(s)L (−ω) E(s)L′ (ω) .

(2.19)

– 8 –



J
H
E
P
0
7
(
2
0
2
3
)
2
2
2

2.2.1 Dissipation in EFT

As we just saw, only
[
C

(s)
el,LL′ (ω)

]
TRS

is relevant when computing 1-point functions via the
standard in-out formalism, i.e. local operators in the worldline EFT action capture only
conservative effects. Dissipative effects are incorporated by introducing gapless internal
degrees of freedom X. One then considers composite operators Q(s)

L (X) corresponding to
the full multipole moments, including the dissipative multipole moments due to the internal
degrees of freedom X, but whose exact dependence on X is not known. These are then
coupled to the field moments [65–68],

Sdiss =
2∑
s=0

∞∑
`=s

1
`!

∫
dτ Q

(s),E
L (X) E(s)L (xcm (τ)) + (E ↔ B, T ) . (2.20)

In order to account for dissipative effects at the level of the 1-point function, one then
employs the in-in (Schwinger-Keldysh) formalism [65–70]. Within this framework [27],

〈
δΦ(s) (ω,x)

〉
⊃

Q(s)

Q(s)

×

= (`− s)!
`!

∞∑
`′=s

2`−2Γ
(
`+ d−3

2

)
π(d−1)/2

〈
Q

(s),E
L Q

(s),E
L′

〉
(−ω)

r2`+d−3

 Ē(s)L′ (ω)xL ,

(2.21)

and the full electric-type response tensors k(s)
LL′ (ω) are matched onto the (retarded) 2-point

function [27],

k
(s)
LL′ (ω) =

2`−2Γ
(
`+ d−3

2

)
π(d−1)/2

〈
Q

(s),E
L Q

(s),E
L′

〉
(−ω)

R2`+d−3 . (2.22)

Note that the real part of k(s)
LL′ is indistinguishable from k

(s)Love
LL′ and therefore can be

ignored. Its imaginary part though cannot be reproduced from a local world line action
and thus it encodes non-conservative effects such as horizon absorption.

2.3 Love numbers of 5-d rotating bodies

So far we have formulated the response problem in terms of the response tensors k(s)
LL′ . In

practice, one is interested in the harmonic response coefficients arising after performing
a harmonic expansion thanks to the 1-to-1 correspondence between spatial STF tensors
and spherical harmonics. From these, the Love numbers are identified as the conservative
harmonic response coefficients [26, 27]. Isolating the conservative part of the harmonic
response coefficients is in general non-trivial, but for some particular configurations, e.g. the
remarkably integrable black hole perturbations, this decomposition allows one to identify
the Love numbers as the real part of the harmonic response coefficients, while the imaginary
part captures dissipative effects.
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While this can be done in d = 1 + 3 spacetime dimensions by performing an expansion
into spherical harmonics over S2 [24], it fails to work for a general rotating body in higher
spacetime dimensions. For d > 4, an expansion into spherical harmonics on Sd−2 allows us
to extract a simple isolating prescription of the conservative part of the response coefficients
only for spherically symmetric and non-rotating bodies. For axisymmetric distributions,
one should instead perform a modified harmonic expansion over

[
S1]N ⊂ Sd−2, with N =⌊

d−1
2

⌋
factors of S1, appropriate for the isometry subgroup [U (1)]N ⊂ SO (d− 1) of such

configurations. In d = 5 spacetime dimensions, this is a modified harmonic expansion over
the S1 × S1 part of S3 in accordance with the U (1) × U (1) azimuthal symmetries. This
modified spherical harmonics basis for d = 5 is introduced and analyzed in appendix B.

To this end, we begin by expanding the 4-dimensional spatial STF tensors Ē(s)
L into

modified spherical harmonics of orbital number ` ∈ N,

Ē(s)L =
∑
m,j

Ē(s)
`mjY

L∗
`mj , (2.23)

where the constant STF tensors YL`mj are given by

YL`mj = (2`+ 2)!!
4π2`!

∮
S3
dΩ3 Ω〈L〉Ỹ ∗`mj (Ω) , (2.24)

with Ỹ`mj (Ω) ≡ Ỹ`mj (θ, φ, ψ) the modified spherical harmonics on S3, Ωi ≡ xi/r and
asterisks indicate complex conjugation. For future reference, the explicit limits of the sums
over the azimuthal numbers m and j are

∑
m,j

(. . . ) ≡
∑̀
m=−`

 `−|m|∑
j=−(`−|m|),2

(. . . )

 . (2.25)

We note that the j-sum is being performed with a step 2. This is merely a convention
chosen such that the azimuthal number m resembles the usual azimuthal number of scalar
spherical harmonics on S2.

Then, the response coefficients k(s)
`mj;`′m′j′ (ω) are related to the response tensor k(s)

LL′ (ω)
according to

k
(s)
`mj;`′m′j′ (ω) = 4π2`!

(2`+ 2)!!k
(s)
LL′ (ω)YL`mjYL

′∗
`′m′j′ . (2.26)

Using the fact that the induced multipole moments δQ(s)
L (t) and source multipole moments

E(s)
L (t) are real in position space as well as the assumption that the response tensors k(s)

LL′ (ω)
are analytic in ω, i.e. that

k
(s)
LL′ (ω) =

∞∑
n=0

k
(s)
LL′;n (iω)n , (2.27)

with real-valued modes k(s)
LL′;n, we see that,

k
(s)∗
LL′ (ω) = k

(s)
LL′ (−ω) . (2.28)
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From the complex conjugacy relation of the modified spherical harmonics, Ỹ ∗`mj = Ỹ`,−m,−j ,
we then deduce the following complex conjugacy relation for the response coefficients

k
(s)∗
`mj;`′m′j′ (ω) = k

(s)
`,−m,−j;`′,−m′,−j′ (−ω) . (2.29)

We can now translate the conservative/dissipative decomposition of the response tensor
(see (2.18), (2.22)),

k
(s)Love
LL′ (ω) = 1

2
(
k

(s)
LL′ (ω) + k

(s)
L′L (−ω)

)
,

k
(s)diss
LL′ (ω) = 1

2
(
k

(s)
LL′ (ω)− k(s)

L′L (−ω)
)
,

(2.30)

at the level of the response coefficients k(s)
`mj;`′m′j′ (ω). The definition (2.26) and the complex

conjugacy relation (2.29) immediately imply

k
(s)Love
`mj;`′m′j′ (ω) = 1

2
(
k

(s)
`mj;`′m′j′ (ω) + k

(s)∗
`′m′j′;`mj (ω)

)
,

k
(s)diss
`mj;`′m′j′ (ω) = 1

2i
(
k

(s)
`mj;`′m′j′ (ω)− k(s)∗

`′m′j′;`mj (ω)
)
,

(2.31)

such that
k

(s)
`mj;`′m′j′ (ω) = k

(s)Love
`mj;`′m′j′ (ω) + ik

(s)diss
`mj;`′m′j′ (ω) . (2.32)

We note, however, that k(s)Love
`mj;`′m′j′ (ω) and k(s)diss

`mj;`′m′j′ (ω) are in general complex numbers.
We now focus to axisymmetric configurations. The axisymmetry of the background

implies the decoupling of m-modes and j-modes, while we further specialize here to the
particular case where there is no `-mode mixing either, a case relevant for Myers-Perry
black holes. Then,

k
(s)
`mj;`′m′j′ (ω) = k

(s)
`mj (ω) δ``′δmm′δjj′ , (2.33)

and the frequency space potential perturbation harmonic modes in the Newtonian limit
simplify to

δΦ(s)
`mj (ω, r) = (`− s)!

`!

[
1 + k

(s)
`mj (ω)

(R
r

)2`+2
]
r`Ē(s)

`mj (ω) . (2.34)

These response coefficients k(s)
`mj (ω) will in general be analytic functions in the angular

momenta of the rotating body as well as the frequency ω with respect to an inertial observer.
The complex conjugacy relation, which now reads k(s)∗

`mj (ω) = k
(s)
`,−m,−j (−ω), then allows

to explicitly separate the m- and j-dependencies of the response coefficients as

k
(s)
`mj (ω) = k

(0)
` (ω) + χ

∞∑
nφ=1

∞∑
nψ=1

k
(nφ,nψ)
` (ω, χφ, χψ) (im)nφ (ij)nψ , (2.35)

with χφ and χψ the dimensionless spin parameters associated with the Jφ and Jψ angu-
lar momenta and the overall formal χ is to separate the non-spinning part k(0)

` (ω). All
k

(nφ,nψ)
` (ω, χφ, χψ) are smooth functions of χφ and χψ, satisfying the complex conjugation

relation k(nφ,nψ)∗
` (ω, χφ, χψ) = k

(nφ,nψ)
` (−ω, χφ, χψ).
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Let us now extract a necessary condition for such a decoupling to occur. This analysis
is the d = 5 version of [24]. Starting from the physically relevant part of the response
tensor,

k
(s)
L〈L′〉 (ω) = 4π2`!

(2`+ 2)!!
∑
m,j

k
(s)
`mj (ω)Y`mj∗L Y`mjL′ , (2.36)

with `′ = ` understood, the expansion (2.35) implies

k
(s)
L〈L′〉 (ω) = k

(0)
` (ω) δL,L′ + χ

∞∑
nφ=1

∞∑
nψ=1

(−1)nφ+nψ

×
[
k

(2nφ,2nψ)
` (ω, χφ, χψ)R(2nφ,2nψ)

LL′ − k(2nφ−1,2nψ−1)
` (ω, χφ, χψ)R(2nφ−1,2nψ−1)

LL′

+ k
(2nφ−1,2nψ)
` (ω, χφ, χψ) I(2nφ−1,2nψ)

LL′ + k
(2nφ,2nψ−1)
` (ω, χφ, χψ) I(2nφ,2nψ−1)

LL′

]
,

(2.37)

and the tensorial structure of k(s)
L〈L′〉 is completely determined by two real-valued symmetric

and two real-valued antisymmetric STF tensors,

R
(2nφ,2nψ)
LL′ ≡ 8π2`!

(2`+ 2)!!
∑̀
m=1

 `−m∑
j=−(`−m),2

m2nφj2nψRe
{
Y`mj∗L Y`mjL′

} ,

R
(2nφ−1,2nψ−1)
LL′ ≡ 8π2`!

(2`+ 2)!!
∑̀
m=1

 `−m∑
j=−(`−m),2

m2nφ−1j2nψ−1Re
{
Y`mj∗L Y`mjL′

} ,

I
(2nφ−1,2nψ)
LL′ ≡ 8π2`!

(2`+ 2)!!
∑̀
m=1

 `−m∑
j=−(`−m),2

m2nφ−1j2nψ Im
{
Y`mj∗L Y`mjL′

} ,

I
(2nφ,2nψ−1)
LL′ ≡ 8π2`!

(2`+ 2)!!
∑̀
m=1

 `−m∑
j=−(`−m),2

m2nφj2nψ−1Im
{
Y`mj∗L Y`mjL′

} ,

R
(2nφ,2nψ)
LL′ = +R(2nφ,2nψ)

L′L , R
(2nφ−1,2nψ−1)
LL′ = +R(2nφ−1,2nψ−1)

L′L ,

I
(2nφ−1,2nψ)
LL′ = −I(2nφ−1,2nψ)

L′L , I
(2nφ,2nψ−1)
LL′ = −I(2nφ,2nψ−1)

L′L .

(2.38)

Finally, let us write the conservative/dissipative decomposition of the response coeffi-
cients (2.31) for the current special configuration, which is also the main result of interest
of this analysis,

k
(s)Love
`mj (ω) = Re

{
k

(s)
`mj (ω)

}
,

k
(s)diss
`mj (ω) = Im

{
k

(s)
`mj (ω)

}
.

(2.39)

The Love numbers are therefore just the real part of the response coefficients, while the
imaginary part encodes all the dissipative effects. We remark here that dissipative effects
can survive even in the static limit due to frame dragging [25–27].

3 Scalar Love numbers of 5-d Myers-Perry black hole

We will now apply the tools presented in the previous section to compute the static scalar
susceptibilities of 5-dimensional Myers-Perry black holes and identify the corresponding
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static scalar (s = 0) Love numbers. We will begin with a description of the equations of
motion to be solved. These will be supplemented with boundary conditions as dictated by
the 1-body worldline EFT which motivates the use of the near-zone approximation. Then,
this microscopic computation will be matched onto the worldline EFT 1-point function
definition to extract the conservative and dissipative contributions of the static scalar sus-
ceptibilities. We will finally analyze various cases of interest associated with the vanishing
or the non-vanishing/RG flow of the static scalar Love numbers.

3.1 Equations of motion and boundary conditions

The 5-dimensional Myers-Perry black hole geometry is presented in appendix A. The mass-
less Klein-Gordon equation in this background is separable,

∇2Φ = 4
Σ [Ofull − Pfull] Φ = 0 , (3.1)

with the radial and angular operators given by, after introducing the variable ρ = r2,

Ofull ≡ ∂ρ ∆ ∂ρ −
(
a2 − b2

)
4

( 1
ρ+ a2 ∂

2
φ −

1
ρ+ b2

∂2
ψ

)
− 1

4
(
ρ+ a2 + b2

)
∂2
t

−
(
ρ+ a2) (ρ+ b2

)
r2
s

4∆

(
∂t + a

ρ+ a2 ∂φ + b

ρ+ b2
∂ψ

)2
,

Pfull ≡ −
1
4
[
4(0)

S3 +
(
a2 sin2 θ + b2 cos2 θ

)
∂2
t

]
.

(3.2)

In the above expressions, the discriminant ∆ is a quadratic polynomial in ρ,

∆ = (ρ− ρ+) (ρ− ρ−) , (3.3)

with ρ± the locations of the outer (“+”) and inner (“−”) horizons and the warp factor Σ
for the 5-d Myers-Perry black hole is given by

Σ = r2 + a2 cos2 θ + b2 sin2 θ . (3.4)

We have also identified the scalar (s = 0) Laplace-Beltrami operator on S3 in the current
direction cosine angular coordinates,

4(0)
S3 ≡

1
sin θ cos θ∂θ (sin θ cos θ ∂θ) + 1

sin2 θ
∂2
φ + 1

cos2 θ
∂2
ψ . (3.5)

which is used to define a modified spherical harmonics expansion in the static case from
which the Love numbers are more naturally extracted. This expansion is illustrated in
detail in appendix B.

After separating the variables,

Φω`mj (t, ρ, θ, φ, ψ) = e−iωteimφeijψRω`mj (ρ)Sω`mj (θ) , (3.6)

this 5-d scalar Teukolsky equation decomposes to
OfullΦω`mj = ˆ̀(ˆ̀+ 1)Φω`mj ,

PfullΦω`mj = ˆ̀(ˆ̀+ 1)Φω`mj ,
(3.7)

with
ˆ̀≡ `

d− 3 = `

2 , (3.8)

and ` an effective orbital number which is in general non-integer for ω 6= 0.
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3.1.1 Near-zone approximation

In order to match observables onto the 1-body worldline EFT according to (2.14), we should
solve the massless Klein-Gordon equation in the appropriate regime. The physical setup
consists of a binary system of compact bodies during the early stages of their inspiraling
phase where a Post-Newtonian expansion is accurate. Centering the body of interest at the
origin, the companion sources perturbations with frequency equal to the orbital frequency
of the system ω = ωorb. The system loses energy by emitting radiation with frequency
ωrad ∝ ωorb which is then detected by an observer located at infinity through, for example,
an interferometer.

The worldline EFT arises after integrating out the short scale internal degrees of free-
dom of the centered compact body, i.e. it is valid for low frequency perturbations. Fur-
thermore, the 1-body worldline EFT ignores the dynamics of the companion body sourc-
ing the perturbations and a second condition for its validity is that the frequency of the
perturbations is low with respect to the inverse separation of the two bodies. This com-
bination of conditions defines the near-zone region. For the current configuration of a
black hole of outer horizon r+, the near-zone approximation consists of working in the
regime [25, 35, 40, 71–73]

ω (r − r+)� 1 , ωr+ � 1 . (3.9)

In the near-zone region, one imposes the asymptotic boundary condition

Rω`mj
r→∞−−−→ Ē`mj (ω) r` = Ē`mj (ω) ρˆ̀

, (3.10)

indicating the presence of a source at large distances with multipole moments Ē`mj (ω),
along with the ingoing boundary condition at the event horizon. Ingoing boundary condi-
tion at the future/past event horizon is imposed by requiring ingoing waves at the horizon
in advanced (+)/retarded (−) coordinates,

Φω`mj
r→r+−−−→ T

(±)
`mj (ω) e−iωt±eimϕ±eijy±Sω`mj (θ) , (3.11)

with T
(±)
`mj (ω) the transmission amplitudes. The relation between advanced/retarded co-

ordinates (t±, r, θ, ϕ±, y±) and Boyer-Lindquist coordinates (t, r, θ, φ, ψ) is given in ap-
pendix A and implies

Rω`mj ∼ (ρ− ρ+)±iZ+(ω) (ρ− ρ−)±iZ−(ω) as ρ→ ρ+ ,

Z± (ω) ≡ ±r±2
ρs

ρ+ − ρ−

(
mΩ(±)

φ + jΩ(±)
ψ − ω

)
,

(3.12)

where Ω(±)
φ = a

ρ±+a2 and Ω(±)
ψ = b

ρ±+b2 . Physically, of course, we are only interested in
regularity at the future event horizon and Ω(+)

φ ≡ Ωφ and Ω(+)
ψ ≡ Ωψ are identified as the

black hole angular velocities with respect to the two rotation planes.
An important remark here is that the near-zone approximation extends beyond the

near-horizon or the low frequency regimes. In particular, not only does it preserve the
near-horizon dynamics in the radial operator for any frequency ω, but it also overlaps with
the asymptotically flat far-zone region r � r+ where outgoing boundary conditions are
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imposed. The overlapping intermediate region r+ � r � ω−1 then serves as a matching
region that probes the response of the centered body in the outgoing waves that are detected
at infinity.

It should be noted that the near-zone approximation is not unique as there are infinitely
many ways to truncate the equations of motion as long as they differ by subleading terms.
In practice, the truncation is done such that the equations of motion are exactly solvable in
terms of elementary functions. There are two particular near-zone truncations of interest
in the current work controlled by a sign σ = ±. We split the radial operator as

Ofull = ∂ρ ∆ ∂ρ + V
(σ)

0 + εV
(σ)

1 , (3.13)

with ε a formal parameter which is equal to unity for the full equations of motion and equal
to zero for the near-zone approximation and

V
(σ)

0 =− ρ2
sρ+
4∆ (∂t + Ωφ ∂φ + Ωψ ∂ψ)2 − a2 − b2

4 (ρ− ρ−)
(
∂2
φ − ∂2

ψ

)
− ρ2

sρ+
2 (ρ+ − ρ−) (ρ− ρ−) (Ωφ − σΩψ) ∂t (∂φ − σ ∂ψ) ,

(3.14)

V
(σ)

1 =
ρs (a− σb)

[
ρs − (a+ σb)2

]
4 (ρ+ − ρ−) (ρ− ρ−) ∂t (∂φ − σ ∂ψ)

− ρs
4 (ρ− ρ−) [ρs ∂t + (a+ σb) (∂φ + σ ∂ψ)] ∂t −

1
4
(
ρ+ a2 + b2 + ρs

)
∂2
t .

(3.15)

For the angular operator, we use the splitting

Pfull = −1
4
[
4(0)

S3 + ε
(
a2 sin2 θ + b2 cos2 θ

)
∂2
t

]
, (3.16)

that is, we are near-zone approximating it with the static angular operator. In the static
limit, the angular problem is solved by S`mj (θ), given in appendix B, from which ` is set
to be an orbital number ranging in the set of whole numbers, ` ∈ N, m is identified as a
spherical harmonics integer azimuthal number |m| ≤ ` and j is a second integer azimuthal
number ranging from − (`− |m|) up to `− |m|, but with step 2.

3.2 Near-zone solution and scalar Love numbers

After separating the variables as in (3.6) and introducing

x ≡
r2 − r2

+
r2

+ − r2
−

= ρ− ρ+
ρ+ − ρ−

, (3.17)

the near-zone equation of motion for the radial wavefunction can be massaged into d

dx
x (1 + x) d

dx
+
Z2

+ (ω)
x

−
Z̃

(σ)2
− (ω)
1 + x

Rω`mj = ˆ̀(ˆ̀+ 1)Rω`mj , (3.18)

with Z+ (ω) given in (3.12) and dictating the near-horizon behavior of the solution and

Z̃
(σ)
− (ω) ≡ −r+

2
ρs

ρ+ − ρ−
(mΩψ + jΩφ − σω) . (3.19)
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Singular point x = 0 x = −1 x→∞
Characteristic exponent 1 +iZ+ (ω) +iZ̃(σ)

− (ω) ˆ̀

Characteristic exponent 2 −iZ+ (ω) −iZ̃(σ)
− (ω) −ˆ̀− 1

Table 1. Characteristic exponents of the near-zone-truncated radial equation of motion, Eq. (3.18),
for scalar perturbations of the 5-d Myers-Perry black hole. These are expressed in terms of the
rescaled orbital number ˆ̀ = `/2 and the parameters Z+ (ω) and Z̃(σ)

− (ω), given in Eq. (3.12) and
Eq. (3.19) respectively.

We note in particular that Z̃(σ)
− (ω = 0) = Z− (ω = 0) in (3.12) reflecting how the near-zone

approximation becomes exact in the static limit. The above differential equation has three
regular singular points at x = 0, x = −1 and x → ∞ with the characteristic exponents
given in table 1.

The differential equation can be solved analytically in terms of Euler’s hypergeometric
functions. For future convenience, we introduce the parameters

Γ(σ)
±σ (ω) ≡ Z+ (ω)∓ σ Z̃(σ)

− (ω)

= r+
2

ρs
ρ+ − ρ−

[(m± σj) (Ωφ ± σΩψ)− ω (1± 1)] .
(3.20)

The solution that is regular at the future event horizon then reads

Rω`mj = R̄`mj (ω)
(

x

1 + x

)iZ+(ω)

(1 + x)iΓ
(σ)
±σ(ω)

2F1
(

ˆ̀+ 1 + iΓ(σ)
±σ (ω) ,−ˆ̀+ iΓ(σ)

±σ (ω) ; 1 + 2iZ+ (ω) ;−x
)
,

(3.21)

where R̄`mj (ω) is fixed from the asymptotic boundary condition (3.10) to be proportional
to the source moments harmonic modes Ē`mj (ω) according to (see appendix C for more
details)

R̄`mj (ω) = Ē`mj (ω) (ρ+ − ρ−)ˆ̀ Γ
(

ˆ̀+ 1 + iΓ(σ)
+σ (ω)

)
Γ
(

ˆ̀+ 1 + iΓ(σ)
−σ

)
Γ
(
2ˆ̀+ 1

)
Γ (1 + 2iZ+ (ω))

. (3.22)

Up to this point in solving the static problem, we only assumed that the orbital number
` is a generic real number. This prescription is known as “analytic continuation.” It is often
used for the Newtonian matching within the worldline EFT from which the Love numbers
are defined [25–27, 55], see also [71, 72] for the first practical use of this approach. Namely,
in order to extract the response coefficients from the above microscopic computation, one
should first analytically continue ` to be a real number, then expand around large r to read
the coefficient in front of the r−`−2 term and then send ` to its physical integer values at
the end. Doing this, we find, before sending ` to take its physical values,

k`mj (ω) =
Γ
(
−2ˆ̀− 1

)
Γ
(

ˆ̀+ 1 + iΓ(σ)
+σ (ω)

)
Γ
(

ˆ̀+ 1 + iΓ(σ)
−σ

)
Γ
(
2ˆ̀+ 1

)
Γ
(
−ˆ̀+ iΓ(σ)

+σ (ω)
)

Γ
(
−ˆ̀+ iΓ(σ)

−σ

) (
ρ+ − ρ−

ρs

)2ˆ̀+1
, (3.23)
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Range of parameters Behavior of kLove`mj (ω = 0)
` ∈ 2N + 1 Running

` ∈ 2N
|a| = |b| OR |m| = |j| Vanishing
|a| 6= |b| AND |m| 6= |j| Running

Table 2. Behavior of static scalar Love numbers as a function of the 5-d Myers-Perry black hole
angular momenta a and b and the scalar field perturbation orbital number ` and azimuthal numbers
m and j. For generic angular momenta and azimuthal and orbital numbers, the static scalar Love
numbers exhibit a classical RG flow. The only exception is when the orbital number is even ( ˆ̀ is
integer) and the angular momenta or the azimuthal numbers are equal in magnitude in which case
the static Love numbers turn out to vanish.

which can be massaged using the mirror formula for the Γ-functions into the more trans-
parent result

k`mj (ω) =A`mj (ω)×
{
− i sinh 2πZ+ (ω)

+ tan π ˆ̀cosh πΓ(σ)
+σ (ω) cosh πΓ(σ)

−σ − cotπ ˆ̀sinh πΓ(σ)
+σ (ω) sinh πΓ(σ)

−σ

}
,

(3.24)

where A`mj (ω) is a real constant given by

A`mj (ω) ≡

∣∣∣Γ (ˆ̀+ 1 + iΓ(σ)
+σ (ω)

)∣∣∣2 ∣∣∣Γ (ˆ̀+ 1 + iΓ(σ)
−σ

)∣∣∣2
2π Γ

(
2ˆ̀+ 1

)
Γ
(
2ˆ̀+ 2

) (
ρ+ − ρ−

ρs

)2ˆ̀+1
. (3.25)

The conservative/dissipative decomposition (2.39) then implies

kdiss`mj (ω) =−A`mj (ω)sinh2πZ+ (ω) , (3.26)

kLove`mj (ω) =A`mj (ω)×
{

tanπ ˆ̀coshπΓ(σ)
+σ (ω)coshπΓ(σ)

−σ−cotπ ˆ̀sinhπΓ(σ)
+σ (ω)sinhπΓ(σ)

−σ

}
.

(3.27)

At this point, we would like stress out that the above results should be trusted only for
small values of ω. Indeed, the near-zone approximation is accurate only for low frequencies.
In particular, in the near-zone split (3.13)–(3.16), we are already approximating at order
O
(
ωa, ωb, ω2) [36]. Nevertheless, the above result is accurate in the static limit which is

also the case of interest. In the rest of this work, we will be using the above ω-dependent
expressions but it should always be kept in mind that they are accurate only in the static
limit for non-zero spin parameters. The Love numbers behaviors following from eq. (3.26)
are listed in table 2 and in table 3 for static and time-dependent cases, respectively. Let
us discuss the Love number phenomenology in detail.

3.3 Running Love

We begin analyzing our above result for the scalar Love numbers by first addressing the
divergent behavior associated with RG running. For general non-zero spin parameters a
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Range of parameters Behavior of kLove`mj (ω 6= 0)

iΓ(σ)
± (ω)− ˆ̀ /∈ Z Running

iΓ(σ)
+ (ω)− ˆ̀= k ∈ Z

OR

iΓ(σ)
− (ω)− ˆ̀= k ∈ Z

−` ≤ k ≤ 0 Vanishing

k > 0 OR k < −` Non-running and non-vanishing

Table 3. Behavior of ω-dependent near-zone scalar Love numbers as a function of the parameters
Γ(σ)
± (ω), given in (3.20), and the generalized orbital number ˆ̀= `

2 of the perturbation. For generic
angular momenta and azimuthal and orbital numbers, the static scalar Love numbers exhibit a
classical RG flow. However, there is a discrete series of imaginary-valued Γ(σ)

± ’s for which the near-
zone Love numbers do not run. For the Γ(σ)

−σ branch, these are unphysical, accompanied by conical
singularities in the scalar field profile. For the Γ(σ)

+σ (ω) branch, the −` ≤ k < 0 modes acquire the
interpretation of Total Transmission Modes.

and b and general azimuthal numbers m and j and frequency ω, i.e. for general non-zero
Γ(σ)
±σ (ω), the scalar Love numbers always diverge, either as cotπ ˆ̀ for integer ˆ̀ (even `) or

as tan π ˆ̀ for half-integer ˆ̀ (odd `). More specifically, in the limit ε→ 0 where 2ˆ̀ = n− ε
approaches a whole number n ∈ N, the response coefficients (3.23) develop a simple pole
due to the diverging Γ(−2ˆ̀−1). From the residue of the Γ-function near negative integers,
Γ (−n+ ε) = (−1)n

n! ε +O
(
ε0), the developed pole can be worked out to be

k`mj (ω) = −(−1)n

n! ε
Γ
(
n
2 + 1 + iΓ(σ)

+σ (ω)
)

Γ
(
n
2 + 1 + iΓ(σ)

−σ

)
Γ
(
−n

2 + iΓ(σ)
+σ (ω)

)
Γ
(
−n

2 + iΓ(σ)
−σ

)
(n+ 1)!

(
ρ+ − ρ−

ρs

)n+1
+O

(
ε0
)
.

(3.28)
The full solution, however, is regular due to a compensating divergence in the “source”

part of the scalar field profile. More specifically, as is illustrated in detail in appendix C, the
source/response split is performed prior to sending the orbital number to take its physical
values with the end result

Rω`mj (ρ) = Ē`mj (ω) ρˆ̀
[
Zsource
ω`mj (ρ) + k`mj (ω)

(
ρs
ρ

)2ˆ̀+1
Zresponse
ω`mj (ρ)

]
,

Zsource
ω`mj (ρ) =

(
1− ρ+

ρ

)ˆ̀(
ρ− ρ−
ρ− ρ+

)∓iσZ̃(σ)
− (ω)

× 2F1

(
−ˆ̀+ iΓ(σ)

∓σ (ω) ,−ˆ̀− iΓ(σ)
±σ (ω) ;−2ˆ̀; ρ+ − ρ−

ρ+ − ρ

)
,

Zresponse
ω`mj (ρ) =

(
1− ρ+

ρ

)−ˆ̀−1 (ρ− ρ−
ρ− ρ+

)∓iσZ̃(σ)
− (ω)

× 2F1

(
ˆ̀+ 1 + iΓ(σ)

∓σ (ω) , ˆ̀+ 1− iΓ(σ)
±σ (ω) ; 2ˆ̀+ 2; ρ+ − ρ−

ρ+ − ρ

)
.

(3.29)

In the limit ε → 0 where 2ˆ̀ = n − ε approaches a whole number n ∈ N, ρˆ̀
Zsource
ω`mj also

develops a simple pole. The diverging component of the “source” part of the solution can
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be obtained from the following residue formula for the hypergeometric function

2F1 (a, b;−n+ ε; z) = Γ (−n+ ε) Γ (a+ n+ 1) Γ (b+ n+ 1)
Γ (a) Γ (b) (n+ 1)!

× zn+1
2F1 (a+ n+ 1, b+ n+ 1;n+ 2; z) +O

(
ε0
)
,

(3.30)

and, consequently,

Zsource
ω`mj = − 1

n! ε
Γ
(
n
2 + 1 + iΓ(σ)

+σ (ω)
)

Γ
(
n
2 + 1− iΓ(σ)

−σ

)
Γ
(
−n

2 + iΓ(σ)
+σ (ω)

)
Γ
(
−n

2 − iΓ
(σ)
−σ

)
(n+ 1)!

(
ρ+ − ρ−

ρs

)n+1

×
(
ρs
ρ

)n+1
Zresponse
ω`mj +O

(
ε0
)
,

(3.31)

which exactly cancels with the divergence in the scalar Love numbers whenever n is an
integer.

From the EFT point of view, this diverging behavior of the scalar Love numbers is
interpreted as a classical RG flow. More specifically, power counting arguments reveal that
whenever 2ˆ̀∈ N, the Wilson coefficients defining the Love numbers get renormalized from
an overlapping with the “source” part of the 1-point function, namely, from the following
type of diagrams [27, 36, 55]

Φ ⊃

×

...2ˆ̀+ 1 . (3.32)

From the theory of differential equations point of view, whenever 2ˆ̀∈ N, the series solutions
of the radial differential equation fall into the degenerate case where the characteristic
exponents near x→∞ differ by an integer number and, thus, according to Fuchs’ theorem,
only one of the independent solutions can be written as a Frobenius series around there,
while the second independent solution will unavoidably contain logarithms. More explicitly,
the solution regular at the future event horizon is still given by (3.21), but its analytic
continuation at large distances must be taken as a limiting case with the end result being

Rω`mj = Ē`mj (ω) ρˆ̀
s

(
ρ− ρ−
ρ− ρ+

)iZ̃(σ)
− (ω)

×
{(

ρ− ρ+
ρs

)ˆ̀∑̀
k=0

(
−ˆ̀+ iΓ(σ)

+σ (ω)
)
k(

−k + ˆ̀+ 1 + iΓ(σ)
−σ

)
k

(`− k)!
`! k! (−x)−k

+ Res
ε→0
{k`−ε,mj (ω)}

(
ρ− ρ+
ρs

)−ˆ̀−1 ∞∑
k=0

(
ˆ̀+ 1 + iΓ(σ)

+σ (ω)
)
k(

−k − ˆ̀+ iΓ(σ)
−σ

)
k

(`+ 1)!
(k + `+ 1)! k! (+x)−k

×
[

log x+ ψ (k + 1) + ψ (k + `+ 2)− ψ
(
k + ˆ̀+ 1 + iΓ(σ)

+σ (ω)
)
− ψ

(
−k − ˆ̀+ iΓ(σ)

−σ

) ]}
,

(3.33)
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where we have identified the coefficient multiplying the second term as the residue (3.28)
of the response coefficients as ` approaches a whole number. From the EFT point of
view, this residue is precisely the β-function dictating the classical RG flow of the Love
numbers [27, 36, 55],

L
dk`mj
dL

= −(−1)`

`!
Γ
(
`
2 + 1 + iΓ(σ)

+σ (ω)
)

Γ
(
`
2 + 1 + iΓ(σ)

−σ

)
Γ
(
− `

2 + iΓ(σ)
+σ (ω)

)
Γ
(
− `

2 + iΓ(σ)
−σ

)
(`+ 1)!

(
ρ+ − ρ−

ρs

)`+1
. (3.34)

This β-function is evidently real and is therefore entirely associated with the running of
the Love numbers, while the dissipative response exhibits no RG flow.

3.4 Vanishing static Love

We now turn to the possible resonant conditions for which the β-function associated with
the near-zone Love numbers is zero. Let us start with the case of static scalar Love numbers,
which is after all the only regime within which the near-zone approximation is accurate for
generic spin parameters. The static scalar Love numbers vanish only if ˆ̀∈ N (` is an even
integer) and

Γ(σ)
+σ (ω = 0) = 0⇒ j + σm

2 (Ωψ + σΩφ) = 0 ,

OR

Γ(σ)
−σ = 0⇒ j − σm

2 (Ωψ − σΩφ) = 0 .

(3.35)

In other words, these conditions are satisfied if either |a| = |b| or |m| = |j|. The first case
describes an equi-rotating Myers-Perry black hole in 5 spacetime dimensions, which has the
property of being equipped with an enhanced isometry group U (1)×U (1)→ U (2), while
the second case can be regarded as a higher-dimensional generalization of “axisymmetric”
perturbations [19, 22, 24] that actually includes here non-axisymmetric cases (m, j 6= 0).
This situation is also similar to the higher-dimensional Schwarzschild black holes [55]: for
integer ˆ̀, the static scalar Love numbers vanish, while for half-integer ˆ̀ they are non-zero
and exhibit a classical RG flow discussed above. The corresponding static scalar field profile
for ˆ̀∈ N is given by

Rω=0,`mj

∣∣∣∣
Γ(σ)
±σ=0

= R̄`mj (ω = 0)
(

x

1 + x

)iΓ(σ)
∓σ/2

2F1
(

ˆ̀+ 1,−ˆ̀; 1 + iΓ(σ)
∓σ;−x

)

= R̄`mj (ω = 0)
(

x

1 + x

)iΓ(σ)
∓σ/2

ˆ̀∑
n=0

(
ˆ̀+ n

)
!(

ˆ̀− n
)
!

1(
1 + iΓ(σ)

∓σ

)
n

xn

n! ,

(3.36)

where we have used the polynomial form of the hypergeometric function whose one of first
two parameters is a negative integer and (a)n is the Pochhammer symbol.

The vanishing of static Love numbers raises naturalness concerns from the point of
view of the worldline EFT [29, 30]. In the absence of any selection rules imposed by an
enhanced symmetry structure, the Love numbers are expected to be O (1) numbers and
exhibit running. In contrast, we find here situations where the static Love numbers vanish
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at all scales and call upon a symmetry explanation to be presented in the next section.
Related to this, for generic real values of the orbital number, the “source” and “response”
parts are given by two infinite series in inverse powers of ρ, see appendix C. These two
series overlap when ` takes its physical integer values. When the static Love numbers
vanish, the final result after summing these two series is the quasi-polynomial form shown
above. However, the “source” and “response” parts are still given by two infinite series
which now conspire to give the quasi-polynomial radial solution. In particular, it is these
infinite cancellations resulting in the quasi-polynomial form that need to be addressed by
a symmetry argument.

3.5 Non-running Love

It is also interesting to investigate other situations where kLove`mj (ω) are fine tuned. For even
` (integer ˆ̀), we find that the scalar Love numbers (3.23) exhibit no RG flow under the
conditions

iΓ(σ)
+σ (ω) ∈ Z⇒ ωk = j + σm

2 (Ωψ + σΩφ) + i

β
k ,

OR

iΓ(σ)
−σ ∈ Z⇒ j − σm

2 (Ωψ − σΩφ) = − i
β
k ,

(3.37)

where k ∈ Z and we have introduced the inverse Hawking temperature of the 5-dimensional
Myers-Perry black hole,

β = 1
2πTH

= ρsr+
ρ+ − ρ−

. (3.38)

In particular, for −ˆ̀≤ k ≤ ˆ̀ the scalar Love numbers vanish identically, while for k ≥ ˆ̀+1
or k ≤ −ˆ̀− 1, they are non-zero but still exhibit no running.

Similarly, for odd ` (half-integer ˆ̀), the conditions read

iΓ(σ)
+σ (ω) ∈ Z + 1

2 ⇒ ωk = j + σm

2 (Ωψ + σΩφ) + i

β

(
k + 1

2

)
,

OR

iΓ(σ)
−σ ∈ Z + 1

2 ⇒
j − σm

2 (Ωψ − σΩφ) = − i
β

(
k + 1

2

)
,

(3.39)

with vanishing Love numbers whenever −ˆ̀≤ k + 1
2 ≤ ˆ̀.

Regarding the conditions on Γ(σ)
−σ, these are in general accompanied by conical deficits

in the scalar field profile because they imply imaginary azimuthal numbers which break
the periodicity of the scalar field with respect to azimuthal rotations. The only situation
where this does not happen is when Γ(σ)

−σ = 0 for ˆ̀∈ N.
Despite their unphysical nature in certain cases, the vanishing/non-running of scalar

Love numbers beyond the static limit and for all the situations in (3.37)–(3.39) is still an
interesting result. The corresponding near-zone radial wavefunction for integer ˆ̀ takes the
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form

Rω`mj

∣∣∣∣
iΓ(σ)
±σ(ω)=k

= R̄`mj (ω)
(

x

1 + x

)iΓ(σ)
∓σ(ω)

[x (1 + x)]k/2 2F1
(

ˆ̀+ 1 + k,−ˆ̀+ k; 1 + k + iΓ(σ)
∓σ (ω) ;−x

)
.

(3.40)

For k ≤ ˆ̀, this again takes a particular quasi-polynomial form to be addressed in the
next section via symmetry arguments as well. As we will see, it is the highest-weight
property that dictates this quasi-polynomial form. Nevertheless, for k < −ˆ̀the polynomial
starts developing ρ−ˆ̀−1 terms. The absence of logarithms indicates that this is not due
to an overlapping with PN corrections to the Newtonian source and therefore these are
interpreted as non-vanishing and non-running Love numbers.

As we will see in the next section, the highest-weight representation relevant for the
properties of the near-zone Love numbers is actually an indecomposable SL (2,R) repre-
sentation of type “◦[◦[◦”. The states “sandwiched” between the two highest-weight modes
are the ones for which the near-zone Love numbers vanish, while the states spanning
the irreducible (lower) highest-weight representation have non-vanishing and non-running
near-zone Love numbers. As for the vectors spanning the upper ladder above the reducible
(higher) highest-weight representation, these will be spanned by the states characterized
by the resonant conditions with k ≥ ˆ̀+ 1. For half-integer ˆ̀ for which iΓ(σ)

+σ (ω) or iΓ(σ)
−σ is

a half-integer, the same conclusions are drawn after replacing k → k + 1
2 .

4 Love symmetries

In [35, 36], we have demonstrated the emergence of an enhanced SL (2,R) symmetry,
dubbed “Love symmetry”, of the near-zone equations of motion for black hole pertur-
bations. In the context of this symmetry, the vanishing of Love numbers appears as a con-
straint imposed by the highest-weight Love symmetry representation structure, to which
the relevant black hole perturbation solutions belong. In particular, the highest-weight
property dictates a (quasi-)polynomial form of the regular radial wavefunctions which is
the behavior indicative of the vanishing of the Love numbers. The intricate structure of
the scalar Love numbers for 5-d Myers-Perry black holes extracted in the previous section
sets a good example of examining this hypothesis. In this section, we will demonstrate the
existence of SL (2,R) structures of the near-zone Klein-Gordon equation for all values of
the spin parameters and azimuthal numbers. As we will see, it is only when the scalar Love
numbers vanish that the corresponding regular scalar field solution belongs to a highest-
weight representation of the corresponding SL (2,R) and the vanishing of the scalar Love
numbers will be immediately implied through the highest-weight property.

To demonstrate the enhanced symmetry structure of the near-zone equations of motion,
it is convenient to introduce the following sum/difference azimuthal angles,

ψ± = ψ ± φ . (4.1)
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The corresponding angular velocities and azimuthal numbers with respect to these two
directions are then

Ω± = Ωψ ± Ωφ , m± = j ±m
2 . (4.2)

The two near-zone splits (3.13)–(3.14) have the property of each being equipped with
an SL (2,R) structure. Indeed, for each sign σ = ±, we can find a set of three vector fields
satisfying the SL (2,R) algebra,[

L(σ)
m , L(σ)

n

]
= (m− n)L(σ)

m+n , m, n = 0,±1 . (4.3)

These generators are given by the vector fields

L
(σ)
0 = −β (∂t + Ωσ ∂σ) ,

L
(σ)
±1 = e±t/β

[
∓
√

∆ ∂ρ + ∂ρ
(√

∆
)
β (∂t + Ωσ ∂σ) + ρ+ − ρ−

2
√

∆
βΩ−σ ∂−σ

]
,

(4.4)

with ∂± ≡ ∂ψ± = (∂ψ ± ∂φ) /2 and β the inverse Hawking temperature (3.38) of the 5-d
Myers-Perry black hole. The corresponding Casimirs,

C(σ)
2 = L

(σ)2
0 − 1

2
(
L

(σ)
+1L

(σ)
−1 + L

(σ)
−1L

(σ)
+1

)
= ∂ρ ∆ ∂ρ −

ρ2
sρ+
4∆ (∂t + Ω+ ∂+ + Ω− ∂−)2 − ρ+ − ρ−

ρ− ρ−
β2 (∂t + Ωσ ∂σ) Ω−σ ∂−σ ,

(4.5)

are precisely equal to the two near-zone truncations of the radial operator (3.13)–(3.14)
when working in the initial Boyer-Lindquist azimuthal coordinates (φ, ψ). We will denote
the individual algebras generated for each sign σ as SL (2,R)(σ). A crucial property of
these generators is that they are regular at both the future and the past event horizons as
can be seen by switching to the advanced and retarded null coordinates respectively (see
appendix D).

Solutions of the near-zone equations of motion then form representations of the corre-
sponding SL (2,R)(σ) symmetry, labeled by their Casimir eigenvalues, which are equal to
the angular eigenvalues ˆ̀(ˆ̀+ 1), and the L0-weights [74, 75],

C(σ)
2 Φω`mj = ˆ̀(ˆ̀+ 1)Φω`mj , L

(σ)
0 Φω`mj = h(σ)Φω`mj . (4.6)

We remark, in particular, that

h(σ) = iβ (ω −mσΩσ) = −iΓ(σ)
+σ (ω) . (4.7)

4.1 Highest-weight banishes static Love

We saw in the previous section that the static scalar Love numbers vanish whenever
mσΩσ = 0 for σ = + or σ = − and only for integer ˆ̀ (see eq. (3.35)). We will show
here that the vanishing of the static Love numbers follows from the fact that the relevant
solution of the near-zone equations of motion belongs to a highest-weight representation of
SL (2,R)(σ).
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Let us construct the highest-weight representation of SL (2,R)(σ) with highest-weight
h

(σ)
−ˆ̀,0 = −ˆ̀ [35, 36, 74, 75]. The primary state υ(σ)

−ˆ̀,0 satisfies,

L
(σ)
0 υ

(σ)
−ˆ̀,0 = −ˆ̀υ(σ)

−ˆ̀,0 , L
(σ)
+1υ

(σ)
−ˆ̀,0 = 0 . (4.8)

Supplementing with the condition of definite azimuthal numbers,

J
(±)
0 υ

(σ)
−ˆ̀,0 = m±υ

(σ)
−ˆ̀,0 , (4.9)

where J (±)
0 = −i∂± are the two so (3) J0-generators of the rotation group algebra so (4) '

so (3)⊕ so (3) (see appendix B), we find, up to an overall normalization constant,

υ
(σ)
−ˆ̀,0 = Fσ (ρ) eimσ(ψσ−Ωσt)eim−σψ−σ

[
et/β
√

∆
]ˆ̀
, (4.10)

with the form factor given by

Fσ (ρ) ≡
(
ρ− ρ+
ρ− ρ−

)im−σβΩ−σ/2
=
(
ρ− ρ+
ρ− ρ−

)iΓ(σ)
−σ/2

. (4.11)

This highest-weight vector is regular at the future event horizon but singular at the past
event horizon. From the regularity of the generators, all the descendants will also be
regular at the future event horizon and singular at the past one. For generic parameters,
the highest-weight representation is an infinite-dimensional Verma module and is spanned
by the vectors [74–76]

υ
(σ)
−ˆ̀,n =

[
L

(σ)
−1

]n
υ

(σ)
−ˆ̀,0 , n ≥ 0 , (4.12)

whose charge under L(σ)
0 is

h
(σ)
−ˆ̀,n = n− ˆ̀. (4.13)

Let us compare with the properties of the regular static solution with mσΩσ = 0 and
ˆ̀ ∈ N which corresponds to vanishing static Love numbers. This is a null state of L(σ)

0
regular at the future event horizon and is therefore identified as the n = ˆ̀ descendant in
the highest-weight multiplet,

Φω=0,`mj

∣∣∣∣
mσΩσ=0

∝ υ(σ)
−ˆ̀,ˆ̀ =

[
L

(σ)
−1

]ˆ̀
υ

(σ)
−ˆ̀,0 . (4.14)

Noticing that, for generic υ (ρ),[
L

(σ)
+1

]n (
Fσ (ρ) eimσ(ψσ−Ωσt)eim−σψ−συ (ρ)

)
=

Fσ (ρ) eimσ(ψσ−Ωσt)eim−σψ−σ
[
−et/β

√
∆
]n dn

dρn
υ (ρ) ,

(4.15)

we see that the highest-property,

[
L

(σ)
+1

]ˆ̀+1
Φω=0,`mj

∣∣∣∣
mσΩσ=0

= 0 , (4.16)
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dictates a quasi-polynomial form of the near-zone radial wavefunction,

Rω=0,`mj

∣∣∣∣
mσΩσ=0

= Fσ (ρ)
ˆ̀∑

n=0
cnρ

n . (4.17)

This is precisely the quasi-polynomial form (3.36) that we wanted to address. In conclusion,
we have seen how the vanishing of static scalar Love numbers of the 5-dimensional Myers-
Perry black hole is automatically outputted as a selection rule following from the fact
that corresponding solution belongs to a highest-weight representation of the near-zone
SL (2,R)(σ). On the opposite route, the conditions for the regular at the future event
horizon static solution to belong to a highest-weight representation are that ˆ̀∈ N and that
mσΩσ = 0, which are precisely the conditions of vanishing static scalar Love numbers.

Let us briefly comment on the structure of the lowest-weight representation of
SL (2,R)(σ), spanned by ascendants ῡ(σ)

+ˆ̀,n of a lowest-weight state ῡ(σ)
+ˆ̀,0,

ῡ
(σ)
+ˆ̀,n =

[
−L(σ)

+1

]n
ῡ

(σ)
+ˆ̀,0 , (4.18)

satisfying
L

(σ)
0 ῡ

(σ)
+ˆ̀,0 = +ˆ̀ῡ(σ)

+ˆ̀,0 , L
(σ)
−1 ῡ

(σ)
+ˆ̀,0 = 0 , (4.19)

and having definite azimuthal numbers. We find

ῡ
(σ)
+ˆ̀,0 = F̄σ (ρ) eimσ(ψσ−Ωσt)eim−σψ−σ

[
e−t/β

√
∆
]ˆ̀
, F̄σ (ρ) ≡

(
ρ− ρ+
ρ− ρ−

)−iΓ(σ)
+σ/2

. (4.20)

This state is a solution of the near-zone equations of motion that is regular at the past
event horizon, but singular at the future event horizon. As a result, from the regularity
of the generators, all the ascendants will also be regular at the past event horizon and
singular at the future one, with L0-charges h̄(σ)

ˆ̀,n = ˆ̀−n. In particular, when ˆ̀ is an integer,

the n = ˆ̀ ascendant ῡ(σ)
+ˆ̀,ˆ̀ will be the static solution of the Klein-Gordon equation with

mσΩσ = 0 that is singular at the future event horizon. We have just demonstrated that
the static solutions regular and singular at the future event horizon belong to different,
locally distinguishable, representations of SL (2,R)(σ); the highest-weight representation
and lowest-weight representation respectively. This is the algebraic manifestation of the
absence of RG flow for the static scalar Love numbers in the particular case of ˆ̀∈ N and
mσΩσ = 0. The construction of these highest-weight and lowest-weight representations is
demonstrated graphically in figure 1.

4.2 Highest-weight banishes near-zone Love

Interestingly, the near-zone symmetries can address all the situations in eq. (3.37) and
eq. (3.39), even the unphysical ones.

If ˆ̀ is an integer and iΓ(σ)
+σ (ω) = k ∈ Z, then the corresponding near-zone solution has

the form

Φω`mj

∣∣∣∣
iΓ(σ)

+σ(ω)=k
∝ ekt/βeimσ(ψσ−Ωσt)eim−σψ−σRω`mj (ρ)

∣∣∣∣
iΓ(σ)

+σ(ω)=k
, (4.21)
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υ
(σ)
−ˆ̀,ˆ̀

υ
(σ)
−ˆ̀,2

υ
(σ)
−ˆ̀,1

υ
(σ)
−ˆ̀,0

...

...

L
(σ)
−1

L
(σ)
−1 L

(σ)
+1

L
(σ)
+1

(a) The highest-weight representation spanned by
states {υ(σ)

−ˆ̀,n
|n ∈ N} which are regular (singular)

at the future (past) event horizon and have weights
h

(σ)
−ˆ̀,n

= n− ˆ̀.

ῡ
(σ)
+ˆ̀,ˆ̀

ῡ
(σ)
+ˆ̀,2

ῡ
(σ)
+ˆ̀,1

ῡ
(σ)
+ˆ̀,0

...

...

L
(σ)
+1

L
(σ)
+1 L

(σ)
−1

L
(σ)
−1

(b) The lowest-weight representation spanned by
states {ῡ(σ)

+ˆ̀,n
|n ∈ N} which are singular (regular)

at the future (past) event horizon and have weights
h̄

(σ)
+ˆ̀,n

= ˆ̀− n.

Figure 1. Infinite-dimensional highest-weight and lowest-weight representations of SL (2,R)(σ)
containing near-zone solutions for a massless scalar field in the 5-d Myers-Perry black hole back-
ground with multipolar index `. Whenever ˆ̀= `

2 ∈ N andmσΩσ = 0, the solution regular (singular)
at the future event horizon is the ˆ̀’th descendant (ascendant) in the highest-weight (lowest-weight)
representation.

where we are suppressing the θ-dependence, and therefore satisfies

L
(σ)
0 Φω`mj

∣∣∣∣
iΓ(σ)

+σ(ω)=k
= −kΦω`mj

∣∣∣∣
iΓ(σ)

+σ(ω)=k
. (4.22)

If k ≤ ˆ̀, the regular at the future event horizon solution is then recognized to be the
n = ˆ̀− k descendant,

Φω`mj

∣∣∣∣
iΓ(σ)

+σ(ω)=k≤ˆ̀
∝ υ(σ)

−ˆ̀,ˆ̀−k =
[
L

(σ)
−1

]ˆ̀−k
υ

(σ)
−ˆ̀,0 . (4.23)

The highest-property, [
L

(σ)
+1

]ˆ̀−k+1
Φω`mj

∣∣∣∣
iΓ(σ)

+σ(ω)=k≤ˆ̀
= 0 , (4.24)

does not directly imply any useful quasi-polynomial form itself. Rather, it is the fact that

υ
(σ)
−ˆ̀,ˆ̀−k =


(−1)k

[
L

(σ)
+1

]k
υ

(σ)
−ˆ̀,ˆ̀ for 0 ≤ k ≤ ˆ̀[

L
(σ)
−1

]−k
υ

(σ)
−ˆ̀,ˆ̀ for k < 0

(4.25)

and the quasi-polynomial form of the static element υ(σ)
−ˆ̀,ˆ̀ that give a useful expression for

the relevant near-zone solution. From (4.15), and an analogous relation for the action of
L

(σ)
−1 we conclude that

Rω`mj (ρ)
∣∣∣∣
iΓ(σ)

+σ(ω)=k≤ˆ̀
= Fσ (ρ) ∆k/2

ˆ̀−k∑
n=0

cnρ
n , (4.26)
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which has the exact quasi-polynomial form of (3.40) with k ≤ ˆ̀.
Another remark here is there are in general two possible highest-weight representations

of SL (2,R); one has h(σ) = −ˆ̀, which is the one we saw, and the other has h(σ) = +ˆ̀+ 1.
Both highest-weight representations contain solutions that are regular at the future event
horizon. Since the weights differ by the integer amount 2ˆ̀+ 1, we see that the primary
state with h(σ) = +ˆ̀+ 1 is actually a descendant of the primary state with h(σ) = −ˆ̀,

υ+ˆ̀+1,0 =
[
L

(σ)
−1

]2ˆ̀+1
υ−ˆ̀,0 . (4.27)

Therefore, the highest-weight Verma module of SL (2,R)(σ) we have been working with so
far is actually of type “[◦[◦”. With this fact in hand, we see an interesting algebraic inter-
pretation of the elements of this representation: the irreducible (lower) highest-weight is
spanned by states with non-vanishing but also non-running near-zone scalar Love numbers,
while the quotient representation sandwiched between the two primary states is spanned by
all the possible near-zone solutions regular at the future event horizon that have vanishing
scalar Love numbers.

Let us now supplement with the case where k ≥ ˆ̀+1 for which the scalar Love numbers
are not zero but still exhibit no running. For the sake of this, we need to look into states
{υ(σ)
−ˆ̀,−(n+1)|n ∈ N} that span the ladder above this highest-weight representation. These

states are ascendants of the state υ(σ)
−ˆ̀,−1,

υ
(σ)
−ˆ̀,−(n+1) = 1

n!(2ˆ̀+ 2)n

[
L

(σ)
+1

]n
υ

(σ)
−ˆ̀,−1 , (4.28)

which satisfies
L

(σ)
0 υ

(σ)
−ˆ̀,−1 = −(ˆ̀+ 1) υ(σ)

−ˆ̀,−1 , L
(σ)
−1υ

(σ)
−ˆ̀,−1 = υ

(σ)
−ˆ̀,0 . (4.29)

The resulting first-order inhomogeneous differential equation can be solved to get

υ
(σ)
−ˆ̀,−1 = Fσ (ρ) eimσ(ψσ−Ωσt)eim−σΩ−σ

(ρ+ − ρ−)
(

ˆ̀+ 1 + iΓ(σ)
−σ

) (
et/β
√

∆
)ˆ̀+1

× 2F1

(
1, 2ˆ̀+ 2; 2 + ˆ̀+ iΓ(σ)

−σ;− ρ− ρ+
ρ+ − ρ−

)
,

(4.30)

which is regular at the future event horizon and singular at the past one. Consequently,
all the ascendants υ(σ)

−ˆ̀,−(n+1), with n ∈ N will also be regular at the future event horizon

near-zone solutions, with L0-eigenvalues h(σ)
−ˆ̀,−(n+1) = −(n+ ˆ̀+1). From this, we therefore

identify

Φω`mj

∣∣∣∣
iΓ(σ)

+σ(ω)=k≥ˆ̀+1
∝ υ(σ)

−ˆ̀,−(k−ˆ̀) ∝
[
L

(σ)
+1

]k−ˆ̀−1
υ

(σ)
−ˆ̀,−1 . (4.31)

As already discussed around (3.40), we do not expect to find any conspiring quasi-polynomial
solution for k ≥ ˆ̀+1. However, we have supplemented with the algebraic property of these
remaining states to span the entire type “◦[◦[◦” representation of SL (2,R)(σ) for which the
highest-weight state has weight h(σ)

−ˆ̀,0 = −ˆ̀ (see [75] for our notation).
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(σ)
−ˆ̀,1

υ
(σ)
−ˆ̀,0

υ
(σ)
−ˆ̀,−1

υ
(σ)
−ˆ̀,−2

...

...

...

L
(σ)
−1

L
(σ)
−1

L
(σ)
−1

L
(σ)
−1 L

(σ)
+1

L
(σ)
+1

L
(σ)
−1 L

(σ)
+1

(a) The type “◦[◦[◦” representation spanned by
states {υ(σ)

−ˆ̀,j
|j ∈ Z} which are regular (singular)

at the future (past) event horizon and have weights
h

(σ)
−ˆ̀,j

= j − ˆ̀.

ῡ
(σ)
+ˆ̀,2ˆ̀+2

ῡ
(σ)
+ˆ̀,2ˆ̀+1

ῡ
(σ)
+ˆ̀,2ˆ̀

ῡ
(σ)
+ˆ̀,1

ῡ
(σ)
+ˆ̀,0

ῡ
(σ)
+ˆ̀,−1

ῡ
(σ)
+ˆ̀,−2

...

...

...

L
(σ)
+1

L
(σ)
+1

L
(σ)
+1

L
(σ)
+1 L

(σ)
−1

L
(σ)
−1

L
(σ)
+1 L

(σ)
−1

(b) The type “◦]◦]◦” representation spanned by
states {ῡ(σ)

+ˆ̀,j
|j ∈ Z} which are singular (regular)

at the future (past) event horizon and have weights
h̄

(σ)
+ˆ̀,j

= ˆ̀− j.

Figure 2. The type “◦[◦[◦” and type “◦]◦]◦” representations of SL (2,R)(σ) containing all the
near-zone solutions for a massless scalar field in the 5-d Myers-Perry black hole background that
have vanishing/non-running Love numbers regarding the conditions on Γ(σ)

+σ (see (3.37)–(3.39)). For
integer ˆ̀, the relevant condition is iΓ(σ)

+σ = k ∈ Z and is depicted above. For half-integer ˆ̀, the
condition becomes iΓ(σ)

+σ = k+ 1
2 , k ∈ Z, and the structure of the representations is as in the above

figures after replacing k → k + 1
2 .

As for the near-zone solutions singular at the future event horizon, these can be simi-
larly worked out to span the entire type “◦]◦]◦” representation of SL (2,R)(σ) for which the
lowest-weight state has weight h̄(σ)

+ˆ̀,0 = +ˆ̀, thus providing us with an algebraic argument
of the absence of RG flow of the Love numbers. These constructions are shown graphically
in figure 2.

Last, if ˆ̀ is a half-integer and iΓ(σ)
+σ (ω) = k + 1

2 , with k ∈ Z, then we are looking at
near-zone solutions of the form

Φω`mj

∣∣∣∣
iΓ(σ)

+σ(ω)=k+ 1
2

∝ e(k+1/2)t/βeimσ(ψσ−Ωσt)eim−σψ−σRω`mj (ρ)
∣∣∣∣
iΓ(σ)

+σ(ω)=k+ 1
2

, (4.32)

which satisfy

L
(σ)
0 Φω`mj

∣∣∣∣
iΓ(σ)

+σ(ω)=k+ 1
2

= −
(
k + 1

2

)
Φω`mj

∣∣∣∣
iΓ(σ)

+σ(ω)=k+ 1
2

. (4.33)

The above analysis is then carried away identically, after replacing k → k + 1
2 .
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4.3 Local near-zone SL (2,R) × SL (2,R)

Somewhat surprisingly, we can address the remaining situations where iΓ(σ)
−σ ∈ Z for integer

ˆ̀or iΓ(σ)
−σ ∈ Z+ 1

2 for half-integer ˆ̀, even for ω 6= 0. This is ought to the observation that the
particular near-zone truncations are equipped with a larger SL (2,R)(σ),L × SL (2,R)(σ),R
structure. The first SL (2,R) factor is the Love symmetry SL (2,R),

SL (2,R)(σ),L = SL (2,R)(σ) , (4.34)

generated by the globally defined vector fields (4.4), L(σ),L
m = L

(σ)
m , m = 0,±1. The second,

SL (2,R)(σ),R, factor is generated by the following vector fields

L
(σ),R
0 = −βΩ−σ ∂−σ ,

L
(σ),R
±1 = e±ψ−σ/(βΩ−σ)

[
∓
√

∆∂ρ + ∂ρ
(√

∆
)
βΩ−σ ∂−σ + ρ+ − ρ−

2
√

∆
β (∂t + Ωσ ∂σ)

]
.
(4.35)

The Casimirs of the two commuting SL (2,R)’s are exactly the same,

C(σ),R
2 = C(σ),L

2 = C(σ)
2 . (4.36)

In addition, the sets of vector fields generating the two SL (2,R)’s are regular at both
the future and the past event horizons with respect to the radial variable, i.e. they do
not develop poles as ρ → ρ+. However, SL (2,R)(σ),R is spontaneously broken down to
U (1)(σ),R by the periodic identification of the azimuthal angles, ψ± ∼ ψ± + 2π, under
which L(σ),R

±1 develop conical deficits.
Despite this breaking of SL (2,R)(σ),R by the periodic identification of the azimuthal

angles, it can still be used to explain the vanishing/non-running corresponding to the
situations where iΓ(σ)

−σ ∈ Z for integer ˆ̀ or iΓ(σ)
−σ ∈ Z + 1

2 for half-integer ˆ̀ in a similar
fashion as in the previous subsection. Solutions of the near-zone equations of motion will
furnish representations labeled by the Casimir and L0-eigenvalues,

C(σ),R
2 Φω`mj = ˆ̀(ˆ̀+ 1)Φω`mj , L

(σ),R
0 Φω`mj = h(σ),RΦω`mj , (4.37)

with
h(σ),R = −iβm−σΩ−σ = −iΓ(σ)

−σ . (4.38)

Let us construct the analogous highest-weight representation of SL (2,R)(σ),R. The primary
state with highest-weight h(σ),R

−ˆ̀,0 = −ˆ̀, satisfying

L
(σ),R
0 υ

(σ),R
−ˆ̀,0 = −ˆ̀υ(σ),R

−ˆ̀,0 , L
(σ),R
+1 υ

(σ),R
−ˆ̀,0 = 0 , (4.39)

and having definite azimuthal numbers and frequency is given by, up to an overall normal-
ization constant,

υ
(σ),R
−ˆ̀,0 = FR

σ (ρ) e−iωteimσψσeˆ̀ψ−σ/(βΩ−σ)∆ˆ̀/2 , FR
σ (ρ) ≡

(
ρ− ρ+
ρ− ρ−

)iΓ(σ)
+σ(ω)/2

. (4.40)
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This state is singular at the past event horizon and develops conical deficits as we go around
the azimuthal circles, but develops no pole at the future event horizon with respect to the
radial variable. The descendants,

υ
(σ),R
−ˆ̀,n =

[
L

(σ),R
+1

]n
υ

(σ),R
−ˆ̀,0 , (4.41)

share the same boundary conditions, with the conical deficit measured by their charge
under L(σ),R

0 ,
h

(σ),R
−ˆ̀,n = n− ˆ̀. (4.42)

If ˆ̀ ∈ N, there exists a particular descendant that develops no conical deficit and is
therefore truly regular at the future event horizon. This is the n = ˆ̀ descendant which is
a null state under L(σ),R

0 and corresponds to the regular near-zone solution with Γ(σ)
+σ = 0.

Noticing that [
L

(σ)
+1

]n (
FR
σ (ρ) eiωteimσψσυ (ρ)

)
=

FR
σ (ρ) eiωteimσψσ

[
−eψ−σ/(βΩ−σ)√∆

]n dn

dρn
υ (ρ) ,

(4.43)

for generic υ (ρ), we see that the highest-weight property,

[
L

(σ),R
+1

]ˆ̀+1
Φω`mj

∣∣∣∣
Γ(σ)
−σ=0

= 0 , (4.44)

implies the following quasi-polynomial form for the radial wavefunction

Rω`mj

∣∣∣∣
Γ(σ)
−σ=0

= FR
σ (ρ)

ˆ̀∑
n=0

cnρ
n , (4.45)

which exactly matches the one from (3.36) we wanted to address. The absence of RG flow
is also encoded in the representation theory analysis of SL (2,R)(σ),R, with the solution
singular at the future event horizon (and regular at the past event horizon) being the n = ˆ̀
ascendant of the locally distinguishable lowest-weight representation of SL (2,R)(σ),R with
lowest-weight h̄(σ),R

+ˆ̀,0 = +ˆ̀.
For the other situations of vanishing/non-running scalar Love numbers that regard

the conditions on Γ(σ)
−σ for which the relevant near-zone solutions develop conical deficits,

we can follow the same procedure as in the previous subsection and show that all the
relevant regular (singular) at the future event horizon near-zone solutions span the entire
representation of type “◦[◦[◦” (type “◦]◦]◦”).

5 Properties

In this section we will present a number of interesting properties of the Love symme-
tries. First, we will show how the near-zone SL (2,R) symmetries acquire a geometric
interpretation as isometries of effective geometries within the framework of subtracted
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geometries [47, 48]. Then, we will demonstrate how both near-zone symmetries can be
realized as subalgebras of a larger, infinite-dimensional SL (2,R)n Û (1)2

V extension, which
is interpreted as the 5-d version of the SL (2,R) n Û (1)V infinite extension of the Love
symmetry for Kerr-Newman black holes [35, 36]. We will also present another interesting
generalization of the near-zone symmetries which will exhaust all the possible near-zone
truncations of the equations of motion that are equipped with an enhanced SL (2,R) sym-
metry and acquire a subtracted geometry interpretation. We will close this section by
proposing a physical interpretation of the states in the highest-weight Love multiplet we
saw in the previous section. In particular, by employing a partial wave analysis of the
black hole scattering problem, we will argue that states with vanishing Love numbers can
be interpreted as total transmission modes [28, 77–79].

5.1 Near-zone symmetries as isometries of subtracted geometries

To introduce the notion of subtracted geometries, we begin by writing the geometry of the
5-d Myers-Perry black hole as a fibration over a 4-d base space [47, 80],

ds2 = −∆−2/3
0 G (dt+A)2 + ∆1/3

0 ds2
4 ,

ds2
4 = dρ2

4X + dθ2 + 1
4

2∑
i,j=1

γijdφ
idφj ,

(5.1)

where we use small Latin indices from the middle of alphabet to label the azimuthal angles,
with φ1 ≡ φ and φ2 ≡ ψ. In the notation more conventionally used to write down the line
element of the geometry (see appendix A),

X = ∆ , ∆0 = Σ3 , G = Σ (Σ− ρs) ,

A = ρsΣ
G

(
a sin2 θ dφ+ b cos2 θ dψ

)
,

1
4
∑
i,j

γijdφ
idφj = ρs

G

(
a sin2 θ dφ+ b cos2 θ dψ

)2
+ ρ+ a2

Σ dφ2 + ρ+ b2

Σ dψ2 .

(5.2)

Let us forget for a moment what the explicit expressions for ∆0, G, A, X and γij are.
The generic effective geometry then describes a stationary, axisymmetric black hole whose
event horizon is the larger root of the function X. The function G captures the static
limit at the surface G = 0, setting the boundaries of the ergosphere. The thermodynamic
properties of the black hole are completely independent of the warp-factor ∆0, while they
only depend on the near-horizon behavior of the function G, the angular potential A and
the induced metric γij [47]. The warp-factor ∆0 can therefore be interpreted as to encode
information about the environment surrounding the black hole, rather than its internal
structure. A subtracted geometry is then a geometry obtained by a modification of the
warp-factor, while keeping all the other metric functions fixed [47, 48].

To reveal a connection to the Love symmetries, it is more convenient to look at the
inverse metric,

gµν∂µ∂ν = 4
∆1/3

0

X∂2
ρ + 1

4 ∂
2
θ −

∆0
4G∂

2
t +

∑
i,j

γijDiDj

 , Di ≡ ∂i −Ai∂t , (5.3)
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with γij the components of the inverse of the induced azimuthal metric γij . The Love
symmetry SL (2,R)(σ) can then be realized as an isometry of the effective geometry with
inverse metric

g̃µν(σ)∂µ∂ν = 4
∆̃(σ)1/3

0

X∂2
ρ + 1

4 ∂
2
θ −

∆̃(σ)
0

4G ∂2
t +

∑
i,j

γijD̃
(σ)
i D̃

(σ)
j

 , D̃
(σ)
i = ∂i − Ã(σ)

i ∂t ,

(5.4)
where

∆̃(σ)
0 = 16ρ+ρ

2
s

[
1 + β2 (Ωφ − σΩψ)2

]
,

Ã(σ) = −ρ+ρ
2
s

4∆ (Ωφ ∂φ + Ωψ ∂ψ)− ρ+ − ρ−
ρ− ρ−

β2

4 (Ωφ − σΩψ) (∂φ − σ∂ψ) .
(5.5)

More importantly, this effective geometry has exactly the same 4-d base space ds2
4 and

preserves the entire form of the function G which captures information about the static
limit. The only difference relevant to the original definition of subtracted geometries [47, 48]
is that the angular potential is itself modified, but in such a way that the thermodynamic
properties of the black hole remain unaltered.

As a side note, we remark here that it might be possible to realize subtracted geometries
by a scaling limit of the full geometry, see e.g. [81]. It would be interesting to investigate
whether the effective geometries associated with the Love symmetries can be manifested
as similar scaling limits of the full 5-d Myers-Perry black hole geometry. We leave such an
analysis for future work.

5.2 Infinite-dimensional extension

In the previous section, we presented how two different near-zone truncations of the mass-
less Klein-Gordon equation admit two different SL (2,R) symmetries, SL (2,R)(σ), σ = ±.
Both of these SL (2,R) algebras can be realized as subalgebras of the semi-direct product
SL (2,R)[0,0] n U (1)2

V , where SL (2,R)[0,0] is generated by the following vector fields

L
[0,0]
0 = −β ∂t ,

L
[0,0]
±1 = e±t/β

[
∓
√

∆ ∂ρ + ∂ρ
(√

∆
)
β ∂t + ρ+ − ρ−

2
√

∆
β (Ω+ ∂+ + Ω− ∂−)

]
.

(5.6)

Each of the U (1)V factors is generated by vector fields of the form υ βΩσ ∂σ with υ belonging
to a representation V of SL (2,R)[0,0], for each sign σ = +,− respectively.

Let us construct one such representation V = {υ0,k, k ∈ Z}. We first specify υ0,0 = −1,
which belongs to the singleton representation of SL (2,R)[0,0], satisfying L

[0,0]
±1 υ0,0 = 0, and

has vanishing azimuthal numbers, therefore further satisfying L[0,0]
0 υ0,0 = 0. We then built

the υ0,±1 states, under the conditions that they can reach the singleton state via the action
of L[0,0]

∓1 and that they have weights h = ∓1,

L
[0,0]
0 υ0,±1 = ∓υ0,±1 , L

[0,0]
∓1 υ0,±1 = ∓υ0,0 . (5.7)
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...

...
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[0,0]
+1

L
[0,0]
+1

L
[0,0]
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[0,0]
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[0,0]
−1

L
[0,0]
−1

Figure 3. A representation V of SL (2,R)[0,0] used to construct the SL (2,R)[0,0]nÛ (1)2
V extension.

Solving these, we arrive at the following basic states of the representation V

υ0,0 = −1 , υ0,±1 = e±t/β
√
ρ− ρ+
ρ− ρ−

, (5.8)

which are automatically regular at both the future and the past event horizons. The rest
of the representation V can then be constructed by climbing up or down the ladder,

υ0,±n =
[
L

[0,0]
±1

]n−1
υ0,±1 = (±1)n−1 (n− 1)! e±nt/β

(
ρ− ρ+
ρ− ρ−

)n/2
, (5.9)

with integer n ≥ 1. This construction is depicted in figure 3.
Consequently, we can extend SL (2,R)[0,0] into SL (2,R)[0,0] n Û (1)2

V , via the U (1)2
V

elements
υ =

∑
k∈Z

υ0,k (αk,+ βΩ+ ∂+ + αk,− βΩ− ∂−) . (5.10)

Within this infinite extension lies a particular 2-parameter family of SL (2,R) subal-
gebras,

SL (2,R)[α+,α−] ⊂ SL (2,R)[0,0] n U (1)2
V , (5.11)

generated by the vector fields

L[α+,α−]
m = L[0,0]

m + υ0,m (α+ βΩ+ ∂+ + α− βΩ− ∂−) , m = 0,±1 . (5.12)

The corresponding Casimir operator is given by

C[α+,α−]
2 = ∂ρ ∆ ∂ρ −

ρ2
sρ+
4∆ (∂t + Ω+ ∂+ + Ω− ∂−)2

+ ρ+ − ρ−
ρ− ρ−

β2 (∂t + α+ Ω+ ∂+ + α−Ω− ∂−) [(α+ − 1) Ω+ ∂+ + (α− − 1) Ω− ∂−] .
(5.13)
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Note that for an arbitrary pair (α+, α−), these Casimirs do not correspond to any consistent
physical near-zone truncation of the Klein-Gordon equation in the background of the 5-d
Myers-Perry black hole, except in two cases;

αNZσ = 1 AND αNZ−σ = 0 , (5.14)

for σ = + or σ = −. These are precisely our two SL (2,R) symmetries of the near-
zone truncations (3.13)–(3.14) which are now realized as subalgebras of the same larger
structure. In the current notation,

SL (2,R)(+) = SL (2,R)[1,0] , SL (2,R)(−) = SL (2,R)[0,1] . (5.15)

However, the Casimirs with generic α+ and α− have another remarkable property: they are
the most general globally defined and time-reversal symmetric truncations of the equations
of motion which preserve the characteristic exponents in the vicinity of the event horizon
(see appendix D).

5.3 Infinite zones of Love from local time translations

Beyond the infinite extension described above involving subtracted geometry truncations
of the radial Klein-Gordon operator equipped with an enhanced SL (2,R) symmetry, there
is another, different type of generalization that gives rise to all the possible near-zone
truncations of the equations of motion such that an SL (2,R) symmetry emerges. The
corresponding generators make up two towers of near-zone SL (2,R)’s and are given by

L
(σ)
0 [g (ρ)] = L

(σ)
0 [0] ,

L
(σ)
±1 [g (ρ)] = e±g(ρ)/βL

(σ)
±1 [0]± e±(t+g(ρ))/β√∆ (∂ρg (ρ)) ∂t ,

(5.16)

where L(σ)
m [0] are the Love symmetries generators (4.4) and g (ρ) is an arbitrary radial

function which is regular and non-vanishing at the event horizon. All of these SL (2,R)
algebras, however, can be realized as cousins of the Love symmetries, corresponding to
local ρ-dependent temporal translations,

t̃ = t+ g (ρ) . (5.17)

Indeed, when writing the generators using this time coordinate, they acquire the same form
as the Love symmetries generators,

L
(σ)
0 [g (ρ)] = −β (∂t̃ + Ωσ ∂σ) ,

L
(σ)
±1 [g (ρ)] = e±t̃/β

[
∓
√

∆ ∂ρ + ∂ρ
(√

∆
)
β (∂t̃ + Ωσ ∂σ) + ρ+ − ρ−

2
√

∆
βΩ−σ ∂−σ

]
.

(5.18)

The associated Casimir is then given by (4.5) with t replaced t̃. Furthermore, the argument
of vanishing static Love numbers remains unaltered even when using these generalized Love
symmetries. Namely, when the conditions for vanishing static Love numbers are satisfied,
the corresponding regular at the future event horizon static solution is a descendant in the
highest-weight representation of these generalized near-zone SL (2,R)’s and the highest-
weight property dictates the (quasi-)polynomial form of the solution.
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5.4 Vanishing Love numbers as Total Transmission Modes

In section 4 we have demonstrated that highest-weight multiplets are spanned by near-zone
solutions with vanishing Love numbers. We will argue here that another interpretation of
these states is that they are total transmission modes of the effective near-zone geometry.
To show this, we consider the full radial operator in (3.2) and treat it as a scattering
problem. The field redefinition

Φ = A (r) Ψ , A (r) ≡
√

r

(r2 + a2) (r2 + b2) (5.19)

brings the radial problem to its canonical form,[
∂2
r∗ −K

2 − r2∆
(r2 + a2)2 (r2 + b2)2V

]
Ψ = 0 , (5.20)

where K = ∂t + a
r2+a2∂φ + b

r2+b2∂ψ and with the reduced scalar potential given by

V = 4Pfull −
a2b2

r2

(
∂t + 1

a
∂φ + 1

b
∂ψ

)2
− 2 (a ∂φ + b ∂ψ) ∂t −

1
rA (r)∂r

(∆
r
A′ (r)

)
. (5.21)

The setup then consists of an incident scalar wave of frequency ω coming from infinity
and scattered by the black hole. After separating the variables

Ψω`mj = e−iωteimφeijψPω`mj (r)Sω`mj (θ) , (5.22)

the asymptotic radial wavefunction P∞ω`mj satisfies the following differential equation in the
far-zone region r � r+, [

d2

dr2 + ω2 −
` (`+ 2)− 3

4
r2

]
P∞ω`mj = 0 , (5.23)

with ` an effective orbital number in terms of which the angular eigenvalues are ` (`+ 2),
but which is non-integer for ω 6= 0. The asymptotic solution can then be found in terms
of Hankel functions to be

P∞ω`mj =
√
πωr

2 e−i
π
2 (`+ 3

2 )I`mj
[
H

(2)
`+1 (ωr) +R`mj (ω) eiπ(`+

3
2 )H(1)

`+1 (ωr)
]
. (5.24)

The integration constants were fixed such that

P∞ω`mj
r→∞−−−→ I`mj

[
e−iωr +R`mj (ω) e+iωr

]
, (5.25)

that is, |I`mj |2 is the incoming flux and R`mj (ω) is the reflection amplitude.
Let us now look at what happens in the near-zone region, ωr � 1. For the asymptotic

wavefunction solution (5.24) to be supported in the near-zone we must of course also have
ωrs � 1 such that the intermediate region r+ � r � ω−1 is non-empty. From the
asymptotic behaviors of the Hankel functions for small arguments, we see that we get an
expression of the form

P∞ω`mj
ωr�1−−−→ Ĩ`mj (ω) r`+

3
2

[
1 + k`mj (ω)

(
rs
r

)2`+2
]
, (5.26)
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from which we can match the response coefficients onto the reflection amplitude. This
is in turn related to the real-valued (conservative) phase-shifts δ` (ω) and (dissipative)
transmission factors η` (ω) that enter a partial wave analysis of the scattering problem [82–
84]. Namely, to linear order in the response coefficients, we have [28]

η` (ω) e2iδ`(ω) = eiπ(`+
3
2 )R`00 (ω) = 1 + i

2π sin2 π (`+ 1)
Γ (`+ 1) Γ (`+ 2)

(
ωrs
2

)2`+2
k`00 (ω) (5.27)

and, therefore, we can extract a matching condition between the real and imaginary parts
of the response coefficients and the phase-shifts and transmission factors respectively [28],

η` (ω) = 1− 2π sin2 π (`+ 1)
Γ (`+ 1) Γ (`+ 2)

(
ωrs
2

)2`+2
Im {k`00 (ω)} ,

δ` (ω) = π sin2 π (`+ 1)
Γ (`+ 1) Γ (`+ 2)

(
ωrs
2

)2`+2
Re {k`00 (ω)} ,

(5.28)

which is an alternative way to see that the Love numbers enter only in the conservative
dynamics. From these expressions, one can then compute elastic and absorption cross-
sections. In d = 1 + 4 spacetime dimensions a partial wave analysis of the scattering
problem results in

σelastic = 16π
ω3

∞∑
`=0

(`+ 1)2 (`+ 2) sin2 δ` (ω) ,

σabsorption = 4π
ω3

∞∑
`=0

(`+ 1)2 (`+ 2)
[
1− η2

` (ω)
]
.

(5.29)

Consequently, vanishing (dynamical) Love numbers for certain frequencies imply a vanish-
ing partial elastic cross-section,

σelastic,` = 0 if kLove`00 (ω) = 0 , (5.30)

while the corresponding partial absorption cross-section is maximized. Vanishing Love
numbers are, thus, interpreted as reflectionless, total transmission modes [28, 77–79]. We
note, however, that strictly speaking, the connection of the Love symmetries highest-weight
multiplet states and total transmission modes is not 1-to-1. For instance, the analysis of [78]
indicates that, for the d = 4 Kerr black hole, the corresponding Love symmetry highest-
weight multiplet [35, 36] does appear to capture these algebraically special modes but is also
over-counting them, in the sense that it also contains states that are not true algebraically
special quasinormal modes of the full geometry that includes the asymptotically flat region.
This feature is quite surprising because the Love symmetries manifest themselves only in
the near-zone region and, therefore, their highest-weight multiplet states are expected
to be accurate only in the regime of low perturbation frequencies. We leave a better
understanding of this connection for future work.

6 Relation to NHE isometries

We have seen that the near-zone SL (2,R) symmetries can be realized as particular subal-
gebras of the infinite extension SL (2,R)nU (1)2

V and that all of these SL (2,R) subalgebras
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of the infinite extension are approximate symmetries of the 5-d Myers-Perry black hole, in
the sense that they are isometries of geometries that preserve the internal structure of the
black hole. Here, we will relate these approximate symmetries with the exact isometries of
the near-horizon region of the extremal 5-d Myers-Perry black hole.

We will start with a brief review of how an enhanced SL (2,R) symmetry for the
extremal 5-d Myers-Perry black hole arises in the near-horizon region [37, 49, 59–62].
Then, we will demonstrate how to take an appropriate extremal limit of the approxi-
mated SL (2,R) symmetries which will precisely recover the SL (2,R) Killing vectors of the
near-horizon extremal (NHE) geometry.

6.1 Enhanced symmetries for NHE Myers-Perry black hole

Consider the extremal 5-d Myers-Perry black hole geometry. The extremality condition
reads,

|a|+ |b| = rs , (6.1)

with the degenerate horizon located at,

ρ+ = ρ− = ρs − a2 − b2

2 = |ab| . (6.2)

To obtain the near-horizon geometry, we perform the following change into co-rotating
coordinates [37, 59, 60]

ρ̃ = ρ− ρ+
λ

, τ = λt , φ̃ = φ− Ωφ t , ψ̃ = ψ − Ωψ t , (6.3)

and take the scaling limit λ→ 0. The resulting NHE geometry is then given by [59–62]

ds2
NHE = Σ+

ρ0

[
−
(
ρ̃

ρ0

)2
dτ2 +

(
ρ0
2ρ̃

)2 dρ̃2

ρ0
+ ρ0 dθ

2
]

+
2∑

i,j=1
γ̃ijDφ̃

iDφ̃j . (6.4)

In the above expression, ρ3
0 = ρ+ρ

2
s, Σ+ = ρ+ + a2 cos2 θ + b2 sin2 θ, small Latin indices

label the azimuthal angles with φ̃1 ≡ φ̃ and φ̃2 ≡ ψ̃, γ̃ij is the induced metric at the horizon
along the azimuthal directions,

2∑
i,j=1

γ̃ijdφ̃
idφ̃j = ρs

Σ+

(
a sin2 θ dφ̃+ b cos2 θ dψ̃

)2

+
(
ρ+ + a2

)
sin2 θ dφ̃2 +

(
ρ+ + b2

)
cos2 θ dψ̃2 ,

(6.5)

and Dφ̃i = dφ̃i + kiρ̃ dτ with

kφ̃ = Ωφ

Σ+

[
cos2 θ + b2

ρ+
sin2 θ

]
, kψ̃ = Ωψ

Σ+

[
sin2 θ + a2

ρ+
cos2 θ

]
. (6.6)

This form of the NHE metric makes the enhanced isometry of the geometry manifest. More
explicitly, the NHE geometry of the 5-d Myers-Perry black hole has an SL (2,R) × U (1)2
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isometry, with U (1)2 generated by the azimuthal Killing vectors and the SL (2,R) Killing
vectors given by

ξ0 = τ ∂τ − ρ̃ ∂ρ̃, ξ+1 = ∂τ ,

ξ−1 =
(
ρ+ρ

2
s

4ρ̃2 + τ2
)
∂τ − 2τ ρ̃ ∂ρ̃ −

ρ+ρs
2ρ̃

(1
a
∂φ̃ + 1

b
∂ψ̃

)
.

(6.7)

In the initial (t, ρ, φ, ψ) coordinates, the SL (2,R) Killing vectors read

ξ0 = tK − (ρ− ρ+) ∂ρ, ξ+1 = λ−1K ,

ξ−1 = λ

[(
ρ+ρ

2
s

4 (ρ− ρ+)2 + t2
)
K − 2t (ρ− ρ+) ∂ρ −

ρ+ρs
2 (ρ− ρ+)

(1
a
∂φ + 1

b
∂ψ

)]
,

(6.8)

where K is the Killing vector that becomes null at the event horizon,

K = ∂t + Ωφ ∂φ + Ωψ ∂ψ = λ ∂τ . (6.9)

The Casimir associated with this SL (2,R) algebra is given by

CSL(2,R)
2 = ∂ρ̃ ρ̃

2 ∂ρ̃ −
ρ+ρ

2
s

4ρ̃2 ∂2
τ + ρ+ρs

2ρ̃

(1
a
∂φ̃ + 1

b
∂ψ̃

)
∂τ

= ∂ρ (ρ− ρ+)2 ∂ρ −
ρ+ρ

2
s

4 (ρ− ρ+)2K
2 + ρ+ρs

2 (ρ− ρ+)

(1
a
∂φ + 1

b
∂ψ

)
K ,

(6.10)

and correctly reproduces the full radial operator for the Klein-Gordon equation in the NHE
limit after supplementing with the U (1)2 contributions,

Ofull = CSL(2,R)
2 − 1

4 (2ρs − ρ+) (Ωφ ∂φ + Ωψ ∂ψ)2 +O (λ) . (6.11)

6.2 NHE algebra from infinite extension

Let us demonstrate now how the NHE SL (2,R) Killing vectors can be recovered from
the non-extremal SL (2,R) n U (1)2

V . We parameterize the extremal limit in terms of the
Hawking temperature, TH → 0. For example,

|a|+ |b| = rs
(
1− 4π2T 2

Hr
2
s

)
+O

(
T 3
H

)
. (6.12)

Consider the SL (2,R) subalgebra of SL (2,R) n U (1)2
V corresponding to the choices7

αNHE± = 1 + r+
Ω±

(1
a
± 1
b

)
πTH . (6.13)

The generators of this algebra are given by

LNHE
0 = − K

2πTH
− r+

2

(1
a
∂φ + 1

b
∂ψ

)
,

LNHE
±1 = e±2πTH t

[
∓
√

∆ ∂ρ + ∂ρ
(√

∆
) K

2πTH
+
√
ρ− ρ+
ρ− ρ−

r+
2

(1
a
∂φ + 1

b
∂ψ

)]
,

(6.14)

7We note here that we can always consider a family of such SL (2,R) subalgebras for which one adds
arbitrary O

(
T 2
H

)
terms in α±. We also remark that ασab = 1 + r+

2 πTH + O
(
T 2
H

)
and α−σab = O

(
T 2
H

)
,

where σab is the sign of the product of the two spin parameters of the black hole.
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and produce the following Casimir operator

CNHE2 = ∂ρ ∆ ∂ρ −
ρ+ρ

2
s

4∆ K2 + ρ+ρs
2 (ρ− ρ−)

(1
a
∂φ + 1

b
∂ψ

)
K

+ ρ+ − ρ−
ρ− ρ−

ρ+
4

(1
a
∂φ + 1

b
∂ψ

)2
.

(6.15)

Even though this Casimir does not give rise to a near-zone truncation in the non-extremal
case, it has the special property of precisely reproducing the Casimir operator (6.10) asso-
ciated with the NHE SL (2,R) Killing vectors when taking the extremal limit,

CNHE2 = CSL(2,R)
2 +O (TH) . (6.16)

In fact, by considering the following linear combinations in the extremal limit

ξ0 = lim
TH→0

LNHE
+1 − LNHE

−1
2 ,

ξ+1 = λ−1 lim
TH→0

2πTH LNHE
0 ,

ξ−1 = λ lim
TH→0

LNHE
+1 + LNHE

−1 + 2LNHE
0

2πTH
,

(6.17)

we precisely recover the NHE SL (2,R) Killing vectors (6.8) after identifying λ with the
near-horizon scaling parameter. We see, therefore, that the infinite extension SL (2,R) n
U (1)2

V contains both the Love symmetries SL (2,R)(σ) associated with the non-extremal
near-zone truncations as well as a family of SL (2,R) subalgebras which in the extremal
limit recover the exact SL (2,R) Killing vectors of the NHE geometry.

7 Summary and discussion

In this work, we have extended the proposal of the Love symmetry resolution of the seem-
ingly unnatural values of the black hole Love numbers [35, 36] to higher-dimensional rotat-
ing black holes in General Relativity. Namely, we have explored in full the case of static
scalar responses of the 5-dimensional Myers-Perry black hole.

Compared to the examples of Kerr-Newman black holes in d = 4 spacetime dimen-
sions [26] and Schwarzschild black holes in d = 5 spacetime dimensions [55], we find some
interesting exact results. To start with, static scalar Love numbers do not in general vanish
in d = 5 for generic spin parameters, not even when ˆ̀∈ N, in contrast to the Schwarzschild
case [55]. Beyond vanishing for “axisymmetric” perturbations [19, 21, 22], we also find
that the static Love numbers vanish for equi-rotating black holes, which does not have a
counterpart in d = 4. We remark here that the current results can be straightforwardly
extended to include the case of 5-d electrically charged Myers-Perry black holes, mainly
due to the fact that the discriminant function remains a quadratic polynomial in ρ [80, 85].
Scalar Love numbers for 5-d charged Myers-Perry black holes were also considered in [43],
who however focused on their slowly-rotating limits thus missing the classical RG flow
feature, which we study in detail here.
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It appears that the vanishing of static Love numbers for rotating black holes in d = 4
is an exception rather than the norm. Indeed, as we have demonstrated in this work, Love
numbers for rotating black holes in d = 5 are in general non-zero and exhibit running, in
agreement with Wilsonian naturalness arguments. Regardless, we were still able to find
near-zone truncations acquiring SL (2,R) Love symmetries just like in d = 4 Kerr-Newman
black holes and d ≥ 4 Reissner-Nordström black holes [33–36]. In the special situations
where Love numbers do vanish, however, it is the highest-property of the corresponding
Love symmetry that outputs this vanishing as a selection rule. We see therefore that the
existence of near-zone Love symmetries appears to be routed in black holes in General
Relativity, rather than only with background geometries and perturbations with vanishing
Love numbers.

At the same time, we have demonstrated here that the highest-weight representation
of the near-zone SL (2,R)’s, along with its full extension into the representation of type
“◦[◦[◦”, plays a special role in the scalar response problem: it is entirely spanned by near-
zone solutions with vanishing/non-running Love numbers. These properties are in fact á
posteriori seen to be shared with the Love symmetry presented in [35, 36] for the d = 4 Kerr-
Newman black hole. These two features, the existence of near-zone SL (2,R) symmetries
and the vanishing/non-running of Love numbers, appear therefore to be mutually inclusive,
with the solutions of vanishing Love numbers furnishing a quotient representation of the
highest-weight Verma module of the near-zone SL (2,R). We remind here, though, that
only the static results can be trusted within the near-zone regime.

On that account, it is interesting to further study this hypothesis. On the one hand,
it is instructive to extend the analysis to other general-relativistic black holes. The ob-
vious next candidate to analyze is the higher-dimensional Myers-Perry black holes whose
scalar field perturbations are still separable [86, 87]. A technical obstacle in this approach,
however, is the fact that the angular eigenvalues in d > 5 are not known in closed form,
but can be obtained as an expansion in spin parameters ratios, see e.g. [88]. It would
be interesting, in particular, to analyze the fate of scalar Love numbers for equi-rotating
Myers-Perry black holes in odd spacetime dimensions which have the enhanced isometry
subgroup U (1)N → U (N). Moreover, it only deems appropriate to extend to higher-spin
fields, namely, electromagnetic and gravitational perturbations. At least for spin-1 pertur-
bations, this should be very similar to the work done here thanks to the separability of
electromagnetic perturbations in the background of Myers-Perry black holes [89].

On the other hand, it is still an open question whether Love symmetry exists in the-
ories of gravity beyond General Relativity. A preliminary analysis around this was done
in [36], where a sufficient geometric condition was extracted for spherically symmetric black
holes. It would be interesting to supplement that analysis with sufficient and necessary con-
straints, investigate what type of theories of gravity support such geometries and whether
the corresponding Love symmetries live up to their names, i.e. whether they can address
the potential vanishing of Love numbers. As a counterexample, it was shown in [36] that
Love symmetry does not exist for the case of Riemann-cubed modifications of general rel-
ativity, see also [90–92]. This nicely fitted with the corresponding computation of static
scalar Love numbers which were found to be non-zero and exhibit the expected RG flow.

– 40 –



J
H
E
P
0
7
(
2
0
2
3
)
2
2
2

The nature of the Love symmetry is still not fully understood. From arguments stated
here and in [36], the approximate Love symmetry for non-extremal black holes can be
interpreted to be a remnant of enhanced isometries of extremal black holes. This could
be further supported by studying the perturbations of black objects with non-spherical
horizons, namely, black p-branes [93]. One would then attempt to identify near-zone trun-
cations admitting an SO (p+ 1, 2) symmetry. We leave this for future work. If such an
analysis turns out to yield affirmative results, then the Love symmetry may shine more
light on the potential holographic descriptions of asymptotically flat general-relativistic
black holes [37–40].

There are some unconventional features of the Love symmetries regarding their prop-
erty to offer IR selection rules. In particular, they have the feature of mixing IR and UV
modes as can be seen from the fact that representations of the near-zone SL (2,R) have
non-zero frequencies and, thus, they are not directly manifested at the level of the world-
line EFT. The Love symmetry proposal is then somewhat different from the standard ’t
Hooft’s notion of naturalness [30]. However, the Love symmetry does provide selection
rules that dictate the vanishing of Love numbers and hence restore the naturalness in the
broader sense. Furthermore, while there are non-zero corrections at next-to-leading order
in the near-zone expansion (see, e.g., [26]), these are all suppressed within the near-zone
regime and, more importantly, the near-zone approximation becomes exact for static per-
turbations. Regarding the spectrum of the Love symmetry highest-weight multiplets, the
damping of these frequencies comes in the form −Im {ωn} = n/β and, therefore, the closer
to extremality the black hole is (large β), the more states in the multiplet will be within the
near-zone regime, at least for the simplified case of non-rotating black holes. Moreover, in
the extremal regime the Love symmetry reduces to the exact isometry of the near-horizon
Myers-Perry black hole throat. As one can see, in this case the vanishing of static Love
numbers also follows from the generator algebra and the highest-weight property of the
relevant representation, see [36] for the d = 4 version of this. Away from extremity, our ar-
guments are still valid, but the exact form of black hole perturbations requires corrections
which formally become order-one for generic black hole spin values. Static perturbations,
nevertheless, do not acquire any corrections and hence the results remain exact for them.

The frequencies of the non-static states furnishing representations of the Love sym-
metry are themselves also phenomenologically interesting. For the highest-weight repre-
sentation, the corresponding frequencies have the same form as the “near-horizon” modes
presented in [94]. More interestingly, the purely imaginary spacing is precisely equal to
the universal QNMs level spacing as extracted from Padmanabhan’s argument [95]. An-
other possible connection to the QNM spectrum has been suggested in [36], where the
complex frequencies of highest-weight elements were contrasted to highly damped QNMs
and total transmission modes [78, 79]. We would like to stress that the near-zone expan-
sion that makes the Love symmetry explicit, can capture only those properties of QNMs
that are sensitive to the near-horizon part of black hole effective potential, and therefore
may not be sufficient for the recovery of the QNM spectrum. A more direct way to reveal
such “beyond-near-zone” connections would be to identify symmetry-breaking parameters
that depart from Love symmetric near-zone configurations and apply a spurion analysis to
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extract relations similar to the Gell-Mann-Okubo mass formulas [96, 97]. A potential ap-
proach along these lines would be to identify the effective black hole geometries, for which
Love symmetries are isometries, as scaling limits of the full asymptotically flat Myers-Perry
black hole solution, see e.g. [81].

Acknowledgments

We are grateful to Sergei Dubovsky for many insightful comments on the draft of this
paper. We also thank Barak Kol and Zihan Zhou for useful discussions. PC is partially
supported by the 2022-2023 Dean’s Dissertation Fellowship.

A Geometry of 5-d Myers-Perry black hole

The Myers-Perry geometry describes an electrically neutral, rotating black hole in higher
dimensional spacetimes [58]. In the present work, we focus to the 5-dimensional case with
the geometry in Boyer-Lindquist coordinates given by

ds2 = − dt2 + r2
s

Σ
(
dt− a sin2 θ dφ− b cos2 θ dψ

)2
+ r2Σ

∆ dr2 + Σ dθ2

+
(
r2 + a2

)
sin2 θ dφ2 +

(
r2 + b2

)
cos2 θ dψ2 ,

(A.1)

where

Σ = r2 + a2 cos2 θ + b2 sin2 θ ,

∆ =
(
r2 + a2

) (
r2 + b2

)
− r2

sr
2 ,

(A.2)

and θ ∈
[
0, π2

]
is a direction cosine angle, while φ ∈ [0, 2π) and ψ ∈ [0, 2π) are periodically

identified azimuthal angles. This geometry describes an asymptotically flat black hole with
mass M and angular momenta Jφ and Jψ along the two orthogonal planes of rotation,
related to the parameters rs, a and b appearing in the line element above according to

M = 3π
8Gr

2
s , Jφ = 2

3Ma, Jψ = 2
3Mb . (A.3)

The horizons correspond to the roots of the discriminant ∆ and are located at radial
distances r = r±, with

r2
± = 1

2

[
r2
s − a2 − b2 ±

√
(r2
s − a2 − b2)2 − 4a2b2

]
. (A.4)

The absence of a naked singularity imposes the inequality

|a|+ |b| ≤ rs , (A.5)

with its saturation indicating the extremality condition. The event horizon rh = r+ and
the Cauchy horizon rC = r− are Killing horizons with respect to the Killing vectors

K(±) = ∂t + Ω(±)
φ ∂φ + Ω(±)

ψ ∂ψ (A.6)
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respectively, where Ω(±)
φ = a

r2
±+a2 and Ω(±)

ψ = b
r2
±+b2 . In particular, Ω(+)

φ ≡ Ωφ and Ω(+)
ψ ≡

Ωψ are the black hole angular velocities as realized by a static observer at the exterior.
The inverse metric components can be extracted to be

gµν∂µ∂ν = 1
Σ

{
− Σ ∂2

t −
(
r2 + a2) (r2 + b2

)
r2
s

∆

(
∂t + a

r2 + a2 ∂φ + b

r2 + b2
∂ψ

)2

+
[

1
sin2 θ

− a2 − b2

r2 + a2

]
∂2
φ +

[
1

cos2 θ
− b2 − a2

r2 + b2

]
∂2
ψ + ∆

r2 ∂
2
r + ∂2

θ

}
,

(A.7)

while the only additional term needed to construct the massless Klein-Gordon operator
involves the Christoffel symbols,

gµνΓσµν∂σ = − 1
Σ

{1
r

d

dr

(∆
r

)
∂r + 1

sin θ cos θ
d

dθ
(sin θ cos θ) ∂θ

}
. (A.8)

To investigate regularity at the future or the past event horizon, one employs ad-
vanced (“+”) or retarded (“−”) coordinates respectively, related to the Boyer-Lindquist
coordinates according to

dt± = dt±
(
r2 + a2) (r2 + b2

)
∆ dr ,

dϕ± = dφ± ar
2 + b2

∆ dr ,

dy± = dψ ± br
2 + a2

∆ dr .

(A.9)

Explicitly, they are given by

t± = t±
{
r + 1

2
r2
s

r2
+ − r2

−

[
r+ ln

∣∣∣∣r − r+
r + r+

∣∣∣∣− r− ln
∣∣∣∣r − r−r + r−

∣∣∣∣]
}
,

ϕ± = φ± 1
2

a

r2
+ − r2

−

[
r2

+ + b2

r+
ln
∣∣∣∣r − r+
r + r+

∣∣∣∣− r2
− + b2

r−
ln
∣∣∣∣r − r−r + r−

∣∣∣∣
]
,

y± = ψ ± 1
2

b

r2
+ − r2

−

[
r2

+ + a2

r+
ln
∣∣∣∣r − r+
r + r+

∣∣∣∣− r2
− + a2

r−
ln
∣∣∣∣r − r−r + r−

∣∣∣∣
]
,

(A.10)

where the integration constants have been fixed to ensure the asymptotic behaviors

t±
r→∞−−−→ t± r , ϕ±

r→∞−−−→ φ , y±
r→∞−−−→ ψ , (A.11)

as well as a smooth extremal limit,

t±
r−→r+−−−−→ t±

{
r − rs

2

[
rsr

r2 − r2
+

+ rs
2r+

log
∣∣∣∣r − r+
r + r+

∣∣∣∣
]}

,

ϕ±
r−→r+−−−−→ φ∓ a

2r+

[
b2 + r2

+
r2

+

r+r

r2 − r2
+

+
b2 − r2

+
2r2

+
log

∣∣∣∣r − r+
r + r+

∣∣∣∣
]
,

y±
r−→r+−−−−→ ψ ∓ b

2r+

[
a2 + r2

+
r2

+

r+r

r2 − r2
+

+
a2 − r2

+
2r2

+
log

∣∣∣∣r − r+
r + r+

∣∣∣∣
]
.

(A.12)
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B Modified Spherical Harmonics basis

In this appendix, we present the basis used for the modified harmonic expansion, naturally
associated with the computation of Love numbers for axisymmetric distributions in d = 5
spacetime dimensions. For the sake of this, we need to perform a harmonic expansion over
the S1 × S1 subpart of S3, appropriate for the general isometry group factor U (1)× U (1)
of such configurations. The basis we are looking for is extracted by solving the eigenvalue
problem for the Laplace-Beltrami operator on S3 expressed in the direction cosine angular
coordinates appearing in the Myers-Perry black hole line element,[ 1

sin θ cos θ∂θ (sin θ cos θ ∂θ) + 1
sin2 θ

∂2
φ + 1

cos2 θ
∂2
ψ

]
Ỹλ (θ, φ, ψ) = λỸλ (θ, φ, ψ) . (B.1)

Let us present first how this is indeed the Laplace-Beltrami operator on S3. In usual
spherical coordinates (r, ϑ1, ϑ2, ϕ), the 4-dimensional spatial position vector with compo-
nents

(
x1, x2, x3, x4) in Cartesian coordinates is written as

x1 = r cosϑ1 ,

x2 = r sinϑ1 cosϑ2 ,

x3 = r sinϑ1 sinϑ2 cosϕ ,
x4 = r sinϑ1 sinϑ2 sinϕ ,

(B.2)

where x1 plays the role of the 3-dimensional z-axis. In these coordinates, ϑ1 ∈ [0, π] and
ϑ2 ∈ [0, π] are two polar angles, while ϕ ∈ [0, 2π) is a periodically identified azimuthal
angle. The Laplacian operator acting on scalar functions then reads

44 = ∂2
1 + ∂2

2 + ∂2
3 + ∂2

4 = 1
r3∂r

(
r3∂r

)
+ 1
r24

(0)
S3 , (B.3)

with 4(0)
S3 the Laplace-Beltrami operator on S3 acting on scalar (s = 0) functions, which

in spherical coordinates is given explicitly by

4(0)
S3 = 1

sin2 ϑ1

[
∂ϑ1

(
sin2 ϑ1 ∂ϑ1

)
+ 1

sinϑ2
∂ϑ2 (sinϑ2 ∂ϑ2) + 1

sin2 ϑ2
∂2
ϕ

]
. (B.4)

In order to transit to direction cosine coordinates (r, θ, φ, ψ), we split the four Cartesian
coordinates xi into two pairs of two and project onto these two planes of rotation,

x1 = r cos θ cosψ ,
x2 = r cos θ sinψ ,
x3 = r sin θ cosφ ,
x4 = r sin θ sinφ ,

(B.5)

with θ ∈
[
0, π2

]
a direction cosine angle, while φ ∈ [0, 2π) and ψ ∈ [0, 2π) are two peri-

odically identified azimuthal angles. Then, the Laplace operator on scalar functions has
the same form as in spherical coordinates, but with the Laplace-Beltrami operator now
identified as

4(0)
S3 = 1

sin θ cos θ∂θ (sin θ cos θ ∂θ) + 1
sin2 θ

∂2
φ + 1

cos2 θ
∂2
ψ . (B.6)
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In particular, the transformation rule between spherical coordinates (ϑ1, ϑ2, ϕ) and direc-
tion cosine coordinates (θ, φ, ψ) allows to identify φ = ϕ, while ψ and θ are related to ϑ1
and ϑ2 according to

sin θ = sinϑ1 sinϑ2, tanψ = tanϑ1 cosϑ2 . (B.7)

The generators of the algebra so (4) ' so (3) ⊕ so (3) in direction cosine coordinates are
more transparent by introducing the sum/difference azimuthal angles ψ± = ψ±φ and they
are organized in the two commuting so (3)’s, labeled by a sign σ = + or σ = −,

J
(σ)
0 = −i∂σ ,

J
(σ)
±1 = e±iψσ

[
∂2θ ± i cot 2θ ∂σ ∓

i

sin 2θ ∂−σ
]
,[

Jσ±1, J
σ′
0

]
= ∓J (σ)

±1 δσ,σ′ , ,
[
Jσ±1, J

σ′
∓1

]
= ∓2J (σ)

0 δσ,σ′ ,
[
Jσ±1, J

σ′
±1

]
= 0 .

(B.8)

Returning to the eigenvalue problem (B.1), this is reduced to a one-dimensional prob-
lem after separating the azimuthal angles as

Ỹ`mj (θ, φ, ψ) = S`mj (θ) e
imφ

√
2π

eijψ√
2π

, (B.9)

with the azimuthal numbers m and j being integers by virtue of the periodicity of the
angles φ and ψ with period 2π, and S`mj (θ) satisfying the first order ordinary differential
equation[

1
sin θ cos θ

d

dθ

(
sin θ cos θ d

dθ

)
− m2

sin2 θ
− j2

cos2 θ

]
S`mj (θ) = −` (`+ 2)S`mj (θ) . (B.10)

We remark here that we have set the eigenvalues to λ ≡ −` (`+ 2) such that ` resembles
the corresponding orbital quantum number appearing in scalar spherical harmonics on S3.
However, at this point, ` is not restricted to be a whole number.

This differential equation must now be solved in parallel with the boundary condition
of regularity of S`mj (θ) along the full domain of the direction cosine angle, θ ∈

[
0, π2

]
. The

unique solution is not hard to extract,

S`mj (θ) = N`mj sin|m| θ cos|j| θ 2F1

(
−`− |m| − |j|2 ,

`+ |m|+ |j|
2 + 1; 1 + |j| ; cos2 θ

)
,

(B.11)
with N`mj a normalization constant, while regularity at θ = 0 imposes the discretization
condition

`− |m| − |j|
2 ∈ N0 = {0, 1, 2, . . . } . (B.12)

We can, thus, assign whole numbers to ` as in the usual scalar spherical harmonics of S3,
and restrict the domain of the azimuthal numbers m and j such that the above condition
is satisfied. This can be achieved, for example, by letting |m| ≤ ` to resemble the corre-
sponding azimuthal number of the usual scalar spherical harmonics, but restricting j to
take integer values according to

j = − (`− |m|) , − (`− |m|) + 2 , . . . , (`− |m|)− 2 , (`− |m|) , (B.13)

where we emphasize the step 2 in the successively allowed values of j.
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The eigenfunctions Ỹ`mj can be seen to be orthogonal on S3 in these coordinates using
properties of the Jacobi polynomials, while choosing the normalization constant to be

N`mj = 1
(|j|)!

√√√√√(2`+ 2)

(
`+|m|+|j|

2

)
!
(
`−|m|+|j|

2

)
!(

`−|m|−|j|
2

)
!
(
`+|m|−|j|

2

)
!
, (B.14)

ensures the orthonormality identity∮
S3
dΩ3 Ỹ

∗
`mj Ỹ`′m′j′ = δ``′δmm′δjj′ , (B.15)

where asterisks indicate complex conjugation and the 3-sphere integration measure in the
direction cosine coordinates reads∮

S3
dΩ3 =

∫ π
2

0
dθ

∫ 2π

0
dφ

∫ 2π

0
dψ sin θ cos θ . (B.16)

Two useful properties of these modified spherical harmonic functions are their trans-
formation under complex conjugation, which simply reverses the sign of the azimuthal
numbers,

Ỹ ∗`mj = Ỹ`,−m,−j , (B.17)

and under a parity transformation8 (θ, φ, ψ)→ (θ, π + φ, π + ψ), which only adds an overall
phase,

Ỹ`mj (θ, π + φ, π + ψ) = (−1)m+j Ỹ`mj (θ, ψ, φ) . (B.18)

Let us count how many such basis states exist for a given value of the orbital number
`. This is given by

d̃` =
∑̀
m=−`

 `−|m|∑
j=−(`−|m|),2

 =
∑̀
m=−`

(`− |m|+ 1) = (`+ 1)2 (B.19)

and is exactly the same as the degeneracy of the scalar spherical harmonics9 on S3. Sub-
sequently, the modified spherical harmonics Ỹ`mj are equivalent to the usual scalar spher-
ical harmonics on S3. In particular, the scalar spherical harmonics Y`,`2,µ on S3, with
|µ| ≤ `2 ≤ ` can always be written as a linear combination of the modified spherical
harmonics,

Y`,`2,µ (ϑ1, ϑ2, ϕ) =
∑
m,j

c`,`2,µ;m,j Ỹ`mj (θ, φ, ψ) , (B.21)

and, thus, they form a complete set of d̃` linearly independent and orthonormal unit vectors.
We remark here that the azimuthal numbers µ and m are not the same as they appear in

8In spherical coordinates, parity acts as (ϑ1, ϑ2, ϕ) → (π − ϑ1, π − ϑ2, π + ϕ) which is translated into
directed cosine coordinates to (θ, φ, ψ)→ (θ, π + φ, π + ψ).

9The scalar spherical harmonics of degree ` on Sn have a degeneracy,

d` (n) = (2`+ n− 1) (`+ n− 2)!
`! (n− 1)! . (B.20)

For n = 3, this gives d` (3) = (`+ 1)2.
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Y`,`2,µ and Y`mj ; while µ and m have the same range in both spherical harmonics bases,
their multiplicities do not match. Nevertheless, in the above expansion it is straightforward
to see that c`,`2,µ;m,j = c`,`2,µ;jδm,µ. In addition, the complex conjugacy relation Y ∗`,`2,µ =
(−1)µ Y`,`2,−µ further implies

c∗`,`2,µ;j = (−1)µ c`,`2,−µ;−j . (B.22)

One useful consequence of this completeness is that the two spherical harmonics
bases obey the same addition theorem, expressed in terms of the Gegenabuer polynomials
C

(1)
` (x) as∑

m,j

Ỹ`mj (Ω) Ỹ ∗`mj
(
Ω′
)

=
∑
`2,µ

Y`,`2,µ (Ω)Y ∗`,`2,µ
(
Ω′
)

= `+ 1
2π2 C

(1)
`

(
Ω ·Ω′

)
. (B.23)

B.1 Correspondence with STF tensors

We will now present the 1-to-1 correspondence between 4-dimensional spatial STF tensors
of rank-` and the modified spherical harmonics Ỹ`mj with the same orbital number `. There
are two key observations that ensure this correspondence. First, the basic STF tensor of
rank-` Ω〈L〉, where Ωi = xi

r are the projectors along the i-th spatial direction xi, has
eigenvalue −` (`+ 2) under the action of the 4-dimensional flat space Laplace operator, i.e.
the same eigenvalue as all Ỹ`mj with the same `.

Second, the number of independent components of a rank-` STF tensor in n+1 spatial
dimensions is the number of degrees of freedom of a rank-` symmetric tensor minus the
number of traces that need to be removed,

dSTF` (n) =
(
n+ `

`

)
−
(
n+ `− 2
`− 2

)
= (2`+ n− 1) (`+ n− 2)!

`! (n− 1)! . (B.24)

For n = 3, this gives that the number of independent components of a 4-dimensional spatial
STF tensor of rank-` is equal to (`+ 1)2, i.e. the same as the number d̃` of basis function
Ỹ`mj with orbital number `. Consequently, any 4-dimensional spatial STF tensor of rank-`
can be written as a linear combination of Ỹ`mj for all the possible values of the azimuthal
numbers m and j. In particular, for the basic STF tensor Ω〈L〉,

Ω〈L〉 = A`
∑
m,j

YL`mj Ỹ`mj (Ω) , (B.25)

where Ω is a shorthand for the direction cosine coordinates (θ, φ, ψ) associated with the
position vector xi from which Ωi is constructed, the constant STF tensors YL`mj are given by

YL`mj = 1
A`

∮
S3
dΩ3 Ω〈L〉Ỹ ∗`mj (Ω) , (B.26)

and A` is a real normalization constant chosen such that10

Ỹ`mj (Ω) = YL∗`mjΩ〈L〉 . (B.28)
10Using the addition theorem of scalar spherical harmonics, which is also an addition theorem for the

modified spherical harmonics, this normalization constant can be found to be,

A` = 4π2`!
(2`+ 2)!! . (B.27)
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A general 4-dimensional spatial STF tensor EL = E〈L〉 can then be expanded into its
modified multipole moments E`mj according to

EL =
∑
m,j

E`mjYL∗`mj , (B.29)

with
E`mj = A`ELYL`mj = EL

∮
S3
dΩ3 Ω〈L〉Ỹ ∗`mj (Ω) , (B.30)

such that
ELΩL =

∑
m,j

E`mj Ỹ`mj . (B.31)

Last, from the complex conjugacy relation of the modified spherical harmonics, we can
see that

YL∗`mj = YL`,−m,−j , E∗`mj = E`,−m,−j . (B.32)

C Source/response split and Schwarzschild limit

In this appendix we demonstrate explicitly the source/response split of the scalar field (3.21)
and how the spinless limit recovers the corresponding solution in the 5-d Schwarzschild
black hole background [55]. To extract the source and response parts of the solution, we
need to identify those components that solve the linearized Klein-Gordon equation and
asymptotically behave as

Rω`mj (ρ) = Ē`mj (ω) ρˆ̀
[
Zsource
ω`mj (ρ) + k`mj (ω)

(
ρs
ρ

)2ˆ̀+1
Zresponse
ω`mj (ρ)

]
,

Z
source/response
ω`mj (ρ) ρ→∞−−−→ 1 ,

(C.1)

where k`mj are the scalar response coefficients. The source/response split ambiguity that
is encountered for the physical values ` ∈ N is bypassed by treating the orbital number
` as a generic real-valued number ` ∈ R. The above asymptotic behaviors then allow to
uniquely distinguish between the source and response components of the solution without
worrying about ambiguities arising from overlapping series.

The hypergeometric function involved in the near-zone scalar field solution that is
regular at the future event horizon (3.21) is expressed in terms of the variable x = ρ−ρ+

ρ+−ρ− .
Due to a branch cut at |x| = 1, this series needs to be analytically continued at large
distances according to

2F1 (a, b; c; z) = Γ (c) Γ (b− a)
Γ (b) Γ (c− a) (−z)−a 2F1

(
a, a− c+ 1; a− b+ 1; 1

z

)
+ Γ (c) Γ (a− b)

Γ (a) Γ (c− b) (−z)−b 2F1

(
b, b− c+ 1; b− a+ 1; 1

z

)
,

(C.2)

which is valid for |Arg (−z)| < π. Applying this prescription for (3.21), we match the
normalization constants R̄`mj (ω) to

R̄`mj (ω) = Ē`mj (ω) (ρ+ − ρ−)ˆ̀ Γ
(

ˆ̀+ 1 + iΓ(σ)
+σ

)
Γ
(

ˆ̀+ 1 + iΓ(σ)
−σ

)
Γ
(
2ˆ̀+ 1

)
Γ (1 + 2iZ+ (ω))

, (C.3)
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and, then, identify the full source and response components to be11

Zsource
ω`mj (ρ) =

(
1− ρ+

ρ

)ˆ̀(
ρ− ρ−
ρ− ρ+

)∓iσZ̃(σ)
− (ω)

× 2F1

(
−ˆ̀+ iΓ(σ)

∓σ (ω) ,−ˆ̀− iΓ(σ)
±σ (ω) ;−2ˆ̀; ρ+ − ρ−

ρ+ − ρ

)
,

Zresponse
ω`mj (ρ) =

(
1− ρ+

ρ

)−ˆ̀−1 (ρ− ρ−
ρ− ρ+

)∓iσZ̃(σ)
− (ω)

× 2F1

(
ˆ̀+ 1 + iΓ(σ)

∓σ (ω) , ˆ̀+ 1− iΓ(σ)
±σ (ω) ; 2ˆ̀+ 2; ρ+ − ρ−

ρ+ − ρ

)
,

(C.5)

and the scalar response coefficients k`mj (ω) are given explicitly in (3.23).
The two radial functions ρˆ̀

Zsource
ω`mj and ρ−ˆ̀−1Zresponse

ω`mj are linearly independent solutions
of the near-zone radial Klein-Gordon equation for generic orbital number ` and have the nice
property that they transform into each other under the discrete symmetry transformation
ˆ̀↔ −ˆ̀− 1 of the near-zone Klein-Gordon equation,

ρ
ˆ̀
Zsource
ω`mj

ˆ̀↔−ˆ̀−1←−−−−→ ρ−
ˆ̀−1Zresponse

ω`mj . (C.6)

We now consider the spinless limit of our solution and compare it with the already
known results obtained in [55] in the static limit. To do this, we need to extract the
corresponding behavior of the parameters Z+ (ω) and Z̃(σ)

− (ω), which are given in explicitly
in (3.12) and (3.19). First of all, as the spin parameters a and b are sent to zero, the inner
and outer horizons have the asymptotic behaviors

ρ+
a,b→0−−−−→ ρs

[
1 +O

(
a2, b2

)]
, ρ−

a,b→0−−−−→ a2b2

ρs

[
1 +O

(
a2, b2

)]
. (C.7)

As such,

Z+ (ω) a,b→0−−−−→ ωrs
2 +O (a, b) , Z̃

(σ)
− (ω) a,b→0−−−−→ σ

ωrs
2 +O (a, b) . (C.8)

We see, thus, that both Z+ (ω) and Z̃(σ)
− (ω) become independent of the azimuthal num-

bers m and j in the spinless limit, as is appropriate for the spherically symmetric 5-d
11We remark here the analytic properties of the hypergeometric function 2F1 (a, b; c; z) with respect to

its arguments and how this is related to the near-zone scalar field solution (3.21). In general, 2F1 (a, b; c; z)
does not exist when c is a non-positive integer and the analytic continuation formula for large z becomes
problematic. Nevertheless, the regularized hypergeometric function,

F (a, b; c, z) ≡ 2F1 (a, b; c; z)
Γ (c) , (C.4)

is well-defined for all values of c ∈ C and can be analytically continued at |z| > 1 without any issues. This
is also the situation with our near-zone scalar field solution (3.21) as the normalization constants R̄`mj (ω)
themselves contain precisely an inverse Γ (c) factor when matched to the field strengths Ē`mj (ω). In other
words, the solution (3.21) has all the nice analytic properties with respect to all the arguments of the
hypergeometric function.
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Schwarzschild black hole background geometry. Furthermore, Γ(σ)
±σ (ω) = ωrs (1∓ 1) /2 +

O (a, b) and the near-zone solution in the spinless limit becomes

Rω`mj
a,b→0−−−−→ Ē`mj (ω) ρˆ̀

s

Γ
(

ˆ̀+ 1
)

Γ
(

ˆ̀+ 1 + iωrs
)

Γ
(
2ˆ̀+ 1

)
Γ (1 + iωrs)

×
(

1− ρs
ρ

)iωrs/2
2F1

(
ˆ̀+ 1,−ˆ̀; 1 + 2iωrs; 1− ρ

ρs

)
.

(C.9)

Using the Pfaff transformation,

2F1 (a, b; c; z) = (1− z)−b 2F1

(
c− a, b; c; z

z − 1

)
, (C.10)

which is valid for |Arg (1− z)| < π, this can be rewritten as

Rω`mj
a,b→0−−−−→ Ē`mj (ω) ρˆ̀

s

Γ
(

ˆ̀+ 1
)

Γ
(

ˆ̀+ 1 + iωrs
)

Γ
(
2ˆ̀+ 1

)
Γ (1 + iωrs)

×
(

1− ρs
ρ

)iωrs/2 (ρs
ρ

)−ˆ̀

2F1

(
−ˆ̀,−ˆ̀+ 2iωrs; 1 + 2iωrs; 1− ρs

ρ

)
.

(C.11)

In the ω → 0 limit, this is in complete agreement, up to an overall conventional constant
factor, with the corresponding result in equation (4.6) of [55]. The scalar response coef-
ficients (3.23) also have a smooth spinless limit that can be easily shown to agree with
equation (4.7) of [55] when ω = 0 after employing the Legendre duplication formula for the
Gamma function,

Γ (z) Γ
(
z + 1

2

)
= 21−2z√π Γ (2z) . (C.12)

D Derivation of SL (2,R) generators

In section 4 we presented the existence of near-zone truncations of the massless Klein-
Gordon equation in the background of the 5-d Myers-Perry black hole equipped with an
SL (2,R) symmetry structure. In this appendix, we will sketch the derivation of the vector
fields generating these symmetries. We will do this by starting with a generic ansatz for
the form of the SL (2,R) generators and require that the associated Casimir operators
yield operators that preserve the characteristic exponents of the full equations of motion
in the vicinity of the black hole event horizon. We will end up with an infinite number
of SL (2,R) algebras, most of which are not consistent near-zone truncations and also not
globally defined.

The upshot of using this approach is that finding the most general truncation that
preserves the near-horizon characteristic exponent also ensures that we will find all the
possible near-zone truncations admitting SL (2,R) symmetries as a subset. As we will
see, there will be two towers of near-zone SL (2,R) symmetries controlled by an arbitrary
parameter which spontaneously breaks the SL (2,R) symmetry down to U (1). The only
possible globally defined near-zone SL (2,R) symmetries will then correspond to setting this
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symmetry breaking parameter to zero and will precisely correspond to the Love symmetries
presented in section 4. We will also investigate the situations where the SL (2,R) symmetry
of the truncations preserving the near-horizon characteristic exponents can be enhanced to
full 2-d conformal structure SL (2,R)× SL (2,R).

D.1 Truncated radial operators preserving the near-horizon characteristic ex-
ponents

The full massless Klein-Gordon operator in the background of the 5-d Myers-Perry black
hole has been introduced in section 3 and the corresponding radial and angular operators
are given in (3.2). We wish to explore the possibility of truncating the radial operator such
that we preserve the characteristic exponents as we approach the event horizon at ρ = ρ+.
The most general such truncation has the form

Otrunc = ∂ρ ∆ ∂ρ −
(ρ+ − ρ−)2

4∆ β2 (∂t + Ω+ ∂+ + Ω− ∂−)2 + δγµν∂µ∂ν + δγµ ∂µ , (D.1)

where δγµν and δγµ are terms that are subleading in the vicinity of the event horizon,
∆ = (ρ− ρ+) (ρ− ρ−) is the discriminant function for the 5-d Myers-Perry black hole and
β = ρsr+/ (ρ+ − ρ−) is its inverse Hawking temperature. We note here that we are working
in sum/difference azimuthal angles, ψ± = ψ±φ, with Ω± = Ωψ±Ωφ the angular velocities
along these two directions, and we are using the notation ∂± ≡ ∂ψ± = (∂ψ ± ∂φ) /2.
The subleading terms δγµν and δγµ that preserve the background Rt × U (1)φ × U (1)ψ
symmetries will then have the generic form

δγtt = ftt (ρ) , δγtψ± = Ω±ftψ± (ρ) ,
δγψ±ψ± = Ω2

±fψ±ψ± (ρ) , δγψ+ψ− = Ω+Ω−fψ+ψ− (ρ) , (D.2)
δγtρ = ∆ftρ (ρ) , δγψ±ρ = Ω±∆fψ±ρ (ρ) , δγρρ = ∆2fρρ (ρ) ,
δγt = ft (ρ) , δγψ± = Ω±fψ± (ρ) , δγρ = ∆fρ (ρ) , (D.3)

with all fµν and fµ being radial functions that are regular as ρ → ρ+. We remark here
that we allow for time-reversal violating terms. To simplify the problem, we can perform ρ-
dependent coordinate transformations to eliminate as many as possible of the above terms.
In particular, introducing coordinates (t̃, ρ̃, ψ̃+, ψ̃−), related to (t, ρ, ψ+, ψ−) according to

dρ̃√
∆ (ρ̃)

= dρ√
∆ (ρ) + δγρρ (ρ)

,

dt̃ = dt− δγtρ (ρ)
∆ (ρ) + δγρρ (ρ)dρ , dψ̃± = dψ± −

δγψ±ρ (ρ)
∆ (ρ) + δγρρ (ρ)dρ ,

(D.4)

we can set
δγ̃ρ̃ρ̃ = 0 , δγ̃ t̃ρ̃ = 0 , δγ̃ψ̃±ρ̃ = 0 . (D.5)

We will adopt these coordinates henceforth and drop the tildes to ease our notation.
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D.2 Solving the SL (2,R) constraints

With this setup for the generic truncation of the radial operator, we now explore the
existence of three operators, L0, L+1 and L−1, generating the SL (2,R) algebra,

[Lm, Ln] = (m− n)Lm+n , m, n = 0,±1 , (D.6)

and whose Casimir precisely recovers a truncation of the radial operator of the type we
just described,

C2 = L2
0 −

1
2 (L+1L−1 + L−1L+1) ≡ Otrunc . (D.7)

Representations of SL (2,R) are labeled by C2 and L0. Using the Rt × U (1)φ × U (1)ψ
isometry of the background, we therefore make the following generic ansatz for the SL (2,R)
generators

L0 = − (βt ∂t + β+Ω+ ∂+ + β−Ω− ∂−) ,

L±1 = G̃± (x) ∂ρ + K̃± (x) ∂t + H̃
(+)
± (x) Ω+ ∂+ + H̃

(−)
± (x) Ω− ∂− ,

(D.8)

where all components of the L0 vector field are constants and all components of the L±1 vec-
tor fields are spacetime functions X̃± (x) = X̃± (t, ρ, ψ+, ψ−). The algebra constraints (D.6)
and the Casimir constraints (D.7) will now be solved to fix the exponents β± and βt, the
functions X̃± (x) and the subleading terms δγµν (ρ) and δγµ (ρ) appearing in the truncation
of the radial operator.

We start with the algebra constraint [L±1, L0] = ±L±1,

(βt ∂t + β+Ω+ ∂+ + β−Ω− ∂−) X̃± (t, ρ, ψ+, ψ−) = ±X̃± (t, ρ, ψ+, ψ−) . (D.9)

This can be used to eliminate the explicit t-dependence by introducing

ψ̂± = ψ± −
β±
βt

Ω±t ⇒ X̃± (t, ρ, ψ+, ψ−) = e±t/βtX±(ρ, ψ̂+, ψ̂−) . (D.10)

It is therefore favorable to work in the (t, ρ, ψ̂+, ψ̂−) coordinates instead of (t, ρ, ψ+, ψ−) to
solve the constraints. The generators in these coordinates are given by

L0 = −βt ∂t ,

L±1 = e±t/βt
[
G±(ρ, ψ̂+, ψ̂−)∂ρ +K±(ρ, ψ̂+, ψ̂−)∂t

+ Ĥ
(+)
± (ρ, ψ̂+, ψ̂−)Ω+ ∂̂+ + Ĥ

(−)
± (ρ, ψ̂+, ψ̂−)Ω− ∂̂−

]
,

(D.11)

with Ĥ(i)
± = H

(i)
± −

βi
βt
K±.

Moving forward, the Casimir constraints (D.7) imply that products of components of
the L±1 vector fields are independent of the azimuthal angles. We, thus, write X±(ρ, ψ̂+, ψ̂−)
= e±A(ψ̂+,ψ̂−)χ± (ρ). In fact, taking derivatives with respect to ψ̂± of the various Casimir
and algebra constraints reveals that the dependence on the azimuthal angles in the expo-
nential must be linear,

X±(ρ, ψ̂+, ψ̂−) = e±(τ+ψ̂++τ−ψ̂−)χ± (ρ) . (D.12)
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The ρρ-component of the Casimir constraints (D.7) and the ρ-component of the last algebra
constraint [L+1, L−1] = 2L0 then completely fix the ρ-components of L±1 to be, up to
automorphisms,

g± (ρ) = ∓
√

∆ . (D.13)

The tρ- and ψ±ρ-components of the Casimir constraints then imply

k+ (ρ) = k− (ρ) ≡ k (ρ) , ĥ
(i)
+ (ρ) = ĥ

(i)
− (ρ) ≡ ĥ(i) (ρ) . (D.14)

The remaining algebra constraints from [L+1, L−1] = 2L0 become

√
∆ k′ +

 k

βt
+

∑
i=+,−

τiΩiĥ
(i)

 k = βt , (D.15a)

√
∆ ĥ(i)′ +

k +
∑

j=+,−
τjΩj ĥ

(j)

 ĥ(i) = 0 , (D.15b)

while the remaining Casimir constraints read

k2 − 1 = (ρ+ − ρ−)2

4∆ β2 − ftt (ρ) , (D.16a)

kĥ(±) = (ρ+ − ρ−)2

4∆ β2
(

1− β±
βt

)
−
(
ftψ± −

β±
βt
ftt

)
, (D.16b)

[
ĥ(±)

]2
= (ρ+ − ρ−)2

4∆ β2
(

1− β±
βt

)2
−
(
fψ±ψ± − 2β±

βt
ftψ± +

β2
±
β2
t

ftt

)
, (D.16c)

ĥ(+)ĥ(−) = (ρ+ − ρ−)2

4∆ β2
(

1− β+
βt

)(
1− β−

βt

)
−
(
fψ+ψ− −

β+
βt
ftψ+ −

β−
βt
ftψ− + β+β−

β2
t

ftt

)
.

(D.16d)

Let us sketch how to solve these. The algebra constraints can be solved for the func-
tions k (ρ) and ĥ(±) (ρ). The integration constants associated with the differential equa-
tions (D.15a)–(D.15b) are then fixed by the near-horizon behaviors of these functions as
dictated by the Casimir constraints (D.16a)–(D.16d). These near-horizon behaviors also
result in a relation between the constants βt, β± and τ±,

βt

1− β
∑
i=+,−

τiΩi

 = β

1−
∑
i=+,−

τiβiΩi

 . (D.17)

The final expressions of the generators L0, L±1 after translating back into (t, ρ, ψ+, ψ−)
coordinates are

L0 = − (βt ∂t + β+Ω+ ∂+ + β−Ω− ∂−) ,
L±1 = exp {± [t/β + τ+ (ψ+ − Ω+t) + τ− (ψ− − Ω−t)]}

×
[
∓
√

∆ ∂ρ − ∂ρ
(√

∆
)
L0 + ρ+ − ρ−

2
√

∆
(βK + L0)

]
,

(D.18)
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with the associated Casimir given by

C2 = ∂ρ ∆ ∂ρ −
(ρ+ − ρ−)2

4∆ β2K2 + ρ+ − ρ−
ρ− ρ−

L0 (L0 + βK) , (D.19)

where K = ∂t + Ω+ ∂+ + Ω− ∂− is the Killing vector relative to which the event horizon
is a Killing horizon. Interestingly, by working in the advanced (retarded) null coordi-
nates (A.10), one can then check that the above vectors fields are automatically regular
at the future (past) event horizon. We also remind here that one has the freedom of
performing the coordinate transformations

ρ→ ρ+ ∆2gρ (ρ) , t→ t+ gt (ρ) , ψ± → ψ± + gψ± (ρ) , (D.20)

for arbitrary radial functions gρ (ρ), gt (ρ), gψ+ (ρ) and gψ− (ρ) that are regular at the
event horizon; these give rise to non-zero subleading contributions δγρρ, δγtρ and δγψ±ρ

respectively.
Let us now start discussing the properties of these truncations of the radial operators

that are equipped with SL (2,R) symmetries as demonstrated above. First of all, we notice
that the SL (2,R) symmetry generated by (D.18) is in general spontaneously broken down
to U (1), generated by L0, from the periodic identification of the azimuthal coordinates
when τ± 6= 0. An interesting remark here is that the τ± 6= 0 generators can be obtained
from the globally defined ones, with τ± = 0, via temporal translations involving the co-
rotating azimuthal angles,

L(τ±=0)
m

t→t+β
∑

i=+,− τi(ψi−Ωit)
−−−−−−−−−−−−−−−−−→ L(τ± 6=0)

m . (D.21)

Furthermore, the Casimir operator (D.19) has the property of preserving the charac-
teristic exponents near the event horizon by construction. However, it does not in general
capture any near-zone truncation of the radial operator. For this to happen, the Casimir
operator must exactly reproduce all the static terms in the radial operator as well. This
additional requirement gives two infinite towers of near-zone SL (2,R)’s controlled by the
parameters τ±. The two towers can be labeled by a sign σ = +,− and correspond to fixing
the parameters β± to

βσ = β , β−σ = 0 for σ = + OR σ = − . (D.22)

These near-zone SL (2,R)’s are generated by the vector fields

L
(σ)
0 = −

(
β

(σ)
t ∂t + βΩσ ∂σ

)
,

L
(σ)
±1 = exp {± [t/β + τ+ (ψ+ − Ω+t) + τ− (ψ− − Ω−t)]}

×
[
∓
√

∆ ∂ρ + ∂ρ
(√

∆
) (
β

(σ)
t ∂t + βΩσ ∂σ

)
+ ρ+ − ρ−

2
√

∆

[(
β − β(σ)

t

)
∂t + βΩ−σ ∂−σ

] ]
,

(D.23)
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and the associated Casimir operator is given by

C(σ)
2 = ∂ρ ∆ ∂ρ −

(ρ+ − ρ−)2

4∆ β2 (∂t + Ω+ ∂+ + Ω− ∂−)2

− ρ+ − ρ−
ρ− ρ−

(
β

(σ)
t ∂t + βΩσ ∂σ

) [(
β − β(σ)

t

)
∂t + βΩ−σ∂−σ

]
,

(D.24)

where β(σ)
t , τ (σ)

+ and τ (σ)
− are related according to

β
(σ)
t

(
1− βτ (σ)

+ Ω+ − βτ (σ)
− Ω−

)
= β

(
1− βτ (σ)

σ Ωσ

)
. (D.25)

Supplemented with the near-zone-approximation-preserving temporal translations t→ t+
gt (ρ), this exhausts all the possible near-zone SL (2,R) symmetries.

If we want these near-zone SL (2,R) symmetries to be globally defined, one must further
impose τ± = 0, in which case we must have β(σ)

t = β and we end up with the fact that
the most general globally defined near-zone SL (2,R) symmetries are, up to ρ-dependent
temporal translations, the Love symmetries presented in section 4.

D.3 Extension to SL (2,R) × SL (2,R)

We will finish with a short investigation on the possibility of extending the above-found
SL (2,R) symmetries, for which the radial operator truncations preserve the characteristic
exponents near the event horizon, into the full 2-d global conformal structure SL (2,R) ×
SL (2,R).

Consider, therefore, two general such SL (2,R) symmetries generated by vector fields
Lm and L̄m of the form (D.18). They are characterized by parameters {βt, β±, τ±} and
{β̄t, β̄±, τ̄±} respectively, with each set of parameters being subject to the relation (D.17).
By working out the requirement that[

Lm, L̄n
]

= 0 , m, n = 0,±1 , (D.26)

we extract the following summarizing condition

L0 + L̄0 = −βK , (D.27)

that is, β̄t = β − βt and β̄± = β − β±. The associated Casimirs turn out to be exactly the
same and can be written in the suggestive form

C2 = C̄2 = ∂ρ ∆ ∂ρ −
ρ+ − ρ−
ρ− ρ+

(
L0 + L̄0

2

)2

+ ρ+ − ρ−
ρ− ρ−

(
L0 − L̄0

2

)2

. (D.28)

In a CFT2 interpretation, this shows that the characteristic exponents near the outer
and inner horizons are the (squares of half of the) scaling dimension and spin-weight of
the spacetime scalar field under the action of the CFT2 dilaton and Lorentz generators
respectively. In this language, the above truncations of the radial operator seek to preserve
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the scaling dimension but allow to approximate the CFT2 spin-weight. The remaining
generators can similarly be written as

L±1 = e±[t/β+τ+(ψ+−Ω+t)+τ−(ψ−−Ω−t)]

×
[
∓
√

∆ ∂ρ −
√
ρ− ρ−
ρ− ρ+

L0 + L̄0
2 −

√
ρ− ρ+
ρ− ρ−

L0 − L̄0
2

]
,

L̄±1 = e±[t/β+τ̄+(ψ+−Ω+t)+τ̄−(ψ−−Ω−t)]

×
[
∓
√

∆ ∂ρ −
√
ρ− ρ−
ρ− ρ+

L0 + L̄0
2 +

√
ρ− ρ+
ρ− ρ−

L0 − L̄0
2

]
.

(D.29)

Last, for the case of near-zone SL (2,R) × SL (2,R)’s, there are two towers of such
enhancements labeled by a sign σ = +,−. They correspond to (βσ, β−σ) = (β, 0) and,
thus,

(
β̄σ, β̄−σ

)
= (0, β). One of the outcomes of the current analysis is then that near-zone

SL (2,R)× SL (2,R)’s can never be globally defined. The best one can do is to have near-
zone SL (2,R)×SL (2,R) symmetries spontaneously broken down to SL (2,R)×U (1) from
the periodic identification of the azimuthal angles. These are precisely the enhancements
of the Love symmetries presented in section 5. We remark here that the construction of
near-zone SL (2,R) × SL (2,R) symmetries described above also contains the Kerr/CFT
proposal for 5-dimensional rotating black holes in [41] as a special case, corresponding to
a different near-zone truncation with βt = β r+−r−

2r+
and β̄t = β r++r−

2r+
and which has the

unique property of preserving the characteristic exponent at the inner horizon as well.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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