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Using loop-tree duality, we relate a renormalized n-point l-loop amplitude in a quantum field theory to a
phase-space integral of a regularized l-fold forward limit of a UV-subtracted ðnþ 2lÞ-point tree-amplitude-
like object. We show that up to three loops the latter object is easily computable from recurrence relations.
This defines an integrand of the loop amplitude with a global definition of the loop momenta. Field and
mass renormalization are performed in the on-shell scheme.
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I. INTRODUCTION

Precision physics at the LHC requires next-to-next-to-
leading order (NNLO) calculations for various processes. If
one goes beyond the simplest 2 → 2-processes toward the
2 → ðn − 2Þ-process with n > 4, one is in particular
interested in efficient methods which allow for automation.
Numerical methods such as numerical loop integration
[1–14] combined with loop-tree duality [15–28] or methods
based on numerical unitarity [29–47] are a promising path
for this approach. Let us mention that there is in addition
the Q-cut approach [48–50], sharing some similarities with
loop-tree duality, but differing in the details.
In this paper we focus on the loop-tree duality approach.

We show that the integrand for the renormalized n-point
l-loop amplitude within the loop-tree duality approach is
related to the regularized l-fold forward limit of a UV-
subtracted ðnþ 2lÞ-point tree-amplitude-like object, if field
renormalization and mass renormalization are performed in
the on-shell scheme.
The applications of our result are twofold: First of all, it

is a significant efficiency improvement. We are no longer
forced to consider individual Feynman diagrams, whose
number grows drastically with the number of external legs
and the number of loops. Instead, we may entirely work at
the integrand level with tree-amplitude-like objects. We
remind the reader that tree amplitudes may be computed
numerically in an efficient way through recursion relations
[51]. For example, the CPU cost for a cyclic-ordered tree
amplitude with n external particles in a quantum field
theory with cubic vertices scales as n3.

Second, the infrared limits of tree amplitudes are very
well understood. We know where they are (in the region
where internal propagators go on-shell) and how to
compute the limiting behavior. This may now be transferred
to the tree-amplitude-like objects. Our formulation is a
further step toward a local cancellation of infrared diver-
gences between real and virtual contributions. In particular,
our result provides naturally a global definition of the loop
momenta [52].
We present the equivalence between the renormalized n-

point l-loop amplitude and the phase space integral of a
regularized l-fold forward limit of a UV-subtracted
ðnþ 2lÞ-point tree-amplitude-like object as a general
property of quantum field theory. For the field renormal-
ization and the mass renormalization we use the on-shell
scheme (for reasons which will become clear in the main
part of the article). For the renormalization of the coupling
and any other quantities we may take any renormalization
scheme. In addition, one easily obtains results where the
field renormalization or the mass renormalization are
performed in a scheme different from the on-shell scheme
through a (ultraviolet-)finite renormalization.
In order to keep the notation to a minimum, we focus on

theories, where all fields have a vanishing vacuum expect-
ation value. This includes theories such as Yang-Mills
theory and QCD, but not electroweak theory, where the
Higgs field has a nonvanishing expectation value. The
extension toward fields with nonvanishing vacuum expect-
ation values is straightforward, and we indicate the neces-
sary steps in a dedicated section.
Integrands for loop amplitudes for specific theories

(possibly with additional restrictions on the number of
loops or planarity) have been considered in the literature
before [53–67]. In this article we present a general result,
which expresses the integrand of a renormalized n-point
l-loop amplitude as a regularized l-fold forward limit of a
UV-subtracted ðnþ 2lÞ-point tree-amplitude-like object,
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which is valid in a generic quantum field theory without
any restrictions on the number of loops. We also discuss
how to compute these objects efficiently from recurrence
relations. Here we limit ourselves to three loops or less.
Ideas of relating loop integrands to the forward limit

have appeared before in the literature [68,69]. In this paper
we address all technical challenges associated with this
approach. The technical challenges are related to the fact
that in general the forward limit of tree amplitudes is
singular. This is due to internal propagators, which go on-
shell in the forward limit. Let us first note that the forward
limit of a tree diagram is equivalent to the integrand of a
loop diagram with cut propagators. Each forward limit of a
pair of external lines of a tree diagram corresponds to a
cut loop propagator. We may group the singular configu-
rations into three categories: The first category consists
of diagrams, which correspond to self-energy corrections
on external lines. The Lehmann-Symanzik-Zimmermann
(LSZ) reduction formula [70] instructs us to omit these. The
second category consists of diagrams, which contain tad-
pole subdiagrams, connected to the rest of the diagram by a
massless line. In theories, where the field has a vanishing
vacuum expectation value, these diagrams cancel with
counterterms coming from the renormalization of the
source. As the sum of the two contributions vanishes, it
is common practice to omit both contributions. The third
category consists of diagrams, which correspond to self-
energy corrections on internal lines. On the loop side,
they correspond to diagrams with higher powers of some
propagators. Quite recently, it was shown that these
contributions cancel with similar contributions from the
ultraviolet counterterms for the field and the mass in the on-
shell scheme [26]. For this reason we consider renormal-
ized loop amplitudes, where the field and the masses
are renormalized in the on-shell scheme. We define the
regularized l-fold forward limit of a tree amplitude as the
limit, where the singular contributions have been sub-
tracted out.
In addition, there are some nontrivial combinatorial

issues: Loop diagrams come with symmetry factors and
additional minus signs for closed fermion loops. Loop-tree
duality introduces additional combinatorial factors. We
show how the symmetry factors of loop diagrams are
matched on the tree-diagram side. Minus signs for closed
fermion loops have a correspondence with minus signs
appearing when a tree amplitude with identical fermion
pairs is expressed in terms of tree amplitudes with non-
identical fermions. We discuss in detail how the additional
combinatorial factors from the application of loop-tree
duality are incorporated.
The main result of this paper is given in Eq. (99), which

relates the renormalized n-point l-loop amplitude to a phase
space integral of a regularized l-fold forward limit of a UV-
subtracted ðnþ 2lÞ-point tree-amplitude-like object. Let us
stress that in order to obtain this simple result we must

ensure that contributions from residues underlying higher
poles vanish. This happens if the fields and the masses are
renormalized in the on-shell scheme. Our result would not
be as simple if we would consider the unrenormalized
amplitude or a renormalized amplitude with masses renor-
malized in the MS-scheme. However, let us point out that
our result is also useful if one is interested in renormalized
loop amplitudes with masses renormalized in the MS-
scheme (or any other mass renormalization scheme): One
may always compute first the result with masses renor-
malized in the on-shell scheme and then perform a finite
renormalization to switch to the desired mass renormaliza-
tion scheme. The steps required for the latter calculation are
usually simpler than for a full calculation.
This paper is organized as follows: In the next section we

introduce the basic notation. In Sec. III we define various
sets of graphs, which will be relevant to our discussion. In
Sec. IV we introduce two operations on graphs: Cutting and
sewing, which are at the level of graphs inverse to each
other. In Sec. V we review the essential features of loop-tree
duality. The next three sections are devoted to the technical
challenges: We define the regularized forward limit of a tree
amplitude in Sec. VI, discuss symmetry factors of loop
diagrams in Sec. VII, and review the absence of contribu-
tions from higher poles in the on-shell scheme in Sec. VIII.
After this preparation, we present our main result—the
equivalence of the loop integrand within the loop-tree
duality approach with the regularized forward limit—in
Sec. IX. Section X is of practical nature and discusses the
efficient computation of the integrand with the help of
recurrence relations. Section XI sketches the required steps
for a generalization of our result toward theories with fields
with nonvanishing vacuum expectation values. In Sec. XII
we report on the checks we performed. Finally, Sec. XIII
contains our conclusions.

II. BASIC NOTATION

We consider loop amplitudes in a quantum field theory. It
could be a scalar theory, Yang-Mills theory, QCD, etc. For
illustration purposes we will often choose one of the
simplest quantum field theories, a scalar ϕ3-theory with
generating functional

Z½J� ¼
Z

DϕðxÞ exp
�
i
Z

dDxL
�

ð1Þ

and Lagrangian

L¼ 1

2
ð∂μϕÞð∂μϕÞ−1

2
m2ϕ2þ 1

3!
gðDÞϕ3þJϕþLCT; ð2Þ

LCT ¼ −
1

2
ðZϕ − 1Þϕ□ϕ −

1

2
ðZϕZ2

m − 1Þm2ϕ2

þ 1

3!
ðZ3

2

ϕZg − 1ÞgðDÞϕ3 þ ðZ1
2

ϕZJ − 1ÞJϕ: ð3Þ
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We have written the Lagrangian in renormalized quantities.
Equation (2) gives the appropriate ultraviolet counterterms.
Please note that we included the renormalization of the
source J.
Within dimensional regularization it is convenient

to relate the bare coupling gbare to the renormalized
coupling g by

gbare ¼ ZgS
−1
2

ε μεg; ð4Þ

where the quantity

Sε ¼ ð4πÞεe−εγE ð5Þ

is the typical phase space volume factor in D ¼ 4 − 2ε
dimensions and γE is Euler’s constant. The additional factor
με keeps the mass dimension of the renormalized coupling
g constant. gðDÞ is given by

gðDÞ ¼ S
−1
2

ε μεg: ð6Þ

Let us consider an amplitude with n external particles in a
given quantum field theory. We denote the coupling by g, as
we did in the example of ϕ3-theory. We take all external
momenta to be outgoing. The external momenta are
on-shell

p2
i ¼ m2

i ð7Þ

and satisfy momentum conservation

p1 þ p2 þ � � � þ pn ¼ 0: ð8Þ

We denote the renormalized l-loop amplitude with n
external particles by

Al;nðp1;…; pnÞ: ð9Þ

If we consider particles with spin, we denote by λi their
helicities and write

Al;nðpλ1
1 ;…; pλn

n Þ: ð10Þ

If the quantum field theory under consideration contains
different particle species, we introduce an additional label
which distinguishes the different species.
The amplitude Al;n is of order

g2lþn−2 ð11Þ

in the coupling.
The relation between the renormalized and the bare

amplitudes (for the example of ϕ3-theory) is given to all
orders in g by

Aðp1;…; pn; g;mÞ
¼ ðZ1=2

ϕ ÞnAbareðp1;…; pn; gbare; mbareÞ
¼ ðZ1=2

ϕ ÞnAbareðp1;…; pn; ZgS
−1
2

ε μεg; ZmmÞ: ð12Þ

Let us now expand Eq. (12) in the coupling. We write

Al;nðp1;…;pn;g;mÞ
¼Abare

l;n ðp1;…;pn;g;mÞþACT
l;n ðp1;…;pn;g;mÞ; ð13Þ

where both expressions on the right-hand side are expressed
in terms of renormalized quantities and ACT

l;n contains
exactly all contributions from ultraviolet counterterms.
The renormalized amplitude Al;n depends on the chosen

renormalization scheme. If we change the renormalization
scheme from a scheme CT to a scheme CT0 we have

A0
l;nðp1;…;pn;g0;m0Þ
¼Abare

l;n ðp1;…;pn;g0;m0ÞþACT0
l;n ðp1;…;pn;g0;m0Þ: ð14Þ

On the other hand, we may relate A0
l;n and Al;n:

A0
l;nðp1;…;pn;g0;m0Þ
¼Al;nðp1;…;pn;g;mÞþΔAfinite

l;n ðp1;…;pn;g;mÞ; ð15Þ

where ΔAfinite
l;n describes the change due to the (ultraviolet-)

finite renormalization. Equation (15) allows us to compute
the renormalized amplitude Al;n first in one renormaliza-
tion scheme CT (which we may choose based on technical
advantages) and then transfer the result to the desired
renormalization scheme CT0. The (ultraviolet-)finite
renormalization from CT to CT0 is in general simpler than
the calculation of the renormalized loop amplitude Al;n. In
this paper we focus on the calculation of the renormalized
loop amplitude Al;n.
Let us comment on gauge theories: It is well known that

in gauge theories the field renormalization constants are in
general gauge-dependent and cancel the gauge-dependence
ofAbare. The renormalized amplitudeAðp1;…; pn; g; mÞ is
of course gauge-independent [71].

III. GRAPHS

Let us denote the set of all (unordered) connected graphs
with n external edges of order g2lþn−2 in the coupling by

U l;n: ð16Þ

The set U l;n contains all connected graphs with n external
edges and l loops, which can be drawn according to the
Feynman rules. The set U l;n also includes graphs with
ultraviolet counterterms. For l ≥ 1 the set U l;n contains
graphs corresponding to self-energy corrections on external
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lines. An example is shown in Fig. 1. We denote the set of
graphs without self-energy corrections on external lines by

Uamputated
l;n : ð17Þ

Graphs with self-energy corrections on external lines are
problematic, because they contain an internal on-shell
propagator, indicated by a red line in Fig. 1. Basically,
we would divide by zero. Luckily, the Lehmann-Symanzik-
Zimmermann (LSZ) reduction formula [70] instructs us to
compute the loop amplitude from graphs omitting graphs
with self-energy corrections on external lines.
There is a second category of graphs, which we have to

discuss more carefully. These are graphs with tadpoles. A
graph with a tadpole contains a subgraph without external
edges, which is connected to the rest of the graph only by a
single edge. An example is shown in Fig. 2. Graphs with
tadpoles contain propagators with zero momentum. If the
corresponding particle is massless, we would again be
dividing by zero. In quantum field theories, where the field
ϕ has a vanishing vacuum expectation value, the one-point
correlation function vanishes. This implies that the sum of
the two diagrams shown in Fig. 2 gives zero, where the
counterterm in the second diagram corresponds to the
renormalization of the source J [72]. For this reason we
included in Eq. (2) the renormalization of the source J. It is
common practice to omit these diagrams in the calculation
of loop amplitudes in theories where all fields have a
vanishing vacuum expectation value. They would simply
add up to zero. We denote the set of graphs without
tadpoles by

Uno tadpoles
l;n ; ð18Þ

and the set of graphs without self-energy corrections on
external lines and without tadpoles by

Uamputated; no tadpoles
l;n : ð19Þ

Let us remark that the graph within Yang-Mills theory
shown in Fig. 3 is not a tadpole graph and included in
Uno tadpoles
l;n . Graphs as in Fig. 3 are called snail graphs. The

graph in Fig. 3 gives zero within dimensional regulariza-
tion. In an analytic calculation these graphs are therefore
often dropped. However, this zero comes from a cancella-
tion of an ultraviolet divergence with an infrared diver-
gence. Within a numerical calculation we do not drop these
graphs, since dropping them would result in mixing ultra-
violet divergences with infrared divergences.
Finally, let us discuss a third category of graphs, which

deserve special attention. These are graphs with self-energy
corrections on internal lines. An example is shown in
Fig. 4. Self-energy insertions on internal lines lead to
higher powers of the propagators. We denote by

Uno self-energies
l;n ð20Þ

the subset of graphs without any self-energy insertions,
external or internal, and by

Uno self-energies; no tadpoles
l;n ; ð21Þ

the subset of graphs without any external or internal self-
energy insertions and no tadpoles.
Throughout this paper we assume that the ultraviolet

counterterms have an integral representation; e.g., a coun-
terterm for a propagator has an integral representation in the
form of a two-point function, a counterterm for a three-
valent vertex has an integral representation in the form of a
three-point function, such that the sum of the integrand of
the bare part and the integrand of the counterterm part is
integrable in loop momentum space. These integral repre-
sentations for the counterterms may be constructed sys-
tematically [7,9,26]. This allows one to treat graphs from
U l;n without or with counterterms on the same footing
collectively as graphs with n external particles and l loops.
If we want to refer explicitly to graphs without or with at
least one counterterm, we write

FIG. 1. A graph with a self-energy insertion on an external line.
This graph belongs to U2;4, but not to Uamputated

2;4 . The graph
contains an on-shell propagator, indicated by a red line.

FIG. 2. Two graphs with tadpoles. These graphs belong to U2;4, but not to Uno tadpoles
2;4 . These graphs contain a zero-momentum

propagator, indicated by a red line. The counterterm in the right diagram corresponds to the renormalization of the source J.
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Uno CT
l;n or UCT

l;n ð22Þ

for the corresponding sets of graphs, respectively.
Obviously

Uno CT
l;n ∪ UCT

l;n ¼ U l;n; Uno CT
l;n ∩ UCT

l;n ¼ ∅: ð23Þ

Sets of graphs with additional restrictions are defined
analogously. For example,

Uno CT; no self-energies; no tadpoles
l;n ð24Þ

denotes the set of graphs without any ultraviolet counter-
terms, no (internal or external) self-energy insertions, and
no tadpoles.

IV. CUTTING AND SEWING

In this section we introduce two operations on graphs,
cutting and sewing, which are inverse to each other. For a
graph Γ ∈ U l;n we denote by EΓ ¼ fe1;…; eNg the set of
internal edges.
Our first step is to introduce cut trees. Within graph

theory there is a well established notion of spanning trees.
These two concepts are related, but not identical. It is
helpful to present both definitions, highlighting the simi-
larities and the differences.
Let us first review the definition of a spanning tree [73].

A spanning tree for the graph Γ is a subgraph Tspan of Γ,
which contains all the vertices of Γ and is a connected tree
graph. If Tspan is a spanning tree for Γ, then it can be
obtained from Γ by deleting l internal edges, say
feσ1 ;…; eσlg. We denote by σ ¼ fσ1;…; σlg the set of
indices of the deleted edges. We denote by

T Γ ð25Þ

the set of all spanning trees for the graph Γ and by

CΓ ð26Þ

the set of all sets of indices of the deleted edges. There is a
bijection between T Γ and CΓ. A spanning tree T Γ for Γ ∈
U l;n has n external lines.
Each σ ∈ CΓ defines also a cut graph Tcut, obtained by

cutting each of the l internal edges eσj into two half-edges.
The 2l half-edges become external lines of Tcut. The graph
Tcut is a tree graph with nþ 2l external lines. The difference
between a spanning tree and a cut tree is illustrated in Fig. 5.
Further, we denote by UΓ the first graph polynomial of

the graph Γ. In order to obtain UΓ, we associate with each
internal edge ej a variable xj. The graph polynomialUΓ is a
homogeneous polynomial of degree l in the variables xj,
obtained as a sum over monomials with coefficients þ1.
Each monomial consists of a product of xj ’s, such that
when the corresponding edges are deleted (or cut), we
obtain a connected tree graph. The sum is over all those
possibilities. Put into a formula, we have

FIG. 3. A snail graph in Yang-Mills theory. This is not a tadpole
graph, since the internal edge with zero momentum is missing.
This graph belongs to Uno tadpoles

1;4 .

FIG. 4. A graph with a self-energy insertion on an internal line.
This graph belongs to U2;4 and U

amputated
2;4 , but not to Uno self-energies

2;4 .
The graph contains a squared propagator, originating from the
two red lines.

FIG. 5. The left picture shows a graph Γ from U1;4. The middle picture shows a spanning tree for this graph, obtained by deleting the
internal edge e1. The spanning tree has four external lines. The right picture shows the corresponding cut tree, obtained by cutting
the internal edge e1. The cut tree has six external lines. In these figures we included a vertex at the end of each external line. Usually the
vertices at the end of external lines are not drawn.
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UΓ ¼
X
T∈T Γ

Y
ei∉T

xi: ð27Þ

The number of spanning trees for a graph Γ is given by

jT Γj ¼ jCΓj ¼ UΓjx1¼���¼xN¼1: ð28Þ

At the level of graphs, cutting an internal edge eσj of a
graph Γ ∈ U l;n yields a graph with (l − 1) loops and nþ 2

external legs. Repeating this l times gives a tree graph with
nþ 2l external legs.
At the level of graphs, sewing is the inverse operation of

cutting. Consider a graph Γ ∈ U l−1;nþ2 with (l − 1) loops
and (nþ 2) external legs. We label the external legs by

ðp1; p2;…; pn; k1; k̄1Þ: ð29Þ

Sewing the external edges labeled by k1 and k̄1 means
connecting the two external edges to form a new internal
edge. The resulting graph then has l loops and n external
lines. Starting with a graph Γ ∈ U0;nþ2l with external edges
labeled by

ðp1; p2;…; pn; k1;…; kl; k̄1;…; k̄lÞ; ð30Þ

we may repeat the sewing procedure l times and sew the
external edge labeled by kj with the external labeled by k̄j
for j ¼ 1;…; l. The resulting graph then has l loops and n
external edges.
For the moment we discussed the operations of cutting

and sewing purely at the level of graphs. Of course, we have
in mind that each Feynman graph represents a mathemati-
cal expression. The translation from graphs to mathematical
expressions is given by the Feynman rules. At the level of
mathematical expressions, the cutting operation corre-
sponds to taking the residue when the cut propagator goes
on-shell. On the other hand, the sewing operation only
makes sense in the case k̄j ¼ −kj. The sewing operation
corresponds to the forward limit. We remind the reader that
by convention we take all momenta outgoing. The outgoing
momentum k̄j corresponds to the incoming momentum
−k̄j. In the case k̄j ¼ −kj, the incoming momentum equals
−k̄j ¼ kj. Thus, the particle with outgoing momentum k̄j
has the incoming momentum kj, which coincides with the
outgoing momentum kj of the other particle. This is the
forward limit.
In theories with spin the sewing operation implies also a

sum over the physical and unphysical polarizations of the
particles corresponding to the sewed edges. For example,
for spin 1=2-fermions we have

X
λ

uλðkÞūλðkÞ¼=kþm;
X
λ

vλðkÞv̄λðkÞ¼=k−m: ð31Þ

For massless gauge bosons of spin 1 the sum over the
physical polarizations gives

X
λ

ðελμðk; nÞÞ�ελνðk; nÞ ¼ −gμν þ
kμnν þ nμkν

k · n
; ð32Þ

where n is a lightlike reference vector. We would like the
sewing operation to reproduce the numerator of the
propagator. For gauge bosons this numerator is gauge-
dependent. In Feynman gauge the numerator is given by
ð−gμνÞ. We may write

−gμν ¼
X
λ

ðελμðk; nÞÞ�ελνðk; nÞ −
kμnν þ nμkν

k · n
; ð33Þ

expressing the Feynman gauge numerator as a sum over
physical and unphysical polarizations. The latter are
proportional to kμ and nμ. In the same spirit we include
in gauge theories diagrams, where we sew together a ghost
particle with its corresponding antighost.
In addition, we define the sewing operation to include a

minus sign

ð−1Þ ð34Þ

for each sewing of a fermion line. Please note that this
minus sign is included independently if the sewing oper-
ation closes a fermion loop or not. Ghost lines are treated as
fermion lines.

V. LOOP-TREE DUALITY

Let us consider loop amplitudes in a quantum field
theory, where all fields have vanishing vacuum expectation
values. In this case we may ignore tadpole contributions,
and our relevant set of diagrams is

U loop
l;n ¼ Uamputated; no tadpoles

l;n : ð35Þ
Self-energy insertions on internal lines contribute to the
loop amplitude and are included. Let Γ ∈ U loop

l;n and EΓ ¼
fe1;…; eNg the set of internal edges. For each internal edge
we set

Dj ¼ k2j −m2
j þ iδ; ej ∈ EΓ; ð36Þ

where δ > 0 is an infinitesimal small quantity. For gauge
theories we choose Feynman gauge in order to avoid
additional spurious poles. Without loss of generality we
may assume that we labeled the internal edges in such a
way that k1;…; kl is a set of l independent loop momenta
for the Feynman diagram Γ. With each graph Γ we
associate the integrand

fðΓÞ ¼ PΓQ
ej∈EΓ

Dj
: ð37Þ
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PΓ is a polynomial in the independent loop momenta
k1;…; kl and the external momenta p1;…; pn. The l-loop
amplitude with n external legs is the sum over all
contributing Feynman diagrams

Al;nðp1;…; pnÞ ¼
X

Γ∈U loop
l;n

ð−1ÞlcflðΓÞ
jAutðΓÞj

Z �Yl
j¼1

dDkj
ð2πÞD

�
fðΓÞ;

ð38Þ

where 1=jAutðΓÞj denotes the symmetry factor of the
diagram Γ and lcflðΓÞ the number of closed fermion loops
in Γ. Within dimensional regularization, the l-loop integral
is translation invariant. For each Feynman diagram, we
have quite some freedom in choosing the loop momenta
k1;…; kl. We may shift the loop momenta by ðD · lÞ
translations. In addition, we may perform a SLðl;RÞ
transformation [or a SLðl;ZÞ transformation, if we want
to preserve the property that each internal momentum is a
linear combination of the external momenta and the
independent loop momenta with integer coefficients] on
the l independent loop momenta.
Our aim is to define an integrand of the loop amplitude

[i.e., exchange the summation and the integration in
Eq. (38)], such that the integrand becomes a tree-ampli-
tude-like object, where we expect “nice” factorization
properties in all infrared limits. The integrand of a l-loop
amplitude should be a rational function in the loop
momenta k1;…; kl and the external momenta p1;…; pn.
Defining “some” integrand is easy: For each Feynman

diagram we may choose a set of independent loop
momenta, relabel them k1;…; kl, and add up the contri-
butions from the individual Feynman diagrams including
the symmetry factors and the minus signs for each closed
fermion loop. This will give a rational function in the loop
momenta k1;…; kl (defined as independent loop momenta
for all diagrams) and the external momenta p1;…; pn.
However, in general this rational function will not have
“nice” factorization properties in all infrared limits.
We do not know if this is actually possible at the level

of D-dimensional off-shell loop momenta k1;…; kl. In
order to proceed, we chop each Feynman diagram into
several pieces. Using loop-tree duality we rewrite each
Feynman integral as a sum over l-fold residues from the
energy integrations. We then use translation invariance
in the remaining spatial integrations for each piece indi-
vidually. Finally, we reassemble the pieces, which gives
us the regularized l-fold forward limit of a tree-amplitude-
like object.
Within this approach we have to address a few technical

complications:
(1) The l-fold forward limit of a tree amplitude is in

general a singular limit.
(2) Symmetry factors minus signs for closed fermion

loops and combinatorial factors.

(3) Loop diagrams with higher powers of the propa-
gators.

We will address these challenges in the next sections.
Let us start with a review of loop-tree duality [15,25].

For a function f depending on a D-dimensional momen-
tum variable k ¼ ðE; k⃗Þ, where the vector k⃗ is (D − 1)-
dimensional, we write either fðkÞ or fðE; k⃗Þ. Within the
loop-tree duality approach we perform the energy integra-
tion with the help of Cauchy’s residue theorem. This leaves
the integration over the spatial components k⃗. As a short-
hand notation we write for cut graphs

Z
þ=−

dD−1k
ð2πÞD−1 fðkÞ ¼

Z
dD−1k
ð2πÞD−1

�
f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

q
; k⃗

�

þ f

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

q
; k⃗

��
ð39Þ

for the integral over the forward and the backward hyper-
boloids. Let Γ ∈ U l;n and let σ ∈ CΓ be a set of indices
defining a spanning tree. For each cut edge we choose an
orientation, and we may take the l independent loop
momenta to be the loop momenta flowing through the
edges eσ1 ;…; eσl with the chosen orientation. Let

EðαÞ
σ ¼ ðEðαÞ

σ1 ;…; EðαÞ
σl Þ ð40Þ

be a solution to

Dσ1 ¼ � � � ¼ Dσl ¼ 0: ð41Þ

In total there are 2l solutions EðαÞ
σ , indexed by α ¼

ðα1;…; αlÞ ∈ f1;−1gl and given by

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2σ1 þm2

σ1 − iδ
q

;…;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2σl þm2

σl − iδ
q �

: ð42Þ

Let us denote by nðαÞσ the number of times the negative

root −
ffiffiffiffiffiffi� � �p

occurs in EðαÞ
σ . We define the local residue [74]

at EðαÞ
σ by

resðf; EðαÞ
σ Þ ¼ 1

ð2πiÞl
I
γε

fdEσ1 ∧ � � � ∧ dEσl : ð43Þ

The integration in Eq. (43) is around a small l-torus

γε ¼ fðEσ1 ;…; EσlÞ ∈ CljjDσi j ¼ εg; ð44Þ

encircling EðαÞ
σ with orientation

d argDσ1 ∧ d argDσ2 ∧ � � � ∧ d argDσl ≥ 0: ð45Þ

Loop-tree duality allows one to rewrite a l-loop integral as
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Z �Yl
j¼1

dDkj
ð2πÞD

�
fðΓÞ ¼ ð−iÞl

X
σ∈CΓ

Z
þ=−

�Yl
j¼1

dD−1kσj
ð2πÞD−1

�
Sσαð−1Þn

ðαÞ
σ resðf; EðαÞ

σ Þ: ð46Þ

The sum is over all cut trees of Γ. If all propagators occur to power one, Eq. (46) simplifies to

Z �Yl
j¼1

dDkj
ð2πÞD

�
PΓQ

ej∈EΓ
ðk2j −m2

j þ iδÞ ¼ ð−iÞl
X
σ∈CΓ

Z
þ=−

�Yl
j¼1

dD−1kσj

ð2πÞD−12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
!2

σj þm2
σj

q �
Sσα

PΓQ
j∉σðk2j −m2

j þ isjðσÞδÞ
:

ð47Þ

The propagators corresponding to the edges eσ1 ;…; eσl are
cut, the remaining propagators have a modified (“dual”)
iδ-prescription. The quantity sjðσÞ is defined by [25]

sjðσÞ ¼
Ej

Ek
ð48Þ

and Ek is defined as follows: The set σ ¼ fσ1;…; σlg ∈ CΓ
defines a tree Tcut obtained from the graph Γ by cutting the
internal edges Cσ ¼ feσ1 ;…; eσlg. Cutting in addition the
edge ej ∈ EΓnCσ will give a two-forest ðT1; T2Þ. We orient
the external momenta of T1 such that all momenta are
outgoing. Let π be the set of indices corresponding to the
external edges of T1 which come from cutting the edges Cσ

of the graph Γ. The set π may contain an index twice, and
this is the case if both half-edges of a cut edge belong to T1.
Then define Ek by

1

Ek
¼

X
a∈fjg∪π

1

Ea
: ð49Þ

Although we singled out the tree T1 from the two-forest
ðT1; T2Þ, it is easily checked that the definition of sjðσÞ is
invariant under the exchange T1 ↔ T2.
Sσα is a combinatorial factor. The origin of the combi-

natorial factor is as follows [27]: We would like to write the
left-hand side of Eq. (46) as a sum of local residues indexed
by σ and α. Such a representation as a sum of local residues
is not unique. This is due to the fact that the sum of all
residues in any subloop equals zero. We obtain a well-
defined representation as a sum of local residues by
specifying a set of integration variables by σ̃ ∈ CΓ, an
order in which the integrations are performed by π̃ ∈ Sl
and an ordered set of winding numbers α̃ ¼ ðΓ1;…;ΓlÞ.
We assume that the integration over kσ̃π̃1 is performed
first, followed by the integration over kσ̃π̃2 , etc. A
positive winding number implies that the corresponding
integration contour is closed above; for a negative
winding number it is closed below. In order to keep the
indexing to a minimum we introduce the ordered set
k̃ ¼ ðk̃1;…; k̃lÞ ¼ ðkσ̃π̃1 ;…; kσ̃π̃l Þ. For a cut specified by

σ ∈ CΓ we denote by π ∈ Sl the order in which the cuts are

taken; e.g., the cut of the edge eσπ1 is taken in the first

integration, followed by the cut of the edge eσπ2 . Again, in

order to keep the indexing to a minimum we introduce the
ordered set k̂ ¼ ðk̂1;…; k̂lÞ ¼ ðkσπ1 ;…; kσπl Þ. As before,

we denote by α ¼ ðα1;…;αlÞ the signs of the energies for
the cut under consideration. αj ¼ 1 means that we consider
the residue with positive energy with respect to the chosen
orientation of the edge eσπj . k̂ and k̃ are both bases of

independent loop momenta; hence they are related by

k̂i ¼
Xl
j¼1

Σijk̃j þ qi; ð50Þ

with Σij ∈ f−1; 0; 1g and qi depending only on the external
momenta. This defines the l × l-signature matrix Σ. We
denote by ΣðjÞ the j × j-matrix obtained from Σ by deleting
the rows and columns ðjþ 1Þ;…; l. In order to compute the
residues we may temporarily assume that the imaginary
parts of all internal masses are large and strongly ordered.
The final result will not depend on this assumption. After
performing the contour integrations we may remove this
assumption and analytically continue to any desired (com-
plex) kinematics. With these specifications one obtains

1

ð2πiÞl
Z

fðΓÞdE1 ∧ � � � ∧ dEl

¼
X
σ∈CΓ

X
π∈Sl

X
α∈f1;−1gl

Cσ̃ π̃ α̃
σπα resðf; EðαÞ

σ Þ; ð51Þ

where Cσ̃ π̃ α̃
σπα is given by

Cσ̃ π̃ α̃
σπα ¼

Yl
i¼1

ΔðiÞ: ð52Þ

ΔðiÞ is zero if detΣðiÞ ¼ 0. Otherwise we let ΠðiÞ be the
inverse matrix of ΣðiÞ. The quantity ΔðiÞ is then given by

ΔðiÞ ¼ ΓiΠ
ðiÞ
ii θ

�
ΓiIm

�Xi
j¼1

ΠðiÞ
ij αjmσπj

��
: ð53Þ
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The quantities ΔðiÞ are computed with a chosen strong
ordering of the imaginary parts of the internal masses.
The quantity Cσ̃ π̃ α̃

σπα is independent of this choice.
This gives a well-defined representation in terms of a

sum of local residues, but this representation depends on
our choice of σ̃, π̃, and α̃. One may now sum over π and
average over σ̃, α̃, π̃ in a suitable way. We do this as follows:
We group the internal propagatorsDj into chains [75]. Two
propagators belong to the same chain, if their momenta
differ only by a linear combination of the external
momenta. We denote by nchainðjÞ the number of propa-
gators in the chain of Dj. We set

NchainðσÞ ¼
Yl
j¼1

nchainðσjÞ: ð54Þ

To each graph Γ we associate a new graph Γchain called the
chain graph by deleting all external lines and by choosing
one propagator for each chain as a representative. We
denote by jCΓchain j the number of spanning trees of the chain
graph. We then perform a weighted average, where each
term is weighted by 1=NchainðσÞ. We obtain

1

ð2πÞl
Z

fdE1 ∧ � � � ∧ dEl

¼ ð−iÞl
X
σ∈CΓ

X2l
α¼1

Sσαð−1Þn
ðαÞ
σ resðf; EðαÞ

σ Þ; ð55Þ

with

Sσα ¼
ð−1ÞlþnðαÞσ

2ll!jCΓchain j
X
π∈Sl

X
σ̃∈CΓ

X
π̃∈Sl

X
α̃∈f1;−1gl

Cσ̃ π̃ α̃
σπα

NchainðσÞ :

This defines the Sσα and ensures that the combinatorial
factor Sσα only depends on the underlying chain
graph Γchain.
Let us stress that any specific choice of σ̃, π̃, α̃ in Eq. (51)

gives always the same function in terms of a fixed basis of
the remaining spatial loop momenta, identical to the right-
hand side of Eq. (55). The averaging procedure is useful,
when a sum over all diagrams is considered. It allows one to
combine diagrams into off-shell currents.
On the right-hand sides of Eqs. (46) and (47) we may

relabel the loop integration momenta ðkσ1 ; kσ2 ;…; kσlÞ to
ðk1; k2;…; klÞ. There are l! possibilities to do that, and we
may average over all of them. This introduces a sum over
all permutations from the symmetric group Sl together with
a prefactor 1=l!. Please note that the relabeling of the loop
momentum destroys the dual cancellations [18,24,27] on
H-surfaces among the different terms in the sum on the
right-hand sides of Eqs. (46) and (47).
In theories with spin we replace the numerators of the cut

propagators by polarization sums. This is straightforward
for spin1=2 fermions. The corresponding formulas are given

in Eq. (31). The propagator of a (massless) spin 1-gauge
boson is gauge-dependent. In order to avoid additional poles
or additional higher poles it is advantageous to work in
Feynman gauge, where the numerator of the gauge boson
propagators is given by ð−gμνÞ. It is not possible, to express
ð−gμνÞ as a sum over physical polarizations, but we may
express it as a sum over physical and unphysical polar-
izations as in Eq. (33). In addition there are in gauge theories
diagrams, which are obtained from cutting ghost lines.

VI. THE REGULARIZED FORWARD LIMIT

In this section we define the regularized l-fold
forward limit of a tree amplitude and tree-amplitude-like
objects. Let

ðp1;…; pn; k1;…; kl; k̄1;…; k̄lÞ ð56Þ
be a set of ðnþ 2lÞ external on-shell momenta, satisfying
momentum conservation. We denote the masses of the
external particles by

ðmext
j Þ2 ¼ p2

j ; m2
j ¼ k2j ¼ k̄2j : ð57Þ

Let

A0;nþ2lðp1;…;pn;k1;…;kl;k̄1;…;k̄lÞ¼
X

Γ∈U0;nþ2l

fðΓÞ ð58Þ

be the corresponding tree amplitude. We are interested in
the l-fold forward limit

lim
k̄1→−k1

� � � lim
k̄l→−kl

A0;nþ2l: ð59Þ

This limit is singular for two reasons: First, there are
diagrams in U0;nþ2l that give in the forward limit an on-
shell propagator. This case is further divided into two
subcases. The first subcase is characterized as follows: Let
α be a subset of f1;…; lg. Diagrams, which have an
internal edge with momentum

pj þ
X
a∈α

ðka þ k̄aÞ; j ∈ f1;…; ng; ð60Þ

and mass mext
j , are singular in the forward limit. An

example for the first subcase is shown in Fig. 6. Sewing

FIG. 6. A diagram with a singular forward limit. In the limit
k̄1 → −k1 the red propagator goes on-shell. The blob represents
the rest of the diagram. Sewing k1 with k̄1 gives a self-energy
insertion on an external line.
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ka with k̄a will give a diagram with a self-energy insertion
on an external line.
In the second subcase we replace pj in Eq. (60) by kb or

k̄b with b ∈ f1;…; lgnα. The second subcase is charac-
terized by diagrams, which have an internal edge with
momentum

kbþ
X
a∈α

ðkaþ k̄aÞ or k̄bþ
X
a∈α

ðkaþ k̄aÞ; b∈ f1;…; lgnα;

ð61Þ

and mass mb. An example is shown in Fig. 7. Sewing ka
with k̄a for a ∈ f1;…; lg will give a diagram with a self-
energy insertion on an internal line and corresponds to a
graph with higher powers of a propagator.
Our second principal case are diagrams in U0;nþ2l, which

give in the forward limit a propagator with zero momen-
tum. These are diagrams that have an internal edge with
momentum

X
a∈α

ðka þ k̄aÞ: ð62Þ

An example is shown in Fig. 8. Sewing ka with k̄a gives a
tadpole. If the internal edge with the momentum given in
Eq. (62) has zero mass, we have again a singular forward
limit. (In the case of a nonzero mass, but a vanishing
vacuum expectation value of the corresponding field, we
may as well ignore this contribution: Sewing gives a
tadpole, which cancels with the counterterm from the
renormalization of the source.)

Let us therefore define the set of diagrams

Unon−singular
0;nþ2l ð63Þ

as the subset of U0;nþ2l without the singular graphs. More
concretely, these are all graphs from U0;nþ2l, except the
ones which contain a propagator with momentum of the
form as in Eqs. (60), (61), or (62). We define the regularized
l-forward limit as

RfA0;nþ2l ¼ lim
k̄1→−k1

� � � lim
k̄l→−kl

X
Γ∈Unon−singular

0;nþ2l

fðΓÞ: ð64Þ

This defines the regularized l-fold forward limit in terms of
Feynman diagrams.
In gauge theories we allow for the external particles

labeled by

ðk1;…; kl; k̄1;…; k̄lÞ ð65Þ

to have physical and unphysical polarizations in accor-
dance with Eq. (33). Furthermore, these particles are
allowed to be ghosts or antighosts.
In the following sections we will work with a tree-

amplitude-like object, obtained from a tree amplitude by
the replacement

fðΓÞ → SσαfðΓÞ ð66Þ

in Eq. (64). As we defined the regularized l-forward limit
through nonsingular diagrams, multiplying individual dia-
grams with a combinatorial factor will not change the
considerations in this section, and the regularized l-forward
limit of a tree-amplitude-like object is defined analogously.

VII. SYMMETRY FACTORS, MINUS SIGNS,
AND COMBINATORIAL FACTORS

In this section we discuss symmetry factors, minus signs
due to closed fermion loops, and combinatorial factors. We
start with the symmetry factors. Let us define the set

U l−marked
l;n : ð67Þ

Graphs in this set are all graphs which can be obtained
from graphs in U l;n by marking a set of l internal edges
eσ1 ;…; eσl with 1;…; l and an orientation such that when
cutting these marked edges we obtain a connected tree
graph with nþ 2l external edges. Graphs in U l−marked

l;n are
considered to be different if they are obtained from marking
different edges of a graph Γ ∈ U l;n. Furthermore, graphs in
U l−marked
l;n are considered to be different if the order of the

markings is different or if they differ in the orientation of a
marked edge. In short, elements of U l−marked

l;n are graphs
with the additional information specified by an ordered

FIG. 7. A diagram with a singular forward limit. In the limit
k̄1 → −k1 the red propagator goes on-shell. The blob represents
the rest of the diagram. Sewing k1 with k̄1 and k2 with k̄2 gives a
self-energy insertion on an internal line and corresponds to a
graph with higher powers of a propagator.

FIG. 8. A diagram with a singular forward limit. In the limit
k̄1 → −k1 the red propagator becomes a zero-momentum propa-
gator. The blob represents the rest of the diagram. Sewing k1 with
k̄1 gives a tadpole.
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l-tuple ðeσ1 ;…;eσlÞ such that cutting the edges ðeσ1 ;…; eσlÞ
yields a connected tree graph, together with a map eσj → j,
which marks the selected edges with 1,…, l and a map
eσj → fþ;−g, which defines the orientation. There is a
projection,

πforget∶ U l−marked
l;n → U l;n; ð68Þ

defined by forgetting the information related to the mark-
ings of the internal edges. Given a graph Γ ∈ U l;n there are

2ll!jT Γj ð69Þ

graphs in U l−marked
l;n , which project to Γ. This number is

easily obtained as follows: jT Γj gives all possibilities a set
of markings can be chosen, while the factor l! accounts for
all possibilities of ordering this set and the factor 2l for all
possibilities of choosing an orientation. Thus

jU l−marked
l;n j ¼ 2ll!

X
Γ∈U l;n

jT Γj: ð70Þ

The set Uamputated;l−marked
l;n is defined analogously as the

subset of graphs Γ ∈ U l−marked
l;n without self-energy correc-

tions on external lines.
It is also useful to introduce the set

U l−marked;no history
l;n ; ð71Þ

which is obtained from U l−marked
l;n by forgetting the n-tuple

ðeσ1 ;…; eσlÞ, but keeping the marking with 1;…; l and
the orientation. The difference between U l−marked

l;n and

U l−marked;no history
l;n is best illustrated by an example. The

two graphs shown in Fig. 9 corresponds to two different
elements of U l−marked

l;n , but to the same element of

U l−marked;no history
l;n . There are projections

πforget history∶ U l−marked
l;n → U l−marked; no history

l;n ;

πforget marking∶ U l−marked; no history
l;n → U l;n; ð72Þ

defined in the obvious way, such that πforget ¼
πforget marking∘πforget history.
Let us consider the set of momenta

fp1;…; pn; k1;…; kl; k̄1;…; k̄lg ð73Þ

and the set of graphs

U l−sewed
0;nþ2l : ð74Þ

Graphs in this set are obtained from tree graphs with nþ 2l
external lines labeled by the external momenta in Eq. (73),
where we sew together the external edges ki and k̄i for all
i ∈ f1;…; lg. The sewed edges become internal edges,
and we obtain a graph with n external edges and l loops.
We keep the marking kj and k̄j for the sewed half-edges.
The marking of the half-edges with kj and k̄j defines an
orientation of the sewed edges (from kj to k̄j). There is a
bijection

ι∶ U l−sewed
0;nþ2l → U l−marked; no history

l;n ; ð75Þ

sending the jth sewed line with label kj to the orientation
label þ and the jth sewed line with label k̄j to the
orientation label −.
Let us now investigate the relation between

U l−marked
l;n and U l−sewed

0;nþ2l . Consider a function fðΓÞ for

Γ ∈ U l−marked;no history
l;n . We have

X
Γ∈U l−marked

l;n

1

jAutðπforgetðΓÞÞj
fðπforget historyðΓÞÞ

¼
X

Γ∈U l−sewed
0;nþ2l

fðιðΓÞÞ: ð76Þ

Equation (76) allows us to replace a summation over
U l−marked
l;n with symmetry factors inherited from U l;n by a

summation over U l−sewed
0;nþ2l . Equation (76) holds for any

function fðΓÞ. In particular, Eq. (76) holds for the case
where fðΓÞ is given as the product of the standard
application of the Feynman rules and the combinatorial
factor Sσα.
Before giving a proof of Eq. (76), let us first consider a

few examples: Consider first a graph Γ ∈ Ul−marked
l;n , such

that the underlying graph in U l;n has a trivial symmetry
factor, i.e.,

jAutðπforgetðΓÞÞj ¼ 1: ð77Þ

The set ι−1ðπforget historyðΓÞÞ ⊂ U l−sewed
0;nþ2l consists of a single

graph, and both sides of Eq. (76) match trivially. This is
illustrated for a one-loop three-point function in Fig. 10.

FIG. 9. The two graphs shown in this figure correspond to
different elements of U1−marked

1;2 , but to the same element of
U1−marked;no history
1;2 .
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Let us nowdiscuss the case of nontrivial symmetry factors.
We start with two one-loop one-point graphs Γ1;Γ2∈
U1−marked
1;1 with one marking, as shown in Fig. 11. Since

jAutðπforgetðΓ1ÞÞj ¼ jAutðπforgetðΓ2ÞÞj ¼ 2; ð78Þ

both graphs inherit a symmetry factor of 1=2. The
two graphs Γ1 and Γ2 differ only in the orientation
of the marked edge, but project to the same graph
Γ̃ ∈ U1−marked;no history

1;1 :

Γ̃ ¼ πforget historyðΓ1Þ ¼ πforget historyðΓ2Þ: ð79Þ

If we exchange the orientation þ with −, we obtain
the same unordered graph in U1−marked;no history

1;1 . Therefore
we have

fðπforget historyðΓ1ÞÞ ¼ fðπforget historyðΓ2ÞÞ: ð80Þ

The set ι−1ðΓ̃Þ ⊂ U1−sewed
0;3 consists of one graph. Thus the

symmetry factor of 1=2 on the left-hand side of Eq. (76)
cancels the overcounting in U1−marked

1;1 .
As a third example consider two one-loop two-point

graphs Γ1;Γ2 ∈ U1−marked
1;2 with one marking, as shown in

Fig. 12. The two graphs Γ1 and Γ2 differ only in the
choice of the marked edge, but project to the same graph
Γ̃ ∈ U1−marked;no history

1;2 . On the side of the sewed graphs,
the set ι−1ðΓ̃Þ ⊂ U1−sewed

0;4 consists of one graph. Thus the
symmetry factor of 1=2 on the left-hand side of Eq. (76)
cancels the overcounting in U1−marked

1;2 .
As a final example we consider six two-loop two-

point graphs Γ1;…;Γ6 ∈ U2−marked
2;2 with two markings,

as shown in Fig. 13. The six graphs Γ1;…;Γ6

differ only in the choice of the marked edges, but
project to the same graph Γ̃ ∈ U2−marked;no history

2;2 . On the
side of the sewed graphs, the set ι−1ðΓ̃Þ ⊂ U2−sewed

0;6

consists of one graph. Thus the symmetry factor of
1=6 on the left-hand side of Eq. (76) cancels the
overcounting in U2−marked

2;2 .
Let us now give a proof of Eq. (76). We have already

seen that there is a bijection between the graphs in
U l−sewed
0;nþ2l and U l−marked;no history

l;n . On the other hand, there
might be several graphs in U l−marked

l;n which project to the

same graph in U l−marked;no history
l;n . We have to show that the

symmetry factor exactly compensates this overcounting.
Let us consider a graph Γ ∈ U l−marked

l;n . An automorphism
T ∈ AutðπforgetðΓÞÞ permutes the edges and vertices of
πforgetðΓÞ and induces a group action on U l−marked

l;n by
permuting the corresponding edges and vertices together

FIG. 10. The left-hand side shows a graph Γ ∈ U1−marked
1;3 , and

the right-hand side the corresponding set ι−1ðπforget historyðΓÞÞ ⊂
U1−sewed
0;5 .

FIG. 11. The left-hand side shows two graphs Γ1;Γ2 ∈ U1−marked
1;1 together with the symmetry factor of 1=2. We have

πforget historyðΓ1Þ ¼ πforget historyðΓ2Þ ¼ Γ̃. The right-hand side shows the corresponding set ι−1ðΓ̃Þ ⊂ U1−sewed
0;3 .

FIG. 12. The left-hand side shows two graphs Γ1;Γ2 ∈ U1−marked
1;2 together with the symmetry factor of 1=2. We have

πforget historyðΓ1Þ ¼ πforget historyðΓ2Þ ¼ Γ̃. The right-hand side shows the corresponding set ι−1ðΓ̃Þ ⊂ U1−sewed
0;4 .
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with the markings and the orientation. Let us look at the
orbit of Γ under the group action. It is clear that all
graphs in the orbit of Γ project to the same graph
πforget historyðΓÞ in U l−marked;no history

l;n . On the other hand, a
graph Γ ∈ U l−marked

l;n corresponds (due to the markings) to
a tree graph, and therefore its automorphism group is
trivial. Hence the stabilizer group of the group action is
trivial and the group action is free. The orbit of the
induced action of AutðπforgetðΓÞÞ of Γ generates all
graphs which project to πforget historyðΓÞ and the symmetry
factor correctly compensates the overcounting.
Let us now discuss the minus signs for each closed

fermion loop. We recall that we defined in Sec. IV the
sewing operation in such a way that it includes a minus
sign for each sewing of a fermion loop. It is immediately

clear that this prescription reproduces the required addi-
tional minus sign for each closed fermion loop. However,
what is not immediately obvious is how this minus sign
cancels with another minus sign in the case where the
sewing operation does not lead to a closed fermion loop.
In order to see the mechanism, we have to discuss tree
amplitudes with fermion-antifermion pairs of identical
flavor. These amplitudes can always be related to
amplitudes, where all fermion-antifermion pairs have
different flavors. This is achieved by summing over all
fermion permutations. An amplitude with nf identical
fermion-antifermion pairs can be written as

A0;nðf̄1;f1;…; f̄2;f2;…; f̄nf ;fnfÞ
¼
X

σ∈SðnfÞ
ð−1ÞσAnon−id

0;n ðf̄1;fσð1Þ;…; f̄2;fσð2Þ;…; f̄nf ;fσðnfÞÞ:

ð81Þ

Here, ð−1Þσ equals −1 whenever the permutation is odd
and equals þ1 if the permutation is even. In Anon−id

0;n each
external fermion-antifermion pair ðf̄j; fσðjÞÞ is connected
by a continuous fermion line and treated as having a
flavor different from all other fermion-antifermion pairs.
To give an example

FIG. 13. The left-hand side shows six graphs Γ1;…;Γ6 ∈ U2−marked
2;2 together with the symmetry factor of 1=6. We have

πforget historyðΓiÞ ¼ Γ̃ for i ¼ 1;…; 6. The right-hand side shows the corresponding set ι−1ðΓ̃Þ ⊂ U2−sewed
0;6 .

FIG. 14. The two diagrams contributing to A0;4ðf̄1; f1; f̄2; f2Þ.

FIG. 15. Sewing f2 with f̄2 in the two diagrams ofA0;4ðf̄1; f1; f̄2; f2Þ gives the tadpole diagram with a minus sign and the self-energy
diagram with a plus sign.
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A0;4ðf̄1; f1; f̄2; f2Þ ¼ Anon−id
0;4 ðf̄1; f1; f̄2; f2Þ

−Anon−id
0;4 ðf̄1; f2; f̄2; f1Þ: ð82Þ

There is only one diagram contributing to Anon−id
0;4 ðf̄1; f1;

f̄2; f2Þ and Anon−id
0;4 ðf̄1;f2;f̄2;f1Þ. Thus A0;4ðf̄1; f1;

f̄2; f2Þ is the sum of two Feynman diagrams. This is
shown in Fig. 14. Let us now sew f̄2 with f2. Including
the minus sign from the sewing operation, the first term
on the right-hand side of Eq. (82) gives us minus the
tadpole with a closed fermion loop, while the second
term gives us the fermion self-energy with the correct
plus sign. This is shown in Fig. 15. We see that the
minus sign from the sewing operation cancels with a
minus for an odd permutation in Eq. (81).
The same considerations apply to Faddeev-Popov

ghosts: Ghost lines are treated as fermion lines.
Let us now discuss the combinatorial factor Sσα. By

construction, the combinatorial factor Sσα depends only
on the underlying chain graph Γchain. Up to three loops,
all chain graphs are (sub)topologies of the three chain
graphs shown in Fig. 16. The two nonfactorizable
subtopologies of the three-loop Mercedes-Benz graph
are shown in Fig. 17. Up to three loops there are not

too many chain graphs and we may compute the
combinatorial factor for these graphs once and for all.
To specify a cut, we write

ðσα11 ;…; σαll Þ: ð83Þ

The combinatorial factors are invariant if we change the
energy signs αj → −αj for all j ∈ f1;…; lg. One finds
for the three chain diagrams shown in Fig. 16

ð84Þ

For the two nonfactorizable subtopologies of the Mercedes-Benz graph, shown in Fig. 17, one finds

FIG. 16. The basic chain graphs up to three loops. Up to this loop order, all other chain graphs are subtopologies of these three graphs.

FIG. 17. The two nonfactorizable subtopologies of the three-
loop Mercedes-Benz graph.
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ð85Þ

Up to three loops one easily verifies that one may distribute the combinatorial factor over the vertices and propagators of the
chain diagram, such that the combinatorial factor is the product of all vertex and propagator factors. From the three chain
diagrams shown in Fig. 16 we deduce the vertex factors

ð86Þ

These vertex factors are sufficient to reproduce the correct
combinatorial factor for any graph obtained from dressing
up the chain graphs in Fig. 16 with external lines. The
propagator factors are all 1 in this case. In order to see how
it works, it is best to give an example. We consider the cut
ð1þ; 2þ; 3þÞ of the Mercedes-Benz graph. This cut is
shown in Fig. 18. In Fig. 18 three vertices are shown in
green, and one vertex in red. Each green vertex contributes
a factor of 1=

ffiffiffi
6

p
, while the red vertex contributes a factor of

9
ffiffiffi
6

p
=32. In total we obtain�

1ffiffiffi
6

p
��

1ffiffiffi
6

p
��

1ffiffiffi
6

p
��

9

32

ffiffiffi
6

p �
¼ 3

64
; ð87Þ

which is the combinatorial factor for this cut.
The two subtopologies of the Mercedes-Benz graph

shown in Fig. 17 involve vertices with valency 4. They
give new vertex factors for vertices of valency 4. We are
primarily interested in the application of the methods to
QCD. It is well-known that with the help of an auxiliary

tensor particle we may eliminate the four-gluon vertex,
such that we have to deal with three-valent vertices only. It
may seem that the vertex factors for vertices of valency 3
are all that are needed. However, this is not quite true. The
reason is the following: At three-loops there is the ladder
graph shown in Fig. 19, involving only vertices of valency
3. This graph is not a chain graph, as the same loop
momentum is flowing through the propagators 1 and 6. The
underlying chain graph is the five-propagator graph shown
in Fig. 17. The three-loop ladder graph has two types of
cuts, represented by (3, 4, 5) and (1, 3, 5). The vertex
factors defined up to now do not reproduce the correct
combinatorial factor (given by the combinatorial factor of
the five-propagator graph), and we introduce for this graph
nontrivial propagator factors. For cuts of the type (3, 4, 5)
the two propagators 1 and 6 are uncut. For one of the two
(but not both) we introduce a nontrivial propagator factor
according to

FIG. 18. The cut ð1þ; 2þ; 3þÞ of the Mercedes-Benz graph.

FIG. 19. A three-loop graph. Propagators 1 and 2 belong to the
same chain. The underlying chain graph is the five-propagator
graph shown in Fig. 17.
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ð88Þ

Cuts of the type (1, 3, 5) have the propagator 6 uncut. To this propagator we attach the nontrivial propagator
factor as follows:

ð89Þ

With these vertex and propagator factors we reproduce the
combinatorial factor of the underlying chain graph.

VIII. DIAGRAMS WITH HIGHER POWERS OF
THE PROPAGATORS

Let us now discuss loop diagrams with higher powers
of the propagators. These arise from self-energy inser-
tions on internal lines. An example is shown in Fig. 4.
These diagrams contribute to the loop amplitude. These
diagrams are characterized by the fact that at least one
propagator occurs to power two or higher. We may still

compute these diagrams within the loop-tree duality
method with the help of the general formula given in
Eq. (46). However, this is inconvenient, as this requires
the computation of a residue of a function with higher
poles. To see this, let us consider the univariate case. If
fðzÞ is a function of a complex variable z, which has a
pole of order ν at z0, the standard formula for the residue
at z0 is given by

resðf; z0Þ ¼
1

ðν − 1Þ!
�
d
dz

�
ν−1

½ðz − z0ÞνfðzÞ�
����
z¼z0

: ð90Þ
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We may think of the variable z as being the energy
flowing through the raised propagator. For ν > 1 we have
a derivative acting on all z-dependent quantities in the
diagram. Although this can be done, it is process-
dependent and not very well suited for automation.
In Fig. 20 we show a selection of l-fold cuts for the

diagram of Fig. 4. Please note that not all cuts are
problematic. For example, the cuts shown in the left graph
and in the middle graph of Fig. 20 are not problematic and
correspond to residues obtained from single poles.
However, the residue corresponding to the cut shown in
the right graph of Fig. 20 requires the calculation of a
residue of a function with higher poles. If we view the right
graph of Fig. 20 as a tree graph, we see that it corresponds
to a diagram with a singular forward limit as discussed in
Eq. (61) in Sec. VI.
In [26] it was shown that the residues of these cuts cancel

with corresponding contributions from the ultraviolet
counterterms for the field renormalization and the mass
renormalization in the on-shell scheme. For this reason we
included the ultraviolet counterterms from the beginning.
We may therefore simply drop these contributions from the
loop amplitude and the counterterms.
Let us discuss the ultraviolet counterterms in more detail.

For all ultraviolet counterterms (field renormalization, mass
renormalization, coupling renormalization, etc.) we use an
integral representation. Let us write

fCTlCT;nCTðΓÞ ð91Þ

for the integrand of a lCT-loop counterterm with nCT
external legs. A one-loop propagator counterterm is there-
fore denoted by fCT1;2, a one-loop three-valent vertex
counterterm by fCT1;3, etc. Without loss of generality we
may assume that all external momenta of a given counter-
term are loop momenta of further loop integrations. The
case, where one or more external momenta of a given
counterterm are external momenta of the process under
consideration, is a simple specialization. Let α ⊂ f1;…; lg
and lCT ¼ jαj. Let further ðq1;…; qnCTÞ be the set of
external momenta for a given counterterm. With this
notation, the integral representation fCTlCT;nCT has the follow-
ing properties:

(1) the integral

Z �YlCT
j¼1

dDkαj
ð2πÞD

�
fCTlCT;nCT ð92Þ

reproduces the analytic result for the counterterm,
(2) the sum of the bare contribution and the counterterm

falls off at least like Oðjkαj j−5Þ for jkαj j → ∞,
(3) the integral representation fCTlCT;nCT depends only

on the spatial components q⃗1;…; q⃗nCT , but not on
the energies of q1;…; qnCT .

We use loop-tree duality also for the integrals involving
fCTlCT;nCT . The last condition ensures that a counterterm
integral of the form of Eq. (92) requires exactly lCT cuts.
Hence, there is for example no contribution from a
propagator counterterm for the cut shown in the middle
diagram of Fig. 20. Of course, there is a contribution from
the bare diagram.
In order to avoid higher powers of the propagators from

self-energy insertions on internal lines we choose for the
field renormalization and the mass renormalization the on-
shell scheme. This allows us to choose integral represen-
tations for the propagator counterterms fCTlCT;2 [with external
momenta ðq;−qÞ] such that
(4) the sum of all contributing two-point integrands

(bare integrands and counterterm integrands) at a
given loop order vanishes quadratically as q goes
on-shell.

This condition ensures that there are no contributions from
residues related to higher poles. For example, this condition
ensures that the cut shown in the right diagram of Fig. 20
gives no contribution, when summed over the bare
contribution and the counterterm contribution.

IX. THE INTEGRAND OF THE RENORMALIZED
LOOP AMPLITUDE

In the previous section we introduced fCTlCT;nCT as the
integrand in D-dimensional loop momentum space of a
counterterm of order g2lCT with nCT external legs. We may
apply loop-tree duality to the integrated counterterm
and obtain the integrand in (D − 1)-dimensional loop

FIG. 20. Various cut trees for a two-loop diagram with a self-energy insertion on an internal line. The corresponding residues for the
graphs on the left and in the middle are not problematic and correspond to residues obtained from single poles. However, the residue
corresponding to the cut shown in the right graph requires the calculation of a residue of a function with higher poles.
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momentum space as the sum over all lCT-fold cuts. Let us
denote this expression by

VCT
lCT;nCT

: ð93Þ

We may view the expression in Eq. (93) as a new vertex
with nCT external legs and lCT pairs ðkαj ; k̄αjÞ, which when
sewed together reproduce the integrand fCTlCT;nCT . An exam-
ple is shown in Fig. 21. Please note that the vertex VCT

lCT;nCT
in Fig. 21 represents the sum of all cuts shown on the right
in Fig. 21. Note that each cut has its own combinatorial
factors SσCTαCT . The combinatorial factors of a counterterm
diagram need not be identical to the associated bare
diagram. Vertices VCT

0;nCT
with lCT ¼ 0 are the original

vertices of the theory.
Having introduced the new vertices VCT

lCT;nCT
, we may now

define a tree-amplitude-like object

ACT
0;nþ2ðl−lCTÞ;lCT : ð94Þ

This is the sum of all tree diagrams with ðnþ 2l − 2lCTÞ
external legs with vertices consisting of the original
vertices of the theory plus the counterterm vertices
VCT
lCT;nCT

. Each diagram is weighted by a combinatorial
factor Sσα. The order of all counterterm vertices appearing
in ACT

0;nþ2ðl−lCTÞ;lCT is g2lCT . For lCT ¼ 0 we have

ACT
0;nþ2l;0 ¼

X
Γ∈U0;nþ2l

SσαfðΓÞ: ð95Þ

This differs from the tree-amplitudeA0;nþ2l;0 with momenta
p1;…; pn; k1;…; kl; k̄l;…; k̄l by the combinatorial factors
Sσα multiplying each Feynman diagram. The regularized
forward limit

RfACT
0;nþ2ðl−lCTÞ;lCT ð96Þ

is defined analogously as in Sec. VI. We call

Bl;nðp1;…;pn;k1;…;kl;k̄1;…;k̄lÞ¼
Xl
lCT¼0

RfACT
0;nþ2ðl−lCTÞ;lCT

ð97Þ
the UV-subtracted regularized forward limit of a weighted
sum of tree diagrams, or tree-amplitude-like object for short.
We now put all the pieces together. Starting from

Eq. (38)

Al;nðp1;…; pnÞ ¼
X

Γ∈U loop
l;n

ð−1ÞlcflðΓÞ
jAutðΓÞj

Z �Yl
j¼1

dDkj
ð2πÞD

�
fðΓÞ;

ð98Þ
we apply loop-tree duality to all graphs:

Al;nðp1;…; pnÞ ¼ ð−iÞl
X

Γ∈U loop
l;n

ð−1ÞlcflðΓÞ
jAutðΓÞj

X
σ∈CΓ

Z
þ=−

�Yl
j¼1

dD−1kσj

ð2πÞD−12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2σj þm2

σj

q �
Sσαf0ðΓÞ;

where f0ðΓÞ denotes the integrand without the cut propagators. We relabel the loop integration momenta ðkσ1 ; kσ2 ;…; kσlÞ toðk1; k2;…; klÞ. There are l! possibilities to do that, and we average over all of them. We exchange summation and
integration and obtain

Al;nðp1;…; pnÞ ¼
ð−iÞl
l!

Z
þ=−

0
B@Yl

j¼1

dD−1kj

ð2πÞD−12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2j þm2

j

q
1
CA X

Γ∈U loop
l;n

X
σ∈CΓ

X
Sl

ð−1ÞlcflðΓÞ
jAutðΓÞj Sσαf

0ðΓÞ:

FIG. 21. Graphical representation of the integrand of a one-loop counterterm for a three-valent vertex. Each cut comes with two
orientations.
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We recall that we defined in Eq. (39) the phase space integration for cut graphs as an integration over the forward and the
backward hyperboloid. This is equivalent to a sum over both orientations of the momentum flow (or the energy flow).

Making this sum explicit we recognize that the four sums make up the set U l−marked;non−singular
l;n . We therefore have

Al;nðp1;…; pnÞ ¼
ð−iÞl
l!

Z  Yl
j¼1

dD−1kj

ð2πÞD−12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2j þm2

j

q
! X

Γ∈U l−marked;non−singular
l;n

ð−1ÞlcflðΓÞ
jAutðΓÞj Sσαf

0ðΓÞ:

Let us emphasize that for marked graphs the phase space
integration does not include a sum over the forward and the
backward hyperboloids. This sum corresponds to the two
possible orientations of each marked line and is included in
the set U l−marked

l;n .
We then use Eq. (76) to exchange the summation over

marked graphs with the summation over sewed graphs.
There are no singular propagators in the summation:
Singular propagators due to higher powers of some
propagator (i.e., due to self-energy corrections on internal
lines) cancel in the combination of bare and counterterm
contributions in the on-shell scheme. Singular propagators
from self-energy corrections on external lines are absent
from the beginning due to the LSZ reduction formula.
Finally, in theories where all fields have vanishing vacuum
expectation values we may neglect contributions from
tadpoles; hence there are no singular propagators due to
tadpoles. We therefore recognize the sum over sewed
graphs as the regularized forward limit and obtain

Al;nðp1;…; pnÞ ¼
ð−iÞl
l!

Z  Yl
j¼1

dD−1kj

ð2πÞD−12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2j þm2

j

q
!

×
Xl
lCT¼0

RfACT
0;nþ2ðl−lCTÞ;lCT

¼ ð−iÞl
l!

Z  Yl
j¼1

dD−1kj

ð2πÞD−12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2j þm2

j

q
!
Bl;n:

ð99Þ

Equation (99) is the main result of this paper. This equation
expresses the renormalized loop amplitude as a phase space
integral of the regularized forward limit of a tree-amplitude-
like object Bl;n. The virtue of this formula lies in the fact
that it does not refer to Feynman diagrams.
The propagators in the integrand of Eq. (99) have a

modified (“dual”) iδ prescription, as discussed in Sec. V.
The dual iδ prescription is relevant for nonpinch singular-
ities in the phase space integration in Eq. (99). The dual iδ
prescription dictates into which direction the contour
should be deformed to avoid nonpinch singularities.
There are a few straightforward generalizations of

Eq. (99): In theories with several particle species we

include a sum over all flavors for the ð2lÞ additional
external particles. In theories with spin we include a
sum over (physical and unphysical) polarizations according
to Eqs. (31) and (33) for the ð2lÞ additional external
particles. In gauge theories we include ghosts and anti-
ghosts among the ð2lÞ additional external particles.

X. RECURRENCE RELATIONS

Tree amplitudes are efficiently computed using recur-
rence relations [51,76–80]. In this section we discuss the
required modifications for the tree-amplitude-like objects
Bl;n introduced in the previous section. Let us first review
the algorithm for a tree amplitude A0;n. For simplicity, we
focus on ϕ3-theory. The recursive algorithm is based on off-
shell currents J 0;jðq1;…; qjÞ. An off-shell current is an
object with j external on-shell legs with momenta q1;…; qj
and one additional off-shell leg qjþ1, satisfying momentum
conservation

q1 þ � � � þ qj þ qjþ1 ¼ 0: ð100Þ

The recursive algorithm proceeds as follows:
(1) Initialization: Set

J 0;1ðqiÞ ¼ 1; i ∈ f1;…; j − 1g: ð101Þ

In theories with spin the one-current J 0;1 are given
by the external polarizations, for example by polari-
zation vectors for gauge bosons and by spinors for
spin 1=2 fermions.

(2) Recursion: Let γ be a subset of fq1;…; qj−1g and α
and β subsets of γ with

α ∪ β ¼ γ; α ∩ β ¼ ∅: ð102Þ

Let i ¼ jγj, a ¼ jαj, and

Q1¼
X
q∈α

q; Q2¼
X
q∈β

q; Q3¼−Q1−Q2: ð103Þ

Set
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J amputated
0;i ðγÞ ¼

X
α;β

VðQ1; Q2; Q3ÞJ 0;aðαÞJ 0;i−aðβÞ;

J 0;iðγÞ ¼ PðQ3;−Q3ÞJ amputated
0;i ðγÞ; ð104Þ

whereVðq1;q2;q3Þ denotes the vertex andPðq3;−q3Þ
the propagator. The sum is over all subsets α, β of γ
satisfying Eq. (102). This is shown schematically in
Fig. 22.
In theories with several vertices, possibly with

higher valency, Eq. (104) includes a sum over all
allowed vertices. For verticeswith higher valency, the
subset γ is partitioned into more than two subsets.

(3) Amplitude: The amplitude is given by

A0;nðp1;…; pnÞ ¼ J amputated
0;n−1 ðp1;…; pn−1Þ: ð105Þ

In theories with spin the amplitude A0;n is given by
the contraction of J amputated

0;n−1 with J 0;1ðpnÞ.
In order to compute with this algorithm the UV-subtracted
regularized forward limit of ACT

0;nþ2ðl−lCTÞ;lCT we have to
make the following three modifications: First, we enlarge
the set of vertices and include the counterterm vertices

defined in Eq. (93). Second, we exclude terms which have
singular propagators. Third, we include combinatorial
weight factors for vertices and propagators as discussed
in Sec. VII. We denote by J lCT;jðq1;…; qjÞ the off-
shell current with j on-shell legs with momenta q1,…, qj
and containing counterterm vertices of order g2lCT. The
momenta q1,…, qj are a subset of

fp1;…; pn; k1;…; kl; k̄1;…; k̄lg: ð106Þ
The off-shell current J lCT;jðq1;…; qjÞ depends in addition
on lCT pairs ðka; k̄aÞ with ka; k̄a ∉ fq1;…; qjg through the
counterterm vertices. The inclusion of the combinatorial
factors for the vertices is unproblematic. The inclusion of
the combinatorial factors for the propagators is trickier, as
the combinatorial factors for the propagators are known
only after the off-shell current is contracted into another
vertex. For this reason we treat off-shell currents, which
potentially may lead to nontrivial combinatorial factors as
currents of different flavors and combine those only (with
the correct combinatorial factors) when they are contracted
into the next vertex. Our algorithm for the ϕ3-theory is
given by
(1) Initialization: Set

J 0;1ðqiÞ ¼ 1; i ∈ f1;…; j − 1g;
J k;1ðqiÞ ¼ 0; k ≥ 1: ð107Þ

(2) Recursion: Let γ be a subset of fq1;…; qj−1g and α
and β subsets of γ with

α ∪ β ¼ γ; α ∩ β ¼ ∅: ð108Þ
Let i ¼ jγj, a ¼ jαj, and

Q1¼
X
q∈α

q; Q2¼
X
q∈β

q; Q3¼−Q1−Q2: ð109Þ

Set

J amputated
lCT;i;f

ðγÞ¼
X

l1þl2þl3¼lCT

X0

α;β

X
f1;f2

CVVCT
l3;3

ðQ1;Q2;Q3ÞCαJ l1;a;f1ðαÞCβJ l2;i−a;f2ðβÞ; ð110Þ

where the primed sum is over all subsets α, β of γ satisfying eq. (108) and selecting only those contributions, which
will give the same combinatorial factor for the propagator. The different possibilities for the combinatorial factor for
the propagator are indexed by f. CV denotes the combinatorial factor for the vertex, and Cα and Cβ the combinatorial
factors for the propagators for the subcurrents J l1;a;f1ðαÞ and J l2;i−a;f2ðβÞ, which can be determined at this stage.
If the momentum ð−Q3Þ is of the form as in Eqs. (60), (61), or (62) set

J lCT;i;fðγÞ ¼ 0; ð111Þ

otherwise set

J lCT;i;fðγÞ ¼ PðQ3;−Q3ÞJ amputated
lCT;i;f

ðγÞ þ
X

l1þl2¼lCT

PðQ3;−Q3ÞVCT
l2;2

ðQ3;−Q3ÞPðQ3;−Q3ÞJ amputated
l1;i;f

ðγÞ: ð112Þ

FIG. 22. The recurrence relation for the off-shell current in ϕ3-
theory: The current J 0;i is given as a sum over all subcurrents
J 0;jαj and J 0;jβj contracted into the three-valent vertex. The sets α
and β satisfy α ∪ β ¼ f1;…; ig and α ∩ β ¼ ∅.
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(3) The regularized forward limit is given by

RfACT
0;nþ2ðl−lCTÞ;lCTðp1;…;pn;kα1 ;…;kαl−lCT ; k̄α1 ;…; k̄αl−lCT Þ¼J amputated

lCT;n−1þ2ðl−lCTÞðp1;…;pn−1;kα1 ;…;kαl−lCT ; k̄α1 ;…; k̄αl−lCT Þ:
ð113Þ

This algorithm allows the computation of the UV-
subtracted regularized forward limit within ϕ3-theory. In
this theory, the only counterterms are two-point counter-
terms or three-point counterterms. The algorithm is
straightforwardly extended to more general quantum field
theories with additional vertices (possibly with higher
valency) and with spins, following the remarks given in
the algorithm for the computation of A0;n.
Let us add a technical comment relevant to three-loops

and beyond: The combinatorial factors given in Eq. (88)
should only be applied to the second chain with a given
loop momentum. This can be realized by an array of flags,
one for each chain. These flags are set to a specific value
after the corresponding current has been calculated for the
first time.

XI. FIELDS WITH NONVANISHING VACUUM
EXPECTATION VALUES

In the main part of this paper we focused on theories
where all fields have a vanishing vacuum expectation
value. This excludes the Higgs sector of the Standard
Model, where the Higgs field has a nonvanishing
vacuum expectation value. In this short paragraph we
comment on the extension of our results toward the
Standard Model. We have to discuss the treatment of
tadpoles, where the tadpole is connected to the rest of
the diagram through a Higgs propagator. The momen-
tum flow through this propagator is zero, but the Higgs
particle has a nonzero mass; therefore the propagator is
nonsingular. We may therefore keep these contributions
(the tadpole and the associated UV counterterm as
shown in Fig. 2). Thus we would define the regularized
forward limit in such a way that it includes these
contributions. We modify Eq. (62) and allow diagrams
with an internal edge

X
a∈α

ðka þ k̄aÞ; ð114Þ

if this edge corresponds to a propagating Higgs particle.
Up to now we did not make any reference to any

particular renormalization scheme in the Higgs sector.
In Refs. [81,82] the renormalization of the Standard
Model is discussed. In particular, it is convenient to renor-
malize the vacuum expectation value of the Higgs field
such that it corresponds to the physical vacuum expecta-
tion value of the interacting theory. This renormalization

condition translates to the condition that the tadpole
contributions vanish, and we may simply omit them. If
this renormalization condition is imposed, there are no
modifications of our result: As in the unbroken case, we do
not include tadpoles in the regularized forward limit.

XII. CHECKS

We have checked the basic formula for loop-tree duality
Eq. (47) together with the explicit values of the combina-
torial factors Sσα given in Eqs. (84) and (85) for a variety of
graphs up to three loops. This can be done in D ¼ 1
spacetime dimensions. In this case, no integration is left on
the right-hand side of Eq. (47). On the other hand, we may
easily evaluate the loop integral on the left-hand side for
imaginary masses by Monte Carlo integration. We found
for all graphs complete agreement. Let us give some
examples: Our starting point in D ¼ 1 spacetime dimen-
sions is

I ¼
Z �Yl

j¼1

dkj
2π

�
1Q

ej∈EΓ
Dj

; ð115Þ

where Dj ¼ k2j −m2
j . We use the numerical values

m1 ¼ −11i; m2 ¼ −13i; m3 ¼ −17i; m4 ¼ −23i;

ð116Þ

m5 ¼ −31i; m6 ¼ −43i; m7 ¼ −47i: ð117Þ

For the chain graphs of Fig. 16 we find

One-loop : ILT ¼ 1

22
≈ 4.54545 × 10−2;

IMC ¼ ð4.54545� 0.00007Þ × 10−2;

Two-loop : ILT ¼ 1

398684
≈ 2.50825 × 10−6;

IMC ¼ ð2.5083� 0.0001Þ × 10−6;

Three-loop : ILT ¼ 3264791

253676278437997615200

≈ 1.28699 × 10−14;

IMC ¼ ð1.28699� 0.00008Þ × 10−14: ð118Þ

For the two chain graphs of Fig. 17 we find

INTEGRANDS OF LOOP AMPLITUDES WITHIN LOOP-TREE … PHYS. REV. D 101, 116014 (2020)

116014-21



Five-propagator graph : ILT¼ 19

653441364576

≈2.90768×10−11;

IMC¼ð2.9077�0.0002Þ×10−11;

Four-propagator graph : ILT¼ 1

28627456
≈3.49315×10−8;

IMC¼ð3.4932�0.0003Þ×10−8:

ð119Þ
External momenta do not change the combinatorial factors.
Two nontrivial examples of graphs with external momenta
are shown in Fig. 23. With

p1 ¼ 1; p2 ¼ 3; p3 ¼ 5; ð120Þ

and p4 ¼ −p1 − p2 − p3 we obtain for these graphs

Nonplanar double box : ILT ≈ 9.50190 × 10−19;

IMC ¼ ð9.504� 0.005Þ × 10−19;

Three-loop vertex : ILT ≈ 7.92589 × 10−18;

IMC ¼ ð7.928� 0.007Þ × 10−18:

ð121Þ
Please note that the verification of loop-tree duality in
D ¼ 1 spacetime dimensions implies a verification in
arbitrary spacetime dimensions. We may always substitute
the squared internal masses by

m2
j → m2

j þ q⃗2j ; ð122Þ

where q⃗j denotes a (D − 1)-dimensional spatial momen-
tum, depending on the (D − 1)-dimensional spatial loop
momenta k⃗1;…; k⃗l and possibly on the external spatial
momenta p1;…; pn. The loop integral in D spacetime
dimensions is given by the integral over all spatial loop
momenta. The verification in one spacetime dimension
implies the equality of integrands of the spatial integrations.
The equality of the integrands implies of course the
equality of the integrals.
We may check this for integrals, which require neither

subtraction terms nor contour deformation. Our main
interest is D ¼ 4. Examples are provided by Feynman
integrals, which are ultraviolet- and infrared-finite and
which are evaluated in the Euclidean region (i.e., all
Lorentz invariants are nonpositive). The former con-
dition (ultraviolet- and infrared-finiteness) is a necessary
condition that no subtraction terms are required, the
latter condition (Euclidean region) ensures that no
contour deformation is required. Figure 24 show a
few two-loop examples, where analytic results are
available [83]. All external momenta are massive, and
all internal lines are massless. The normalization of the
integrals is

I ¼
Z Yl

r¼1

d4kr
ð2πÞ4

Yn
j¼1

Dj; ð123Þ

where Dj ¼ k2j . As external momenta we use

p1 ¼ ð1; 7; 11; 13Þ; p2 ¼ ð3; 17; 19; 23Þ;
p3 ¼ ð5; 29; 31; 37Þ: ð124Þ

The Lorentz invariants are then

p2
1¼−338; p2

2¼−1170; p2
3¼−3146; p2

4¼−11778;

s¼ðp1þp2Þ2¼−2756; t¼ðp2þp3Þ2¼−8152;

u¼ðp1þp3Þ2¼−5524: ð125Þ

We find good agreement between the loop-tree duality
representation (which we evaluate with Monte Carlo
techniques) and the analytic result:

FIG. 23. The two-loop nonplanar double box (left) and a three-
loop vertex graph (right). All external momenta are outgoing. The
notation p34 ¼ p3 þ p4 is used.

FIG. 24. Finite integrals in four spacetime dimensions. All external momenta are massive, and all internal lines are massless.
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Two-point function : ILT ≈ ð8.549� 0.007Þ × 10−7;

Ianalytic ¼ 8.557 × 10−7;

Vertex : ILT ≈ ð−1.192� 0.001Þ × 10−10;

Ianalytic ¼ −1.193 × 10−10;

Double box : ILT ≈ ð1.680� 0.001Þ × 10−14;

Ianalytic ¼ 1.680 × 10−14: ð126Þ

In order to check that the sum of graphs is correct, we
proceeded as follows: We consider in ϕ3-theory scatter-
ing processes up to three loops with nþ 2l < 10.
On the one hand, we use |QGRAF| [84] to generate all

(bare) loop graphs. For each loop graph, we obtain the set
of cut graphs. For each cut of a single propagator we sum
over the two possibilities to label the half-edges by ðk; k̄Þ or
ðk̄; kÞ (corresponding to the two possible orientations). For
multiloop graphs (l ≥ 2) we average over the l! possibilities
of assigning k1;…; kl to the half-edges. We remove graphs
which correspond to residues of functions with higher
poles. This gives a list of cut graphs, together with a
numerical factor, given by the product of the usual
symmetry factor and 1=l!. The combinatorial factor is
taken care of by the vertex and propagator factors. Identical
graphs are combined by adding their numerical factors. We
have verified that this cancels all symmetry factors,
resulting in a numerical factor 1=l! for all graphs.
On the other hand, we generate a list of cut graphs from

the off-shell recurrence relations, including the factor 1=l!
in Eq. (99). We neglect UV counterterms. For nþ 2l ¼ 9

the lists consist of Oð105Þ graphs. Comparing the two lists
of graphs (with the help of a computer program), we find
agreement including all numerical factors.
Dressing up each graph with a graph-dependent numer-

ator will not change the combinatorics. Graphs with
vertices of valency 4 or higher can always be written as
graphs with three-valent vertices only and numerators,
which cancel the extra propagators. The basic formula of
loop-tree duality is not affected by numerators. In fact, we
discussed in Sec. V the general case with numerators. This
implies that our check of ϕ3-theory tests also the essential
combinatorial parts of any other theory, including Yang-
Mills theory.
Let us add one technical remark: In gauge theories the

use of the Feynman gauge is the most natural choice for
our purposes, as it avoids the introduction of higher or
spurious poles in the propagator. When cutting a gauge
boson line, we have to replace the numerator ð−gμνÞ by
a polarization sum. This cannot be done with just
physical polarization, but we need to introduce unphys-
ical polarizations as discussed in Eq. (33). If we restrict
our attention just to the (bare) loop amplitude, the
contribution from the unphysical polarizations does
not drop out: This can be seen already at one-loop
by looking at the regions giving rise to collinear

singularities. This requires two adjacent loop propaga-
tors to go on-shell, where one of the two on-shell
propagators carries an unphysical polarization [3]. In
contrast, the collinear singularity in the real emission
contribution has two collinear particles, where both
particles have physical polarizations. From the mismatch
of the polarizations it is clear that these two contribu-
tions can never cancel locally. The solution of this
paradox is as follows: A local cancellation of collinear
singularities is achieved, if an integral representation of
the field renormalization constants is included. Then the
longitudinal part of the collinear singularity from the
loop amplitude cancels locally with the longitudinal part
of the collinear singularity of the integral representation
of the field renormalization constant, while the trans-
verse part of the collinear singularity from the real
emission cancels locally with the transverse part of the
collinear singularity of the integral representation of the
field renormalization constant [13]. This demonstrates
that unphysical polarizations and ghosts are required
within the loop-tree duality approach in Feynman gauge.

XIII. CONCLUSIONS AND OUTLOOK

In this paper we showed that the integrand of a
renormalized loop amplitude can be related within loop-
tree duality to the regularized forward limit of a UV-
subtracted tree-amplitude-like object. This nice form is
achieved if field renormalization and mass renormalization
are performed in the on-shell scheme. The use of the on-
shell renormalization scheme for these two quantities
eliminates contributions from residues underlying higher
poles. Our final result gives the integrand in terms of tree-
amplitude-like objects, not individual Feynman diagrams.
This has several advantages: First of all, it allows for an
efficient computation: As ordinary tree amplitudes, the UV-
subtracted regularized forward limit can be computed
efficiently with recurrence relations. Second, our definition
of the loop integrand naturally includes a global definition
of the loop momenta. We expect this representation to have
particular nice properties with respect to a local cancella-
tion of infrared singularities with the corresponding real
emission parts.
Let us outline how the result of this paper fits into the

bigger goal of numerical higher-order computations:
Within loop-tree duality all contributions at a given order
in perturbation theory (from the purely virtual contribution
to the purely real emission contribution) live on spaces
of the same dimension. It is common practice to use for
the Monte Carlo integration of the real emission part a
multichannel approach, corresponding to the individual
infrared limits. In each channel we may then in the next
step set up mappings between the real emission part and
the parts involving loops. At NLO, these mappings can be
found in [13,21]. With the mappings at hand, one then
proves the local cancellation of infrared singularities.
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This treats infrared singularities, where a cancellation
occurs between real and virtual parts. In a final step,
and before embarking on a numerical Monte Carlo inte-
gration we must also treat singularities in the real sub-
space of the virtual part. These singularities are handled
with contour deformation. Algorithms to construct a
suitable contour are already available, even at higher
loops [4,10,11,20,28].
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