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We study properties of the Petz recovery map in chaotic systems, such as the 
Hayden–Preskill setup for evaporating black holes and the Sachdev–Ye–Kitaev (SYK) 
model. Since these systems exhibit the phenomenon called scrambling, we expect that the 
expression of the recovery channel R gets simplified, given by just the adjoint N 

† of the 
original channel N which defines the time evolution of the states in the code subspace em- 
bedded into the physical Hilbert space. We check this phenomenon in two examples. The 
first one is the Hayden–Preskill setup described by Haar random unitaries. We compute the 
relati v e entropy S(R [ N [ ρ] ] || ρ) and show that it vanishes when the decoupling is archi v ed. 
We further show that the simplified recovery map is equivalent to the protocol proposed by 

Yoshida and Kitaev. The second example is the SYK model where the 2D code subspace 
is defined by an insertion of a fermionic operator, and the system is e volv ed by the SYK 

Hamiltonian. We check the recovery phenomenon by relating some matrix elements of an 

output density matrix 

〈 T 

| R [ N [ ρ]] 
∣∣T 

′ 〉 to Rényi-two modular flowed correlators, and show 

that they coincide with the elements for the input density matrix with small error after twice 
the scrambling time. 
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1. Introduction 

Advances in our understanding of the relationship between quantum information theory and
holo gra phic principles have revealed the connection between the structure of spacetime and
quantum entanglement. In particular, the island formula [ 1–5 ] for the entropy of Hawking
radia tion implies tha t the island region in the interior of an old black hole is reconstructed
from the information of Hawking radiation. 

Howe v er, the precise way to recover a black hole interior region from Hawking radiation still
remains to be understood. It has been realized that for this purpose, it is convenient to regard the
black hole interior as a code subspace embedded in the Hilbert space of Hawking radiation as a
quantum error correcting (QEC) code [ 6–8 ]. For instance, the decoupling theorem by Hayden
and Preskill [ 6 ] implies that the black hole interior region is protected against the erasure of 
black hole degrees of freedom, which ensures the recovery. Once we regard an evaporating
black hole as a QEC code, then the general argument of QEC [ 9 ] tells us that the recovery is
achie v ed by a ppl ying the Petz recovery map [ 10 , 11 ]. 
© The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
Funded by SCOAP 3 . 

http://orcid.org/0000-0001-8344-5061
mailto:nakayama@gauge.scphys.kyoto-u.ac.jp
mailto:akihiromiyata.physics@gmail.com
mailto:ugajin@rikkyo.ac.jp
https://creativecommons.org/licenses/by/4.0/


PTEP 2023 , 123B04 Y. Nakayama et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper, we study properties of the Petz recovery map in chaotic systems, such as the
Ha yden–Preskill (HP) setup f or e vaporating b lack holes and the Sachde v–Ye–Kitae v (SYK)
model. Since these systems exhibit the phenomenon called scrambling, we expect that the recov-
ery channel R gets simplified, gi v en by just the adjoint N 

† of the original channel N which de-
fines the embedding of the black hole interior into the Hawking radiation. Ther efor e, schemat-
ically, we have 

R ∼ a N 

† , (1) 

where a is some numerical factor depending on the dimensions of the Hilbert spaces of black
holes and Hawking radiation. 

We will see this phenomenon in two examples. The first one is the HP setup where the dynam-
ics of an evaporating black hole and Hawking radiation is described by Haar random unitaries.
We do this by computing the relati v e entropy S(R [ N [ ρ] ] || ρ ) and show that it is vanishing when
the decoupling is archi v ed. We further show that the simplified recovery map is equivalent to
the Yoshida–Kitaev (YK) protocol. 1 The second example is one of the SYK model versions
of the HP setup, discussed in Ref. [ 14 ]. 2 In this setup, code information is expressed as excita-
tions, and a system is e volv ed by the SYK Hamiltonian. We check the recovery phenomenon
by relating some elements of an output density matrix 

〈 T 

| R [ N [ ρ]] 
∣∣T 

′ 〉 to Rényi-two modular
flowed correlators, and show that they gi v e an input density matrix 

〈 T 

| ρ ∣∣T 

′ 〉 with small error
after twice the scrambling time. However, there are still remaining matrix elements which we
need to check, but it is difficult to evaluate them directly. In an upcoming paper [ 16 ], we will
gi v e their direct evaluations. In this paper, we do not evaluate them dir ectly, but indir ectly guess
their expectations based on the result we obtained. 

Our paper is organized as follows. In Sect. 2 , we start with introducing a quantum channel
induced by the HP setup, and explain how we write down the simplified recovery map in the
original HP setup, which is applicable to the SYK case. We also explain a convenient nota-
tion to treat quantum channels induced by the HP setup, and in the notation, one can imagine
gravita tional interpreta tion simply. In Sect. 3 , by using the convenient nota tion, we compute
some relati v e entropies to check the condition of suf ficiency tha t allows us to use the simplified
recovery map as a recovery map. Also, we show that the YK protocol can be written as the
recovery map. In Sect. 4 , we explain one of the HP setups using the SYK model, and intro-
duce a corresponding quantum channel. After that, we gi v e the simplified recovery map, and
show that some matrix elements of output results can be written as “Rényi-two modular flowed
correla tors.” By evalua ting the “Rényi-two modular flowed correlators” anal yticall y, we show
that some matrix elements of output results by the simplified recovery map gi v e desired results.
In Sect. 5 , from the results we have computed in the previous section, we estimate the remain-
ing matrix elements of output results which we are evaluating. The details of the remaining
ones will be reported in an upcoming paper [ 16 ]. In Sect. 6 , we conclude this paper with the
discussion of our results and future directions. In Appendix A , we gi v e another deri vation of 
the simplified recovery map using a Kraus r epr esentation. In Appendix B , we show the relation
that holds for an EPR state, which is used in Sect. 3 . In Appendix C , conventions used in Sect. 4
1 This equivalence has not been directly shown, but such an equivalence is suggested by Yoshida in Refs. 
[ 12 , 13 ]. 

2 In Ref. [ 15 ], the authors discuss another HP setup in the SYK model, and the setup is different from 

our setup. 
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Fig. 1. Left: HP setup, corresponding to the state in Eq. ( 2 ). Right: Its decoder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are listed. In Appendix D , we show that, in the SYK version of the HP setup, some recovery
results can be written as “Rényi-two modular flowed correlators.”

2. Recovery map for the HP channel 
The HP setup is a tractable toy model for stud ying informa tion flow in evaporating black holes.
The setup consists of a black hole A that has been emitting Hawking radiation B . We are par-
ticularly interested in the system after the Page time where the black hole has emitted more
than half of its original entropy, 3 therefore a pproximatel y forming a maximally entangled state
| EPR 〉 AB 

. Suppose Alice throws a quantum state ρT 

(often called a diary) into this old black
hole. Then, as the black hole further evaporates A → C + D by emitting late Hawking radiation
D , information thrown into the black hole will eventually appear in total Hawking radiation
DB . Here, we denoted by C the remaining black hole after emitting the la te radia tion D , see the
left panel of Fig. 1 . The analysis of Hayden and Preskill [ 6 ] showed that the diary appears in
Hawking radiation almost immediately, namely after the scrambling time. 

To see this, it is useful to introduce an additional system called r efer ence R and form a maxi-
mally entangled state | EPR 〉 RT 

with the diary T . Then, in this setup, the initial condition of the
process is | EPR 〉 RT 

⊗| EPR 〉 AB 

. 
Owing to its chaotic d ynamics, informa tion of the diary thrown into the black hole gets

scrambled and spreads over the entire degrees of freedom. The resulting state is gi v en by 

| �HP 〉 = (I R 

⊗ U T,A → C,D 

⊗ I B 

) | EPR 

〉 R,T ⊗ | EPR 

〉 A,B 

, (2) 

where I R 

and I B 

are identities in R and B , respecti v ely, and U T , A → C , D 

is a random unitary
matrix from A , T to C , D , which models the chaotic dynamics of the black hole. By finding the
Hilbert space with which R is mostly entangled, one can find where information of the original
diary is in the final time slice. See again the left panel of Fig. 1 . 

The surprising result of HP is summarized in the following inequality: 

‖ ρRC 

− ρR 

⊗ ρC 

‖ 

2 
1 ≤

(
d T 

d D 

)2 

, (3) 

where ‖ A 

‖ 1 = tr 
√ 

A 

† A , ρRC 

, ρR 

, ρC 

are the reduced density matrices of Eq. ( 2 ) on the indicated
subsystems, d D 

, d T 

are the Hilbert space dimensions of subsystems D and T , respecti v ely, and
in the left-hand side we take an average over random unitaries. This inequality ( 3 ) implies that
if one collects a sufficient number of late Hawking quanta so that d D 

� d T 

, the system of 
3 We follow the notation of YK [ 17 ]. 
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the remaining black hole and the reference becomes no longer correlated ρRC 

= ρR 

⊗ρC 

, and
ther efor e the information of the diary has to be encoded in Hawking radiation DB . 

This result is also natural from the viewpoint of the framework of quantum error correction. 4 

A QEC code is a scheme to protect quantum states (logical states) in the code subspace H code 

against various errors. Such an error is ma thema tically modeled by a completely positi v e and
trace-preserving (CPTP) map called quantum channel N . The basic idea of quantum error cor-
rection is protecting these quantum states in the code subspace H code by embedding it into the
larger Hilbert space, often called physical Hilbert space H phys . In the HP protocol, the Hilbert
space of the diary H T 

corresponds to H code in QEC, and H phys is H DB 

. The quantum channel
N : T → DB is obtained by tracing out the remaining black hole and the r efer ence system de-
gr ees of fr eedom C and R from 

| �HP 〉 in Eq. ( 2 ), by replacing the r efer ence state | EPR 

〉 R,T by√ 

d T ρT | EPR 

〉 R,T ( ρT 

is an input state), 

N T → D,B 

[ ρT ] = tr C 

[ 
( U T,A → C,D 

⊗ I B 

)( ρT ⊗ | EPR 

〉 A,B 

〈 EPR 

| )( U 

† 
T,A → C,D 

⊗ I B 

) 
] 

= 

1 

d B 

d D ∑ 

˜ D , ̃  D 

′ =1 

d B ∑ 

˜ B , ̃  B 

′ =1 

∣∣ ˜ D 

〉
D 

〈
˜ D 

′ ∣∣⊗ ∣∣ ˜ B 

〉
B 

〈
˜ B 

′ ∣∣ d C ∑ 

C=1 

d T ∑ 

˜ T , ̃  T ′ =1 

U C, ̃  D ; ˜ T , ̃  B 

(ρT ) ˜ T ˜ T ′ U 

† 
C, ̃  D 

′ ; ˜ T ′ , ̃  B 

′ . 

(4) 

We call this quantum channel the HP channel. 
Then, a general theorem of QEC 

5 tells us that the decoupling condition is equivalent to the
existence of a recovery map R : DB → T which satisfies 

R [ N [ ρT ] ] = ρT ∀ ρT ∈ H T . (5) 

This again implies that the information of the diary is recov erab le from Hawking radiation DB .
See the right panel of Fig. 1 . Mor eover, the concr ete expr ession of the r ecovery map is known
[ 9 ], and is called the Petz recovery map: 

R 

Petz 
σ, N 

[ τ ] = σ
1 
2 N 

† [( N [ σ ]) −
1 
2 τ ( N [ σ ]) −

1 
2 ] σ

1 
2 (6) 

where σ is a full rank arbitrary density matrix on the code subspace H code . The N 

−1 / 2 factor of 
the Petz recovery map is difficult to compute in general. One way of doing this is, as in Ref. [ 4 ],
first making the replacement N 

−1 / 2 → N 

n , where n is a positi v e integer, computing it for all
n , then taking analytic continuation n → − 1 

2 . Also, the N 

−1 / 2 part pre v ents us from obtaining
the operational meaning of the map. 

Howe v er, in systems e xhibiting quantum chaos, we e xpect that the recovery map gets sim-
plified, because N [ σ ] has a flat spectrum, ther efor e the approximation R ∼ N 

† appears to be
possible. 6 If this is the case, since ρ ∼ N 

† [ N [ ρ] ] for arbitrary density matrix ρ in the code sub-
space, ther efor e the r elati v e entropy between them S(ρ||N 

† [ N [ ρ] ] ) vanishes. 
4 We note that the possible maximum number of late Hawking radiation d D 

is gi v en by the input for the 
Haar random unitary, implying d D 

≤ d T 

d B 

. Due to this bound, the combination d T 

/ d D 

cannot be 0, but at 
most 1/ d B 

. Thus, the exact equality does not hold ρRC 

= ρR 

⊗ρC 

, as long as d B 

is finite. This means that, 
strictly speaking, the recovery of the diary from Hawking radiation is, at best, appro ximate. Ho we v er, 
for a sufficiently large dimension of the early radiation, d B 

� 1, we can almost ignore the deviation from 

the exact factorization of ρRC 

for late times. 
5 See, e.g. Refs. [ 18 , 19 ] for the theorem. 
6 In Appendix A , we gi v e another equi valent argument supporting our e xpecta tion of this simplifica tion 

in terms of the Kraus r epr esentation of the HP channel. 

4/40 



PTEP 2023 , 123B04 Y. Nakayama et al. 

 

 

 

 

 

 

 

 

 

 

 

For the HP channel, the adjoint HP channel N 

† is gi v en by 

N 

† 
D,B→ T [ O DB 

] = tr A,B 

[ 
| EPR 

〉 A,B 

〈 EPR 

| (U 

† 
T,A → C,D 

O DB 

U T,A → C,D 

) 
] 

= A,B 

〈 TFD 

| (U 

† 
T,A → C,D 

⊗ I B 

)
(O DB 

⊗ I C 

) (U T,A → C,D 

⊗ I B 

) | TFD 

〉 A,B 

. 

(7) 

Here, the adjoint channel is defined by the relation 

7 

tr D,B 

[ N T → D,B 

[ ρT ] O DB 

] = tr T 
[ 
ρT N 

† 
D,B→ T [ O DB 

] 
] 
. (9) 

For later convenience, we introduce a correctly normalized recovery map 

R 

Lite 
D,B→ T [ O DB 

] : = 

1 

N 

· d B 

d D 

d T 
N 

† 
D,B→ T [ O DB 

] , (10) 

and define it as the Petz-lite . 8 Here, N is the normalization constant 

N = 

(
d D 

d T 

)2 

+ 1 , (11) 

determined by the condition tr T 
[
R 

Lite 
D,B→ T [ N T → D,B 

[ σT ] ] 
] = 1 , where σ T 

is some reference state
in T . In the Haar random case, the choice of the r efer ence state σ T 

is not important as long as
it is normalized. 

With this N , the Petz-lite can be expressed as 

R 

Lite 
D,B→ T [ O DB 

] = 

1 (
d D 

d T 

)2 

+ 1 

· d B 

d D 

d T 
N 

† 
D,B→ T [ O DB 

] 

= 

1 

1 + 

(
d T 

d D 

)2 · d C 

N 

† 
D,B→ T [ O DB 

] , (12) 

where in the second line, we used the relation d B 

d T 

= d C 

d D 

due to the unitarity of the Haar
random unitary. For the parameter region d T 

/ d D 

� 1, the normalization is just gi v en by d C 

,
which coincides with an expression obtained from another discussion. In Appendix A , we gi v e
the discussion. 

2.1. West-coast notation and r eplica-w ormhole-like objects 
In the following, we are interested in the typical properties of the recovery map R for the
HP channel N . To investigate these properties, we will consider replicated quantities, such as
tr (N [ ρT ]) n involving a product of Haar random unitaries and its average. Since such averaging
involves Wick-type contractions between various pairs of Haar random unitaries in the prod-
uct, it is convenient to introduce a graphical nota tion tha t manifests which pair of unitaries
ar e contracted. Ther efor e, her e we introduce a notation similar to the one employed in Ref. [ 4 ]
7 More generally, for a quantum channel N , its adjoint channel is defined by the similar relation, 

tr [ N [ ρ] O ] = tr 
[
ρ N 

† [ O ] 
]
. (8) 

8 The terminology “Petz-lite” is introduced in Ref. [ 4 ], and we also use this terminology in this paper. 
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for modeling the black hole microstates and their statistical properties, and call this West-coast
notation. 

To begin with, let us define the following black hole microstate on C , involving a Haar random
unitary: 

∣∣ψ 

T 
i 

〉
C 

: = 

√ 

d C 

d D 

d C ∑ 

C=1 

| C 

〉 U C,T ;i . (13) 

Here, { | C 〉 } is the set of basis states on the Hilbert space H C 

and the index i collectively denotes
the indices for both late radiation D and early radiation B , i : ( D , B ), or more concretely 

| i 〉 =
| D 

〉 ⊗ | B 

〉 , thus the label i runs from 1 to d D 

d B 

≡ k . 
In the following, we use this type of states 

∣∣ψ 

T 
i 

〉
C 

to write quantities of our interest, instead
of random unitary matrices U C , D ; T , B 

. Under this notation, we can write 〈 
ψ 

T 
i 

∣∣∣ψ 

T ′ 
j 

〉 
= d C 

d D 

d C ∑ 

C=1 

U 

† 
i;C,T U C,T ′ ; j (14) 

and ther efor e the HP channel ( 4 ) is gi v en by 

N T → D,B 

[ ρT ] = 

1 

kd C 

k ∑ 

i, j=1 

| i 〉 〈 j | ·
d T ∑ 

˜ T , ̃  T ′ =1 

〈 
ψ 

˜ T ′ 
j 

∣∣∣ψ 

˜ T 
i 

〉 
(ρT ) ˜ T ˜ T ′ . (15) 

In this notation, we call the subscript index i Hawking radiation index, and the superscript T
code index. 

The West-coast model treats each of these microstates | ψ i 〉 by a single-sided anti-de Sitter
(AdS) black hole with insertion of an “end of the world brane” (or EoW brane in short)
labeled by the index i behind the horizon. This state has a Hartle–Hawking-type prepara-
tion, in terms of a Euclidean path integral with the EoW brane which starts from the Eu-
clidean conformal boundary. In this model, the overlap between two such states 〈 ψ i | ψ j 〉
is computed by a Euclidean gravitational path integral on a region of Euclidean disc en-
closed by the part of the asymptotic boundary (an interval) and the EoW brane in the
bulk. 

With this gravitational path integral picture in mind, here we explain the fact that there is

a simple diagrammatic prescription to compute a product of such overlaps 
∏ n 

m =1 〈 ψ 

a m 
i m | ψ 

b m 
j m 〉 9 

without directl y a ppl ying the form ulae for the Haar random averages, which becomes quite
involved when the number of unitary matrices appearing increases. 

Then the prescription is the following: 

(1) For each overlap in the product 〈 ψ 

a m 
i m | ψ 

b m 
j m 〉 draw an interval with two endpoints, and as-

sociate the labels ( i m 

, a m 

) to one end and ( j m 

, b m 

) to the other. (In the West-coast model,
this interval with indices at the endpoints provides the boundary condition to the gravi-
ta tional pa th integr al for the product of the over laps.) 

(2) The n intervals pr epar ed in this way have 2 n endpoints in total. We pick up two of these
endpoints and connect them by a line, which we call the EoW brane. We repeat this
until all the endpoints are connected to the other by EoW branes. There are many dif-
ferent ways to do this. One possibility is that the endpoint of the m -th interval is always
9 In the West-coast paper, this quantity is just called the product of overlap and denoted without the 

bar, i.e. 
∏ n 

m =1 〈 ψ 

a m 
i m | ψ 

b m 
j m 〉 
∣∣
ours = 

∏ n 
m =1 〈 ψ 

a m 
i m | ψ 

b m 
j m 〉 WC 

. We will use the convention with the bar to keep in 

mind that we do average over random unitaries in the computation. 
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connected to the other endpoint of the same interval. Or another possibility is that the
endpoint of the m -th interval is always connected to the point on the next ( m + 1)-th
interval. 

(3) Each diagram D constructed in this way contains n EoW branes. We then associate each
EoW brane in the diagram with a Kronecker delta factor. If the EoW brane is connecting
two endpoints with the labels ( i l , a l ) and ( j m 

, b m 

), then this factor is gi v en by δi l j m δa l b m . We
compute this for all EoW branes in the diagram and then m ultipl y these factors. Let us
denote this factor for the diagram by I D 

. 
(4) Since each diagram can be regarded as (a disjoint union of) 2D surfaces, we can associate

an Euler number χD 

to the diagram. We then pick up the factor (d C 

) χD which corresponds
to the gravita tional pa th integral part in the West-coast model. We then sum the total
factor I D 

(d C 

) χD for all possible diagrams D . 
(5) The average of the overlaps is equal to the sum of these factors over all possible dia-

grams: 

n ∏ 

m =1 

〈 
ψ 

a m 
i m | ψ 

b m 
j m 

〉 
= 

∑ 

D ∈ All diagrams 

I D 

(d C 

) χD . (16) 

Let us provide a few examples. First, for the single overlap 

〈 
ψ 

T 
i 

∣∣∣ψ 

T ′ 
j 

〉 
. We can easily evaluate

it: 

〈 
ψ 

T 
i 

∣∣∣ψ 

T ′ 
j 

〉 
= d C 

d D 

d C ∑ 

C=1 

U 

† 
i;C,T U C,T ′ ; j 

= d C 

δD i D j δB i B j ︸ ︷︷ ︸ 
δi j 

δT T ′ 

= d C 

δi j δT T ′ , (17) 

where in the second line, we used the general result for two Haar random unitaries 

U a,b U 

† 
c,d = 

1 

d 

δad δbc (a, b, c, d = 1 , · · · , d ) . (18) 

This result can be easily reproduced from the West-coast prescription. 
Next, let us evaluate the Haar average of the combination of the overlaps for later conve-

nience, 〈 
ψ 

T 1 
i 

∣∣∣ψ 

T ′ 1 
j 

〉 
·
〈 
ψ 

T ′ 2 
j 

∣∣∣ψ 

T 2 
i 

〉 
. (19) 

Clearly, by setting T 1 = T 2 = T and T 

′ 
1 = T 

′ 
2 = T 

′ , the above combination reduces to the vari-

ance of the overlap 

∣∣∣〈 ψ 

T 
i 

∣∣∣ψ 

T ′ 
j 

〉 ∣∣∣2 . We can evaluate the above quantity by the diagrammatic pre-

scription mentioned above (see Fig. 2 ), 

〈 
ψ 

T 1 
i 

∣∣∣ψ 

T ′ 1 
j 

〉 
·
〈 
ψ 

T ′ 2 
j 

∣∣∣ψ 

T 2 
i 

〉 
≈ ( d C 

) 2 δi j δT 1 T ′ 1 
· δ ji δT ′ 2 T 2 + d C 

δii δT 1 T 2 · δ j j δT ′ 2 T 
′ 

1 
. (20) 
7/40 
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Fig. 2. Diagrams for computing the av erage of ov erlaps ( 20 ). A b lack line connects two points that appear 
in the same overlap, and the blue lines correspond to the EoW branes in Haar random averaging. Left: 
The disconnected diagram. Right: The connected diagram. 

 

 

 

 

 

 

 

 

 

 

 

This coincides with the result obtained by using the Weingarten formula, 

U a 1 ,b 1 U 

† 
c 1 ,d 1 

· U a 2 ,b 2 U 

† 
c 2 ,d 2 

= 

1 

d 

2 − 1 

( δa 1 d 1 δb 1 c 1 · δa 2 d 2 δb 2 c 2 + δa 1 d 2 δb 1 c 2 · δa 2 d 1 δb 2 c 1 ) 

+ 

1 

d 

(
d 

2 − 1 

) ( δa 1 d 1 δa 2 d 2 δb 1 c 2 δb 2 c 1 + δa 1 d 2 δa 2 d 1 δb 1 c 1 δb 2 c 2 ) 

× (a, b, c, d = 1 , · · · , d ) . (21) 

In general, the prescription introduced here correctly computes the av erage ov er Haar ran-
dom unitaries in the product of overlaps, as long as the rank of the random unitaries d = d C 

d D 

= d T 

d A 

is large. 
Furthermore, the adjoint channel ( 7 ), in terms of the West-coast notation, is gi v en by 

N 

† 
D,B→ T [ O DB 

] = 

1 

kd C 

d T ∑ 

T,T ′ =1 

∣∣T 

′ 〉〈 T 

| ·
k ∑ 

i, j=1 

〈 
ψ 

T ′ 
j 

∣∣∣ψ 

T 
i 

〉 
〈 j | O DB 

| i 〉 . (22) 

Below, using this graphical expression, we evaluate several relative entropies to check the
validity of the approximation R ∼ N 

† . 

3. Relativ e entr opy: sufficiency 

As we have mentioned, the decoupling condition ( 3 ) implies that there is a recovery map for the
HP channel ( 4 ). Another characterization of the existence of the recovery map R for given N is
the notion of sufficiency [ 10 , 11 , 20 ]. To state this, let us first recall the fact tha t rela ti v e entropy
satisfies the monotonicity property 

S(ρ|| σ ) ≥ S(N [ ρ] ||N [ σ ]) (23) 

f or an y CPTP map N . By repeating this, we have 

S(ρ|| σ ) ≥ S(N [ ρ] ||N [ σ ]) ≥ S(R [ N [ ρ] ] ||R [ N [ σ ] ] ) , (24) 

ther efor e, if the r ecov ery map e xists R ◦ N = 1 code , then S(ρ|| σ ) = S(N [ ρ] ||N [ σ ]) , f or an y den-
sity matrices on the code subspace. This condition is known as sufficiency, and it was shown
that if N satisfies this condition, the recovery map is gi v en by Eq. ( 6 ). Here we w ould lik e to
check the HP channel ( 4 ) does satisfy sufficiency, by directly computing the relati v e entropy
S(N [ ρ] ||N [ σ ]) in the presence of the quantum channel N . 10 

Since our interest is a typical result under the Haar random average, we consider the Haar
av eraged relati v e entropy, S(N [ ρ] ||N [ σ ]) . To e valua te the rela ti v e entropy, we use the replica
trick [ 23 ]: 

S(N [ ρ] ||N [ σ ]) = lim 

n → 1 

1 

n − 1 

(
log tr [ N [ ρ] n ] − log tr 

[
N [ ρ] N [ σ ] n −1 

])
. (25) 
10 See Refs. [ 21 , 22 ] for related discussions on original Petz map cases. 
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Fig. 3. Left: The dominant diagram for Eq. ( 27 ) when d D 

� d T 

(disconnected diagram). Right: The 
connected diagram dominating the sum at d T 

� d D 

. 

 

 

 

 

 

 

 

 

 

 

 

 

Generally, since it is difficult to evaluate the Haar average of logarithmic functionals, instead
of the expression, we consider 

S(N [ ρ] ||N [ σ ]) ≈ lim 

n → 1 

1 

n − 1 

(
log tr [ N [ ρ] n ] − log tr 

[
N [ ρ] N [ σ ] n −1 

])
. (26) 

It is known that in the large Hilbert dimension limit, this quantity is almost equal to the original
one [ 24 , 25 ]. For a moment, let us focus on the first term of Eq. ( 26 ). Using the West-coast
notation ( 15 ), the trace tr [ N [ ρ] n ] can be written in terms of overlaps, 

tr [ N [ ρ] n ] = 

1 

( k d C 

) n 

k ∑ 

i=1 

d T ∑ 

T , ̃  T =1 

n −1 ∏ 

m =0 

(〈 
ψ 

˜ T m 
i m | ψ 

T m 
i m +1 

〉 
ρT m ˜ T m 

)
, (27) 

where i 0 = i n , and the bold fonts i, T in the summation symbol mean the sum with respect to
the set of indices; 

∑ k 
i=1 = 

∑ k 
i 0 =1 · · ·

∑ k 
i n −1 =1 . 

In computing the Rényi entropy ( 27 ) we need to evaluate the product of overlaps∏ n −1 
m =0 〈 ψ 

˜ T m 
i m | ψ 

T m 
i m +1 

〉 with | ψ 

T 
i n 〉 ≡ | ψ 

T 
i 0 〉 and its Haar random average. We do this using the dia-

grammatic technique introduced in the previous section. 
Among all possible diagrams, we are particularly interested in the ones dominating the sum,

both in early times ( d D 

� d T 

) and in late times ( d D 

� d T 

). We now argue that the fully dis-
connected diagram (the left panel of Fig. 3 ), where, for all EoW branes, the starting point and
endpoint are on the same interval, dominates in early times, and the fully connected diagram
(the right panel of Fig. 3 ), where the indices form a single loop, dominates in late times by
explicit calculations. The calculation here is very similar to the ones in Refs. [ 4 , 25 ]. 

First, let us evaluate the contribution of the fully disconnected diagram. Since the contribu-
tion of this diagram is evaluated as ⎛ 

⎝ 

n −1 ∏ 

m =0 

〈 
ψ 

˜ T m 
i m | ψ 

T m 
i m +1 

〉 ⎞ 

⎠ 

discon 

= d 

n 
C 

n −1 ∏ 

m =0 

(
δi m i m +1 δ ˜ T m T m 

)
, (28) 

the contribution of this diagram to the Rényi entropy is 

tr [ N [ ρ] n ] 
∣∣∣
fully discon 

= 

1 

( k d C 

) n 
· k ( d C 

) n 
d T ∑ 

T =1 

ρT 1 T 1 ρT 2 T 2 · · · ρT n T n = 

1 

( k ) n −1 ( tr [ ρ] ) n . (29) 
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Similarly, the value of the fully connected diagram is gi v en by ⎛ 

⎝ 

n −1 ∏ 

m =0 

〈 
ψ 

˜ T m 
i m | ψ 

T m 
i m +1 

〉 ⎞ 

⎠ 

fully conn 

= d C 
n −1 ∏ 

m =0 

(
δ ˜ T m +1 T m 

)
⇒ tr [ N [ ρ] n ] 

∣∣∣
fully conn 

= 

1 

( d C ) 
n −1 tr [ ρ

n ] . (30) 

Combining these two results, tr [ N [ ρ] n ] is gi v en by 

tr [ N [ ρ] n ] = 

1 

( k ) n −1 ( tr [ ρ] ) n + 

1 

( d C 

) n −1 tr [ ρ
n ] + · · · , (31) 

where ··· means contributions coming from partially connected saddles. 
Since ther e ar e upper and lower bounds on tr [ ρn ] , i.e. 1 / (d T ) n −1 ≤ tr [ ρn ] ≤ 1 , we can see that 

tr [ N [ ρ] n ] = 

1 

( k ) n −1 ( tr [ ρ] ) n + 

1 

( d C 

) n −1 tr [ ρ
n ] + · · · , 

≈

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 

( k ) n −1 k � d C 

⇔ d T �
(

d T 

d D 

)2 

1 

( d C 

) n −1 tr [ ρ
n ] d C 

d T � k ⇔ 

(
d T 

d D 

)2 

� 1 

. (32) 

Thus, when the necessary condition for the decoupling condition, d T 

/ d D 

� 1, holds, the domi-
nant contribution is gi v en by the fully connected saddle. 

We have to carefully evaluate the precise range of m where the value of the connected sad-
dle gets larger than that of the disconnected saddle. This value of m depends on the density
matrix ρ on the code subspace, and gets maximized when it is the maximally mixed state ρ =
I T 

/ d T 

. Ther efor e, after k > d C 

d T 

, the connected saddle becomes the dominant one for all density
matrices in H code . 

Next, let us evaluate the second term of Eq. ( 26 ). This computation is completely parallel to
the above computation. In terms of the overlaps, it is given by 

tr 
[
N [ ρ] N [ σ ] n −1 ] = 

1 

( k d C 

) n 

k ∑ 

i=1 

d T ∑ 

T , ̃  T =1 

( 

n −1 ∏ 

m =0 

〈 ψ 

˜ T m 
i m | ψ 

T m 
i m +1 

〉 
) 

ρT 0 ˜ T 0 

( 

n −1 ∏ 

m =1 

σT m ˜ T m 

) 

. (33) 

The contribution of the fully disconnected diagram and the connected diagram to the second
term of Eq. ( 26 ) can be evaluated, again by substituting the result using Eqs. ( 28 ) and ( 30 ): 

tr 
[
N [ ρ] N [ σ ] n −1 ]∣∣

discon = 

1 

( k ) n −1 tr [ ρ] ( tr [ σ ] ) n −1 , 

tr 
[
N [ ρ] N [ σ ] n −1 

]∣∣
conn = 

1 

( d C 

) n −1 tr 
[
ρ σ n −1 ] . (34) 

Thus, using these results, we obtain 

tr 
[
N [ ρ] N [ σ ] n −1 

] = 

1 

( k ) n −1 tr [ ρ] ( tr [ σ ] ) n −1 + 

1 

( d C ) 
n −1 tr 

[
ρσ n −1 ]+ · · · , 

≈

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 

( k ) n −1 k � d C ⇔ d T �
(

d T 
d D 

)2 

1 

( d C ) 
n −1 tr 

[
ρσ n −1 ] k � d C d T ⇔ 

(
d T 
d D 

)2 

� 1 
, (35) 
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where ··· again means contributions coming from partially connected saddles, and also in the
second approximate equality, we assumed that 1 / (d T ) n −1 � tr 

[
ρσ n −1 

] ≤ 1 in order to obtain
the conditions. 11 

Now that we have evaluated the two terms that appeared in the relati v e entropy, we can obtain
the resulting relati v e entropy: 

S(N [ ρ] ||N [ σ ]) ≈ lim 

n → 1 

1 

n − 1 

(
log tr [ N [ ρ] n ] − log tr 

[
N [ ρ] N [ σ ] n −1 

])
, 

≈

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 k � d C 

⇔ d T �
(

d T 

d D 

)2 

lim n → 1 
1 

n − 1 

(
log tr [ ρn ] − log tr 

[
ρσ n −1 ]) k � d C 

d T ⇔ 

(
d T 

d D 

)2 

� 1 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 k � d C 

⇔ d T �
(

d T 

d D 

)2 

S(ρ|| σ ) k � d C 

d T ⇔ 

(
d T 

d D 

)2 

� 1 . 

(36) 

Thus we can conclude that, when the condition d T 

/ d D 

� 1 is satisfied, the relati v e entropies
obey the relation 

S(N [ ρ] ||N [ σ ]) ≈ S(ρ|| σ ) . (37) 

This result implies that the condition of sufficiency holds for the HP channel when 

(
d T 
d D 

)2 
� 1 .

3.1. Check the recovery map 

We argued that in chaotic systems, the Petz recovery map ( 6 ) gets simplified and is reduced to
the so-called Petz-lite map R 

Lite defined in Eq. ( 12 ). In this section, we show this by checking 

S(R 

Lite [ N [ ρT ] ] || ρT ) = 0 , when 

(
d T 

d D 

)2 

� 1 (38) 

f or an y density matrix ρT 

on the code subspace. This means that at sufficiently late times, one
can recover ρT 

from the state of the Hawking radiation N [ ρT ] by a ppl ying the recovery map
R 

Lite . 
One can show this by computing the relati v e entropy by the replica trick similar to Eq. ( 25 ), 

S(R 

Lite [ N [ ρT ] ] || ρT ) = lim 

n → 1 

1 

n − 1 

(
log tr (R 

Lite [ N [ ρ] ] ) n − log tr (R 

Lite [ N [ ρ] ] ρn −1 ) 
)

. (39) 

In terms of Haar random unitaries, R 

Lite [ N [ ρT ] ] is gi v en by 

R 

Lite [ N [ ρT ] ] = 

1 

N 

· d B d D 

d T 
· N 

† 
D,B→ T [ N T → D,B [ ρ] ] 

= 

1 

N 

d T ∑ 

˜ T , ̃  T ′ =1 

∣∣ ˜ T 

〉
T 

〈
˜ T 

′ ∣∣ · 1 

k(d C 

) 2 d T 

d T ∑ 

T,T ′ =1 

k ∑ 

i, j=1 

〈 
ψ 

˜ T 
i 

∣∣∣ψ 

˜ T ′ 
j 

〉 〈 
ψ 

T ′ 
j 

∣∣∣ψ 

T 
i 

〉 
(ρ) T T ′ . (40) 

Ther efor e, the first term in Eq. ( 39 ) is gi v en by 

tr ( R 

Lite [ N [ ρ] ] ) n = 

1 

( N kd 

2 
C 

d T ) n 

d T ∑ 

T , T ′ =1 

d T ∑ 

˜ T , ̃  T ′ =1 

k ∑ 

i, j=1 

n ∏ 

m =1 

(〈 
ψ 

T m 
i m 

∣∣∣ψ 

T m +1 
j m 

〉 〈 
ψ 

˜ T m 
j m 

∣∣∣ψ 

˜ T ′ m 
i m 

〉 
ρ ˜ T m ̃  T ′ m 

)
. (41) 
11 If the support of the density matrix ρ is not contained in that of σ , then tr 
[
ρσ n −1 

] = 0 , implying the 
di v ergent relati v e entropy S ( ρ|| σ ) = ∞ . In that case, we would need another treatment, thus we do not 
consider such a case in this paper. 
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Fig. 4. Diagrams for the product of overlaps appearing in the calculation of Eq. ( 41 ). Left: Disconnected 

diagram. Right: The connected diagram. 

 

 

 

 

 

 

 

 

 

 

We compute this by following the procedure explained in Sect. 2.1 , namely by preparing an
interval for each overlap, and connecting the endpoints of the interv als b y EoW branes, then
evaluating each diagram generated in this way. As shown in Fig. 4 , the m -th replica consists of 
two intervals with indices for Hawking radiation i m 

, j m 

. Ther efor e, it is clear that when k = d D 

d B 

is sufficiently large, the dominant diagram is the one connecting the endpoint with the index
i m 

in the first interval to the endpoint of the second replica with the same index in the same
replica (the right panel of Fig. 4 ). Similarly, we connect the endpoints with j m 

in this replica.
This is because, if there is an EoW brane connecting endpoints with distinct Hawking indices
(say i , j ), then the value of the diagram is significantly reduced in the large- k limit because of 
the Kronecker delta factor δij coming from the EoW brane. 

This means that in the dominant saddle, two different replicas are not connected by any EoW
brane, because they start and end at the same replica. This means that the Rényi entropy is a
self-averaging quantity: 

tr (R 

Lite [ N [ ρ] ] ) n = tr 
(
R 

Lite [ N [ ρ] ] 
)n 

. (42) 

A similar statement holds for the second term of Eq. ( 39 ); ther efor e, we conclude that the
relati v e entropy of our interest is also self-averaging, 

S(R 

Lite [ N [ ρT ] ] || ρT ) = S( R 

Lite [ N [ ρT ] ] || ρT ) , (43) 

when k is sufficiently large. This implies that in the relati v e entrop y, one can r eplace R 

Lite [ N [ ρT ] ]
with its average R 

Lite [ N [ ρT ] ] . The average of the density matrix is given by 

R 

Lite [ N [ ρT ] ] = 

1 

1 + 

(
d T 

d D 

)2 

( 

ρ + 

(
d T 

d D 

)2 

· I T 
d T 

) 

. (44) 

A more precise way to argue this is the following: Let us compute 

tr 
[(

R 

Lite [ N [ ρT ] ] − R 

Lite [ N [ ρT ] ] 
)2 
]

= tr 
[ (
R 

Lite [ N [ ρT ] ] 
)2 ] − tr 

[(
R 

Lite [ N [ ρT ] ] 
)2 
]

. 

(45) 
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Then, the right-hand side of the above equation is given by 

(k d C 

) 4 (
Nk(d C 

) 2 d T 
)2 
{ 

1 

k d C 

[ 

1 

k 

2 

(
2 + d T tr 

[
ρ2 ]+ (d T ) 2 

)

+ 

1 

k d C 

(
(d T ) 2 tr 

[
ρ2 ]+ 2 d T + 2 tr 

[
ρ2 ])+ 

1 

(d C 

) 2 
d T tr 

[
ρ2 ] ] } 

, (46) 

which becomes small when k � d C 

d T 

. By plugging this expression, we have 

S(R 

Lite [ N [ ρT ] ] || ρT ) ≈ S( R 

Lite [ N [ ρT ] ] || ρT ) 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

S 

(
ρ

∣∣∣∣
∣∣∣∣ I T d T 

)
k � d C 

⇔ d T �
(

d T 

d D 

)2 

0 k � d C 

d T ⇔ 

(
d T 

d D 

)2 

� 1 . 

(47) 

Thus, for early times k � d C 

, the relati v e entropy is nonvanishing unless ρ = I T 

/ d T 

, but for
late times d C 

d T � k, the relati v e entropy is vanishing. This result implies that when k � d C 

d T 

,
R 

Lite indeed works as a recovery map. 

3.2. Relation to the YK protocol 
So far, we have shown that when k � d C 

d T 

, the Petz-lite R 

Lite ∼ N 

† indeed works as a recovery
map. Howe v er, we hav e not discussed the physical interpretation of the Petz-lite. Thus, in this
subsection, we explain the interpretation by showing the equivalence between the Petz-lite and
the well-known YK protocol. The relation between the YK protocol and the Petz map has been
suggested by Yoshida [ 12 , 13 ]. 

In Ref. [ 17 ], Yoshida and Kitaev proposed an interesting recovery protocol for the object
thrown into the black hole T from late and early radiation DB . A brief summary of their pro-
tocol is as follows: 

(1) In addition to the original HP setup, introduce a copy of the diary and the r efer ence,
denoted by R 

′ T 

′ . We choose the state on R 

′ T 

′ to be an EPR state. Bob can manipulate
Hawking radiation DB and R 

′ T 

′ . Before a ppl ying the decoding protocol, the state of the
total system is 

| �HP 〉 ⊗ | EPR 〉 R 

′ T ′ , (48) 

where | �HP 〉 is the state on RCDB gi v en by Eq. ( 2 ). 
(2) We then use the early Hawking radiation B and the copy of the diary T 

′ to simulate
the black hole dynamics by a ppl ying U 

∗, w hich is the complex conjugate of U for the
time evolution of the original system. After the simulation, the total system consists of 
RCDR 

′ C 

′ D 

′ , and the state is 

| �YK 

〉 RC DD 

′ C 

′ R 

′ = 

(
I RC 

⊗ I D 

⊗ U 

∗
D 

′ C 

′ → BT ′ ⊗ I R 

) | �HP 〉 ⊗ | EPR 〉 R 

′ T ′ . (49) 

(3) Postselect to the EPR pair on DD 

′ . If it succeeds, the state on RR 

′ is the EPR state with
high fidelity, meaning information recovery has been successful. 
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Fig. 5. Left: YK decoding protocol. Right: Operator transpose that provides the key equivalence ( 55 ). 

 

 

 

 

 

The quantum circuit for the protocol is shown in the left panel of Fig. 5 . Combining these steps,
the quantum channel R 

Y K 

D,B→ R 

′ for the YK recovery map is given by 

R 

YK 

D,B→ R 

′ [ O DB 

] 

= 

1 

N YK 

tr C 

′ 
[
D,D 

′ 〈 EPR 

| U 

∗
B,T ′ → C 

′ ,D 

′ 
(
O DB 

⊗ | EPR 

〉 T ′ ,R 

′ 〈 EPR 

| )U 

T 
B,T ′ → C 

′ ,D 

′ | EPR 

〉 D,D 

′ 
]
, 

(50) 

where N YK 

is a normalization factor gi v en by 

N YK 

= 

∣∣D,D 

′ 〈 EPR 

| �Y K 

〉 ∣∣2 ≈ 1 

(d T ) 2 
+ 

1 

(d D 

) 2 
. (51) 

For the abo ve YK reco very map, we show the equivalence between the YK recovery map
R 

YK 

D,B→ R 

′ and the Petz-lite ( 10 ), R 

Lite 
D,B→ T , up to the isomorphism V T → R 

′ between systems T and
R 

′ , 

R 

Y K 

D,B→ R 

′ [ O DB 

] = V T → R 

′ R 

Lite 
D,B→ T [ O DB 

] V 

† 
T → R 

′ , (52) 

where V T → R 

′ is explicitly gi v en by 

V T → R 

′ : = d T T,T ′ 〈 EPR 

| EPR 

〉 T ′ ,R 

′ = 

d T ∑ 

˜ T =1 

∣∣ ˜ T 

〉
R 

′ T 

〈
˜ T 

∣∣ . (53) 

The argument for the equivalence is summarized in the right panel of Fig. 5 . We start with
the YK recovery map ( 50 ). First, we rewrite the trace of subsystem C 

′ in the YK recovery map
as 

tr C 

′ [ O ] = d C C,C 

′ 〈 EPR 

| ( I C 

⊗ O ) | EPR 

〉 C,C 

′ , (54) 

and introduce two EPR states | EPR 

〉 D,D 

′ and 

| EPR 

〉 C,C 

′ . 
Next, by using Eq. ( 54 ) and the relation (see Appendix B for the derivation): 

U 

T 
C 

′ ,D 

′ → B,T ′ | EPR 

〉 C,C 

′ ⊗ | EPR 

〉 D,D 

′ = U A,T → C,D 

| EPR 

〉 A,B 

⊗ | EPR 

〉 T,T ′ , (55) 
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the YK recovery map ( 52 ) can be rewritten as 

R 

Y K 

D,B→ R 

′ [ O DB 

] 

= 

d C 

N YK 

( A,B 

〈 EPR 

| ⊗ T,T ′ 〈 EPR 

| ) 
[ 
U 

† 
A,T → C,D 

(
O DB 

⊗ | EPR 

〉 T ′ ,R 

′ 〈 EPR 

| )U A,T → C,D 

] 
× (| EPR 

〉 A,B 

⊗ | EPR 

〉 T,T ′ 
)

= 

d C 

N YK 

(
T,T ′ 〈 EPR 

| EPR 

〉 T ′ ,R 

′ 
)

× A,B 

〈 EPR 

| 
[ 
U 

† 
T,A → C,D 

O DB 

U T,A → C,D 

] 
| EPR 

〉 A,B 

× (
T ′ ,R 

′ 〈 EPR 

| EPR 

〉 T,T ′ 
)

= 

d C 

(d T ) 2 N YK 

V T → R 

′ N 

† 
D,B→ T,A 

[ O D,B 

] V 

† 
T → R 

′ , (56) 

where in the final line, we used the definition of the isomorphism ( 53 ) and the adjoint HP
channel ( 7 ). Additionally, the abo ve o verall constant d C 

(d T ) 2 N YK 
coincides with that of the Petz-

lite ( 12 ), since 

d C 

(d T ) 2 N YK 

= 

d C 

1 + 

(
d T 

d D 

)2 , (57) 

where we used the definition of N YK 

, Eq. ( 51 ). Therefore, the abov e e xpression implies the
desir ed r elation ( 52 ). 

4. Recovery map for the HP channel in SYK 

So far, we have given the evidence that the Petz-lite works as a recovery map under the Haar
random unitary, which is highly chaotic. In this section, we argue that this continues to hold
for a mor e r ealistic but tractable model of chaotic dynamics: the SYK model [ 26–28 ]. In this
paper, we briefly explain the relevant calculations, leaving details for an upcoming paper [ 16 ]. 

4.1. Setup of the SYK HP protocol 
In this section, we explain the setup to study the HP-like protocol (what we call the SYK HP
channel) in the SYK model. This was first introduced in Refs. [ 14 , 29 ]. 

The SYK model is a theory of N Majorana fermions ψ i , and its Hamiltonian is gi v en by 

H = ( i ) q/ 2 
∑ 

1 ≤i 1 <i 2 < ···<i q ≤N 

j i 1 i 2 ···i q ψ i 1 ψ i 2 · · ·ψ i q , (58) 

where q ∈ 2 N (q > 2) , j i 1 i 2 ···i q is a random coefficient drawn from a Gaussian random distribu-

tion with zero mean and the variance 
〈 
j 2 i 1 i 2 ···i q 

〉 
= J 

2 (q − 1)! /N 

q −1 . 

Following Ref. [ 14 ], we consider two copies of the Hilbert space of the SYK model, say, a
left SYK system L and a right one R . Hereafter, we denote the Majorana fermions on the left
system by ψ i , L 

and ψ i , R 

for the right. For notational simplicity, we use the convention {
ψ i , ψ j 

} = 2 δi, j , (59) 
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for the anticommuta tion rela tion for the fermions on the same side. In this setup, the right
SYK system corresponds to early radiation degr ees of fr eedom of the original HP setup, and
the left SYK system corresponds to the rest: the union of the diary system and the initial black
hole before the action of the random unitary, or equivalently the remaining black hole plus
la te radia tion degr ees of fr eedom after the unitary evolution. In particular, the left system L is
divided into two subsystems, say, ˜ L and K ; the former corresponds to the remaining black hole,
and the latter to the late radiation part of the original HP setup. 

On the union of the above SYK systems L and R , we consider the following thermo-field
double (TFD) state: 

| TFD 

〉 L,R 

= Z 

−1 / 2 (β ) e −β(H L + H R ) / 4 | 0 

〉 L,R 

, (60) 

where Z ( β) is a normalization factor of the state, and 

| 0 

〉 L,R 

is gi v en by [ 30 ]: [
ψ j,L 

(0) + iψ j,R 

(0) 
] | 0 

〉 L,R 

= 0 for ∀ j. (61) 

Note that the TFD state ( 60 ) satisfies the relation (H L 

− H R 

) | TFD 

〉 = 0 . This TFD state cor-
responds to an entangled state between the initial black hole and the early radiation. 

The code subspace (a diary system) of our interest is 2D, and let us denote two basis vectors by
| 0 

〉 and 

| 1 

〉 . This code subspace is embedded into the physical Hilbert space LR by an isometry.
The image of the code subspace is spanned by the TFD state | TFD 

〉 L,R 

and the excited state
ψ i,L 

(0) | TFD 

〉 L,R 

. Here, we assume that the Majorana fermion ψ i , L 

(0) acting on the TFD state
li v es in the subsystem 

˜ L , i ∈ 

˜ L . More explicitly, by the isometry, the states in the code subspace
| T 

〉 (T = 0 , 1) are mapped to 

( V T,L → L 

⊗ I R 

) 
(| T 

〉 T ⊗ | TFD 

〉 L,R 

)
: = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

| TFD 

〉 L,R 

for T = 0 

1 

( Z δ ) 
1 
2 

ψ i,L 

(iδ) | TFD 

〉 L,R 

for T = 1 , 
(62) 

where ψ i , L 

( i δ) is the regulated Majorana fermion operator 

ψ i,L 

(iδ) = e −δH L ψ i,L 

(0) e δH L , (63) 

and δ is an infinitesimal cutoff parameter to normalize the state with the operator insertion
e v en in the conformal limit, where the SYK model has an effecti v e description in terms of the
reparametrization modes [ 31 ]. Z δ is its normalization factor gi v en by the two-point function 

Z δ = 

1 

N − K 

N−K ∑ 

i=1 

1 

Z(β ) 
tr 
[
e −βH L ψ i,L 

(−iδ) ψ i,L 

(iδ) 
]

= 

1 

N − K 

N−K ∑ 

i=1 

1 

Z(β ) 
tr 
[
e −βH L e 2 δH L ψ i,L 

(0) e −2 δH L ψ i,L 

(0) 
] = G β (2 δ) . (64) 

This normalization factor is not for the specific Majorana fermion “i ” but averaged over the
region 

˜ L with N − K sites. We expect that the difference between the two only appears in sub-
leading terms with respect to K / N because of typicality. Therefore, we use this normalization
factor ( 64 ) for later convenience. 

Using the above embedding, we can holo gra phicall y pr epar e an initial entangled state be-
tween the early radiation and an initial black hole containing a diary in the SYK model. For
this system, we consider a unitary time evolution on the left system L by the SYK Hamiltonian
H L 

, 

U L 

(t) = exp ( itH L 

) . (65) 
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Fig. 6. Circuit diagram corresponding to the state in Eq. ( 66 ). 

 

 

 

 

 

 

 

 

 

 

By this time evolution, information in the diary gets scrambled and uniformly distributed over
the left SYK system after the scrambling time. The resulting state is 

| �SYK HP 〉 = ( I Ref ⊗ U L 

( t) ⊗ I R 

) ( I Ref ⊗ V T,L → L 

⊗ I R 

) 
(| EPR 

〉 Ref ,T ⊗ | TFD 

〉 L,R 

)
, (66) 

which corresponds to the state in Eq. ( 2 ). In Fig. 6 , we gi v e the circuit diagram corresponding
to the state in Eq. ( 66 ). 

We are interested in recovering the diary information from the early and late radiations R and
K by using the Petz-lite for the SYK HP protocol. As in Eq. ( 4 ), the SYK HP channel N 

SYK 

T → K,R 

r epr esenting error is obtained by tracing out the remaining black hole part ˜ L in the final state
( 66 ), 

N 

SYK 

T → K,R 

[ ρT ] : = tr ˜ L 

[ 
U L 

V T,L → L 

(
ρT ⊗ | TFD 

〉 L,R 

〈 TFD 

| )V 

† 
T,L → L 

U 

† 
L 

] 
. (67) 

This channel maps a density matrix on the diary T to the one on the late and early radiation
system K , R . Also, the adjoint N 

SYK † 
K,R → T of the SYK HP channel is gi v en by 

N 

SYK † 
K,R → T [ O KR 

] : = tr L,R 

[ 
| TFD 

〉 L,R 

〈 TFD 

| 
(
V 

† 
L → T,L 

U 

† 
L 

O KR 

U L 

V L → T,L 

)] 
= L,R 

〈 TFD 

| 
(
V 

† 
L → T,L 

U 

† 
L 

O KR 

U L 

V L → T,L 

)
| TFD 

〉 L,R 

. (68) 

The above quantum channels are analogous to the original HP channel and its adjoint for the
Haar random unitary. Howe v er, we note that there is a difference between them in the sense that
the SYK HP channel and its adjoint include the embedding map V , which induces (fermionic)
excitations. 

4.2. Some matrix elements of the Petz-lite and Rényi-two correlators 
Now that we have pr epar ed the SYK HP channel and its adjoint, we can construct the Petz-lite
map for this channel. As in the Petz-lite for the Haar random case ( 10 ), we consider the Petz-lite
for the SYK case, 

R 

Lite,SYK 

K,R → T [ O KR 

] = 

1 

N SYK 

N 

SYK † 
K,R → T [ O KR 

] , (69) 

where N SYK 

is the normalization factor, which is determined by the condition 

tr T 
[ 
R 

Lite,SYK 

K,R → T 

[
N 

SYK 

T → K,R 

[ σT ] 
]] = 1 . (70) 
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Her e, σ T 

is some r efer ence sta te in T for the normaliza tion. We take it to be σT = 

| 0 

〉 T 〈 0 

| . For
this choice, the normalization factor is gi v en by 

N SYK 

= 

∑ 

T =0 , 1 

〈 T 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| T 

〉 . (71) 

We note that due to this normalization, we can see that the Petz-lite ( 69 ) for the SYK HP
protocol has a similar overall constant to the Petz-lite for the original HP protocol ( 12 ). To see
the similarity, we first rewrite the Petz-lite ( 69 ) with the normalization factor ( 71 ) as follows, 

R 

Lite,SYK 

K,R → T [ O KR 

] = 

〈 
ˆ d ˜ L 

〉 
β

1 + 

〈 
ˆ d ˜ L 

〉 
β

〈 1 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 1 

〉 
N 

SYK † 
K,R → T [ O KR 

] , (72) 

where 
〈 

ˆ d ˜ L 

〉 
β

is an effecti v e dimension of subsystem 

˜ L defined by the purity tr ˜ L 

[ (
ρ ˜ L 

)2 ] 
of the

TFD state with respect to the subsystem, 12 

〈 0 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 0 

〉 = tr KR 

[ 
( ρKR 

) 2 
] 

= tr ˜ L 

[ (
ρ ˜ L 

)2 ] = 

: 
1 〈 
ˆ d ˜ L 

〉 
β

. (73) 

The effecti v e dimension is analogous to the dimension of the remaining b lack hole in the origi-
nal HP setup. Indeed, in the infinite temperature limit β → 0, the effecti v e dimension is almost
reduced to the actual dimension of subsystem 

˜ L , d ˜ L 

= 2 

N−K 
2 . 13 Howe v er, in general, the effecti v e

dimension is smaller than the actual dimension due to the property of the purity and thermal
effects; 

1 ≤
〈 

ˆ d ˜ L 

〉 
β

≤ d ˜ L 

, (74) 

where this effecti v e dimension becomes closed to 1 in β → ∞ and d ˜ L 

in β → 0. With this effecti v e
dimension, we can compare the Petz-lite ( 72 ) for the SYK model to that for the original one
( 12 ) in the HP setup 

R 

Lite ,HP 
D,B→ T [ O DB 

] = 

d C 

1 + 

(
d T 

d D 

)2 N 

† 
D,B→ T [ O DB 

] . 

The similarities between the quantities in the HP and the SYK are summarized in the following
identifications: 

d C 

←→ 

〈 
ˆ d ˜ L 

〉 
β
, 

(
d T 

d D 

)2 

←→ 

〈 
ˆ d ˜ L 

〉 
β

· 〈 1 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 1 

〉 . (75) 

Also, we have the unitarity constraint on the dimensions of the Hilbert spaces, d T d B 

= d C 

d D 

.
By using the relation, we can rewrite the dimension as (

d T 

d D 

)2 

= 

d C 

d T 

d B 

d D 

, (76) 
12 We note that in our setting, subsystem 

˜ L is smaller than the complement system KR . 
13 For Majorana fermions, an annihilation operator is constructed from two Majorana fermions, and 

the corr esponding cr ea tion opera tor is gi v en by the Hermitian conjugation. In other wor ds, two Majo- 
rana fermions form a single qubit. Thus, a Hilbert space constructed from m Majorana fermions becomes 
a 2 

m /2 -dimensional Hilbert space. See, e.g. Ref. [ 32 ] for the re vie w. 
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from which we have the following identification: 

〈 1 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 1 

〉 ←→ 

1 

d C 

·
(

d T 

d D 

)2 

= 

d T 

d B 

d D 

= 

d T 

k 

. (77) 

This might be a good ratio to understand current physics; if we have a sufficiently large amount
of Hawking radiation compared with the diary, d T � d B 

d D 

= k, the ratio becomes almost
0. As we will soon see, the left quantity also becomes almost 0 around and after a critical
time. 

With this discussion of the normalization factor in mind, we consider a matrix element of 
R 

Lite,SYK 

K,R → T 

[
N 

SYK 

T → K,R 

[ ρT ] 
]

for a general density matrix ρT 

in the Hilbert space of the diary, 〈
T 

∣∣R 

Lite,SYK 

K,R → T 

[
N 

SYK 

T → K,R 

[ ρT ] 
]∣∣T 

′ 〉 . (78) 

To check whether the Petz-lite works as the recovery map, it is sufficient to see whether the
following relation holds (a pproximatel y) or not: 〈

T 

∣∣R 

Lite,SYK 

K,R → T 

[
N 

SYK 

T → K,R 

[ ρT ] 
]∣∣T 

′ 〉 ? ≈ 〈
T 

∣∣ρT 
∣∣T 

′ 〉 for ∀ ρT . (79) 

Checking the above relation is equivalent to focusing on the matrix elements 〈
T 

∣∣R 

Lite,SYK 

K,R → T 

[
N 

SYK 

T → K,R 

[∣∣ ˜ T 

〉
T 

〈
˜ T 

′ ∣∣]]∣∣T 

′ 〉 ? ≈ 〈T 

∣∣ ˜ T 

〉 〈
˜ T 

′ ∣∣T 

′ 〉 , ∀ T, T 

′ , ˜ T , ˜ T 

′ . (80) 

Generally, we have 16 components of the above matrix, but half of them, including odd Majo-
rana fermions, are trivially vanishing due to the fermionic parity of the SYK model. In other
words, matrix elements which satisfy (T + T 

′ + 

˜ T + 

˜ T 

′ ) ≡ 1 mod 2 are vanishing. 
Now, we focus on three nonzero matrix elements, and briefly explain how we can evaluate

them. 14 First, we consider the T, T 

′ , ˜ T , ˜ T 

′ = 0 case. If Eq. ( 80 ) holds then since its right-hand
side is 1, ther efor e the following identity holds: 

1 

? ≈ 〈 0 

| R 

Lite,SYK 

K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 0 

〉 = 

(
1 + 

〈 
ˆ d ˜ L 

〉 
β

· 〈 1 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 1 

〉 
)−1 

.

(81) 

The second one is for the T , T 

′ = 1, ˜ T , ˜ T 

′ = 0 case, where the matrix element is expected to
become 0. In this case, we can see that this matrix element has the same ratio as above, 

0 

? ≈ 〈 1 

| R 

Lite,SYK 

K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 1 

〉 = 

〈 
ˆ d ˜ L 

〉 
β

· 〈 1 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 1 

〉 

1 + 

〈 
ˆ d ˜ L 

〉 
β

· 〈 1 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 1 

〉 
. 

(82) 

The final one is for T, ˜ T = 0 , T 

′ , ˜ T 

′ = 1 , where the matrix element ( 80 ), which is expected to
be 1, becomes 

1 

? ≈ 〈 0 

| R 

Lite,SYK 

K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 1 

| ] ]| 1 

〉 = 

〈 
ˆ d ˜ L 

〉 
β

· 〈 0 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 1 

| ] ]| 1 

〉 

1 + 

〈 
ˆ d ˜ L 

〉 
β

· 〈 1 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 1 

〉 
. 

(83) 

The rest of the matrix elements 

〈 0 

| R 

Lite,SYK 

K,R → T 

[
N 

SYK 

T → K,R 

[ | 1 

〉 T 〈 0 

| ] ]| 1 

〉 , 〈 1 

| R 

Lite,SYK 

K,R → T 

[
N 

SYK 

T → K,R 

[ | 1 

〉 T 〈 1 

| ] ]| 1 

〉 
14 The details of the calculation will be discussed in an upcoming paper [ 16 ]. 
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are difficult to evaluate directly, as we will mention in footnote 17. In the next section, we eval-
uate these matrix elements indirectly from the results of this section. 

Thus, to see the recovery ( 80 ), we need to study the behaviors of the matrix elements of N 

† N 

w hich a ppear in the right-hand sides of Eqs. ( 81 ), ( 82 ), and ( 83 ). In order for the recovery to
happen, these have to satisfy 〈 

ˆ d ˜ L 

〉 
β

· 〈 1 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 0 | ] ] | 1 〉 ? ≈ 0 , (84) 

〈 
ˆ d ˜ L 

〉 
β

· 〈 0 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 1 | ] ] | 1 〉 ? ≈ 1 . (85) 

We study the behaviors of the left-hand sides of Eqs. ( 84 ) and ( 85 ) below. To this end, it is
conv enient to re write the quantities as correlators. From the definitions of the channels in Eqs.
( 4 ) and ( 68 ), we obtain the left-left correlators 〈 

ˆ d ˜ L 

〉 
β

· 〈 1 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 0 | ] ] | 1 〉 

= 

1 

Z δ

·
〈
TFD 

∣∣ψ i,L 

(t − iδ) 
(
I ˜ L 

⊗ ρKR 

)
ψ i,L 

(t + iδ) 
∣∣TFD 

〉
tr KR 

[ 
( ρKR 

) 2 
] , 

(86) 

〈 
ˆ d ˜ L 

〉 
β

· 〈 0 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 1 | ] ] | 1 〉 

= 

1 

Z δ

·
〈
TFD 

∣∣ψ i,L 

(t − iδ) 
(
ρ ˜ L 

⊗ I KR 

)
ψ i,L 

(t + iδ) 
∣∣TFD 

〉
tr KR 

[ 
( ρKR 

) 2 
] , 

(87) 

where the two fermions are put on the left system, and ρKR 

and ρ ˜ L 

are defined by 

ρ ˜ L 

= tr KR 

[ | TFD 

〉 LR 

〈 TFD 

| ] , ρKR 

= tr ˜ L 

[ | TFD 

〉 LR 

〈 TFD 

| ] . (88) 

We gi v e the deri va tion of the correla tors in Appendix D . 
We also note that the numerators in the above correlators can be written as 

〈 TFD 

| ψ i,L 

(t − iδ) 
(
I ˜ L 

⊗ ρKR 

)
ψ i,L 

(t + iδ) | TFD 

〉 

= tr KR 

[
tr ˜ L 

[
ψ i,L 

(t + iδ) | TFD 

〉 L,R 

〈 TFD 

| ψ i,L 

(t − iδ) † 
]
ρKR 

]
(89) 

and 

〈 TFD 

| ψ i,L 

(t − iδ) 
(
ρ ˜ L 

⊗ I KR 

)
ψ i,L 

(t + iδ) | TFD 

〉 

= tr ˜ L 

[
tr KR 

[
ψ i,L 

(t + iδ) | TFD 

〉 L,R 

〈 TFD 

| ψ i,L 

(t − iδ) † 
]
ρ ˜ L 

]
. (90) 

These expr essions ar e also useful for seeing that these quantities are related to “Renyi-2” quan-
tities, as explained below. 

Below, we would like to evaluate these correlators anal yticall y, but the expressions in Eqs.
( 86 ) and ( 87 ) are not suitable for analytic treatment. This is because they are “specific site”
correlators; thus, we cannot a ppl y the large- N techniques to evaluate them. Howe v er, since
we are basically interested in typical behaviors under highly chaotic dynamics in our setup,
the specific choice of the embedding would not be essential. Ther efor e, below, we consider the
“typical” embedding of the code information into the whole ˜ L system unif ormly. Theref ore, we
20/40 



PTEP 2023 , 123B04 Y. Nakayama et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

replace these correlators with their averages on 

˜ L , 

1 

Z δ

· 〈 TFD 

| ψ i,L 

(t − iδ) 
(
I ˜ L 

⊗ ρKR 

)
ψ i,L 

(t + iδ) | TFD 

〉 
tr KR 

[ 
( ρKR 

) 2 
] 

→ 

1 

N − K 

N−K ∑ 

i=1 

1 

Z δ

· 〈 TFD 

| ψ i,L 

(t − iδ) 
(
I ˜ L 

⊗ ρKR 

)
ψ i,L 

(t + iδ) | TFD 

〉 
tr KR 

[ 
( ρKR 

) 2 
] (91) 

and 

1 

Z δ

· 〈 TFD 

| ψ i,L 

(t − iδ) 
(
ρ ˜ L 

⊗ I KR 

)
ψ i,L 

(t + iδ) | TFD 

〉 
tr KR 

[ 
( ρKR 

) 2 
] 

→ 

1 

N − K 

N−K ∑ 

i=1 

1 

Z δ

· 〈 TFD 

| ψ i,L 

(t − iδ) 
(
ρ ˜ L 

⊗ I KR 

)
ψ i,L 

(t + iδ) | TFD 

〉 
tr KR 

[ 
( ρKR 

) 2 
] . (92) 

These replacements would change the correlators in subleading orders of N , but the essential
physics would not be changed, because of typicality. 

These averaged two-point functions are special cases of the (right-left) modular-flowed cor-
relators of the form 

1 

N − K 

N−K ∑ 

i=1 

〈 TFD 

| ψ i,R 

( τ ) 
(
ρn −1 −k 

˜ L 

⊗ ρk 
KR 

)
ψ i,L 

( τ ′ ) | TFD 

〉 
tr 
[
ρn 

KR 

] , (93) 

where one of the fermions is put on the left system, and the other one is on the right sys-
tem. In the Euclidean regime, they are computed by using the replica trick in Ref. [ 14 ] when
K � N . 

We use the result to compute “Rényi-2” (left-left) modular-flowed correlators ( 91 , 92 ) from
the Euclidean (right-left) correlator ( 93 ), by taking the limits k → n − 1 (and k → 0), and n
→ 2, then anal yticall y continuing to the Lor entzian r egime. We note that ther e is a differ ence
between the above correlator (Eq. ( 93 )) computed in Ref. [ 14 ] and our correlators (Eqs. ( 91 ) and
( 92 )), namely that in Eq. ( 93 ) two fermions are living on opposite sides but in our correlators
they li v e on the same side. In our setup, one can r elate the corr elator to the diagrams in Fig. 7 .

We study the correlators in the large- βJ limit because their analytic expressions are available
in the limit. One can instead work in the large- q limit while keeping the value of βJ finite. We
will not do this here because it is the former limit where the generalization to 2D conformal
field theories (CFTs) is straightforward [ 16 ]. The right-hand sides of Eqs. ( 91 ) and ( 92 ) in the
Euclidean regime are evaluated in the large βJ and K � N limit as 

1 

N − K 

N−K ∑ 

i=1 

〈 TFD 

| ψ i,L 

(τ ) 
(
I ˜ L 

⊗ ρKR 

)
ψ i,L 

(τ ′ ) | TFD 

〉 
tr KR 

[ 
( ρKR 

) 2 
] 

= G 2 β (τ + 2 β − τ ′ ) + 2 

K 

N 

(
F (τ + 2 β, τ ′ ; β, 0) − F 0 (τ + 2 β, τ ′ ; β, 0) 

)+ O 

( (
K 

N 

)2 
) 

, 

(94) 
21/40 



PTEP 2023 , 123B04 Y. Nakayama et al. 

Fig. 7. Diagrams for the path integral calculation of the correlator (Eq. ( 86 )) using the relation in Eq. 
( 89 ) (top), and the other correlator (Eq. ( 87 )) using Eq. ( 90 ) (bottom). The red regions in the figure cor- 
respond to subsystem RK , and the blue r egions corr espond to subsystem 

˜ L . The semicircles correspond 

to the Euclidean segments that pr epar e the TFD states. Orange dots r epr esent the insertions of the SYK 

Majorana fermion with the regularization, ψ i , L 

( t + i δ). The combination of the upper two semicir- 
cles with the operator insertions corresponds to the density matrix tr ˜ L 

[ ψ i,L 

| TFD 

〉 L,R 

〈 TFD 

| ψ 

† 
i,L 

] (and 

tr KR 

[ ψ i,L 

| TFD 

〉 L,R 

〈 TFD 

| ψ 

† 
i,L 

] ), and the remaining combination represents the other one: ρKR 

(and ρ ˜ L 

). 
Solid green arrows in the figure correspond to β/2 Euclidean evolutions. The two insertions are separated 

by Euclidean time 2 β (top) and β (bottom). These separations are directly related to τ + 2 β and τ + β

appearing in Eqs. ( 94 ) and ( 95 ), respecti v ely. 
1 

N − K 

N−K ∑ 

i=1 

〈 TFD 

| ψ i,L 

(τ ) 
(
ρ ˜ L 

⊗ I KR 

)
ψ i,L 

(τ ′ ) | TFD 

〉 
tr KR 

[ 
( ρKR 

) 2 
] 

= G 2 β (τ + β − τ ′ ) + 2 

K 

N 

(
F (τ + β, τ ′ ; β, 0) − F 0 (τ + β, τ ′ ; β, 0) 

)+ O 

( (
K 

N 

)2 
) 

. 

(95) 
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Here, G 2 β( τ ) is a Euclidean thermal SYK two-point function for subsystem 

˜ L with periodicity
2 β, and F (τ1 , τ2 ; τ3 , τ4 ) is the connected SYK four-point function, which is related to the bare
one F 0 (τ1 , τ2 ; τ3 , τ4 ) by the so-called ladder kernel K c ( τ 1 , τ 2 ; τ 3 , τ 4 ), 

F (τ1 , τ2 ; τ3 , τ4 ) = 

∫ 
d τ

∫ 
d τ ′ 1 

1 − K c (τ1 , τ2 ; τ, τ ′ ) 
F 0 (τ, τ ′ ; τ3 , τ4 ) , 

F 0 (τ1 , τ2 ; τ3 , τ4 ) = G 2 β (τ13 ) G 2 β (τ42 ) − G 2 β (τ14 ) G 2 β (τ32 ) , τi j = τi − τ j , 

K c (τ1 , τ2 ; τ3 , τ4 ) = −J 

2 (q − 1) G 2 β (τ13 ) G 2 β (τ24 ) 
(
G 2 β (τ34 ) 

)q −2 
. (96) 

In the SYK model, these two-point and four-point functions are well-studied in many papers,
e.g. Refs. [ 31 , 33–37 ]. See also Refs. [ 32 , 38 ] for the re vie ws and references therein. 

The Euclidean times τ , τ ′ in Eqs. ( 94 ) and ( 95 ) are continued to the Lorentzian time with a
regularization parameter 0 < δ � 1; τ → −it − δ, τ ′ → −it + δ. In this way, the correlator
( 94 ) is continued to Lorentzian time as an out-of-time ordering correlator (OTOC), τ 1 > τ 3 >

τ 2 > τ 4 , under the condition 1 � βJ � N / K . This correlator with the ordering is gi v en by [ 31 ,
38 ], 

F (τ1 , τ2 ; τ3 , τ4 ) = G 2 β (τ12 ) G 2 β (τ34 ) 
2 βJ 

q 

2 πC 

⎡ 

⎢ ⎢ ⎣ 

1 − π

2 

sin 

(
π

β
τ12 ;34 

)

sin 

(
π

β
· τ12 

2 

)
sin 

(
π

β
· τ34 

2 

)
⎤ 

⎥ ⎥ ⎦ 

, (97) 

where τ 12; 34 = ( τ 1 + τ 2 )/2 − ( τ 3 + τ 4 )/2, and C is a constant related to an overall constant of 
the Schwarzian action deri v ed from the Schwinger–Dyson equation of the SYK model [ 31 , 38 ].
Thus, we have the following continuation: 

F (τ + 2 β, τ ′ ; β, 0) → F (−it − δ + 2 β, −it + δ; β, 0) 

= 2 G 2 β (2 β − 2 δ) G 2 β (β ) · 2 βJ 

q 

2 πC 

⎡ 

⎢ ⎢ ⎣ 

1 − π

2 

cosh 

(
π

β
t 
)

sin 

(
πδ

β

)
⎤ 

⎥ ⎥ ⎦ 

≈ −2 G 2 β (2 β − 2 δ) G 2 β (β ) · βJ 

2 q 

2 C 

·
exp 

(
π

β
t 
)

sin 

(
πδ

β

) . (98) 

In particular, the correlator is exponentially growing in time. On the other hand, the other
correlator ( 95 ) is continued to Lorentzian time with the ordering τ 3 > τ 1 > τ 2 > τ 4 under the
condition 1 � βJ � N / K , ther efor e it is not OTOC. The correlator with the ordering τ 3 > τ 1 
> τ 2 > τ 4 is gi v en by 

F (τ1 , τ2 ; τ3 , τ4 ) = −G 2 β (τ12 ) G 2 β (τ34 ) 
2 βJ 

q 

2 πC 

×

⎡ 

⎢ ⎢ ⎣ 

⎛ 

⎜ ⎜ ⎝ 

πτ12 

2 β tan 

(
π

β
· τ12 

2 

) + 

π

tan 

(
π

β
· τ12 

2 

) − 1 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

πτ34 

2 β tan 

(
π

β
· τ34 

2 

) − 1 

⎞ 

⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎦ 

, 

(99) 
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and its analytic continuation is 

F (τ + β, τ ′ ; β, 0) → F (−it − δ + β, −it + δ; β, 0) 

= −2 G 2 β (β − 2 δ) G 2 β (β ) · 2 βJ 

q 

2 πC 

[
1 −

(
π

2 

− πδ

β

)
tan 

(
πδ

β

)]
. 

(100) 

Clearly, this is time-independent, unlike the previous case. 
We do not evaluate bare four-point functions F 0 (τ1 , τ2 ; τ3 , τ4 ) for Eqs. ( 94 ) and ( 95 ), because

they are particular combinations of the thermal SYK two-point functions with the power law
behavior with respect to time, therefore they do not gi v e dominant contributions to the corre-
lators in Eqs. ( 94 ) and ( 95 ). 

Combining the above results, we can obtain the analytic expressions of the quantities in Eqs.
( 94 ) and ( 95 ), 〈 

ˆ d ˜ L 

〉 
β

· 〈 1 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 0 | ] ] | 1 〉 

≈ 1 

Z δ

⎡ 

⎣ G 2 β (2 β − 2 δ) − G 2 β (2 β − 2 δ) G 2 β (β ) · 2 βJ 

q 

2 C 

· K 

N 

exp 

(
π
β

t 
)

sin 

(
πδ
β

) + · · ·
⎤ 

⎦ 

≈ G 2 β (2 β − 2 δ) 
G β (2 δ) 

⎡ 

⎣ 1 − G 2 β (β ) 

sin 

(
πδ
β

) · 2 βJ 

q 

2 C 

· K 

N 

exp 

(
π

β
t 
)⎤ 

⎦ , 

(101) 

and 〈 
ˆ d ˜ L 

〉 
β

· 〈 0 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R [ | 0 〉 T 〈 1 | ] 
] | 1 〉 

≈ 1 
Z δ

[
G 2 β (β − 2 δ) − G 2 β (β − 2 δ) G 2 β (β ) · 8 βJ 

q 2 πC 

· K 

N 

[
1 −

(
π

2 
− πδ

β

)
tan 

(
πδ

β

)]
+ · · ·

]

≈ G 2 β (β − 2 δ) 
G β (2 δ) 

[
1 − G 2 β (β ) · 8 βJ 

q 2 πC 

· K 

N 

[
1 −

(
π

2 
− πδ

β

)
tan 

(
πδ

β

)]]
, 

(102) 

where ··· includes bare four-point functions F 0 (τ1 , τ2 ; τ3 , τ4 ) , would-be subleading terms com-
ing from the replacements (Eqs. ( 91 ) and ( 92 )) in Eqs. ( 86 ) and ( 87 ), and the sub-subleading
terms of the averaged correlators. In the final lines, we ignored them. These ignored terms do
not change the essential physics of the discussions below. Thus, for the simplicity of the discus-
sions below, we do not consider their contributions explicitly, but we need to keep in mind that
these ignored terms include order-( K / N ) contributions. 

Let us consider the consequences of the above results. First, we focus on the ratios G 2 β(2 β

− 2 δ)/ G β(2 δ) and G 2 β( β − 2 δ)/ G β(2 δ) appearing in the above results. Since the SYK two-point
function under the conformal limit βJ � 1 is gi v en by [ 31 ], 

G β (τ ) = b 

[ 

π

β sin 

πτ
β

] 2�

, � = 

1 

q 

, J 

2 b 

q π = 

(
1 

2 

− �

)
tan π�, (103) 

we can evaluate the ratios as follows: 
G 2 β (2 β − 2 δ) 

G β (2 δ) 
= cos 2�

(
πδ

β

)
, (104) 

and 

G 2 β (β − 2 δ) 
G β (2 δ) 

= sin 

2�

(
πδ

β

)
. (105) 
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Fig. 8. Plots of the ratios in Eqs. ( 104 ) and ( 105 ) as a function of βJ for smaller q (top), and for larger q 

(bottom). Here, we set δJ = 0.1. For large- q regions, all the ratios become close to 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, these ratios cannot be 1 sim ultaneousl y for general δ and β. Howe v er, since � = 1/ q when
q is large, these ratios are close to 1. We gi v e plots of the above two functions for se v eral q in
Fig. 8 . As we can see from the plots in Fig. 8 or directly from Eqs. ( 104 ) and ( 105 ), we need
to consider a (relati v el y) large- q regime, w hich implies that the SYK Majorana fermion has a
small conformal dimension, � = 1/ q � 1, in order to achieve recovery. 

One may wonder why here we take the large- q limit, because the (SYK) q is chaotic for all
q ≥ 4, thus the identities Eqs. ( 84 ) and ( 85 ) are expected to hold f or an y value of q in this
range. Ne v ertheless, here we have to take the large- q limit because we define the code subspace
using the SYK Majorana fermion operator ψ i , L 

and the calculations of the relevant correlation
functions are possible only in the large- βJ limit where the entanglement between L and R is
weak. Because of the weakness of the entanglement, the recovery is only possible when the
dimension of the operator that defines the code subspace is small, implying the necessity of 
taking the large- q limit. 

Next, we consider the two-point function G 2 β( β) appearing in the subleading terms. The two-
point function G 2 β( β) can be written as 

G 2 β (β ) = b 

[
π

2 β sin 

π
2 

]2�

= 

[(
1 

2 

− �

)
π tan π�

(2 βJ ) 2 

]�

. (106) 

The above expression includes (1/ βJ ) �, thus in the βJ → ∞ limit, the SYK two-point function
G 2 β( β) vanishes. We also note the q -dependence of the SYK two-point function. Plots of the
above function and βJG 2 β( β) for se v eral q = �−1 are gi v en in Figs. 9 and 10 , respecti v ely. The
plots show that as q increases, the two-point functions G 2 β( β) and βJG 2 β( β) take larger values.
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Fig. 9. Plots of the SYK two-point function G 2 β( β), Eq. ( 106 ), as a function of βJ for se v eral q = �−1 . 

Fig. 10. Plots of βJG 2 β( β) as a function of βJ for se v eral q = �−1 . The dotted line is just βJ , which is 
equivalent to βJG 2 β( β) under the q → ∞ limit. 

 

 

 

 

 

 

 

 

 

 

Thus, from the above discussion, in the strict βJ → ∞ limit, 15 we have G 2 β( β) → 0, hence
the second terms including G 2 β( β) in Eqs. ( 101 ) and ( 102 ) vanish if we keep the exponential
factor exp ( π t / β) in Eq. ( 101 ) fix ed. Ther efor e, in this strict βJ → ∞ limit, we cannot have
contributions from the second terms including G 2 β( β) in Eqs. ( 101 ) and ( 102 ). These terms are
of order K / N and crucial for the following discussion. 

Finally, let us focus on the time dependence of the results in Eqs. ( 101 ) and ( 102 ). First, we
focus on the second case ( 102 ). This result is time-independent at least up to the K / N -order, and
the second term is always suppressed by the time-independent factor at the K / N -order, thus the
second term is very small compared with the first term. This implies that the quantity ( 102 ) is
almost gi v en by the ratio G 2 β( β − 2 δ)/ G β(2 δ), w hich becomes close to 1 w hen q is large. 

Next, we focus on Eq. ( 101 ). Because of the exponential time-dependent factor, this correlator
has crucially different behavior as a function of time from Eq. ( 102 ). For early times t � 1, the
15 We note that to consider the perturbati v e e xpansion, we hav e assumed βJ � N / K , and also implicitly 

assumed q � N / K for large q . Thus, we cannot take the βJ → ∞ or q → ∞ limits, unless we take the N / K 

→ ∞ limit. Howe v er, the limit N / K → ∞ implies that there is almost no Hawking radiation compared 

to the entire Hawking radiation K / N → 0. Intuiti v ely, in such a situation, we would not be able to recover 
the diary information from the Hawking radiation. 
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exponential in the second term can be approximated by 1, they are similar. Howe v er, because of 
the exponentially growing factor, the perturbative expansion with respect to K / N breaks down,
similar to the fact that the perturbati v e calculations of OTOCs in 1/ N become invalid. The time
scale of this breakdown can be estimated by equating the second term with the first term in Eq.
( 101 ). From the condition, we can find a critical time t ∗, 16 

K 

N 

exp 

(
π

β
t ∗

)
∼ 1 =⇒ t ∗ = 

β

π
log 

(
N 

K 

)
= 2 t Scram 

, (107) 

where we introduce the usual scrambling time t Scram 

[ 39 ] given by 

t Scram 

= 

β

2 π
log 

(
N 

K 

)
. (108) 

Using this time scale, we can rewrite the correlator ( 101 ) as 〈 
ˆ d ˜ L 

〉 
β

· 〈 1 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 0 | ] ] | 1 〉 

≈ G 2 β (2 β − 2 δ) 
G β (2 δ) 

⎡ 

⎣ 1 − G 2 β (β ) 

sin 

(
πδ
β

) · 2 βJ 

q 

2 C 

· exp 

(
λL 

2 

( t − 2 t Scram 

) 
)⎤ 

⎦ , 

(109) 

where we introduce the Lyapunov exponent λL 

for a black hole with temperature β, 

λL 

= 

2 π

β
. (110) 

Thus, around the critical time, which is twice the scrambling time, we can see that the overall
coefficient of G 2 β(2 β − 2 δ)/ G 2 β(2 δ) becomes very small as usual for OTOC correlators. This
reproduces the expected result ( 84 ) under the condition βJ � 1. 

From the discussion so far, we have confirmed that the matrix elements (Eqs. ( 81 ), ( 82 ), and
( 83 )) do behave as we expect them to under the condition 1 � βJ � N / K . 

5. Expected properties of the Petz-lite under the SYK dynamics 
So far, we have confirmed that the matrix elements we computed ( 84 , 85 ) reproduce our expected
results under the conditions of relati v ely large- q interaction, after the critical time t ∗ = 2 t Scram 

.
Additionally, of course, the following trivial matrix element is equal to 1 by the definition, 〈 

ˆ d ˜ L 

〉 
β

· 〈 0 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 0 | ] ] | 0 〉 = 1 . (111) 

Also, we can obtain the same consequences for two related matrix elements. Let us explain
them. First, the matrix element Eq. ( 84 ), which becomes close to 0, is directly related to 〈 

ˆ d ˜ L 

〉 
β

· 〈 1 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 1 

〉 = 

〈 
ˆ d ˜ L 

〉 
β

· 〈 0 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 1 

〉 T 〈 1 

| ] ]| 0 

〉 

(112) 

via the definition of the adjoint channel ( 8 ). Thus, this matrix element also becomes close to 0
after the critical time, and the behavior is consistent with our expectation. 
16 In defining the critical time, we might have ambiguity as to which factors should be included in the 
critical time (or correspondingly the scrambling time), e.g. βJ and also G 2 β( β). Howe v er, as we saw be- 
fore, the two-point function is typically order one G 2 β (β ) = O(1) , thus we might not need to include the 

factor in the scrambling time. Another factor, 1 / sin 

(
πδ
β

)
, can be set to be O(1) by setting the cutoff δ

suitably. For the other factor βJ , since we have the condition βJ � N / K , the factor cannot give a signif- 
icant contribution compared to the leading factor N / K ; thus, including the factor would be redundant. 
Ther efor e, the critical time here would be the simplest choice. 
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Next, for the matrix element Eq. ( 85 ), being almost equal to 1, we have the following relation
through the definition of the adjoint channel ( 8 ) again, 〈 

ˆ d ˜ L 

〉 
β

· 〈 0 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 1 

| ] ]| 1 

〉 = 

〈 
ˆ d ˜ L 

〉 
β

· 〈 1 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 1 

〉 T 〈 0 

| ] ]| 0 

〉 . 
(113) 

Thus, although we have eight nontrivial matrix elements ( 80 ) that should be checked, we
already know the behavior of the above five matrix elements, and there are still three matrix
elements remaining. Howe v er, since two of them ar e r ela ted by complex conjuga tion, essentially
we need to investigate the following two matrix elements: 〈 

ˆ d ˜ L 

〉 
β

· 〈 0 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 1 〉 T 〈 0 | ] ] | 1 〉 , (114) 

and 〈 
ˆ d ˜ L 

〉 
β

· 〈 1 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 1 〉 T 〈 1 | ] ] | 1 〉 . (115) 

Here, the first matrix element is related to the following one: (〈 
ˆ d ˜ L 

〉 
β

· 〈 0 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 1 

〉 T 〈 0 

| ] ]| 1 

〉 
)∗

= 

〈 
ˆ d ˜ L 

〉 
β

· 〈 1 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 1 

| ] ]| 0 

〉 . 

(116) 

In evaluating these matrix elements, we cannot directly use the technique of Ref. [ 14 ], unlike
the cases for the matrix elements in Eqs. ( 86 ) and ( 87 ). 17 In an upcoming paper [ 16 ], we will
r eport their r esults, but her e we explain their expected behaviors from our obtained results. To
this end, it would be useful to introduce the Kraus r epr esentation of the quantum channel ( 67 ), 

N 

SYK 

T → K,R 

[ ρT ] = 

d ˜ L ∑ 

m =1 

E 

SYK 

m 

ρT E 

SYK † 
m 

(117) 

where E 

SYK 

m 

is the Kraus operator gi v en by 

E 

SYK 

m 

= ˜ L 

〈 m 

| U L 

V T,L → L 

| TFD 

〉 L,R 

. (118) 

We can obtain this Kraus r epr esentation by introducing an orthonormal basis of the subsystem
˜ L as 

{| m 

〉 ˜ L 

}d ˜ L 

m =1 . We also note that the adjoint channel ( 68 ) can be written as 

N 

SYK † 
K,R → T [ O KR 

] = 

d ˜ L ∑ 

m =1 

E 

SYK † 
m 

O KR 

E 

SYK 

m 

. (119) 

Using this Kraus r epr esentation, it is possible to extract the very important “typical” relation
from our r esults. Her e, “typical” means that the relation almost does not depend on the detail
of a specific state | m 

〉 ˜ L 

in the subsystem 

˜ L , corresponding to a black hole microstate. First, the
17 We briefly explain the reason why the evaluations of the matrix elements Eqs. ( 115 ) and ( 116 ) are 
difficult. The reason is that they do not have simple expressions like Eqs. ( 89 ) and ( 90 ) nai v ely. Of course, 
for matrix element Eq. ( 115 ), we can consider a similar expression like Eq. ( 89 ) if replacing the TFD state 
with the excited state ψ i,L 

| TFD 

〉 L,R 

, but in that case, we can no longer use the techniques in Ref. [ 14 ], 
and we need to consider the modular operator for the excited state. For the other matrix element ( 116 ), 
we nai v ely need to introduce transition ma trices, not density ma trices, to write it in terms of a correla tor. 
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matrix element in Eq. ( 111 ) is equal to 1 and can be expressed as 〈 
ˆ d ˜ L 

〉 
β

· 〈 0 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 0 | ] ] | 0 〉 

= 

〈 
ˆ d ˜ L 

〉 
β

d ˜ L ∑ 

m,n =1 

T 
〈
0 

∣∣E 

SYK † 
m 

E 

SYK 

n 

∣∣ 0 

〉
T 

〈
0 

∣∣E 

SYK 

n E 

SYK † 
m 

∣∣ 0 

〉
T 

= 

〈 
ˆ d ˜ L 

〉 
β

d ˜ L ∑ 

m,n =1 

∣∣T 〈0 

∣∣E 

SYK † 
m 

E 

SYK 

n 

∣∣ 0 

〉
T 

∣∣2 , 
(120) 

and we expect the typical relation 

T 〈 0 

| E 

SYK † 
m 

E 

SYK 

n | 0 

〉 T ∼
1 √ 

d ˜ L 

·
〈 

ˆ d ˜ L 

〉 
β

δmn . (121) 

Next, we focus on the matrix element in Eq. ( 85 ). This matrix element is also equal to 1, and
we can express the matrix element in terms of the Kraus operators, 〈 

ˆ d ˜ L 

〉 
β

· 〈 0 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 1 | ] ] | 1 〉 

= 

〈 
ˆ d ˜ L 

〉 
β

d ˜ L ∑ 

m,n =1 

T 
〈
0 

∣∣E 

SYK † 
m 

E 

SYK 

n 

∣∣ 0 

〉
T 

〈
1 

∣∣E 

SYK 

n E 

SYK † 
m 

∣∣ 1 

〉
T ·

(122) 

By using the relation in Eq. ( 121 ), we extract a similar relation, 

T 〈 1 

| E 

SYK † 
m 

E 

SYK 

n | 1 

〉 T ∼
1 √ 

d ˜ L 

·
〈 

ˆ d ˜ L 

〉 
β

δmn . (123) 

Finally, the time-dependent matrix element (Eq. ( 84 )), which almost vanishes around the
critical time t ∗, can be written as 〈 

ˆ d ˜ L 

〉 
β

· 〈 1 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 0 | ] ] | 1 〉 

= 

〈 
ˆ d ˜ L 

〉 
β

d ˜ L ∑ 

m,n =1 

T 
〈
1 

∣∣E 

SYK † 
m 

E 

SYK 

n 

∣∣ 0 

〉
T 

〈
0 

∣∣E 

SYK 

n E 

SYK † 
m 

∣∣ 1 

〉
T 

= 

〈 
ˆ d ˜ L 

〉 
β

d L ∑ 

m,n =1 

∣∣T 〈1 

∣∣E 

SYK † 
m 

E 

SYK 

n 

∣∣ 0 

〉
T 

∣∣2 . 
(124) 

From this expression, we expect the following relation and its complex conjugation, 

T 〈 1 

| E 

SYK † 
m 

E 

SYK 

n | 0 

〉 T ∼ 0 , (125) 

around and after the critical time. 
Combining the above expectations, we obtain the typically expected relation 

18 

T 
〈
T 

∣∣E 

SYK † 
m 

E 

SYK 

n 

∣∣T 

′ 〉
T ∼

1 √ 

d ˜ L 

·
〈 

ˆ d ˜ L 

〉 
β

δmn δT T ′ for t � t ∗, (126) 
18 Here, we check the Knill–Laflamme condition from our obtained results. Howe v er, in principle, it 
would be possible to investigate the Knill–Laflamme condition directly by introducing a basis [ 30 ]. It 
would be interesting to investigate this topic. 
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which corresponds to the Knill–Laflamme condition [ 40 ]. 
Using this relation, the remaining matrix elements (Eqs. ( 114 ) and ( 115 )) are expected to

behave as follows: 〈 
ˆ d ˜ L 

〉 
β

· 〈 0 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 1 〉 T 〈 0 | ] ] | 1 〉 = 

〈 
ˆ d ˜ L 

〉 
β

d L ∑ 

m,n =1 

T 
〈
0 

∣∣E 

SYK † 
m 

E 

SYK 

n 

∣∣ 1 

〉
T 

〈
0 

∣∣E 

SYK 

n E 

SYK 

m 

∣∣ 1 

〉
T 

∼ 0 for t � t ∗, 

(127) 

and 〈 
ˆ d ˜ L 

〉 
β

· 〈 1 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 1 〉 T 〈 1 | ] ] | 1 〉 = 

〈 
ˆ d ˜ L 

〉 
β

d L ∑ 

m,n =1 

T 
〈
1 

∣∣E 

SYK † 
m 

E 

SYK 

n 

∣∣ 1 

〉
T 

〈
1 

∣∣E 

SYK 

n E 

SYK † 
m 

∣∣ 1 

〉
T 

∼ 1 

(128) 

These results are , of course , consistent with our original expectation ( 80 ), but the discussion
so far using the typical relation is indirect ( 126 ). Ne v ertheless, since this typicality is strong
enough for a highly chaotic theory, we expect that nearly identical results can be obtained by
direct calculations of the matrix elements ( 114 , 115 ). 

6. Discussion 

In this paper, we studied a recovery map for the HP-type scrambling channel N . We showed that
one can use a simplified recovery map, called Petz-lite, consisting of the adjoint channel N 

† with
a suitable normalization factor. We considered two examples, the HP setup and the SYK model,
and showed that in both cases, the Petz-lite indeed works as a recovery map. Also, we found
that if the Petz-lite for the SYK case is used to recover information of a gi v en code subspace,
it takes twice the scrambling time for the recov ery. Howe v er, in the SYK model case, we did
not evaluate all of the matrix elements necessary to show the recovery because of technical
dif ficulties. Instead, we indirectly evalua ted them in Sect. 5 . In an upcoming paper [ 16 ] we will
explain their results, and also some generalizations of our results. 

Let us discuss our results. First, we focus on the physical interpretation of the critical time
gi v en by twice the scrambling time, t ∗ = 2 t Scram 

, when the matrix elements gi v e the input in-
formation, R [ N [ ρ]] ∼ ρ. It was argued in Ref. [ 39 ] that information of a diary thrown into
a black hole appears after the scrambling time. This means that, after the scrambling time,
the HP scrambling channel N maps the diary information to Hawking radiation completely.
Howe v er, e v en if the diary information appears in the Hawking radiation, it is difficult to get
it directly since the information is uniformly embedded into the Hawking radiation. To ex-
tract the information, we need a recovery operation gi v en by the Petz-lite R ∼ N 

† . Since it
is the adjoint of the HP channel N , it again takes the scrambling time to a ppl y the recovery
map. Thus, in total, we need to wait for twice the scrambling time for the identity ( 80 ) to be
satisfied. 

Next, let us explain the bulk interpretation of our results. 19 The bulk interpretation comes
from the island prescription [ 1 , 2 ]. First, the HP setup concerns post-Page time regimes. In these
r egimes, ther e is an island, which is a nontrivial entanglement wedge of Hawking radiation in
19 We note that since currently there is no clear understanding of a dual gravitational theory for a subset 
of the SYK Majorana fermions (or Majorana spin chain), we cannot check the interpretation using the 
gravity side explicitly, at least in the context of NAdS 2 /NCFT 1 . Howe v er, ther e ar e se v eral proposals 
for such a gravita tional trea tment, e.g. in Ref. [ 14 ]. One would be able to use them to check the bulk 

interpretation. 
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the black hole interior. Thus, if one throws a diary into a black hole and waits for the scram-
bling time, then the diary enters the island region, implying that the diary is encoded into the
Hawking radiation in a very complicated way. The mechanism by which the thrown diary is
encoded into the Hawking radiation corresponds to our quantum channel N . To recover the
diary information from the Hawking radiation, we need to consider the recovery operation
corresponding to the map R ∼ N 

† . The recovery map is given by the adjoint channel of the
quantum channel N . In the bulk side, the action of the adjoint channel N 

† means the “re v erse”
process of the original quantum channel N . 20 More precisely, the “re v erse” process is gi v en as
follows: First, we start from the output state provided by the action of the quantum channel
N , implying the diary is located on the island at some time slice �. The application of the ad-
joint channel N 

† is then interpreted as replacing the future of this time slice � by a white hole.
Because of the replacement, the diary on the island region of the original black hole is coming
out from the horizon of the white hole. Here, the reason why the white hole appears is that
the adjoint channel includes the Hermitian conjugation of unitaries U (and U 

†) compared to
the quantum channel N . Thus, the diary thrown into the black hole reappears from the white
hole induced by N 

† . This bulk interpretation is consistent with the critical time. This is because,
after throwing the diary, it takes the scrambling time for the diary to enter the island region,
and in the “re v erse” process, it would also take the scrambling time for the diary to go outside
the island region and the horizon. 

Finally, we end by discussing some of our in-progress works and future directions. 
Analysis in high-temper atur e r egime, βJ � 1 . In this paper, we have focused on the large- βJ

limit (low-temperature limit) in the SYK model to make the calculation analytic and for the
purpose of the generalization to a 2D CFT case. In the limit, we can use emergent conformal
symmetry of the SYK model, and also we would be able to use semiclassical intuition of the
dual Jackiw–Teitelboim gravity, but we have a relatively weak initial entangled state | TFD 

〉 L,R 

between the left and right SYK systems. Due to this weak entangled state, we would r equir e
some conditions to consider a successful recovery protocol, e.g. a large- q regime. Thus, analysis
without taking the large- βJ limit would be interesting. In that case, we would need to consider
numerical approaches. 

Direct bulk analysis and relation to other protocols . In this paper, we studied the recovery pro-
tocol from the boundary CFT perspecti v e. One would be able to consider corresponding bulk
computations. Also, it would be interesting to figure out the relation between other proposed
protocols, e.g. Refs. [ 41–44 ] and ours. 21 

Generalization to (holographic) CFT 2 and other systems . While this paper focuses on the SYK
model, which is a 0 + 1-dimensional quantum system, it can also be interpreted as a spin chain
with q -body SYK interactions. Thus, we can interpret that the SYK model has a spatial di-
rection effecti v ely. As a result, we e xpect that a similar anal ysis can be a pplied to a 2D CFT
exhibiting chaos, e.g. a 2D holo gra phic CFT. Indeed, one of the HP setups in a 2D holo gra phic
CFT is introduced in Ref. [ 29 ]. 
20 Here, we note that in these two processes, we need to use two different (remaining) black holes since, 
in defining the quantum channel, (remaining) black holes ar e tr eated as internal degrees of freedom of 
the quantum channel. 

21 For such protocols, one can characterize protocol by computing “price ,” “distance ,” etc. as in Refs. 
[ 14 , 45 , 46 ]. One would be able to find the relation between our results and such quantities. 
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Also, ther e ar e further possibilities for generalizations to other systems exhibiting chaos. For
example, studying the Petz-lite in a chaotic spin chain would be interesting. 

Chaotic–integr ab le tr ansition . In this paper, the chaotic nature is important for the simplifi-
cation of the Petz map to the Petz-lite. Thus, if a system does not exhibit a chaotic nature (in
other words, the system is integrable), then the Petz-lite (also the original Petz map) is not ex-
pected to work correctly. This is because, in an integrable system, the decoupling condition is
not expected to hold. In the framework of the SYK model, we can pr epar e integrable and non-
integrable (chaotic) situations by adding two-body interaction [ 47 ]. Using the setup, we would
be able to study the Petz-lite. 

Higher-dimensional code subspace? The SYK version of the HP setup studied in this paper
treats the 2D code subspace spanned by the vacuum and the e xcited state. Howe v er, in a more
realistic situation, one needs to deal with code subspaces with dimensions greater than two.
For example, when the interior of a black hole is viewed as a code subspace embedded into the
Hawking radiation, the dimension of its Hilbert space has to be large enough to accommodate a
part of the semiclassical quantum field theory degrees of freedom to have a geometric interpre-
tation of the black hole interior. 22 To this end, one would need to consider a more complicated
embedding involving, e.g. states like ψ i,L 

ψ j � = i,L 

| TFD 

〉 L,R 

. In that case, we can evaluate corre-
sponding matrix elements in principle, but it would be difficult to evaluate them anal yticall y
since we encounter higher-point functions. 

Another possibility for higher-dimensional code subspace is to consider a random em- 
bedding and the double-scaling limit. For example, we might be able to use the state
κi j ψ i,L 

ψ j,L 

| TFD 

〉 L,R 

, where κ ij is random like observables in the double-scaled SYK model
[ 49 ]. In this case, by taking the double-scaling limit and using chord diagram techniques, we
might be able to evaluate the resulting matrix elements anal yticall y. Also, this might open up
an interesting connection between QEC in the SYK model and recent discussions of the von
Neumann algebra of quantum gravity, in particular, Ref. [ 50 ]. 
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Appendix A. Derivation of the Petz-lite using the Kraus representation 

In this appendix, we deri v e the Petz-lite with a different normalization factor based on Ref. [ 51 ].
See, e.g. Sect. 10.3 of Ref. [ 52 ] for related re vie ws. 

We start with the Kraus r epr esentation of the HP channel ( 4 ). The Kraus r epr esentation can
be introduced by expressing the trace as 

N T → D,B 

[ ρT ] = tr C 

[ 
( U T,A → C,D 

⊗ I B 

)( ρT ⊗ | EPR 

〉 A,B 

〈 EPR 

| )( U 

† 
T,A → C,D 

⊗ I B 

) 
] 

= 

d C ∑ 

m =1 

C 

〈 m 

| ( U T,A → C,D 

⊗ I B 

) | EPR 

〉 A,B 

ρT A,B 

〈 EPR 

| ( U 

† 
T,A → C,D 

⊗ I B 

) | m 

〉 C 

= 

d C ∑ 

m =1 

E m 

ρT E 

† 
m 

, (A1) 

where | m 

〉 C 

is an orthonormal basis of subsystem C , and E m 

is the Kr aus oper ator defined by 

E m 

= C 

〈 m 

| (U T,A → C,D 

⊗ I B 

) | EPR 

〉 A,B 

. (A2) 

Here, we note that the state | m 

〉 C 

is a basis state of the remaining black hole C . We also note
that the adjoint HP channel is expressed in terms of the Kraus operators, 

N [ O ] = 

d C ∑ 

m =1 

E 

† 
m 

OE m 

. (A3) 

Using this Kraus operator, let us investigate the Knill–Laflamme condition [ 40 ], 

P code E 

† 
m 

E n P code = αmn P code 

( 

αmn = α∗
nm 

∈ C with 

d C ∑ 

m =1 

αmm 

= 1 

) 

, for ∀ m, n = 1 , · · · , d C 

, 

(A4) 

where P code is a projection operator onto a code subspace in general, but in our setup, P code is
assumed to be just gi v en by the identity operator P code = I T 

, since all input states should be
recov erab le under the HP setup. If this condition holds, we can construct a recovery map. 23 

Under Haar r andom aver aging, we can easily evaluate the Knill–Laflamme condition from
the expression in Eq. ( A2 ) and Haar average ( 18 ), 

E 

† 
m 

E n = 

1 

d C 

δmn I T . (A5) 

This result appears to imply that the Knill–Laflamme condition holds always under the aver-
a ging, b ut this is not correct. This is because, e v en if the Knill–Laflamme condition is satisfied,

higher moments of the Knill–Laflamme condition, e.g. 
∣∣∣P code E 

† 
m 

E n P code 

∣∣∣2 , might not hold due

to contributions coming from Weingarten calculus. We can see their contributions by directly
evaluating the second moment, 24 ∣∣∣P code E 

† 
m 

E n P code 

∣∣∣2 ≈ 1 

(d C 

) 2 
· I T 

[
δmn + 

d T 

d D 

d B 

]
(A6) 

where we used the known result ( 21 ) with large- d a pproximation. Thus, w hen we do not have
enough Hawking radiation D , B compared to the diary T , i.e. d D 

d B 

� d T 

, we cannot ignore the
second term, implying the breakdown of the Knill–Laflamme condition. On the other hand,
23 See, e.g. Sect. 10.3, in particular, theorem 10.1, of Ref. [ 52 ] for the re vie w. 
24 See also Ref. [ 53 ] for related discussions. 
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in the opposite limit d D 

d B 

� d T 

, where we have enough Hawking radiation, we can ignore the
second term, and we get the Knill–Laflamme condition. We note that this is consistent with the
decoupling condition ( 3 ), since the unitarity means the relation 

d T 

d D 

d B 

= 

1 

d C 

·
(

d T 

d D 

)2 

, (A7) 

and the factor ( d T 

/ d D 

) 2 gi v es an upper bound of the decoupling condition ( 3 ). 
Next, we construct a recovery map for the HP quantum channel. With the Knill–Laflamme

condition in mind, we consider the following ma p, w hich is equal to the adjoint HP channel up
to the overall factor d C 

, 

R [ O ] : = d C 

d C ∑ 

m =1 

E 

† 
m 

O E m 

= d C 

N 

† [ O ] . (A8) 

Under the Haar random average, this map gi v es 

R [ N [ ρT ] ] = d C 

d C ∑ 

m,n =1 

E 

† 
m 

E n ρT E 

† 
n E m 

≈ d C 

d C ∑ 

m,n =1 

[
E 

† 
m 

E n ρT E 

† 
n E m 

+ E 

† 
m 

E n ρT E 

† 
n E m 

]

= d C 

d C ∑ 

m,n =1 

1 

(d C 

) 2 

[
δmn ρT + 

tr [ ρT ] 
d D 

d B 

I T 

]

= ρT + 

(
d T 

d D 

)2 

· 1 

d T 
I T , (A9) 

where in the second line, we used the fact that in the large-Hilbert space dimension limit, Wein-
garten calculus reduces to Wick calculus, and in the final line, we used tr ρT = 1 and the relation
d T 

d B 

= d C 

d D 

. In the third line, we encountered the Knill–Laflamme condition for the first term
( A5 ), and the second term disturbs the Knill–Laflamme condition. These two terms in the third
line correspond to the first and second terms in Eq. ( A6 ), respecti v ely. Thus, under the situa-
tion d B 

d D 

� d T 

where the Knill–Laflamme condition holds (approximately), we can ignore the
second term of the above result, implying that the map in Eq. ( A8 ) works as a recovery map.
This is a quantum information theoretic derivation of the Petz-lite. Howe v er, we note that the
r ecovery map her e is a little bit different from the one ( 12 ) up to the overall factor, but the
difference almost vanishes when the condition d B 

d D 

� d T 

is satisfied. 
Finally, we end this appendix by giving the connection between the Petz map and the Petz-

lite in terms of the Kraus operator and the Knill–Laflamme condition. Generally, since the
coefficients ( αmn ) are Hermitian, we can diagonalize the Knill–Laflamme condition by some
unitary ( U mn ) as follows [ 52 ]: 

P code F 

† 
m 

F n P code = λm 

δmn P code 

( 

λm 

∈ R , with 

d C ∑ 

m =1 

λm 

= 1 , λm 

> 0 

) 

, for ∀ m, n = 1 , · · · , d C 

, 

(A10) 
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where F m 

= 

∑ 

n U mn E n is the newly defined Kraus operator. Using this Kraus operator, one can
define the following map: 

R [ O ] : = 

d C ∑ 

m =1 

1 

λm 

P code F 

† 
m 

O F m 

P code . (A11) 

This map can also be expressed in terms of the original quantum channel by introducing some
full rank r efer ence state σ as follows [ 51 ]: 

R [ O] = σ 1 / 2 N 

† 
[ 
( N [ σ ] ) −1 / 2 O ( N [ σ ] ) −1 / 2 

] 
σ 1 / 2 , (A12) 

and this is exactly the Petz map. In the recovery map ( A11 ), the factor λm 

pre v ents us from
directly giving the adjoint channel N 

† , and we need to introduce the curious factors ( N [ σ ] ) −1 / 2 

and σ 1/2 . Howe v er, for the case where λm 

= 1 /d C 

(m = 1 , · · · , d C 

) , one can consider the map
in Eq. ( A8 ) instead of the above map. As we have seen, the Haar random case with the Knill–
Laflamme condition ( A5 ) is certainly this case. 

A ppendix B . Oper ator tr anspose f or the EPR state 

In this appendix, we deri v e the relation in Eq. ( 55 ) algebraically. We can show the relation
directly as follows: 

U 

T 
C 

′ ,D 

′ → B,T ′ | EPR 

〉 C,C 

′ ⊗ | EPR 

〉 D,D 

′ 

= 

(
I C 

⊗ I D 

⊗ U 

T 
C 

′ ,D 

′ → B,T ′ 
) | EPR 

〉 C,C 

′ ⊗ | EPR 

〉 D,D 

′ 

= 

1 √ 

d C 

d D 

d C ∑ 

˜ C =1 

d D ∑ 

˜ D =1 

∣∣∣ ˜ C , ˜ D 

〉 
C,D 

⊗
(

U 

T 
C 

′ ,D 

′ → B,T ′ 

∣∣∣ ˜ C , ˜ D 

〉 
C 

′ ,D 

′ 

)

= 

1 √ 

d C 

d D 

d C ∑ 

˜ C =1 

d D ∑ 

˜ D =1 

d B ∑ 

˜ B =1 

d T ∑ 

˜ T =1 

∣∣∣ ˜ C , ˜ D 

〉 
C,D 

⊗ ∣∣ ˜ B , ˜ T 

〉
B,T ′ · B,T ′ 

〈
˜ B , ˜ T 

∣∣U 

T 
C 

′ ,D 

′ → B,T ′ 

∣∣∣ ˜ C , ˜ D 

〉 
C 

′ ,D 

′ 

= 

1 √ 

d C 

d D 

d C ∑ 

˜ C =1 

d D ∑ 

˜ D =1 

d B ∑ 

˜ B =1 

d T ∑ 

˜ T =1 

∣∣∣ ˜ C , ˜ D 

〉 
C,D 

⊗ ∣∣ ˜ B , ˜ T 

〉
B,T ′ · C,D 

〈 
˜ C , ˜ D 

∣∣∣U A,T → C,D 

∣∣ ˜ B , ˜ T 

〉
A,T 

= 

1 √ 

d B 

d T 

d B ∑ 

˜ B =1 

d T ∑ 

˜ T =1 

(
U A,T → C,D 

∣∣ ˜ B , ˜ T 

〉
A,T 

)
⊗ ∣∣ ˜ B , ˜ T 

〉
B,T ′ 

= ( U A,T → C,D 

⊗ I B 

⊗ I T ′ ) | EPR 

〉 A,B 

⊗ | EPR 

〉 T,T ′ 

= U A,T → C,D 

| EPR 

〉 A,B 

⊗ | EPR 

〉 T,T ′ , (B1) 

where in the fifth equality, we used the unitarity condition of the Hilbert-space dimensions
d T d B 

= d C 

d D 

. �
The above relation implies that the left and right diagrams in Fig. B1 are equivalent. 

Appendix C. Convention in the SYK HP protocol 
In this appendix, we gather some important definitions and conventions that we use in Sect. 4 .

Majorana SYK fermions 
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Fig. B1. Diagrams r epr esenting the left- and right-hand sides of the relation in Eq. ( 55 ). Left: The left- 
hand side of the relation. Right: The right-hand side of the relation. The left and right diagrams are 
equivalent. 

 

 

� Anticommuta tion rela tion {
ψ i , ψ j 

} = 2 δi j 

� The unitary time evolution operator 

U α = U α(t) = exp ( itH α ) ( α = L, R ) 

� Positi v e direction of time evolutions in left and right SYK systems (in Lorentzian signature)

ψ i,L 

(t) ≡ U L 

ψ i,L 

(0) U 

† 
L 

= e itH L ψ i,L 

(0) e −itH L , 

ψ i,R 

(t) ≡ U 

† 
R 

ψ i,R 

(0) U R 

= e −itH R ψ i,R 

(0) e itH R , 

which can be written as 

ψ i,α(t) = �
−i t 

β

L 

ψ i,α(0)�
i t 
β

L 

= �
i t 
β

R 

ψ i,α( 0)�
−i t 

β

R 

( α = L, R ) , (C1) 

where �L 

= �−1 
R 

is the modular operator defined by 

�L 

= ρL 

⊗ ρ−1 
R 

= e −K L ⊗ e K R = e −(K L −K R ) , K α ≡ βH α (α = L, R ) . (C2) 

Here ρα (α = L, R ) is defined by 

ρL 

= tr R 

[| TFD 

〉 L,R 

〈 TFD 

| ] , ρR 

= tr L 

[| TFD 

〉 L,R 

〈 TFD 

| ] . (C3) 

In the Euclidean signature, one can rewrite the above formal formula as 

ψ i,α(τ ) = �
τ
β

L 

ψ i,α( 0)�
− τ

β

L 

( α = L, R ) , (C4) 

and recover the Lorentzian operator by the analytic continuation τ → −it . 
� Euclidean regularization parametrized by the cutoff δ

ψ i,L 

(t + iδ) ≡ e i (t+ i δ) H L ψ i,L 

(0) e −i (t+ i δ) H L = e (−δ+ it) H L ψ i,L 

(0) e (δ−it) H L (C5) 

This regularized operator is related to the Euclidean e volv ed operator ( C4 ) by continuation
τ → −it + δ. 

SYK HP channel 

� SYK HP channel ( 67 ) 

N 

SYK 

T → K,R 

[ ρT ] : = tr ˜ L 

[ 
U L 

V T,L → L 

(
ρT ⊗ | TFD 

〉 L,R 

〈 TFD 

| )V 

† 
T,L → L 

U 

† 
L 

] 
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� Adjoint SYK HP channel ( 68 ) 

N 

SYK † 
K,R → T [ O KR 

] : = tr L,R 

[ 
| TFD 

〉 L,R 

〈 TFD 

| 
(
V 

† 
L → T,L 

U 

† 
L 

O KR 

U L 

V L → T,L 

)] 
= L,R 

〈 TFD 

| 
(
V 

† 
L → T,L 

U 

† 
L 

O KR 

U L 

V L → T,L 

)
| TFD 

〉 L,R 

Appendix D. Derivation of correlator from quantum channels 
In this appendix, we gi v e the derivation of the relations in Eqs. ( 86 ) and ( 87 ). We can deri v e the
relation gra phicall y , but below , we gi v e an algebraic deri va tion of the rela tion. 

We start with the derivation of the relation in Eq. ( 86 ), which can be obtained straightfor-
wardly from the definition of the quantum channels in Eqs. ( 67 ) and ( 68 ). We first note that,
from the definition of the quantum channel in Eq. ( 67 ), the state | 0 

〉 T 〈 0 

| is mapped to 

N 

SYK 

T → K,R 

[ | 0 〉 T 〈 0 | ] = tr ˜ L 

[ 
U L 

| TFD 〉 L,R 

〈 TFD | U 

† 
L 

] 
= U R 

ρKR 

U 

† 
R 

, 

(D1) 

where we used the fact that (H L 

− H R 

) | TFD 

〉 L,R 

leads to U L 

| TFD 

〉 L,R 

= U R 

| TFD 

〉 L,R 

, and
ρKR 

is defined by Eq. ( 88 ). For this density matrix, we consider the action of the adjoint channel
( 68 ), and take the following matrix element: 

〈 
ˆ d ˜ L 

〉 
β

· 〈 1 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 0 | ] ] | 1 〉 = 

〈 
1 

∣∣∣N 

SYK † 
K,R → T 

[ 
U R 

ρKR 

U 

† 
R 

] ∣∣∣ 1 

〉 
tr 
[ 
( ρKR 

) 2 
] (D2) 

where we used the definition in Eq. ( 73 ). Using the definition in Eq. ( 68 ), we can evaluate the
denominator as 

〈 1 

| N 

SYK † 
K,R → T 

[ 
U R 

ρKR 

U 

† 
R 

] 
| 1 

〉 

= 

(
L,R 

〈 TFD 

| ⊗ T 〈 1 

| )(V 

† 
L → T,L 

U 

† 
L 

U R 

ρKR 

U 

† 
R 

U L 

V L → T,L 

)( | TFD 

〉 L,R 

⊗ | 1 

〉 T 
)

= 

1 

Z δ

· L,R 

〈 TFD 

| 
(
ψ 

† 
i,L 

(−iδ) U 

† 
L 

U R 

ρKR 

U 

† 
R 

U L 

ψ i,L 

(iδ) 
)

| TFD 

〉 L,R 

= 

1 

Z δ

· L,R 

〈 TFD 

| 
(
U R 

ψ 

† 
i,L 

(−iδ) U 

† 
L 

ρKR 

U L 

ψ i,L 

(iδ) U 

† 
R 

)
| TFD 

〉 L,R 

= 

1 

Z δ

· L,R 

〈 TFD 

| 
(
U L 

ψ 

† 
i,L 

(−iδ) U 

† 
L 

ρKR 

U L 

ψ i,L 

(iδ) U 

† 
R 

)
| TFD 

〉 L,R 

= 

1 

Z δ

· L,R 

〈 TFD 

| 
(
ψ 

† 
i,L 

(t − iδ) ρKR 

ψ i,L 

(t + iδ) 
)

| TFD 

〉 L,R 

, (D3) 

where in the fourth equality, we used the relation U L 

| TFD 

〉 L,R 

= U R 

| TFD 

〉 L,R 

. Thus, by com-
bining the above expressions, we obtain the relation in Eq. ( 86 ), 〈 

ˆ d ˜ L 

〉 
β

· 〈 1 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 0 

| ] ]| 1 

〉 

= 

1 

Z δ

· 〈 TFD 

| ψ i,L 

(t − iδ) 
(
I ˜ L 

⊗ ρKR 

)
ψ i,L 

(t + iδ) | TFD 

〉 
tr KR 

[ 
( ρKR 

) 2 
] . 
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Ne xt, we deri v e the relation in Eq. ( 87 ). Since 
〈 

ˆ d ˜ L 

〉 −1 

β
= tr KR 

[ 
( ρKR 

) 2 
] 

by the definition in Eq.

( 73 ), we focus on the remaining factor 〈 0 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 〉 T 〈 1 | ] ] | 1 〉 . To evaluate the factor,
we use the definition of the adjoint channel ( 8 ), 

〈 0 |N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R [ | 0 〉 T 〈 1 | ] 
] | 1 〉 

= tr K,R 
[
N 

SYK 

T → K,R [ | 0 〉 T 〈 1 | ] N 

SYK 

T → K,R [ | 1 〉 T 〈 0 | ] 
]

= tr K,R 

[ 
tr ˜ L 

[ 
U L | TFD 〉 L,R 〈 TFD | ψ 

† 
i,L (−iδ) U 

† 
L 

] 
tr ˜ L 

[ 
U L ψ i,L (iδ) | TFD 〉 L,R 〈 TFD | U 

† 
L 

] ] 
= tr K,R 

[ 
tr ˜ L 

[ 
U R | TFD 〉 L,R 〈 TFD | ψ 

† 
i,L (−iδ) U 

† 
L 

] 
U R U 

† 
R tr ˜ L 

[ 
U L ψ i,L (iδ) | TFD 〉 L,R 〈 TFD | U 

† 
R 

] ] 
= tr K,R 

[ 
U R tr ˜ L 

[ 
| TFD 〉 L,R 〈 TFD | U R ψ 

† 
i,L (−iδ) U 

† 
L 

] 
tr ˜ L 

[ 
U L ψ i,L (iδ) U 

† 
R | TFD 〉 L,R 〈 TFD | 

] 
U 

† 
R 

] 
= tr K,R 

[ 
tr ˜ L 

[ 
| TFD 〉 L,R 〈 TFD | U L ψ 

† 
i,L (−iδ) U 

† 
L 

] 
tr ˜ L 

[ 
U L ψ i,L (iδ) U 

† 
L | TFD 〉 L,R 〈 TFD | 

] ] 
= tr K,R 

[ 
tr ˜ L 

[ 
| TFD 〉 L,R 〈 TFD | ψ 

† 
i,L (t − iδ) 

] 
tr ˜ L [ ψ i,L (t + iδ) | TFD 〉 L,R 〈 TFD | ] 

] 
. 

(D4) 

By explicitly introducing bases for the traces, we can rewrite the last expression as follows: 

tr K,R 

[ 
tr ˜ L 

[ 
| TFD 

〉 L,R 

〈 TFD 

| ψ 

† 
i,L 

(t − iδ) 
] 

tr ˜ L 

[
ψ i,L 

(t + iδ) | TFD 

〉 L,R 

〈 TFD 

| ] ] 

= 

d K d R ∑ 

α,α′ =1 

d ˜ L ∑ 

a,a ′ =1 

(
KR 

〈 α| ⊗ ˜ L 

〈 a 

| ) (| TFD 

〉 L,R 

〈 TFD 

| ψ 

† 
i,L 

(t − iδ) 
) (∣∣α′ 〉

KR 

⊗ | a 

〉 ˜ L 

)

× (
KR 

〈
α′ ∣∣⊗ ˜ L 

〈
a 

′ ∣∣) (ψ i,L 

(t + iδ) | TFD 

〉 L,R 

〈 TFD 

| ) (| α〉 KR 

⊗ ∣∣a 

′ 〉
˜ L 

)

= 

d K d R ∑ 

α,α′ =1 

d ˜ L ∑ 

a,a ′ =1 

L,R 

〈 TFD 

| ψ 

† 
i,L 

(t − iδ) 
(∣∣α′ 〉

KR 

⊗ | a 

〉 ˜ L 

)

× (
KR 

〈 α| ⊗ ˜ L 

〈 a 

| ) | TFD 

〉 L,R 

〈 TFD 

| (| α〉 KR 

⊗ ∣∣a 

′ 〉
˜ L 

)
× (

KR 

〈
α′ ∣∣⊗ ˜ L 

〈
a 

′ ∣∣)ψ i,L 

(t + iδ) | TFD 

〉 L,R 

= L,R 

〈 TFD 

| ψ 

† 
i,L 

(t − iδ) 
(
tr KR 

[| TFD 

〉 L,R 

〈 TFD 

| ]⊗ I KR 

)
ψ i,L 

(t + iδ) | TFD 

〉 L,R 

= L,R 

〈 TFD 

| ψ 

† 
i,L 

(t − iδ) 
(
ρ ˜ L 

⊗ I KR 

)
ψ i,L 

(t + iδ) | TFD 

〉 L,R 

, (D5) 

where d K 

, d R 

, d ˜ L 

ar e the Hilbert-space dimensions of subsystems K , R , ˜ L , r especti v ely. 
Ther efor e, we get the relation in Eq. ( 87 ), 〈 

ˆ d ˜ L 

〉 
β

· 〈 0 

| N 

SYK † 
K,R → T 

[
N 

SYK 

T → K,R 

[ | 0 

〉 T 〈 1 

| ] ]| 1 

〉 

= 

1 

Z δ

· 〈 TFD 

| ψ i,L 

(t − iδ) 
(
ρ ˜ L 

⊗ I KR 

)
ψ i,L 

(t + iδ) | TFD 

〉 
tr KR 

[ 
( ρKR 

) 2 
] . 
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