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normal mode resonant frequencies. We examine different slow protocols that adiabatically
change the amplitude and/or the frequency of the driving. Traversing a normal mode
frequency has very different results depending upon the sense of the frequency modulation.
Generally, in the growing sense, the geometry reaches a periodically-modulated state,
whereas in the opposite one, it collapses into a black hole. We study the suppression points.
These are periodic solutions that are dual to a scalar field with vanishing v.e.v., ⟨ϕ⟩ = 0,
instead of vanishing source. We also investigate quasi-periodic solutions that are prepared
by driving with a combination of two normal resonant frequencies. We observe that, while
the driving is on, the non-linear cascading towards higher frequencies is strongly suppressed.
However, once the driving is switched off, the cascading takes over again, and in some
cases, it eventually brings the solution to a collapse. Finally, we study the driving by a non-
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a transition to collapse above some threshold.
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1 Introduction and main results

The vast majority of the research performed in the context of the AdS/CFT correspondence
is devoted to the study of static geometries which are dual to states of strongly coupled
systems at equilibrium. The fact that holography extends, without further assumptions,
into the realm of time-dependent situations cannot be overestimated. In this respect, many
works have put their focus on the relaxation of initial perturbed geometries to static black
holes. This should be dual to thermalisation on the field theory side. In [1] a class of
initial conditions were shown to end up collapsing and forming a black hole, even in the
infinitesimal amplitude limit. With the study of [2], the situation was seen to be more
involved, and the long-time behaviour of a perturbation started receiving much attention.

In [3, 4] we contributed to the program of simulating holographic dynamical open
systems. Our setup involved the dual of a pure state in the form of a scalar field in
global AdS. Other works addressed the driving of a holographic system in the deconfined
phase [5, 6]. The main difference between these two setups is the balance of degrees of
freedom. The deconfined case involves a dual bulk geometry with a horizon. The ingoing
boundary conditions prevent the formation of a stationary state, and all the energy that
is pumped by the driving into the system ends up heating it and increasing its entropy.
This is in agreement with the O(N2) unbalance of degrees of freedom between the quantum
theory and the driving bath, which makes the bulk act as a refrigerator that soaks all the
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energy that is pumped in. In contrast, in the confined phase, dual to global AdS, there are
opportunities for long-lived driven solutions.

Of particular interest are the so-called periodically-driven or Floquet systems. The
existence of stable time-periodic solutions (hereafter TPSs) in this context is of much interest
as it stands out against the lore that predicts constant heating of the system. In [4] we
mapped out the region of stability for both a complex and a real massless scalar in global
AdS. For a sufficiently low amplitude of the driving, there exist TPSs at any frequency.

The present paper is structured as follows. In section 2 we briefly set up the stage.
We review aspects of the previous work in [4] that will be important in the rest of the
paper, particularly the notion of adiabatic preparation and transformation of a driven
time-periodic solution (TPS) dual to a Floquet condensate. The next long section 3 contains
the main results of our work. First, we will investigate the response of the system to
drivings at resonant frequencies of the linearised system. Unlike the case of the linearised
normal modes, here the amplitude growth saturates and produces an interference pattern.
When the driving is switched off, contrary to what happens out of resonance, where AdS is
recovered, there generally remains a time-periodic oscillon solution without a source.

In later subsections we examine other protocols. For example, we chirp the frequency
across a resonant value. We find an asymmetry in the oscillon that remains excited which
is correlated with the sense of the modulation. In general, for a given (not too low) speed
of the modulation, the remaining oscillon is more massive when the chirp is performed in
the downward direction than the other way round. For sufficiently slow modulation speed,
the oscillating solution collapses to a black hole geometry.

The adiabatic preparation is a powerful method that we exploit in the rest of the paper
in search of interesting stable dynamic solutions. This is the case of zero vacuum expectation
value (hereafter v.e.v.) solutions, which we try to prepare by an adiabatic modulation across
frequencies where the linearised solutions exhibit this property. Unfortunately, the search for
solutions is never perfectly prepared, and we discuss the possible reasons for that. Finally,
we examine an exotic family of driven TPSs that have a mass (averaged over a period)
lower than the one of AdS. This happens for driving frequencies below ωb = 1.25.

We continue in section 4, where we extend our method to drivings that involve two
resonant frequencies in three scenarios, and we examine several protocols. In all cases, after
switching off the signal, we find a quasi-periodic solution that is Fourier analysed for the
spectral content. The Fourier analysis reveals an interesting property that did not show up
in the single-mode case: the non-linearity excites a tower of higher modes, and not just the
frequencies present in the soliton solution after the single-mode driving, which is something
to be expected. What we find is that the cascading is blocked while the driving is active.
In a sense, the open system boundary conditions act like a UV filter. Once the driving
is switched off and the system goes back to isolation, the weak turbulence sets in, and a
more intense cascading towards the UV is observed. In some cases, this cascading is so
strong that the undriven solutions eventually tend to collapse in the long run, but we have
not been able to follow the simulation up to this point. In a sense, this links to observed
behaviour in Floquet systems where stability and locality in many body systems are more
likely to be protected [7].
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In the last section 5, we press the organ’s keyboard at full. That is, we introduce a
multi-mode driving where the spectrum is that of thermal noise. In retrospect, we initiated
the present paper motivated by the possibility of modelling the coupling of a pure quantum
state to a thermal bath. The simulation is quite challenging, but we keep accurate values of
the constraints under control as well as a high degree of convergence. The results extend the
findings in the two-mode driving of the previous section. The driving keeps the cascading
very much suppressed, and we indeed find solutions which show no signal of instability for
a fairly long duration. This is by itself a remarkable result: the bulk fields, in particular
the metric, evolve into a highly excited chaotic, yet pure, state. We can play with the
temperature that controls the exponential damping of the noise spectrum. There seems to
be a transition to an unstable solution above some value. This deserves further numerical
study to elucidate the exact nature of the long-time behaviour.

We have deferred to appendix A considerations about the reliability of the numerical
implementation, including convergence tests.

2 General setup

Our case study involves the simplest possible setup, namely a real massless scalar field in
global AdS4,

S = 1
16πG

∫
d4x

√
−g (R − 2Λ) − 1

2

∫
d4x

√
−g∂µϕ∂µϕ , (2.1)

with Λ = −3/l2. From now on, we set 8πG = 2. The ansatz for the metric is

ds2 = l2

cos2 x

(
−fe−2δdt2 + f−1dx2 + sin2 x dΩ2

2

)
, (2.2)

where x ∈ [0, π/2) is the radial coordinate. This makes altogether a system of three functions
(ϕ(t, x), f(t, x), δ(t, x)) to be solved for.1

Expanding near the boundary x = π/2 and solving the equations of motion (see
appendix A) yields:

ϕ(t, x) = ϕ0(t) − 1
2 ϕ̈0(t)(π/2 − x)2 + ϕ3(t)(π/2 − x)3 + O((π/2 − x)4) ,

δ(t, x) = 1
2 ϕ̇2

0(t)(π/2 − x)2 + O((π/2 − x)4) ,

f(t, x) = 1 − ϕ̇2
0(t)(π/2 − x)2 + f3(t)(π/2 − x)3 + O((π/2 − x)4) , (2.3)

where we have chosen the proper time to be the coordinate time at the boundary. The
coefficient function f3(t) is related to the instantaneous mass of the system and is given by
a radial integral that is constructed with ϕ(t, x) and δ(t, x). The following constraint,

ḟ3 = 6ϕ3ϕ̇0 , (2.4)

is the tt component of the conservation law for the energy-momentum tensor that follows
from coordinate reparametrisation invariance. Finally, the function ϕ3(t) is related by

1See appendix D in [4] for further details.
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Figure 1. Level plot showing the time-periodic solutions (TPSs). The horizontal axis is for
the driving frequency ωb and the vertical axis is for the maximum amplitude at the origin ρo ≡
maxt∈period ϕ(t, 0). The level curves are labelled by the value of the driving maximum amplitude
ρb. The vertical black curves emerging from the frequencies ωn = 2n + 3 correspond to oscillon
solutions with vanishing driving amplitude, ρb = 0. Those emerging from ωn = 2n + 2 are TPSs
with (almost) vanishing v.e.v. ⟨ϕ⟩ ∼ 0 (see later in the text). The shaded region to the left signals
the domain of TPSs whose average mass is negative M̄ < 0.

the holographic dictionary to the v.e.v. of the operator Φ, dual to ϕ(t, x), and is fixed by
demanding regularity of the full solution.

The mere reference to resonance motivates to start with the linearised theory in the
background of global AdS. This is f(t, x) = 1, δ(t, x) = 0 and ϕ(t, x) solving the linearised
equation of motion. For a scalar field in AdSd+1, the normal modes and their respective
frecuencies are

e±n (x) = cos∆± xP
( d

2−1,∆±− d
2 )

n (cos(2x)) , ωn = 2n + ∆± , (2.5)

with ∆− = ∆+ − d and ∆+∆− = 0. In our case, d = 3 and ∆− = 0 or ∆+ = 3. Solutions
e+

n (x) are normalisable and have vanishing source e+
n (π/2) = 0. Solutions e−n (x) are

non-normalisable and have vanishing v.e.v. ∂d
xe−n (x)

∣∣∣
x=π/2

= 0.

The normalisable solutions e+
n (x) can be promoted to full non-linear oscillating solutions

up to fairly high values of the amplitude [8]. In this work we will term them oscillons. The
pseudo-spectral construction in space is supplemented with a Fourier series decomposition
in time to account for the proper periodicity. In [4] this construction was extended to
non-normalisable, i.e. sourced, time-periodic solutions with arbitrary frequencies ωb ∈ R.
The boundary condition needed is ϕb(t) ≡ ϕ(t, x = π/2) = ρb cos(ωbt), where ωb and ρb
are the driving frequency and amplitude respectively. One of the main results in [4] is the
plot reproduced here in figure 1. Every point in the plot corresponds to a time-periodic
solution (TPS) labelled according to (ωb, ρo = maxt∈period(ϕ(t, 0)), namely, the driving
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Figure 2. Time-periodic solution (TPS) with ρb = 0.03 and ωb = 2.5. The plots show two
snapshots of the scalar field ϕ(t0, x) (a) and the metric f(t0, x) (b) at two fixed times: one when
the amplitude of the scalar field at the boundary reaches its maximum (blue) and another when it
vanishes (orange). For this amplitude of the driving, the backreaction of the metric is very small,
fmin = minx∈(0,π/2) f(t, x) = 0.9759 and 1 − fmin = 0.0241.

boundary frequency and the maximum amplitude of the scalar field oscillation at the
origin (see figure 2).2 Level curves correspond to fixed values of the driving amplitude
ρb. The holographic dictionary relates these solutions to some time-dependent state of a
periodically-driven Hamiltonian whereby ϕ(t, x = π/2) is the coupling.

The normalisable non-linear oscillons with vanishing driving, ϕb = 0, span the black
curved lines that hit vertically the horizontal axis at values of ωb = 2n + 3. On either side,
each point corresponds to a TPS with one more node of the ϕ(x) profile on the right than
on the left. Hence, they correspond to Floquet quantum phase transitions. On both sides,
there are regions of stable solutions as well as regions of unstable solutions. The stability
analysis was performed in [4], where we refer the interested reader for further details.

In that paper, besides the explicit numerical construction of the time-periodic solution,
another building method was shown to provide the same solutions by exploiting a holographic
version of the adiabatic principle. Namely, starting from the AdS vacuum, the periodic
driving is introduced by modulating the amplitude with a sigmoid-type function that slowly
interpolates between zero and some finite value (ωb, 0) → (ωb, ρb). The time span of this
quench is labelled with β. For slow enough ramping, β ≫ 1, the system follows a sequence
of TPSs until the final one is reached. We will call such a protocol an adiabatic injection.
The opposite one, where the driving is smoothly turned off at constant frequency, will be
termed the adiabatic extraction protocol.

Not only the amplitude but also the frequency of the driving, if changed slowly enough,
can interpolate smoothly between any two stable TPSs (ωb, ρb) → (ω′

b, ρ′b). This frequency
modulation protocol allows for general paths to be traced in this parameter space. In
this work, we want to see how things behave when these paths move close to or across
critical lines of non-linear resonance (see appendix A for an explicit form of the modulation
functions used in this paper). The TPS thus constructed is tantamount to a so-called
Floquet condensate in the dual quantum field theory. The adiabatic preparation of Floquet
condensates is a topic of active research in the context of periodically-driven systems [9–11].

2Notice that the oscillations ϕ(t, x) at any fixed value of x are not harmonic, just periodic.
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Figure 3. Driving protocol for the creation of a time-periodic solution (TPS) with ωb = 2.5. (a)
The driving amplitude rises adiabatically ρb : 0 → 0.01, and then smoothly turns off. (b) The scalar
field at the origin ϕo, (c) the v.e.v. ⟨ϕ⟩, (d) the minimum value of the metric function and (e) the
mass oscillate periodically, signalling that we have indeed constructed a TPS. By slowly turning off
the source, we return adiabatically to the vacuum state, where ϕo = ⟨ϕ⟩ = M = 0 and fmin = 1.
The metric, and therefore the mass, oscillates with double the frequency of the scalar field, to which
it couples quadratically.

Figure 3 exhibits a collection of plots that will appear many times in this paper. Hence,
we will pause here to guide the reader’s eye. The first plot, (a), represents the driving profile.
It starts from AdS and slowly builds up a harmonic driving with amplitude ρb = 0.01
and frequency ωb = 2.5. The solid blue colour is an artefact of the dense packing of the
oscillations, as can be seen from magnifying the small rectangle. The time span of the
injection envelope is β = 2000.

In the remaining subplots, other relevant magnitudes have been monitored. Observe
that they all oscillate periodically in time. Sometimes the period is halved. This happens
for magnitudes that couple to |ϕ(t, π/2)|2, such as the metric function f(t) and, hence, its
minimum fmin(t) or the mass M(t). As the magnified rectangles show, at intermediate times,
we observe a fully developed TPS. The last plot, (f), is a numerical check of the fulfilment
of the Ward Identity, meaning the difference between the left-hand and right-hand sides
in (2.4). It is one of the consistency checks that we perform to ensure that the numerical
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Figure 4. (a) Driving at resonance ωb = 3 the scalar field on a background static AdS geometry.
(b) The linear system experiences a standard resonance with a monotonic absorption of energy from
the driving work.

solution is sound. This accuracy increases with the spatial grid resolution. In appendix A,
we provide tests that exhibit fourth-order convergence, so we are very confident in the
validity of our simulations.

After the TPS has been built, the adiabatic extraction protocol smoothly follows the
same sigmoid envelope but in reverse order. The end result is a graceful exit back into the
vacuum AdS geometry. This smooth and reversible behaviour is generic as long as we keep
away from the critical lines of oscillon solutions (see figure 1). There is where we expect,
and indeed see, that the adiabaticity is lost, and a new phenomenon can be observed.

3 Resonant driving

In figure 3 we have seen the response of the system to an adiabatic quench with a frequency
far from resonance. Let us repeat this exercise at the first resonant frequency, namely
ωb = 3. In order to make clear the importance of the backreaction, we will, first of all, drive
the scalar field in a probe approximation on an AdS background. The equation is of course
linear, and the result, as expected, leads to a monotonic increase in the amplitude. The
result of the simulation is shown in figure 4. A much smaller injection, ρb = 0.001, yields a
linear growth of the oscillation amplitude with time ρo(t ≫ 1) ∼ t.

The situation changes dramatically as soon as the gravitational coupling to the dy-
namical background geometry is switched on. This can be seen in figure 5, with the same
driving protocol as before. Now the response does not grow unbounded but saturates and
develops a strong modulation in amplitude that follows the typical pattern of interference
between two nearby frequencies. A Fourier analysis in time of the scalar field at the origin
reveals what these two frequencies are. One is the driving frequency ω = ωb = 3. The other
one is slightly lower and its shift is proportional to the amplitude of the driving.

Around t = 3000,3 we turn off the driving again slowly and observe that the final
solution does not come back to AdS! A non-linear oscillon with finite mass and vanishing
source remains. In figure 5(h) we have plotted the spectral content of the remaining oscillon.

3The natural time units are given by the driving period, T = 2π/ω ∼ 2 in this case. Hence, we are
speaking roughly of over 1500 oscillations.
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Figure 5. (a) Driving at resonance ωb = 3, the scalar field excites a nearby frequency. (b-d) The
interference pattern shows a strong amplitude modulation and the gain in mass saturates, (e). The
accuracy of the simulation is backed by the smallness of the Ward Identity (f) and the integrated
Momentum Constraint (g) (i.e. the spatially integrated absolute value of the difference between
the left-hand and right-hand sides in (A.6)). Whenever the driving is switched off, a sourceless
TPS remains, namely, an oscillon. The Fourier analysis (h) reveals a tower of resonant frequencies,
ωosc(2k + 1) with k ≥ 0, above the fundamental ωosc = 2.99.

The Fourier analysis shows that the spectrum of modes is ωk = ωosc(2k + 1), where k ≥ 0
and ωosc = 2.99. It corresponds indeed to a periodic solution with period T = 2π/ωosc.

Which final remnant non-linear oscillon is left over varies with the particular protocol
used for the driving process. In particular, it depends on the amplitude reached by the
injection quench as well as on the speed and starting moment of the extraction phase. For
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Figure 6. Maximum mass of the remaining oscillon as a function of the adiabaticity parameter β.
We see that in the limit β → ∞, the end remnant mass vanishes, a signal that the geometry flows
back to AdS, with a vanishing value of ϕ(t, x) = 0.

a fixed maximum amplitude ρb, its maximum possible final mass is smaller the slower we
switch off the driving. In the infinitely slow limit, β → ∞, the end state descends back to the
static AdS geometry as in the case of a non-resonant driving. This can be seen in figure 6.

In a way, when we quench the system at a resonant frequency, the adiabaticity is lost,
and the system does not return to the vacuum in finite time. In the spirit of the adiabatic
theorem, this enhancement of the relaxation time should reveal a vanishing gap in the
dual quantum theory. Indeed, we know the space of fluctuations of the non-linear oscillon
geometries has one zero mode, precisely the one that moves along the line.

3.1 Frequency modulation across a resonance

In this section, we shall explore the response of the system to a quasi-static modulation in
frequency. The typical protocol will then involve three stages. Starting from AdS, we will
first adiabatically inject a stable TPS of a given frequency ωb. Next, the driving frequency
will be modulated also very slowly by either increasing or decreasing it, according to the
function given in (A.8). After reaching some target value, the chirp will stop, and then an
adiabatic extraction down to zero driving will be performed. Finally, we analyse the end
state. The results can be succinctly condensed into the following statements:

– In the growing sense (figure 7), the state stops being a TPS while the driving frequency
crosses the resonant value. After extraction, the solution settles down to an oscillon of
some amplitude in the traversed branch. Which oscillon depends on the speed of the
growing modulation. In fact, this speed cannot be too slow; otherwise, the resonance
will bring the TPS into the unstable region, and it will collapse.

– In the decreasing sense (figure 8), for a slow modulation, the state follows a succession
of TPSs that never crosses the oscillon line but asymptotically approaches it. The
modulation can be stopped at a certain TPS that will lie close to the oscillon line. If
the amplitude is now switched off, there will remain an oscillon of similar frequency and
mass as the ones of the reached TPS.
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Figure 7. Up-chirping. (a-b) A driving with a small value of the boundary amplitude ρb = 10−4

is injected at a frequency ωb = 2.6. Then the frequency is modulated slowly (β = 1000) up to
ωb = 3.4. Finally, the driving is extracted. (c-e) Close to ωb ∼ 3, the resonance excites a strong
backreaction and a large gain in mass, (f). When the frequency of the driving is increased, the
interference pattern with the excited oscillon becomes faster as their frequencies are split apart.
After extraction of the driving, an oscillon remains, whose spectrum ωosc(2k + 1), with k ≥ 0 and
ωosc = 2.998, is shown in (h).
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Figure 8. Down-chirping. (a-b) A driving with a small value of the boundary amplitude ρb = 10−4

is injected at a frequency ωb = 3.4. The frequency is modulated slowly downwards (β = 2.5 × 104).
As the linear resonant frequency ωb = 3 is approached, the oscillation amplitude increases, as shown
in (c) and (d). This growth in amplitude also leads to an increment in the backreaction on the
metric (e) and the mass (f). We can stop the frequency down-shift whenever we want (ωb,final = 2.6
in this case). After doing so, extraction of the driving (a) leaves an oscillon of, approximately, the
end frequency of the chirp ωosc ≈ ωb,final. The thus-formed non-linear oscillon is much more massive
than the one obtained in the up-chirping protocol. (h) The Fourier modes obey the spectrum
ωosc(2k + 1) with k ≥ 0.
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Figure 9. Chirping down until collapse. The process starts at ωb = 3.25 with ρb = 10−4 and
chirps the frequency down without stopping. (a) As soon as the mass curve reaches a maximum,
the system becomes unstable and collapses into a black hole. (b) As the frequency is modulated ρo
builds the oscillon curve. (c) We also show the v.e.v. evaluated on this curve.

To clarify the last effect, notice by looking at figure 1 that, while chirping down
ωb,i → ωb,f , the state moves adiabatically along a succession of TPSs, following a line of
constant ρb that makes the amplitude at the origin, ρo, grow. In this flow, these iso-curves
of constant ρb to the right of an oscillon line asymptote to it. If the down-chirp stops at
some frequency, switching off the driving amplitude makes the state land on the resonance
line at an oscillon with approximately the frequency ωb,f . The precision of the frequency
reached in this way can be improved by following a lower ρb curve, which lies closer to the
oscillon line.

Another very nice benefit of this observation is that, with this method, we can trace the
complete oscillon curve. To achieve this, we simply need to keep moving down in frequency
at a constant ρb. For example, in figure 1, the blue level curve labelled with ρb = 0.0001
becomes indistinguishable from the oscillon curve beyond ρo = 0.05. In figure 9 we plot
the full level curve and two observables evaluated on it: the mass M and the v.e.v. ⟨ϕ⟩.
In (a) we observe the bending of the mass curve, M(ωb), which eventually stops precisely
when its slope becomes zero. This end point is nothing but the Chandrasekhar limit for
oscillon instability towards black hole formation. The curve ρo(ωb) shown in (b) is the
full development of the oscillon curve, of which in figure 1 we only see the bottom part
branching out from ω = 3. The convex bending of the curve in figure 9(b) around ω = 2.4
could not be guessed from that plot.

For the sake of completeness, we also mention here the case when the modulation
in frequency does not traverse any oscillon line. When the process is performed without
crossing any resonance curve, the system passes through a series of TPSs adiabatically.
It seems plausible to expect a return to AdS when the driving is slowly turned off. This
was the case without chirping. The situation is however richer now due to the fact that,
remember, TPSs are just periodic solutions. Higher Fourier modes will also drift following
the instantaneous spectrum ωk(t) = ωb(t)(2k + 1). Very remarkably, if ωb(t) spans an
interval of width ∆0 = ωb(tf) − ωb(ti), the interval covered by the higher resonances will be
wider, ∆k = ∆0(2k + 1). Most likely, many of these higher harmonic frequencies will drift
across higher resonance lines, thereby exciting oscillons at that frequency. We can see this
effect in figure 10. Upon switching off the driving, the geometry indeed flows back to AdS,
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Figure 10. In these plots, the driving frequency was modulated downwards in the interval
ωb = 3.7 → 3.4 (a) and 3.8 → 3.4 (b) with a driving amplitude of ρb = 0.01. The light blue columns
show the intervals that have been swept by the fundamental and higher harmonics of the sourced
modulated TPS. The vertical segments are the amplitudes of the Fourier modes in the remaining
sourceless scalar field state after switching off the driving. We explicitly see that the Fourier mode
at ω = 19 was not excited in (a), but it was excited in (b). Hence, the final spectrum of linearised
modes carries memory of the protocol performed in the past.

but the scalar field state will be populated with a linear combination, a ‘gas’, of linearised
normal modes that have been excited but do not backreact because of their smallness.
The amplitudes of the remnant linearised modes carry a late-time memory of the chirping
process that was performed.

3.2 Suppression points: TPSs with vanishing v.e.v.

As mentioned before, at the linearised level, the equations of motion admit two types
of solutions (see (2.5)). Those named e+

n (x) have vanishing source and frequency ωn =
2n + 3 = 3, 5, . . . for AdS4. On the other hand, we can find e−n (x) with vanishing v.e.v.,
∂

(3)
x e−n (x)

∣∣∣
x=π/2

= 0, and frequencies ωn = 2n + 2 = 2, 4, . . .

Most of the discussion so far has involved the response and construction of the non-linear
solutions branching from the first type of normal modes e+

n . In this section, we would
like to address the second type of normal modes e−n . The line of non-linear solutions with
vanishing v.e.v. that branches out from the even frequencies can be found by an adiabatic
modulation of the frequency, which eventually crosses this line. This is the same protocol
that we used to cross the non-linear oscillon line. Here, however, the target is to find the
values of ρb and ωb that produce a solution with ⟨ϕ⟩ = 0. We will name such solutions
suppression points [12].

The protocol is illustrated in figure 11 and explained in the caption. Indeed, the v.e.v.

⟨ϕ⟩ appears to cross a vanishing point. The resulting locus spans a curve that can be seen
in the level plots in figure 1, branching out vertically from even frequencies ωb = 2, 4, . . .

A closer look at that point shows that this is only nearly true. The amplitude of the
oscillations in v.e.v. ⟨ϕ(t)⟩ never actually vanishes. Interestingly, they instead exhibit a
transition where there is a shift of π radians in their relative phase with respect to the
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Figure 11. Construction of the zero v.e.v. solutions. In the upper plots (a) and (b), we see the
control variables. While ρb stays constant after a ramping time of β = 200, the frequency ωb is
modulated downwards, traversing a frequency (dotted line) where the amplitude of the oscillations
in the mass (c) and in the v.e.v. (d) vanish. The inset in (d) enhances the view of the response
v.e.v. ⟨ϕ⟩, and we can see that the suppression is not exact. Plot (f) shows that there is a shift of π

in the relative phase between ϕb and ⟨ϕ⟩ from one side of the (almost) vanishing point to the other.

driving ϕb(t) when passing from one side of the minimum to the other.4 The cleanest
protocol to construct the mentioned curves in figure 1 is to perform small modulations in
amplitude and frequency following the direction in which the v.e.v. is smaller, trying to
move along that curve.

So there seems to be an asymmetry here between the oscillons (vanishing ϕb(t) = 0)
and these suppression points (almost vanishing v.e.v., ⟨ϕ⟩). Our interpretation of this
result comes from examining the oscillon solutions. There, as said, the source vanishes,
but the oscillation ϕ(t, x) and, in particular, the v.e.v. ⟨ϕ(t)⟩ ̸= 0 are periodic yet non-
harmonic functions. It is natural to expect what the dual of this statement should be:
solutions with vanishing v.e.v., ⟨ϕ(t)⟩ = 0, should have a periodic but non-harmonic source,

4This phase shift is the dual of the analogous one that happens between the boundary driving ϕb(t) and
the oscillation at the origin ϕo(t) when traversing the oscillon lines. In this case, this signals the presence of
an additional node in the instantaneous profile function ϕ(t, x).
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Figure 12. Energy-extracting solutions. We plot the mass oscillation range in blue and the average
mass in orange. (a) We have scanned over frequencies in the range ωb ∈ [0, 1.8) with a driving
amplitude of ρb = 0.01, and we find that the TPSs with ωb ≤ 1.25 all have an average mass below
zero. (b) We plot the mass for the TPS with ωb = 0.9 and ρb = 0.01 obtained after an adiabatic
injection at a constant frequency.

ϕb(t) = ϕb(t + T ), whose spectrum then involves Fourier modes ωdual osc(2k + 1). Here
ωdual osc ≲ ωn = 2n + 2 follows one of the black curves above the even frequencies in figure 1.
The exact construction of these solutions remains open, but it should be feasible using the
methods used in [8, 13].

3.3 Extracting energy out of AdS

So far, all the TPSs have masses that oscillate in mean above the AdS mass (see, for
example, figure 11). We say that they are energy injecting. This agrees with the idea that
AdS is the geometry that corresponds to the ground state in the dual theory, whereas, for
example, oscillons are dual to some kind of excited state in the boundary QFT. For TPSs,
we do not expect a notion of dual state to be correct as these are sourced geometries. Still,
the notion of average mass makes sense by continuity. For example, the sourced solutions
that approach oscillons smoothly end up in such states upon switching off the source, where
the average mass approaches the final constant mass of the oscillon.

In figure 12(a) we show the collection of TPSs that one can find in the interval
ωb ∈ [0, 1.8) with a driving amplitude of ρb = 0.01. The blue band is the range of oscillation
of the mass M at each TPS. We plot the average mass in orange and observe that its value
is negative for ωb ≤ 1.25. Another way of constructing these solutions is by performing an
adiabatic injection at a constant frequency (the same protocol used in section 3). In plot
(b) we show the mass for the TPS with ωb = 0.9 and ρb = 0.01 obtained by this method.

In figure 13 we see this region of TPSs with negative average mass (shaded region in
figure 1) and the level curves of constant mass. Unfortunately, there is no oscillon state
near these frequencies, where we could gracefully switch off the driving, leaving a negative
mass periodically oscillating solution. If there were such a sourceless negative mass oscillon,
we would have indeed found a bona fide ‘holographic time crystal’.

This energy extraction behaviour can be continuously connected to the pumping solution
obtained in [3]. The pumping solution is a solution in which the source of the massless scalar
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Figure 13. Level curves of (constant negative) average mass in the (ωb, ρo) plane inside the shaded
region in figure 1. Each curve is labelled by the value of the mass. To construct a pumping solution,
it is necessary to take a double scaling limit where ωb → 0 and ρb → ∞. In contrast, reaching the
left edge of this plot (ω = 0) with a finite amplitude ρo makes the solution go back to M = 0, as
suggested by the level curves.

field increases linearly in time at a constant speed, ϕb(t) = αbt. It can be obtained from the
TPSs in a double scaling limit: ωb → 0 and ρb → ∞ with ωbρb = αb (see appendix B in [4]).
Pumping solutions can acquire a negative mass as long as the source αb ̸= 0 is maintained.
This negative value flows back to zero or a positive value as soon as it is switched off. It is
relevant at this point to mention the work in [14], where periodic driving is applied to a
charged black hole dual to a thermal (positive mass) state. In that scenario, it is possible
to have a net mass-energy extraction after switching off the periodic driving.

4 Driving at more than one resonance

The efficiency of the adiabatic method in building non-linear oscillons naturally raises the
question about what would be the result if we apply the same procedure with a sum of two
or even more resonant drivings.

To start with, we quench adiabatically from AdS using two resonant drivings. As in
the case of a single frequency, the idea here is to inject the drivings, see whether a stable
quasi-periodic solution is established, and then extract the drivings out. There are different
protocols that can be used. The one which produces the cleanest answer consists of first
producing an ωb = 5 oscillon (i.e. injecting and extracting such a resonant driving), and
then, on it, switching on and off a periodic driving with ωb = 3 adiabatically.

The naive expectation of ending up with a non-linear two-frequency mode is wrong.5

After extracting the driving, the remnant solution and the results have been collected in
figure 14. In plot (a) the two successive drivings at ωb = 5 and ωb = 3 are shown. Plots
(b), (c) and (d) show that the final geometry is quasi-periodic in time. Plot (f) shows the

5Non-linear two-mode oscillons constructed in [15, 16] have frequencies not related to those of linearised
normal modes.
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Figure 14. (a) We create an ω = 5 oscillon and, on it, we inject and extract an ω = 3 periodic
perturbation. (b-d) An interference pattern is produced that, after fully extracting the driving,
relaxes to the remnant oscillation, showing a quasi-periodic profile for t ≥ 2.5 × 104. (e) The
Ward Identity is always well satisfied, even with a rather sparse grid of 210 points. (f) The time
Fourier transform shows an exponential fall-off in the spectrum, where the frequencies are now the
frequencies ωk = 2k + 1 = 1, 3, 5, . . . The central time is indicated, and the time window for the
Fourier transform is ∆t = 104.

time Fourier transform of the remnant solution. It is a sequence of peaks at frequencies
ωk = 2k + 1 = 1, 3, 5, . . .6 The amplitudes fall with an almost exponential law, starting
from the dominant one, which in this case is ω = 3. Our results connect nicely to the
quasi-periodic solution proposed in [17] as a solution to the effective two-time formalism
(see figures 1 and 2 in that reference), which also has an exponentially decaying spectrum.

Actually, we can modify our protocol. For this, with the same driving amplitude
ρb ∼ 10−4 as before, we introduce a frequency chirp that goes all the way from ω = 2.8
up to ω = 5.2, thereby piercing both resonant oscillons lines with ω ∼ 3 and 5 in figure 1.
After extracting the driving, we look at the remnant oscillations, which are plotted in
figures 15(c-d). We also find here a pattern of strongly modulated quasi-periodic oscillations.

6To be more precise, there is an overall shift, and the correct spectrum is ωk = ω0(2k + 1). However,
ω0 = 0.9994 is very close to 1. A similar observation affects the spectra shown in figures 15(e-f) and 16(e-f).
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Figure 15. The driving protocol shown in plots (a) and (b) involves a chirp in frequency at fixed
amplitude from ω = 2.8 up to ω = 5.2 during a time span of β = 1000. Afterwards, the driving is
extracted, and the signal is analysed. (c-d) The undriven solution evolves with a quasi-periodically
modulated amplitude. (e-f) The Fourier spectrum is composed of the frequencies ωk = 2k + 1, with
k ≥ 0, and is time dependent. Two snapshots are analysed around the times specified in plot (d) with
vertical dashed and dotted lines. The Fourier content interpolates in time between exponentially
decaying spectra dominated by either ω = 3 or ω = 5, as shown in the bottom plots (e) and (f).

The Fourier transform exhibits a time-dependent spectrum that interpolates back and forth
between two quasi-periodic solutions whose spectrum is either peaked around ω = 3 or
ω = 5 (compare again with the similar solutions to the two-time effective formalism in
figure 1 of [17]).7

4.1 Blocking the cascade

A third protocol shows a remarkable property: we inject and extract a balanced combination
of ωb = 3, 5 drivings simultaneously, as shown in figure 16(a). The response in the interior,
in plots (b-d), shows a pattern of strong random interference while the driving is on. After
the extraction of the driving, the envelope becomes smooth, but the overall oscillation

7Although not as strong and without changing the dominant frequency, this back-and-forth movement
in the spectrum, shown in figures 15(e-f), can also be observed in the case presented in figure 14 with a
non-simultaneous injection of both driving frequencies.
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Figure 16. Injection of simultaneous ωb = 3 and 5 drivings (a). Using the v.e.v. ⟨ϕ⟩ (c) as a
diagnostic, we observe a strong interference region while the driving is on, followed by a monotonous
increase after extraction. The Fourier content, shown in (e) and (f) and composed of the frequencies
ωk = 2k +1 with k ≥ 0, reveals that while the driving is on, the cascading towards higher frequencies
is blocked. In the free evolution after extraction, the simulation seems to be consistent with non-linear
turbulent behaviour leading to future collapse. However, the convergence drops monotonically from
its value of 4, and the simulation stops being reliable.

amplitude starts increasing. The expectation is that the dynamics should end up collapsing
into a black hole after some time. This is supported by the Fourier analysis shown in plots
(e) (for the driven period) and (f) (for the free evolving period). Actually, the transition
from (e) to (f) is very fast, indicating that the weak turbulent cascade sets in once the
driving is switched off. In contrast, in (e), the cascade is blocked by the driving, and the
spectrum drops much faster.

We have indeed checked that the regularity during the driven phase and the strong
fall-down of the spectrum are features preserved for very long-time drivings. Indeed, the
open periodically-driven system is stable for as long as we have been able to simulate,
with fourth-order convergence. Using the boundary language for Floquet systems, our
results indicate that for a sufficiently low amplitude of the resonant combined driving
(here O(10−4)), the system achieves a non-heating phase where coherence is preserved and
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thermalisation is avoided, much as it happened with the single-resonant-driven TPSs. From
the bulk perspective, the exchange of energy-momentum through the boundary acts by
blocking the turbulent cascade. It would be interesting to clarify this issue by resorting to
a resonant analysis of the non-normalisable solutions, probably along the lines of [18].

As for the final fate of the free evolution, the plots indicate a tendency towards collapse.
This can be appreciated in plot (c), where the amplitude of the oscillations in ⟨ϕ⟩ grows
unbounded. Consistently, the Fourier spectrum (f) gets rapidly enriched with higher and
higher modes. In accordance with this cascading, the numerical study of this free evolution
is demanding. We have provided convergence tests in appendix A (see figure 18(g)). We see
that while the driving is on, a convergence factor of 4 is achieved. However, the late cascade
is not fast enough to produce a collapse into a black hole before the convergence is lost.
Hence, at this point, the final fate of the two-mode injected solution is only speculative.8

5 Driving with noise

In the final part of the paper, we will study the response of the system to a multi-mode
driving. Starting from the AdS vacuum, we will adiabatically inject the following driving
on the boundary:

ϕb(t) = ϵ

N(T )

∞∑
n=0

ϕn cos(ωb,nt + φn) , (5.1)

where ϵ is a constant, and N(T ) is a normalisation factor that depends on T . The relative
amplitudes follow the distribution

ϕ2
n = nBE

ωn
, (5.2)

where nBE = (eωn/T −1)−1 is the Bose-Einstein distribution, and T , as a sort of temperature,
controls the exponential decay of the amplitudes with the frequency. The distribution
in (5.2) has been chosen such that the relative amplitudes of the time derivative of the
driving, Πn = ωnϕn, follow a Johnson-Nyquist noise distribution,

Π2
n = ωnnBE . (5.3)

The power spectral density of Πb is

P (ω) = ϵ2

N(T )2

∞∑
n=0

Π2
nδ(ω − ωn) , (5.4)

and the normalisation factor in (5.1) is set to

N(T )2 =
∞∑

n=0
Π2

n . (5.5)

This choice is useful in that the total power is now independent of T ,

P =
∫ ∞

−∞
P (ω)dω = ϵ2 . (5.6)

8In [19], using two-time formalism, two-mode data were conjectured to initialise solutions collapsing in
infinite time.
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Figure 17. Multi-resonant mode driving. (a) We plot the envelope of the oscillations in Π(t, x = 0)2,
which is a positive quantity. Curves stop at the point where convergence is lost in each case. (b) We
show the mass M̄(t) averaged over many oscillations.

On the other hand, relative phases are random and follow a uniform distribution
φn ∈ [0, 2π). This driving corresponds to a kind of thermal noise composed only of resonant
modes, ωn = 2n + 3.

Our original motivation when we started the present study was to model in this way
a holographic open system coupled to a statistical ensemble bath. In our setup, T would
play the role of the environment temperature. We have computed numerically several
evolutions where the noisy driving has been injected from zero up to ϵ = 2 × 10−4 for
different temperatures.

In figure 17 we present the results obtained for different values of the noise temperature
T . In the left plot, max[Π(t, x = 0)2] represents the envelope of the oscillations of the scalar
curvature at the origin, R = −2Π(t, x = 0)2/l2 − 12/l2. Its growth was proposed in [1] as
a good figure of merit to diagnose the dynamics entering a collapsing regime. In the four
plotted curves, the injection time is very large, β = 2 × 104, in order to avoid overheating
due to the injection quench. There appears to be a threshold value of T ∼ 0.7 above which
the dynamics absorbs energy monotonically right from the very start. Presumably, the end
result should be the collapse and formation of a black hole. Unfortunately, the convergence
is lost before we can reach any firm conclusion. We stopped the simulation whenever the
convergence factor dropped below 2.

In contrast, below that threshold, the regular dynamics suddenly extends for as long as
we have been able to simulate. Fourth-order convergence is maintained all the time. Notice
that below such temperature, the amplitude of the oscillations in Π(t, x = 0) saturates at
a certain value well before the end of the injection. This does not rule out a later regime
where the dynamics destabilises and starts drifting slowly upwards. For the sake of clarity,
the number of active modes (i.e. those which play a role above the machine precision value)
ranges from 22 at T = 0.6 to 34 for T = 0.9.

The mass does not seem to be such an accurate diagnostic of the route to collapse. In
the right plot in figure 17, we represent the mass averaged over many periods of oscillation
to avoid cluttering. The four temperatures show very similar behaviour, only distinguished
among themselves by the stopping time, controlled by the convergence factor.
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6 Conclusions

In this paper, we have studied the response of a simple holographic system to a periodic
change in the boundary conditions. This system involves a plain real scalar field backreacting
and a 4-dimensional gravity with a negative cosmological constant. The dual of this setup is
a strongly coupled CFT subject to a periodic shaking of a coupling constant, a.k.a. Floquet
system. We have extended and completed aspects of the analysis that was initiated in (the
second half of) [4]. There, the existence of time-periodic solutions (TPSs) was put on firm
grounds by constructing them in two different ways: explicit solution via pseudo-spectral
methods and adiabatic preparation from the AdS vacuum. Our focus in this paper has
been set on the second method. TPSs exist for generic values of the amplitude and the
frequency of the driving. They are neither dual to equilibrium states nor non-equilibrium
steady states (NESS) in the dual QFT. In fact, their mass is oscillating in time. Yet they
represent the preferred states compatible with the given boundary conditions, and their
mass averaged over a period is indeed the lowest. In general, this average mass is positive,
namely, above the AdS vacuum energy. Curiously, for drivings of low enough frequency,
ω ≤ 1.25, the average mass is negative while the periodic driving is on.

Given these premises, an effect that very well deserves the name of ‘Floquet adiabatic
theorem’ was anticipated in [4]. It stated that one can move continuously along a path
in the space of TPSs as long as the characteristic time of the modulation in amplitude
and frequency is long in comparison with the gap of the lowest normal mode fluctuation
of the TPSs along the path. There are vast regions where this occurs (see grey areas of
linear stability in figure 33 in [4]). In particular, this precludes the modulation that crosses
oscillon lines. These are lines where the scalar-gravity system oscillates without the need
for any driving. They have a zero mode (the deformation mode along the line), and hence,
near these solutions, we expect a non-linear resonant generation of higher harmonics. This
is in essence the core of the present study.

The prototypical modulating experiment we have performed in this paper involves the
initial adiabatic injection of a periodic driving and the final adiabatic extraction down to
zero driving. In between, several types of modulations have been studied. For example, a
slow change in frequency either in the upward or downward direction. If the chirp does
not traverse any oscillon line, the system returns smoothly down to the vacuum state AdS.
However, if the modulation moves the frequency crossing an oscillon line, after extraction
of the driving, an oscillon of the crossed branch remains with a given mass that depends on
the details of the modulation. This makes this protocol a powerful method of fabricating
oscillon solutions. There is a variety of possibilities depending on both the traversing
speed and the sense (either upwards or downwards). Actually, the downward frequency
modulation is so efficient that, in principle, is able to generate up to the maximum stable
oscillon solution and beyond, hence leading to a black hole formation dual to the loss of
coherence and thermalisation in the dual QFT.

As a valuable figure of merit, we have carefully looked at the Fourier spectral analysis of
the value of the scalar field at the origin ϕ(t, 0). This is essential, in particular, to establish
the purity of the oscillons that are left behind after the extraction of the resonant driving. It
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also has been an essential tool in exploring the remnant state left behind after the injection
and extraction of a two-mode driving. Indeed, the driving with frequencies ω = 3 and
5 has been introduced in several different ways (one after the other or simultaneously)
with different long-time results. The resulting solution is in general quasi-periodic, and
the spectrum shows the same exponential damping found for regular solutions to the free
non-linear system in the two-time formalism [17]. The dominant frequency can be ω = 3,
ω = 5 and even alternate between both (figure 15).

An interesting feature revealed in the course of the study is the fact that the Fourier
spectral decay is much steeper in the open system than in the closed system case. In a sense,
the periodic driving acts by filtering out the non-linear generation of higher harmonics. As
soon as it is turned off, the weak turbulent cascading sets in. The long-time fate afterwards
is difficult to foresee as the numerical simulations lose convergence before any conclusive
result is reached. It would be interesting to prove this effect more explicitly, maybe along
the lines pursued in [18].

Finally, a natural extension of the above analysis is the multi-resonant driving. The spec-
tral content that we have introduced corresponds to coupling the system to external thermal
noise characterised by some temperature. The overall amplitude has been set very small, and
yet, we see a noticeable effect of the temperature on the long-time behaviour of the system.
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A Details on the numerics

In this appendix, we summarise the basic aspects of our numerical simulations. The
equations of motion follow from the action (2.1) with the ansatz (2.2). The effective system
of equations is conveniently expressed in terms of the following variables:

Φ ≡ ϕ′ , Π ≡ eδ

f
ϕ̇ , (A.1)

where ˙and ′ represent the time and spatial derivatives respectively. We are interested in time-
periodic solutions with harmonic boundary conditions such that ϕ(t, π/2) = ρb cos(ωbt). We
work in the boundary gauge, δ(t, π/2) = 0. We also have that Φ(t, π/2) = 0 due to the asymp-
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totic near-boundary expansion. With these definitions, the equations of motion become

Φ̇ = (fe−δΠ)′ , (A.2)

Π̇ = 1
tan2 x

(tan2 xfe−δΦ)′ , (A.3)

δ′ = − sin x cos x
(
Φ2 + Π2

)
, (A.4)

f ′ = 1 + 2 sin2 x

sin x cos x
(1 − f) + fδ′ , (A.5)

and the Momentum Constraint is

ḟ + 2 sin x cos xf2e−δΦΠ = 0 . (A.6)

The driving protocol deserves some comments. The boundary conditions and their
derivatives must be continuous functions of time. To fulfil this condition we use the following
non-analytic function to modulate the amplitude of the scalar field boundary condition:

q± (t, β, σ) = 1
2

(
1 ± tanh

(
σ β

( 1
t − t0

+ 1
t − (t0 + β)

)))
. (A.7)

This function has the property that both at the beginning (t = t0) and the end (t = t0 + β)
of the quench all its derivatives are zero. This is crucial to guarantee that not only time
derivatives are continuous, but also spatial derivatives are the correct ones to fulfil the
corner conditions [4, 20]. The parameter σ controls the slope of this function. For amplitude
modulations we set σ = 1

2 .
In order to implement the chirp protocol, where the frequency is shifted, we fix boundary

conditions of the form

ϕ(t, π/2) = ρb cos (ν (t)) , (A.8)

ν (t) =
[
ω1 + (ω2 − ω1) q−

(
t, β, σ = 1

4

)]
t − β

2 (ω2 − ω1) q2
−

(
t, β, σ = 1

4

)
.

With this definition, the instantaneous frequency will be ω(t) = dν(t)/dt, an example
of which can be seen in figure 7(b).

The discretisations have been performed at order 4 in accuracy. For time marching, we
have used RK4 and a spatial resolution of 212 points. To check for convergence, we evolved the
same initial data and boundary conditions using three different grid spacings. Being ga (t, x)
a certain quantity obtained from the evolution on the π/2

a grid, we can compute the norm

∥ga − gb∥c ≡
(∫ π/2

0
dx (ga − gb)2

)1/2

, (A.9)

where ∥∥c denotes that the integration is performed on the grid with π/2
c spacing. We

measure the convergence with the rate

Q = 2−α = ∥g4n − g2n∥n

∥g2n − gn∥n

, (A.10)

where α is the order of convergence. We compute both the numerator and the denominator
by adding the contributions of Π and Φ.
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Figure 18. Order of convergence α. (a) figure 5: driving at resonance ωb = 3, (b) figure 8: down-
chirping, (c) figure 10(a): chirping without crossing any resonance curve, (d) figure 11: zero v.e.v.

solutions, (e) figure 12(b): energy-extracting solutions, (f) figure 15: chirping across two resonances,
(g) figure 16: simultaneous ωb = 3 and 5 drivings, (h) figure 17: multi-resonant mode driving.

It is natural to expect a convergence factor close to 4, although we could tolerate
a somewhat smaller value. We have performed convergence tests in all the numerical
experiments reported, and the results are shown in figure 18. After an initial transient,
in general, the convergence factor indeed approaches the value 4, and even surpasses it
in certain cases. This is a very satisfactory signal of confidence in the numerical validity
of our results. We have even used this criterion to stop the simulation, especially when
approaching a collapse.

– 25 –



J
H
E
P
1
1
(
2
0
2
3
)
2
3
0

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] P. Bizon and A. Rostworowski, On weakly turbulent instability of anti-de Sitter space, Phys.
Rev. Lett. 107 (2011) 031102 [arXiv:1104.3702] [INSPIRE].

[2] A. Buchel, S.L. Liebling and L. Lehner, Boson stars in AdS spacetime, Phys. Rev. D 87 (2013)
123006 [arXiv:1304.4166] [INSPIRE].

[3] P. Carracedo, J. Mas, D. Musso and A. Serantes, Adiabatic pumping solutions in global AdS,
JHEP 05 (2017) 141 [arXiv:1612.07701] [INSPIRE].

[4] A. Biasi et al., Floquet Scalar Dynamics in Global AdS, JHEP 04 (2018) 137
[arXiv:1712.07637] [INSPIRE].

[5] M. Rangamani, M. Rozali and A. Wong, Driven Holographic CFTs, JHEP 04 (2015) 093
[arXiv:1502.05726] [INSPIRE].

[6] R. Auzzi, S. Elitzur, S.B. Gudnason and E. Rabinovici, On periodically driven AdS/CFT,
JHEP 11 (2013) 016 [arXiv:1308.2132] [INSPIRE].

[7] P. Sierant, M. Lewenstein, A. Scardicchio and J. Zakrzewski, Stability of many-body localization
in Floquet systems, Phys. Rev. B 107 (2023) 115132 [arXiv:2203.15697] [INSPIRE].

[8] M. Maliborski and A. Rostworowski, Time-Periodic Solutions in an Einstein
AdS–Massless-Scalar-Field System, Phys. Rev. Lett. 111 (2013) 051102 [arXiv:1303.3186]
[INSPIRE].

[9] D. Poletti and C. Kollath, Slow quench dynamics of periodically driven quantum gases, Phys.
Rev. A 84 (2011) 013615 [arXiv:1105.0686].

[10] C. Heinisch and M. Holthaus, Adiabatic preparation of Floquet condensates, J. Mod. Opt. 63
(2016) 1768 [arXiv:1605.08199].

[11] P. Weinberg, M. Bukov, L. D’Alessio, A. Polkovnikov, S. Vajna and M. Kolodrubetz, Adiabatic
perturbation theory and geometry of periodically-driven systems, Phys. Rept. 688 (2017) 1
[arXiv:1606.02229].

[12] M. Berenguer, A. Garbayo, J. Mas and A.V. Ramallo, Holographic Floquet states in low
dimensions (II), JHEP 12 (2022) 020 [arXiv:2209.03884] [INSPIRE].

[13] M. Maliborski, Dynamics of Nonlinear Waves on Bounded Domains, Ph.D. Thesis,
Jagiellonian University, Cracow, Poland (2014) [arXiv:1603.00935] [INSPIRE].

[14] T. Ishii, Y. Kaku and K. Murata, Energy extraction from AdS black holes via superradiance,
JHEP 10 (2022) 024 [arXiv:2207.03123] [INSPIRE].

[15] M. Choptuik, J.E. Santos and B. Way, Charting Islands of Stability with Multioscillators in
anti-de Sitter space, Phys. Rev. Lett. 121 (2018) 021103 [arXiv:1803.02830] [INSPIRE].

[16] M. Choptuik, R. Masachs and B. Way, Multioscillating Boson Stars, Phys. Rev. Lett. 123
(2019) 131101 [arXiv:1904.02168] [INSPIRE].

– 26 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.107.031102
https://doi.org/10.1103/PhysRevLett.107.031102
https://arxiv.org/abs/1104.3702
https://inspirehep.net/literature/896633
https://doi.org/10.1103/PhysRevD.87.123006
https://doi.org/10.1103/PhysRevD.87.123006
https://arxiv.org/abs/1304.4166
https://inspirehep.net/literature/1228338
https://doi.org/10.1007/JHEP05(2017)141
https://arxiv.org/abs/1612.07701
https://inspirehep.net/literature/1505582
https://doi.org/10.1007/JHEP04(2018)137
https://arxiv.org/abs/1712.07637
https://inspirehep.net/literature/1644429
https://doi.org/10.1007/JHEP04(2015)093
https://arxiv.org/abs/1502.05726
https://inspirehep.net/literature/1345440
https://doi.org/10.1007/JHEP11(2013)016
https://arxiv.org/abs/1308.2132
https://inspirehep.net/literature/1247287
https://doi.org/10.1103/PhysRevB.107.115132
https://arxiv.org/abs/2203.15697
https://inspirehep.net/literature/2059703
https://doi.org/10.1103/PhysRevLett.111.051102
https://arxiv.org/abs/1303.3186
https://inspirehep.net/literature/1223621
https://doi.org/10.1103/PhysRevA.84.013615
https://doi.org/10.1103/PhysRevA.84.013615
https://arxiv.org/abs/1105.0686
https://doi.org/10.1080/09500340.2016.1167263
https://doi.org/10.1080/09500340.2016.1167263
https://arxiv.org/abs/1605.08199
https://doi.org/10.1016/j.physrep.2017.05.003
https://arxiv.org/abs/1606.02229
https://doi.org/10.1007/JHEP12(2022)020
https://arxiv.org/abs/2209.03884
https://inspirehep.net/literature/2149017
https://arxiv.org/abs/1603.00935
https://inspirehep.net/literature/1425932
https://doi.org/10.1007/JHEP10(2022)024
https://arxiv.org/abs/2207.03123
https://inspirehep.net/literature/2107172
https://doi.org/10.1103/PhysRevLett.121.021103
https://arxiv.org/abs/1803.02830
https://inspirehep.net/literature/1659112
https://doi.org/10.1103/PhysRevLett.123.131101
https://doi.org/10.1103/PhysRevLett.123.131101
https://arxiv.org/abs/1904.02168
https://inspirehep.net/literature/1728109


J
H
E
P
1
1
(
2
0
2
3
)
2
3
0

[17] V. Balasubramanian et al., Holographic Thermalization, Stability of Anti-de Sitter Space, and
the Fermi-Pasta-Ulam Paradox, Phys. Rev. Lett. 113 (2014) 071601 [arXiv:1403.6471]
[INSPIRE].

[18] B. Cownden, Examining Instabilities Due to Driven Scalars in AdS, JHEP 12 (2020) 013
[arXiv:1912.07143] [INSPIRE].

[19] F.V. Dimitrakopoulos, B. Freivogel and J.F. Pedraza, Fast and Slow Coherent Cascades in
Anti-de Sitter Spacetime, Class. Quant. Grav. 35 (2018) 125008 [arXiv:1612.04758]
[INSPIRE].

[20] G.T. Horowitz and D. Wang, Gravitational Corner Conditions in Holography, JHEP 01 (2020)
155 [arXiv:1909.11703] [INSPIRE].

– 27 –

https://doi.org/10.1103/PhysRevLett.113.071601
https://arxiv.org/abs/1403.6471
https://inspirehep.net/literature/1287340
https://doi.org/10.1007/JHEP12(2020)013
https://arxiv.org/abs/1912.07143
https://inspirehep.net/literature/1770967
https://doi.org/10.1088/1361-6382/aac0b5
https://arxiv.org/abs/1612.04758
https://inspirehep.net/literature/1503393
https://doi.org/10.1007/JHEP01(2020)155
https://doi.org/10.1007/JHEP01(2020)155
https://arxiv.org/abs/1909.11703
https://inspirehep.net/literature/1756194

	Introduction and main results
	General setup
	Resonant driving
	Frequency modulation across a resonance
	Suppression points: TPSs with vanishing v.e.v.
	Extracting energy out of AdS

	Driving at more than one resonance
	Blocking the cascade

	Driving with noise
	Conclusions
	Details on the numerics

