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Entanglement entropy, taken here to be geometric, requires a geometrically separable Hilbert space.
In lattice gauge theories, it is not immediately clear if the physical Hilbert space is geometrically separable.
In a previous paper we have shown that the physical Hilbert space in pure gauge Abelian lattice theories
exhibits some form of geometric scaling with the lattice volume, which suggest that the space is locally
factorizable and, therefore, geometrically separable. In this paper, we provide strong evidence that indicates
that this scaling is not present when the group is non-Abelian. We do so by looking at the scaling of the
dimension of the physical Hilbert space of theories with certain discrete groups. The lack of an appropriate
scaling implies that the physical Hilbert space of such a theory does not admit a local factorization. We then
extend the reasoning, as sensibly possible, to SUð2Þ and SUðNÞ to reach the same conclusion. Lastly, we
show that the addition of matter fields to non-Abelian lattice gauge theories makes the resulting physical
Hilbert space locally factorizable.
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I. INTRODUCTION

There has been considerable debate [1–7] about how
entanglement entropy can be defined in the context of
lattice gauge theories. This stems from difficulties in
reasoning about the physical Hilbert space of such theories
when seen through the lens of a constrained unphysical
space. For example, the unphysical Hilbert space of a pure
lattice gauge theory is the space of group-valued degrees of
freedom (d.o.f.) on the links of a lattice. However,
constraining the unphysical space in order to obtain the
physical one leads to a physical Hilbert space of lower
dimension, and, consequently, fewer d.o.f. It follows that
there would not be enough physical d.o.f. for every link in
the lattice and one must think of the physical d.o.f. as being
associated with different geometrical objects if they are to
remain on the same lattice. In two spatial dimensions and
when the gauge group is Abelian, the objects with which
physical d.o.f. are associated are the plaquettes. Of course,
one does not simply make that choice. Instead, one looks at
how the physical Hilbert space scales with the lattice size,
typically using discrete groups, and finds that this scaling
depends only on the number of plaquettes (see Fig. 1). With
this ansatz, one can derive the precise algebra and form of
the physical space. A natural question then arises: does this

general scheme also apply to non-Abelian theories? For
pure gauge theories, this paper shows that the answer is
negative. Nonetheless, when matter fields are introduced,
the noncommutativity of the group elements becomes
irrelevant, thus allowing for a similar factorization to what
is possible with Abelian gauge groups when coupled with
matter.

II. AN OVERVIEW OF THE PROBLEM

In order to straightforwardly define an entanglement
entropy in a quantum theory, it is generally necessary for
the Hilbert space of the theory to exhibit a tensor product
structure such that the total space can be expressed as a
tensor product of local Hilbert spaces [3,6,7]. The local
Hilbert spaces form the local d.o.f. of the theory. Naively,
this appears to be the case for lattice theories, in which
space is discretized and fields are associated with lattice
objects, such as vertices, links, plaquettes, etc. In pure
gauge Kogut-Susskind Hamiltonian lattice theories [8], one
starts with unphysical gauge fields having local unphysical
Hilbert spaces associated with links in the lattice. Gauge
constraints are then imposed on the total unphysical Hilbert
space to obtain the physical Hilbert space as a subspace of
the unphysical space. It is generally clear that one cannot
construct an isomorphism between the unphysical and
physical spaces on a finite and discrete lattice with discrete
groups, since the physical space is a strict subspace of the
unphysical one.
What is less obvious is that, when imposing the specific

constraints of gauge theory, one also cannot generally
construct an isomorphism between the set of unphysical
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local Hilbert spaces and the set of physical ones. In other
words, the physical space will have fewer d.o.f. than the
unphysical space. This can be seen easily if one works with
a Z2 gauge group, which results in local Hilbert spaces of
dimension 2, the minimally viable dimension of what could
be considered a d.o.f. Any reduction in the dimension of the
total Hilbert space then implies that the number of d.o.f.
must decrease. The immediate implication is that local
physical spaces, if they exist at all, cannot generally be
associated with the same lattice objects as the unphysical
ones on a finite lattice. A necessary condition for the local
physical Hilbert spaces to exist is for the dimension of the
physical Hilbert space to scale appropriately with lattice
size. Conversely, a lack of such scaling implies that the total
Hilbert space cannot be factored into local Hilbert spaces.
We will use this to show the impossibility of having local
physical Hilbert spaces in certain non-Abelian pure gauge
lattice theories.
Before moving to the more general lattice problem and

entanglement entropy, it may be useful to look at some
simple systems to illustrate some of the abstract points
above, as well as to provide a brief overview of some of the
more significant Hilbert space factorization issues found in
literature. We use this opportunity to introduce some
notation, as well as terminology and basic assumptions.
We start with a quantum system whose physical space is
described by a single quantum spin. That is, the physical
Hilbert space of this system, H1, is the space of vectors of
the form

jψi ¼ αj↑i þ βj↓i: ð1Þ

A generating set for the von Neumann algebra of this
Hilbert space is

S ¼ fI; σz; σxg: ð2Þ

That is, the von Neumann algebra of the Hilbert space is the
smallest von Neumann algebra containing S, and we write
this algebra asAðSÞ. The operator I is the identity operator,
while σz and σx are the familiar Pauli operators satisfying

σzj↑i ¼ j↑i, σzj↓i ¼ −j↓i, σxj↑i ¼ j↓i, and σxj↓i ¼ j↑i.
However, for consistency with lattice notation and clarity,
we will relabel the operators as U≡ σx and L≡ σz. The
operators L and U are reminiscent here of canonical
variables in the sense that they can be used to completely
describe the state of the local system at a given time. With
that understanding, we will call them canonical pairs. The
algebra generated by canonical pairs, together with the
identity operator, cannot be factored into a tensor product
of algebras. We will use the term local algebra for such an
algebra, which is generated by a maximal set of linearly
independent noncommuting operators, together with the
identity, and which cannot be factored. A local algebra,
together with the local Hilbert space it acts on, is collo-
quially termed degree of freedom (d.o.f.). For simplicity,
we will consider the identity operator as implied when
referring to generating sets. An algebraic factor, and
therefore a local algebra, satisfies A ∩ A0 ¼ fcIg, where
A0 is the commutant of A (the set of all operators that
commute with all operators in A) and c is an arbitrary
constant. The set A ∩ A0 ¼ ZA is called the center of A.
Algebras that satisfy ZA ¼ fcIg are said to have a trivial
center and are factors. Local algebras, as defined above, are
factors by construction.
We can, at this point, consider a larger system, which is

formed by taking the direct product of two single spin
spaces, H2 ¼ H1

L ⊗ H1
R, where the subscripts L and R are

used to distinguish the two subspaces. The most general
state on this space takes the form

jψiLR ¼ αj↑L↑Ri þ βj↑L↓Ri þ δj↓L↑Ri þ γj↓L↓Ri; ð3Þ

with the standard normalization condition α2 þ β2 þ
δ2 þ γ2 ¼ 1.
A set of local algebras for this space is A1

L¼
AðfLL⊗IR;UL⊗IRgÞ≡AðfLL;ULgÞ, A1

R¼AðfLR;URgÞ,
and we omit the multiplication with the identity where it
can be inferred from the context. This decomposition is
only unique up to unitary equivalence, and since all Hilbert
spaces of the same finite dimension are unitarily equivalent,
the relevant quantity here is the dimension ofH2. The total
algebra of the systemA2 is the closure of the local algebras
or the smallest von Neumann algebra that contains bothA1

L
and A1

R, and we write A2 ¼ A1
R ⊗ A1

L. The existence of a
tensor product factorization of H2 or of a factorization of
A2 does not imply that all subalgebras of A2 have trivial
centers. Conversely, the existence of algebras with a non-
trivial center does not preclude a factorization of the Hilbert
space or the algebra. For example, the Hilbert spaceH2 can
be factorized by construction (i.e., it is a tensor product of
two Hilbert spaces). However, the algebra

AZ ¼ AðfLL;UL; LRgÞ; ð4Þ

(a) (b)

FIG. 1. Illustration of the scaling of the physical Hilbert space
in Abelian theories with discrete groups on lattices in two spatial
dimensions. Both lattices have the same number of plaquettes,
but lattice (a) has 13 links, whereas lattice (b) has 12 links. It can
be shown that the physical Hilbert space of both lattices has the
same dimension.
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which is a subalgebra of A2, has a nontrivial center since
A0

Z ¼ AðfLRgÞ and, therefore, AZ ∩ A0
Z ¼ fcLRg. Even

simpler, all algebras of the form AðfAgÞ have a nontrivial
center for some operator A not proportional to the identity.
The spaceH2 is the same space as the unphysical Hilbert

space of a pure gauge Z2 1þ 1-dimensional Kogut-
Susskind Hamiltonian lattice with two links. In the gauge
theory, one imposes a gauge constraint that restricts the
physical states to states of the form

jψiphysLR ¼ αj↑↑i þ βj↓↓i; ð5Þ

where we omitted some of the L and R subscripts. The
dimension of the resulting physical Hilbert space, which we
denote by H2

phys, is now the same as that of H1. The
physical Hilbert space has only one d.o.f. and this d.o.f.
cannot be meaningfully assigned to the two links in the
lattice. The gauge constraints act as a cutoff, leading to a
change in scale. Imposing the constraint that all states take
the form in Eq. (5) means that some operators in the initial
algebra become unphysical, in the sense that they do not
preserve this form. For example,

ULðαj↑↑i þ βj↓↓iÞ ¼ αj↓↑i þ βj↑↓i: ð6Þ

The operators in A2 that preserve the physical form of
states are generated by the set S2phys ¼ fLL; LR;ULURg.
The operators in AðS2physÞ are called physical operators.
The operators LL and LR are only distinct when they act
on unphysical states. For any physical state jψiphysLR ,

LLjψiphysLR ¼ LRjψiphysLR , and we write LL¼PLR. To be clear,
if we postulate that the physical world consists of only
physical or gauge invariant states, the operators LL and LR
are the same matrix (i.e., they are the same operator). This
highlights an important aspect: certain statements about
operators in AðS2physÞ are different when the operators act
on the unphysical Hilbert space from when they act on the
physical subspace. Furthermore, the physical algebra can-
not resolve more details than can be distinguished through
the physical Hilbert space. In other words, the subset of
operators in A2 that are physical cannot create or measure
more states than are available in the physical Hilbert space.
That is, there is no L and R in H2

phys, no more than there
would be in H1. We, again, arrive at the idea that the
dimension of the physical Hilbert space is a significant
quantity.
A more pertinent example to lattice gauge theory is the

two-plaquette 2þ 1 dimensional Z2 pure gauge lattice,
shown in Fig. 2. The unphysical Hilbert space of this
theory associates a Z2 element, which is equivalent to a
basis of H1, to every link in the lattice. The total
unphysical Hilbert space is a tensor product of H1 spaces:

H7 ¼ H1
1 ⊗ � � � ⊗ H1

7, where the subscripts label the local
spaces and correspond to the numbering of the links in
Fig. 2. One can, at this point, proceed to (partially) fix the
gauge using a variation of maximal tree gauge fixing [9] by
fixing a set of links to a certain vector (e.g., j↑i) as long as
the fixed links do not form any loops. This has the effect of
reducing the dimension of the unphysical Hilbert space,
from dimðH7Þ ¼ 27 to anything of the form dimðHÞ ¼ 2n,
with n∈ f2;…; 6g, the lower bound being the dimension of
the physical space, obtained when a maximal set of links
has been fixed. The physical space is isomorphic to H2,
which is a well-known duality [10]. The physical states are
of the form

jψiphys7 ¼ αj↑↑↑↑↑↑↑i þ βj↓↓↓↑↑↑↓i þ γj↑↑↑↓↓↓↑i
þ δj↑↑↑↑↑↑↓i; ð7Þ

and we can identify the unphysical basis as the basis of
electric fluxes through links. A more illuminating way of
writing the physical states is

ð8Þ

where the thick lines correspond to j↓i states on the
respective links. We can see that the space of physical
states is isomorphic to an H2 space with ,

, , and . A relevant obser-
vation is that we cannot associate the twoH1 factors ofH2

with links in the lattice in any sort of uniform way. Once
again, gauge constrains act as a cutoff that requires a
(slight) change of scale. If one proceeds to investigate the
physical Hilbert space of larger lattices with the same group
(and with free boundary conditions), one finds that the
physical Hilbert space has dimension dimðHphysÞ ¼ 2n,
where n is the number of plaquettes in the lattice. It is then
natural to interpret the physical d.o.f. as fluxes through
plaquettes rather than through links.
In terms of algebras, the unphysical algebra can be

written as A7 ¼ A1
1 ⊗ � � � ⊗ A1

7, where the subscripts
label the links. The subset of operators of A7 that are
physical is generated by

S7phys ¼ fLi; U1U2U3U7; U1U2U3U7g; ð9Þ

FIG. 2. A two-plaquette lattice. The numbers label the links.
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where i∈ f1;…; 7g. However, as was the case before, S7phys
contains redundancies such as

L1 ¼P L2 ¼P L3;

L4 ¼P L5 ¼P L6;

L7 ¼P L3L4: ð10Þ

From an algebraic perspective, the question is whether
AðS7physÞ can be factored, and if so, how. The problem is
typically [1,2] approached by attempting to assign the
operators in S7phys into two sets, one for each of the left and
right sides of the lattice. This can naively run into a number
of issues. Specifically, [1] attempts to factor operators
such as U1U2U3U7 into U1U2U3I7 and I1I2I3U7, with In
being identity operators on the respective subspaces,
noting that the factored operators cease to act exclusively
in the physical subspace (i.e., they are not gauge invariant).
A slightly different attempt is made in [2], which
notes operator identities similar to those in Eq. (10) and
concludes that a choice of algebra such as AEC ¼
AðfL3; L4; L7; U4U5U6U7gÞ has L4 as a center, since
L4 commutes with all other operators inAEC. This is indeed
the case, as it was the case with Eq. (4). However, this does
not imply that all factorization choices result in algebras
with center. Specifically, AL ¼ AðfL3; U1U2U3U7gÞ and
AR ¼ AðfL4; U4U5U6U7gÞ are both factors and satisfy
AðS7physÞ ¼ AL ⊗ AR. Consequently, we can relabel the
generating set operators as LA ≡ L3, UL ≡U1U2U3U7,
LB ≡ L4, and UR ¼ U4U5U6U7 such that the subalge-
bras can now be written as AL ¼ AðfLL;ULgÞ,
AR ¼ AðfLR;URgÞ, which matches what one would
expect by looking at the dimension of the physical
Hilbert space.
The change in geometry resulting from the reduction in

the dimension of the Hilbert space has additional implica-
tions to the locality of operators: local operators in the
physical space are not necessarily local in the unphysical
space nor are unphysical operators necessarily local in the
physical space. For example, in the two-plaquette lattice,

L7 ¼P LLLR and UL ¼ U1U2U3U7. Both of these equiv-
alences represent matrix expressions and, without further
constraints, the only meaningful measure of locality is the
form that a particular matrix takes in a given basis. A more
meaningful notion of locality arises when dynamics are
introduced through a Hamiltonian. If the theory being
modeled is one that is expected to approximate physical
reality, then this Hamiltonian should be such that correla-
tions do not violate causality, which usually implies that the
terms in the Hamiltonian are, by construction, local. One
may take things a step further by noting that it is the
dynamics that give the underlying Hilbert space a topology.
In more specific but perhaps less general terms, the

topology and geometry of the space are fully given by
the way rays of light propagate and the propagation of rays
of light is governed by dynamics. The relevance to geo-
metric entanglement entropy and Hilbert space tensor
product structures is that one must be careful when using
the locality of operators as a fundamental assumption,
especially when constraints are involved or when used with
theories that are not causal.

A. Entanglement entropy
and unphysical Hilbert spaces

Entanglement entropy gives a quantitative measure of
the extent to which parts of a state belonging to comple-
mentary subspaces of a Hilbert space are correlated.
Physical states in gauge theories, whose Hilbert spaces
are defined as subspaces of unphysical/extended Hilbert
spaces, can appear as entangled states in the unphysical
space. For example, the state with α ¼ β ¼ 1=

ffiffiffi
2

p
in Eq. (5)

is a Bell pair with perfect entanglement despite the physical
space being that of a single spin, for which the notion of
entanglement seems absurd. There exist arguments [1,5] in
literature that suggest that such entanglement is indeed a
legitimate physical phenomenon. In particular, for states of
the form found in Eq. (5), one finds that

S01 ¼ −trρ1 log ρ1 ¼ −α2 logα2 − β2 log β2; ð11Þ

which is [5] a classical Shannon entropy term of the
distribution of basis vectors and where

ρ1 ¼ tr2½α2j↑i1 ⊗ j↑i2h↑j2 ⊗ h↑j1 þ β2j↓i1
⊗ j↓i2h↓j2 ⊗ h↓j1 þ � � ��

¼ α2j↑i1h↑j1 þ β2j↓i1h↓j1 ð12Þ

is the reduced density matrix.
The need to use unphysical Hilbert spaces to calculate

the entanglement entropy stems from the assumption that it
is impossible to partition the physical Hilbert space of
lattice gauge theories, an assumption that we have shown
[11] to be unnecessary in 2þ 1-dimensional Abelian pure
gauge theories (briefly illustrated in the previous section)
and in Abelian gauge theories when coupled with matter
fields. Furthermore, if we assume that the physical Hilbert
space is the only accurate representation of physical reality,
an entanglement entropy calculated on an extended Hilbert
space can only be valid to the extent that it leads to the same
result on any extended Hilbert space that starts from the
physical space, similar to how the outcome of renormal-
ization does not depend on the details of the renormaliza-
tion scheme. However, this is clearly not so with
entanglement entropy as we will show in the following
paragraphs.
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With Eq. (5), which we repeat here for clarity, we chose
to extend the physical Hilbert space such that physical
states are of the form

jψiphysLR ¼ αj↑↑i þ βj↓↓i: ð13Þ

Since there is no physics that can constrain the construction
of the unphysical space, this is simply a choice of two
orthogonal vectors in a two-spin space. Consequently, we
could have chosen the unphysical space such that physical
states are of the form

jψ 00i ¼ αffiffiffi
2

p ðj↑↑i þ j↓↓iÞ þ βffiffiffi
2

p ðj↑↑i − j↓↓iÞ; ð14Þ

for which we would obtain

S001 ¼−
ðαþβÞ2

2
log

ðαþβÞ2
2

−
ðα−βÞ2

2
log

ðα−βÞ2
2

: ð15Þ

We recognize Eq. (14) as similar to a momentum-space
version of Eq. (13) and, if the spins in Eq. (13) were
associated with different physical regions of space, there
would be a preferential geometrical basis that would favor
Eq. (13) or a local unitary transformation of it which would
preserve the entanglement entropy. However, due to the fact
that Eqs. (13) and (14) are related by a unitary transformation
that acts exclusively in an unphysical subspace, one cannot
use physical arguments to elevate one choice above the other.
The example physical Hilbert space in Eq. (13) can be

extended in ways that can lead to arbitrarily parametrized
entanglement entropies:

jψ 00i ¼ αðγj↑↑i1 ⊗ j↑↑i2 þ δj↓↓i1 ⊗ j↓↓i2Þ
þ βðγj↑↓i1 ⊗ j↑↓i2 þ δj↓↑i1 ⊗ j↓↑i2Þ; ð16Þ

with an entanglement entropy of

S001 ¼ −α2γ2 log α2γ2 − α2δ2 log α2δ2 − β2γ2 log β2γ2

− β2δ2 log β2δ2

¼ −α2 logα2 − β2 log β2 − γ2 log γ2 − δ2 log δ2; ð17Þ

where γ can be varied arbitrarily, up to normalization.
Buividovich and Polikarpov [1] argue that a “minimal”

extension of the Hilbert space is justified. However, it is
unclear what minimal means and whether it can lead to an
unambiguous solution. If minimal refers to the dimension of
the extended Hilbert space, then it does not unambiguously
specify a solution, as evidenced by Eqs. (14) and (15).
These arguments suggest that unphysical Hilbert spaces

are unsuitable in defining an entanglement entropy, since
the results depend on the choice of unphysical space and
cannot be falsified. This work takes as fundamental the
assumption that either a definition of entanglement entropy

be based exclusively on physical aspects of the theory or
that the definition is such that unphysical aspects can be
removed from the final result. Nonetheless, when discus-
sing field theories, and, in particular, lattice theories, it is
not always clear that this is possible, for reasons that we
will outline shortly.

B. Geometric entanglement entropy
and lattice theories

Until this point in the discussion, we focused mostly on a
generic form of entanglement entropy, which applies to any
bipartition of the Hilbert space, giving little weight to
the geometry of the underlying space. However, we are
often interested in geometric entanglement entropy, which
implies a geometric bipartition of the Hilbert space in
which each subspace belongs to a well defined geometric
region. In order to be able to talk about subspaces
associated with arbitrary geometric regions (up to a certain
cutoff), the dimension of the Hilbert space becomes
insufficient. Instead, one must look at how this dimension
correlates with the volume of such geometric regions.
In field theory, fields are associated with every point in

space. We will call a local field theory a field theory for
which homogeneous local algebras are associated with
every point in bulk space in a translation-invariant way. The
local algebras can take many forms, and can exhibit
additional geometrical or internal structure. More generally,
one would also allow for algebras associated with points on
the boundaries of space as well as “central” algebras, whose
operators commute with all other operators in the theory,
but are not clearly associated with any bulk geometrical
objects. The discussion can be made significantly more
tractable if we enforce two restrictions, of which the first is
to discretize the space, such as in Hamiltonian lattice
gauge theories [8]. This allows us to bypass some of the
difficulties found in the continuum and treat the problem as
a quantum mechanical one, with the local algebras acting
on local Hilbert spaces, as we have done in the previous
sections. The second restriction is to focus on local Hilbert
spaces of finite dimension, which allows us to use simple
counting arguments. With these assumptions, one expects
the total Hilbert space of the theory to take the form of a
tensor product of the following form:

H ¼ ⨂
ϕ;x∈V

Hbulk
ϕ;x ⊗ ⨂

ψ ;y∈B
Hboundary

ψ ;y ⊗ ⨂
χ
Hcentral

χ ; ð18Þ

where V represents the bulk of the space, B the boundary,
ϕ, ψ , and χ run over all the possible fields, and Hϕ;ψ ;χ

represent local Hilbert spaces on which the respective local
algebras faithfully act on. For most of what follows, it is
also sufficient to restrict the discussion to single fields.
Then, one can write
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log dimðHÞ ¼ V log dimðHbulk
x Þ þ B log dimðHboundary

y Þ
þ logHcentral

¼ aV þ bBþ c; ð19Þ

where a, b, c ≥ 0 are constants representing the log-
dimension of the local Hilbert spaces and V and B are
the volume of the bulk and area of the boundary, respec-
tively. The reason why Eq. (19) is useful is that one does
not need to know what the factorization in Eq. (18) is. One
can simply look at the scaling of the log-dimension of the
Hilbert space with the geometrical space. The existence of
an appropriate scaling does not necessarily guarantee that
the algebra of a theory can be factored into a local field
theory in an obvious or elegant way. On the other hand, if
we can count the dimension of the physical Hilbert space of
a lattice theory and find that it does not scale according to
Eq. (19), we can conclude that it is not a local theory in the
sense of Eq. (18).
The existence of the factorization in Eq. (18), sans the

central and boundary sectors, enables a textbook definition
for entanglement entropy. The boundary sector, while not
commonly dealt with, is uninteresting if the entire geometric
space is compact: a subset of the geometric space takes the
form S ¼ V 0 ∪ B0, with V 0 ⊆ V, B0 ⊆ B, and its associated
Hilbert space is thenHS¼⨂ϕ;x∈V 0Hbulk

ϕ;x ⊗⨂ψ ;y∈B0Hboundary
ψ ;y .

It is less clear, on the other hand, what one should dowith the
central sector and whether one can meaningfully talk about
entanglement entropy if c ≠ 0. Surprisingly enough, a more
interesting situation arises when the log-dimension of the
Hilbert space of a theory follows the general formof Eq. (18),
but with c < 0. This represents a global constraint on the
Hilbert space, which yields a topological entanglement
entropy [12]. We will come back to this point shortly.
The issue of Hilbert space scaling is largely a trivial

issue in theories where the physical Hilbert space is
postulated, such as scalar theories of which the simplest
are various quantum spin/Ising models. The more in-
triguing scenario arises in gauge theories, where one starts
with an unphysical space satisfying the factorization
Eq. (18) with c ¼ 0 and V representing the number of
links in the lattice. When gauge constraints are imposed,
however, dimðHphysÞ < dimðHunphysÞ and the geometric
scaling of the log-dimension of the physical Hilbert space
cannot generally be the same as that of the unphysical one.
This is immediately apparent if we look at a 1þ 1-
dimensional lattice gauge theory (see Fig. 3) with a Z2

group, which shares the algebra seen earlier in Eq. (2).
In such a lattice, unphysical Z2 local algebras Ai are

associated with every link connecting two nearest vertices.
The algebrasAi act on local unphysical Hilbert spaces,Hi,
whose vectors are denoted by juii. The field basis for each
of the local Hilbert spaces consists of vectors correspond-
ing to each group element, which we will denote here by
j→i and j←i, for reasons that will become apparent shortly.
A gauge transformation would then simultaneously switch
basis vectors j→i ↔ j←i for all links connected to a
particular vertex, i. Ignoring for a moment the remaining
links, the most general state invariant under such a trans-
formation is

jψ ii ¼
γffiffiffi
2

p ½j→ii−1j→ii þ j←ii−1j←ii� þ
δffiffiffi
2

p ½j→ii−1j←ii
þ j←ii−1j→ii�: ð20Þ

If we make a local basis change defined by j↑i ¼
1ffiffi
2

p ðj←i þ j→iÞ and j↓i ¼ 1ffiffi
2

p ðj←i − j→iÞ, we obtain

jψ ii ¼
γ þ δffiffiffi

2
p j↑ii−1j↑ii þ

γ − δffiffiffi
2

p j↓ii−1j↓ii: ð21Þ

But this is precisely the form of the state in Eq. (5) with
γ ¼ ðαþ βÞ= ffiffiffi

2
p

and δ ¼ ðα − βÞ= ffiffiffi
2

p
, which we restate:

jψ 0i ¼ αj↑ii−1j↑ii þ βj↓ii−1j↓ii: ð22Þ

This equation is Gauss’ law (for the Z2 group): in the
absence of charges, whatever we measure for the electric
field on link i − 1 will also be measured on link i. If we
further require gauge invariance at every vertex in the
lattice, we arrive at a general form for physical states on a
1þ 1-dimensional Z2 lattice:

jψiphys ¼ αð� � � ⊗ j↑i0 ⊗ j↑i1 ⊗ � � � ⊗ j↑i5 ⊗ � � �Þ
þ βð� � � j↓i0 ⊗ j↓i1 ⊗ � � � ⊗ j↓i5 ⊗ � � �Þ; ð23Þ

or, more compactly,

jψiphys ¼ αj� � �↑↑ � � �↑ � � �i þ βj� � �↓↓ � � �↓ � � �i: ð24Þ

As expected, we end up with a physical space that is of a
lower dimension than the unphysical space. Whereas the
unphysical space satisfied log dimHunphys ¼ V log 2, the
physical one follows log dimHphys ¼ log 2. This is sig-
nificant because it implies that we cannot associate a
physical Z2 algebra with every link in the lattice, nor
can we split the physical Hilbert space in a way that would
allow us to associate portions of it with every link. It should
be noted that, since the physical algebra cannot be used to
create or measure states that are outside of the physical
Hilbert space, there is no intrinsic metric that would allow
us to distinguish a finer geometry than what the dimensionFIG. 3. Lattice in one spatial dimension.
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of the physical Hilbert space allows. In other words, one
cannot meaningfully speak of geometric entanglement
entropy below the distance cutoff of the theory, which,
in this case, is the whole lattice.
There is little to be learned from the one-dimensional

case for lattices in higher dimensional pure gauge theories.
In two or more dimensions, bulk vertices connect more than
two links, making Gauss’ law more complex. In two
dimensions, the physical Hilbert space can be described
in terms of closed electric curves, but the precise details
depend on the boundary conditions [11]. With free boun-
dary conditions, the dimension of the physical Hilbert
space scales exactly with the area of the lattice expressed as
the number of plaquettes. Since all states consist of
superpositions of closed electric loops, one can more
readily describe the physical space as the space of magnetic
fluxes going through plaquettes. This is the simple case.
When the boundary conditions are such that the lattice
acquires the topology of a closed surface, one encounters
the magnetic Gauss’ law, which imposes a global constraint
on the now unphysical Hilbert space of magnetic fluxes
through plaquettes. For example, consider the Hilbert space
of magnetic fluxes through tiles of a sphere for some tiling
of the sphere. A vector in this basis is fully described by the
fluxes through all but one tile, a tile which can be chosen at
random. The flux through this tile can be obtained through
the magnetic Gauss’ law. However, with a tile removed, the
spherical symmetry (or a polyhedral approximation of it) is
lost. It is not immediately clear if this Hilbert space has a
spherically symmetric formulation which would allow it to
be interpreted as a field theory in which independent local
algebras are associated with every unit of area or tile. If one
now considers a state such as

jψic ¼ K
X

mi ∈BmagðHÞ
jmii; ð25Þ

whereK is a normalization constant andBmagðHÞ is the basis
of magnetic fluxes through plaquettes such that all
mi ∈BmagðHÞ satisfy Gauss’ law, one obtains a constant
entanglement entropy that does not depend on the size or
shape of the entanglement region. The resulting entangle-
ment entropy is called [12] topological entanglement
entropy. The state in Eq. (25) is often called the low coupling
ground state, for reasons that we will not discuss here.
It is notable that, in the sphere example, topological

entanglement entropy is also independent of scale, pro-
vided that the state remains one in which there is no
entanglement entropy when calculated on the uncon-
strained space (i.e., the low coupling ground state). One
can use progressively finer tilings and obtain the same
result. It can then be asked whether this property is
preserved when the continuum limit is taken. In the
continuum limit, the tile in A would have a vanishing
area. In [13], it is argued that the field at a single point

would have zero integration measure and be irrelevant to
the calculation. Naively extending that reasoning would
suggest that the continuum limit of the entanglement
entropy of the low coupling ground state of the magnetic
theory on a sphere should be zero, in apparent conflict with
the scale independence of the topological entanglement
entropy. A similar observation can be found in [14].
There is an important conclusion that can be drawn at

this point which is that, despite certain difficulties with the
log-dimension scaling of the physical Hilbert space related
to nonzero coefficients for boundary and central algebras in
Eq. (19), Abelian gauge theories exhibit a linear scaling
with bulk volume, which suggests that, in many cases, their
physical algebra can be factored as a local algebra. This
appears to be fundamentally different from non-Abelian
pure gauge theories. In the next section, we will provide
evidence that non-Abelian theories have a complex bulk
scaling which prevents such a factorization. We have
shown in [11] that coupling to matter fields elegantly
solves the factorization problem in Abelian theories. It does
so regardless of dimension and boundary conditions: given
any graph (in the graph theoretical sense) with electric
fluxes on edges/links, one can always find the necessary
charges at vertices to satisfy Gauss’ law. In Sec. IV, we will
show that, unlike with pure non-Abelian gauge fields, the
factorization carries over to non-Abelian gauge theories
when coupled to matter fields.

III. PURE NON-ABELIAN GAUGE THEORIES

The main goal of this section is to investigate the scaling
of the log-dimension of the physical Hilbert space with
lattice size in pure non-Abelian lattice gauge theories. The
Hilbert space dimension is, unfortunately, only well defined
for discrete groups. However, we provide some evidence
that suggests that the primary conclusion that can be
derived from discrete groups, the nonexistence of a local
factorization of the algebra of the theory, likely extends to
continuous groups. We discuss how this lack of factoriza-
tion relates to the familiar ways of looking at the Hilbert
space of non-Abelian lattice gauge theories.
The counting of degrees of freedom is complicated by

the existence of local gauge transformations. In order to
make the problem tractable, wewill use maximal tree gauge
fixing [9], which, in non-Abelian theories, reduces the
degeneracy to a global gauge symmetry.

A. Preliminaries

We start by introducing the basic formalism that we will
use when working with Hamiltonian lattice theories. For
the derivation of Hamiltonian lattice theory from Wilson’s
lattice theory, see, for example, [8,15]. The vertices in the
lattice are denoted as points x with coordinates

xi ¼ ani; a∈R; ni ∈N; ð26Þ
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where a represents the unit spacing of the lattice, and i
labels spatial dimensions. We will generally use lattice
units a ¼ 1 and not explicitly mention a.
Matter fields are associated with vertices, and are

denoted by a standard Greek letter and a vertex, such as
ϕðxÞ. The local unphysical Hilbert space of the matter
fields HϕðxÞ is the space of square integrable functions on
ϕðxÞ and vectors in the possibly non-normalizable field
basis are denoted by, e.g., jϕðxÞi.
Gauge fields are associated with links connecting near-

est-neighboring vertices. They are denoted by uiðxÞ∈G,
where x represents a vertex at one end of the link, i is the
spatial direction in which the other end of the link is to be
found, and G is the gauge group. That is, the field uiðxÞ
connects the vertices at x and xþ î. The local unphysical
Hilbert space of the gauge fieldHuiðxÞ is the space of square
integrable functions of unit norm on G and vectors in the
field basis are denoted by juiðxÞi.
We define the operators ΦðxÞ and UiðxÞ that are

diagonal in the field basis of the matter and gauge fields,
respectively:

ΦðxÞjϕðxÞi ¼ ϕðxÞjϕðxÞi ð27Þ

UiðxÞjuiðxÞi ¼ uiðxÞjuiðxÞi ð28Þ

U−iðxþ îÞjuiðxÞi ¼ u†i ðxÞjuiðxÞi: ð29Þ

The values ϕðxÞ and uiðxÞ outside the kets are to be
understood as abstract objects whose multiplication with
the kets is not always well defined. They can be used to
construct states only when appropriate wave functions from
their domain to the complex numbers are specified. The
total unphysical Hilbert space is obtained as a tensor
product of all local Hilbert spaces:

H ¼ Hϕ ⊗ Hu ¼
�
⨂
x
HϕðxÞ

�
⊗

�
⨂
x0;i

Huiðx0Þ

�
; ð30Þ

where x0 and i are such that links do not extend past the
boundary of the lattice, if such a boundary exists.
Gauge transformations are families of operators

G½gðxÞ�; gðxÞ∈G that associate a group element with each
vertex, where we used the square brackets to indicate that
G½� depends on the gðxÞ for all x. The fields transform as
follows under gauge transformations:

G½gðxÞ�jϕðxÞi ¼ jgðxÞϕðxÞi ð31Þ

G½gðxÞ�juiðxÞi ¼ jgðxÞuiðxÞg−1ðxþ îÞi: ð32Þ

A local gauge transformation is a gauge transformation
G½I; I;…; gðx0Þ;…; I� for which all except one gðx0Þ are set
to the group identity. Local gauge transformations are,
therefore, associated with a single vertex.
The physical Hilbert space of the theory is the space of

vectors invariant under all gauge transformations:

Hphys ¼ fjψi ¼ jψiϕ ⊗ jψiu ∈HjG½gðxÞ�jψi
¼ jψi; ∀ gðxÞ∈Gg: ð33Þ

The gauge orbit of jψi is the set of vectors obtained by
applying all possible gauge transformations to it:

O½ψ � ¼ fjψ 0i∈Hjjψ 0i ¼ G½gðxÞ�jψi; ∀ gðxÞ∈Gg: ð34Þ

The space of gauge orbits and Hphys are isomorphic.
Consequently, one can find the dimension of the physical
Hilbert space by finding a maximal set of vectors in the
field basis of the unphysical space such that no two vectors
in the set can be related by a gauge transformation.
In pure gauge theories, there is no matter field and

H ¼ Hu in Eq. (30), with gauge transformations being
described exclusively by Eq. (32).
A useful class of operators is that of Wilson loops, which

are constructed from products of operators UiðxÞ taken
around closed loops:

UC ¼ Ui1ðx1ÞUi2ðx2Þ � � �UinðxnÞ; ð35Þ

where

xkþ1 ¼ xk þ bik ð36Þ

x1 ¼ xn þ bin; ð37Þ

with xk being vertices along the closed curve C. By
applying UC to gauge transformed fields from Eq. (32),
one obtains its transformation properties under a gauge
transformation:

UC⨂
k;y
ju0kðyÞi ¼ Ui1ðx1ÞUi2ðx2Þ � � �UinðxnÞ⨂

k;y
jgðyÞukðyÞg−1ðyþ k̂Þi

¼ gðx1Þui1ðx1Þg−1ðx1 þ î1Þgðx2Þui2ðx2Þg−1ðx2 þ î2Þ � � �
gðxnÞuinðxnÞg−1ðxn þ înÞ⨂

k;y
jgðyÞukðyÞg−1ðyþ k̂Þi: ð38Þ
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Applying Eqs. (36) and (37), we obtain

UC⨂
k;y
ju0kðyÞi

¼ gðx1Þui1ðx1Þui2ðx2Þ � � �uinðxnÞg−1ðx1Þ⨂
k;y
ju0kðyÞi: ð39Þ

We can then take any function fc∶ G → C that satisfies
fcðgug−1Þ¼fcðuÞ;∀ g; u∈G (i.e., a class function on G)
and verify that

G−1fcðUCÞG⨂
k;y
jukðyÞi ¼ fcðUCÞ⨂

k;y
jukðyÞi; ð40Þ

hence fcðUCÞ is a gauge invariant operator. The most
common fc is the trace of a group element in some
representation of the group and the operator trðUCÞ is a
Wilson loop.

B. Electric states

The physical space of gauge theories is often described
in terms of states of definite electric flux constrained by
Gauss’ law. It can be shown that these states must take the
form

jψ li ¼ 1ffiffiffiffiffiffiffijGjp X
g∈G

λlðgÞjgi; ð41Þ

where λl is a one-dimensional representation of the group
labeled by the electric flux l and jGj is the dimension of the
group. For continuous groups, the sum is replaced by a
Haar integral. Given two links with a shared vertex (i.e., a
one-dimensional theory), gauge invariance at that vertex
implies that

G½h�jψ li ⊗ jψmi

¼ G½h� 1

jGj
X

g1;g2 ∈G

λlðg1Þλmðg2Þjg1i ⊗ jg2i

¼ 1

jGj
X

g1;g2 ∈G

λlðg1Þλmðg2Þjg1h−1i ⊗ jhg2i

¼ 1

jGj
X

g0
1
;g0

2
∈G

λlðg01ÞλlðhÞλmðh−1Þλmðg02Þjg01i ⊗ jg02i

¼ 1

jGj
X

g0
1
;g0

2
∈G

λlðg01Þλmðg02Þjg01i ⊗ jg02i: ð42Þ

This can only be true if λlðhÞλmðh−1Þ ¼ 1 for all h, which
implies l ¼ m. In other words, physical states are states in
which the electric flux must be conserved. This is Gauss’
law. For finite Abelian groups, the number of orthogonal
one-dimensional representations equals the dimension of
the group. Consequently, electric states on links form a
basis for the unphysical space. The physical space can then

be obtained by imposing Gauss’ law on the electric states.
For non-Abelian groups, the number of one-dimensional
representations is equal to the number of conjugacy classes,
which is less than the dimension of the group. This makes it
impossible to use constrained electric states as a basis for
physical states in non-Abelian theories. We will give a
slightly more detailed version of this statement when
talking about the quaternion group.

C. Maximal tree gauge fixing

Maximal tree gauge fixing (see [9]) involves fixing a set
of links in the lattice to a specific vector, which is most
conveniently taken to be jIi, where I ∈G is the identity
element of the group. The set of links is such that they form
a maximal tree, which, by definition, is a set of links to
which the addition of any other link would result in
the creation of a loop. An example of a maximal tree is
shown in Fig. 4. For non-Abelian gauge theories, this type
of gauge fixing leaves an ancillary global gauge trans-
formation, G½g; g;…; g� (or G½g�, in short). Under such a
gauge transformation, link vectors in the field basis trans-
form as

juiðxÞi → jguiðxÞg−1i: ð43Þ

It is clear that links for which uiðxÞ ¼ gz; gz ∈ZðGÞ, where
ZðGÞ is the center of the group, remain invariant under such
transformations. When g spansG in Eq. (43), the remaining
links span the respective conjugacy classes of the group.
Naively, one might be led to the conclusion that the
physical Hilbert space is isomorphic to the space obtained
from the tensor product of the local spaces of the group
conjugacy classes ClðGÞ on every unfixed link. However,
as will be shown, this is not generally true.
When considering electric states on maximal tree gauge

fixed lattices, each unfixed link can be treated independ-
ently and there is no Gauss’ law to enforce in either Abelian
or non-Abelian theories. This is because a global gauge
transformation acts on electric states as follows:

FIG. 4. A maximal tree on a 2-d lattice. Thick links are set to
the identity. In two dimensions with free boundary conditions,
there are as many remaining links as there are plaquettes.
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G½h� 1ffiffiffiffiffiffiffijGjp X
g∈G

λlðgÞjgi ¼ 1ffiffiffiffiffiffiffijGjp X
g∈G

λlðgÞjhgh−1i

¼ 1ffiffiffiffiffiffiffijGjp X
g0 ∈G

λlðh−1g0hÞjg0i

¼ 1ffiffiffiffiffiffiffijGjp X
g0 ∈G

λlðg0Þjg0i; ð44Þ

where we used the fact that λl is a one-dimensional
representation to commute g0 and h. Consequently, electric
states are automatically invariant under global gauge trans-
formations. This implies that if electric states form a basis
for local physical states, one could express the total Hilbert
space as a tensor product of electric states on unfixed links
in a maximal tree gauge fixed lattice.

D. The quaternion group

The quaternion group (Q8) is one of the simplest non-
Abelian groups. One way to represent it is with the familiar
Pauli matrices:

Q8 ¼ f�I;�iσag; a∈ f1; 2; 3g; ð45Þ

with I being the 2 × 2 identity matrix. It has five conjugacy
classes:

ClðQ8Þ¼ffþIg;f−Ig;fþiσa;−iσagg; a∈f1;2;3g: ð46Þ

One can construct an algebra diagonal in the conjugacy
classes of the group by following the general idea behind
Wilson loops. In the above representation, a set of operators
generating this algebra is

SAU
¼
�
U0

C≡1

2
trUC;Ua

C≡1

4
tr2ðiσaUCÞ

�
; a∈f1;2;3g;

ð47Þ

where C represents ordered links forming a closed curve.
On a one-plaquette lattice, the dimension of the physical
Hilbert space is five, corresponding to the number of
conjugacy classes of the group:

Hphys
□

¼ spanBphys
□;U

¼ spanfjþIi; j−Ii; 1ffiffiffi
2

p ðjþiσai þ j−iσaiÞg;

a∈ f1; 2; 3g; ð48Þ

where the square symbol denotes a quantity belonging to a
single plaquette. This is illustrated in Fig. 5, which fixes the
gauge by setting three of the four plaquette links to jIi. A
remaining global gauge transformation by some group

element g∈Q8 leaves the identity links (1, 2, and 3)
unchanged, while rotating the remaining link through its
conjugacy class. However, if the state of the unfixed link
is in Hphys

□
, all links remain invariant under all gauge

transformations.
The action of SA□

on states of the form jgi; g∈Q8

attached to the unfixed link of a plaquette (e.g., Fig. 5), with
the square symbol denoting the counterclockwise curve
formed by the links of the plaquette, is

U0
□
j�Ii ¼ �j�Ii;

U0
□
j�iσai ¼ 0; a∈ f1; 2; 3g;

Ub
□
j�Ii ¼ 0;

Ub
□
j�iσai ¼ δabj�iσai; a∈ f1; 2; 3g: ð49Þ

On a two-plaquette lattice (see Fig. 6), maximal tree
gauge fixing leads to two free links. One would, therefore,
expect that dimHphys ¼ ðHphys

□
Þ2 ¼ 25. A careful count of

the gauge orbits, however, reveals that there are three
additional states. These states arise from the fact that
the single plaquette orbits are not necessarily separable,
resulting in the following states being distinct physical
states:

jψ1;ai ¼
1ffiffiffi
2

p ðj#1iσ#2i þ aðLÞj#1iσ#2i þ aðRÞ þ j#1iσ#2i

− aðLÞj#1iσ#2i − aðRÞÞ;

jψ2;ai ¼
1ffiffiffi
2

p ðj#1iσ#2i þ aðLÞj#1iσ#2i − aðRÞ þ j#1iσ#2i

− aðLÞj#1iσ#2i þ aðRÞÞ; ð50Þ

FIG. 5. Illustration of physical states on a non-Abelian single
plaquette lattice with maximal tree gauge fixing. Dotted links are
fixed to the identity group element. A global gauge trans-
formation by some element g at all vertices is still possible.

FIG. 6. Illustration of physical states on a non-Abelian two-
plaquette lattice with maximal tree gauge fixing. Dotted links are
fixed to the identity group element.
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and we omitted the range of a, which is as before. One can see that the two are distinct states by acting on them with ,
which is U0

C with C going around both plaquettes:

ð51Þ

As can be easily verified, these states are indistinguishable
using local physical operators , , , which
go around either of the plaquettes. Alternatively, and with
some matrix arithmetic which we will not reproduce here,
one can see that the two families of states do not mix under
the ancillary global gauge transformation. It is quite clear
that the 28 physical states in the two-plaquette lattice
cannot belong to a homogeneous tensor product (i.e., a
tensor product in which all factors have the same dimen-
sion). Even if the physical degrees of freedom were not
associated with plaquettes, it remains clear that the number
28 is not an integral power of any integer and cannot
represent the dimension of a tensor product of homo-
geneous local Hilbert spaces.
The physical Hilbert space on the one plaquette lattice, as

seen above, can be described in terms of the conjugacy
classes of the group. We can separate the classes into
the “poles,” P ¼ spanfjIi; j − Iig and the “bulk,” B ¼
spanf 1ffiffi

2
p ðj þ iσai þ j − iσaig; a∈ f1; 2; 3g. Then,Hphys

□
¼

P ⊕ B. On two plaquettes, we can classify the states

based on the action of the Wilson loop operators
on the plaquettes as well as around both of the
plaquettes. With a factorizable space, we would expect

.

However, we have seen that some of the states in B ⊗ B
acquire a splitting and the last term becomes isomorphic1 to
ðB ⊗ BÞ ⊕ X, for some X. Using counting arguments
alone, it would still be possible to factorize such an
enlarged space. However, since the two plaquette space
is larger than the product of single plaquette spaces,
homogeneous factors would also have to be larger than
Hphys

□
. The smallest such factors would be of dimension

dimHphys
□

þ1, which implies that dimX>2dimHphys
□

.
This is not the case for the quaternion group, since
dimX ¼ 3≯10 ¼ 2 dimHphys

□
.

Numerical calculations2 of the Hilbert space dimension
are shown in Table I and, graphically, in Fig. 7. One can
infer that the dimension of the physical Hilbert space3 takes
the form dimHphys ¼ 4np−1 × ð2np þ 3Þ, hence,

log dimHphys ¼ ðnp − 1Þ log 4þ logð2np þ 3Þ: ð52Þ

This scaling cannot be fit in the context of what one would
expect from a theory with a geometric tensor product
structure, as suggested by Eq. (19), which requires a linear
scaling of the log-dimension of Hphys with lattice size.
An identical scaling as with the quaternion group is

obtained with the dihedral groupD4, which shares the order
and number of conjugacy classes with Q8. Similar results
are obtained with the dihedral groups D3 and D5, and the
scaling of the corresponding Hilbert spaces can be seen
in Fig. 8.

TABLE I. This table shows the scaling of the physical Hilbert
space (Hphys) of a two-dimensional lattice gauge theory with a
quaternion group. For comparison purposes, also shown are the
scaling of the dimension of the unphysical Hilbert space (Hunphys)
on a maximal tree gauge fixed lattice and the scaling of the
dimension of Habel, a physical Hilbert space with an Abelian
group having a dimension equal to the dimension of the single-
plaquette quaternion physical space (i.e., Z5).

Number of
plaquettes dimHphys dimHabel dimHunphys

1 5 5 8
2 28 25 64
3 176 125 512
4 1216 625 4096
5 8960 3125 32768
6 68608 15625 262144
7 536576 78125 2097152
8 4243456 390625 16777216

1The precise form of the term is less important, since we care
mostly about counting states.

2The code is available at https://github.com/hategan/phys-hs-
scaling-na.

3This scaling holds for the data shown and does not necessarily
extend to larger lattices.
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It can be noted that a number of solutions proposed in
literature that attempt to address the geometric nonsepar-
ability of the physical Hilbert space of lattice gauge theories
do not address the existence of the nonlocal states seen
here. Gauge fixing by setting links at the boundary of the
entanglement region to the group identity, as suggested in
[2], does not change any of the arguments above if the
boundary of the entanglement region is part of the maximal
tree used in gauge fixing. The nonlocal states are not
restricted to neighboring plaquettes, and this issue is not
addressed by various Hilbert space extension schemes at
the boundary [1,4]. To see this, one can consider two
arbitrarily space-separated gauge links, in a lattice with
maximal tree gauge fixing and states in which all remaining
links except the two are set to the group identity, as in
Fig. 9. Then, one can consider the states in Eq. (50), apply
the same reasoning as for the two-plaquette lattice, and

arrive at the same conclusion: local Wilson loops cannot be
used to distinguish between nonlocal states; one needs a
Wilson loop that goes through both of the nonidentity links
in order to distinguish the two physical states.
The difficulty of expressing states on lattices with the

quaternion group is also apparent when we look at electric
states. The quaternion group has five representations, but
only four are one-dimensional, which is insufficient to
construct a local electric basis for the physical states. This
does not mean that the quaternion group gauge theory, and
non-Abelian theories in general, do not have electric states,
but only that such states are not all expressible as a tensor
product of electric states on individual links. Specifically,
we can always create electric states by applying Wilson
loop operators on the electric vacuum j0i, which is the
electric state corresponding to the trivial representation.
However, doing so with extended loops in non-Abelian
theories can result in inseparable states. For example, we
can apply a properly normalized version of the two-
plaquette loop operator using the fixed lattice in Fig. 6:

FIG. 8. Scaling of the physical Hilbert space in a two-dimensional lattice gauge theory with the dihedral groups D3 (left) and
D5 (right).

FIG. 7. A plot of the data in Table I. As the number of plaquettes
increases, the nonlocal physical states become dominant.

FIG. 9. A geometrically inseparable state on a lattice with a
non-Abelian gauge group. The state is such that all the links
except the two labeled ones are set to the group identity.
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ð53Þ

which is a state that cannot be factorized. By contrast, for a
Z2 Abelian group, one would obtain

ð54Þ

where the states j→i and j←i are eigenstates of U with
eigenvalues þ1 and −1, respectively.
In principle, one could attempt to fully fix the gauge in

the field basis by constraining the ancillary global gauge
transformation. In order to do so, one must impose some
condition on the gauge fields. Looking at the states in
Eq. (50), the two terms in each state are related by a global
gauge transformation and therefore part of the same gauge
orbit. However, both states are symmetric under a ðLÞ ↔
ðRÞ exchange, and one can conclude that a gauge fixing
condition cannot be local, since a local condition, appli-
cable equally to both factors, cannot select a single term
in both states. One is left with nonlocal conditions.
Furthermore, even nonlocal conditions that are invariant
to link exchanges, such as conditions of the form
maxg

P
x;μ O½gux;μg−1� which maximize some functional

that only has local terms, O, over all global gauge trans-
formations [16] can fail to fix the gauge, since they would
also fail to select a single term in either of the states in
Eq. (50). These difficulties are reminiscent of the Gribov
ambiguity from the continuum.

E. SUðNÞ
For continuous groups, the dimension of the local Hilbert

space (physical or unphysical) is not finite. This makes the
exact form of counting arguments that were used for
discrete groups impossible to use. Instead, the natural
extension to continuous groups is to attempt to construct
a map from pairs of physical basis states on two regions of a
lattice to physical basis states on the whole lattice; or,
conversely, show that such a construction is impossible
because the whole lattice can support multiple physical
states for a single pair of physical states on the smaller
regions, when those regions are taken separately from the

rest of the lattice. In other words, one can show that larger
lattices support physically distinct states that are indistin-
guishable using local physical operators or products of
local physical operators.4 Specifically, one can show that
∃ ga; g1b; g2b ∈ SUðNÞ with

g1b ≅ g2b;

gag1b ≇ gag2b; ð55Þ

where “≅” denotes class equivalence. The physical mean-
ing of that statement is that one could take the two-
plaquette lattice in Fig. 6 and states

ð56Þ

where we labeled the kets inside the integral as belonging to
the left or right plaquette and du is the Haar measure. As
mentioned before, gauge invariant operators diagonal in the
field basis take the form fcðUCÞ, where C is a closed curve
of links on the lattice and fc is a class function. AssumeWC
is such an operator with some fc injective over conjugacy
classes. That is, fcðg1Þ ¼ fcðg2Þ if and only if g1 ≅ g2.
Applying and to the states jψ1i and jψ2i in
Eq. (56), we obtain

ð57Þ

Since fcðg1bÞ¼fcðg2bÞ, it follows that ,
, and the two states are indistin-

guishable using the operators. However, , the

4It should be noted that the use of “locality”makes the argument
somewhat weak. A physical operator can appear nonlocal when
expressed in terms of unphysical operators (see Sec. II).
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operator associated with the curve that goes around both
plaquettes (without crossing), when applied to the two
states above yields

ð58Þ

which are different by the assumption gag1b ≇ gag2b. The
existence of group elements satisfying Eq. (55) can be
shown explicitly for SUðNÞ:

ga ¼ g1b ¼

0
BBB@

eiθ

e−iθ

1

. .
.

1
CCCA

g2b ¼

0
BBB@

e−iθ

eiθ

1

. .
.

1
CCCA; ð59Þ

with the dots being ones and θ∈ ð0; πÞ. The two are
conjugate since g2b ¼ hg1bh

−1, with

h ¼

0
BBB@

0 1

−1 0

1

. .
.

1
CCCA: ð60Þ

However, gag1b and gag2b are clearly not conjugate, since
their characters in the fundamental representation are
different:

trðgag1bÞ ¼ tr

0
BBB@

e2iθ

e−2iθ

1

. .
.

1
CCCA

¼ ðN − 2Þ þ 2 cosð2θÞ

trðgag2bÞ ¼ tr

0
BBB@

1

1

1

. .
.

1
CCCA ¼ N: ð61Þ

Going further into a general treatment for SUðNÞ is
difficult, but one can gain more insight by restricting
the discussion to SUð2Þ. Conjugacy classes in SUð2Þ
are fully described by the character of the fundamental

representation. That implies that classes can be parame-

trized as Clθ¼defClðdðθÞÞ with θ∈ ½0; π�, where we define
dðθÞ ¼ diagðeiθ; e−iθÞ. Without loss of generality, we can
pick ga ¼ dðθaÞ; g1b ¼ dðθbÞ in Eq. (55). We then want to
see what conjugacy class gag2b belongs to as g2b spans
Clðg1bÞ. To do so, we pick an arbitrary SUð2Þ element
h ¼ ð α

−β�
β
α�Þ, with jαj2 þ jβj2 ¼ 1 and calculate trðgahg1bh†Þ

to obtain

trðgahg1bh†Þ ¼ 2jαj2 cosðθa þ θbÞ
þ 2ð1 − jαj2Þ cosðθa − θbÞ: ð62Þ

It follows that the field basis of physical states on two
plaquettes is described by three parameters: θa; θb ∈ ½0; π�,
and jαj2 ≡ x∈ ½0; 1�. The later corresponds to distinct
physical states only if cosðθa þ θbÞ ≠ cosðθa − θbÞ which
is equivalent to θa; θb ∈ ð0; πÞ. This is equivalent to the
statement that a basis for physical states on a two-plaquette
SUð2Þ lattice consist of simultaneous eigenstates of Wilson
loop operators , , , where UC are like WC
above, but with fc ¼ tr, the remaining operator, , being
related [17] to the other three by the following SUð2Þ
Mandelstam constraint:

ð63Þ

We can, therefore, express the physical Hilbert space on a
two-plaquette SUð2Þ lattice as

ð64Þ

where P¼spanfjdð0Þi;jdðπÞig, B¼spanfjClθijθ∈ð0;πÞg,
and X ¼ spanfjxijx∈ ½0; 1�g. This shows a similar struc-
ture to the physical space of the two-plaquette lattice with a
quaternion group, but where X enters as a factor in a term
rather than being a term in a direct sum. For simplicity, in
the discussion that follows, we will focus only on the last
term of Eq. (64). It is, in principle, possible to write X as a
product of two factors in the sense that one may be able
to find Hphys

1 and Hphys
2 such that there is a one-to-one

mapping ðθa; θb; xÞ⟷
f ðu1; u2Þ, with field basis vectors

ju1i∈Hphys
1 ; ju2i∈Hphys

2 and with u1, u2 taking values in
some connected subspace of R such that ui have the
appearance of fields. However, this cannot be done while
preserving certain properties of the mapping. For example,
if we wanted to analytically relate the algebras of Hphys

i

with the algebra of , f would need to be analytic
and thus continuous. That is, we would need to find a
bijective and continuous function from a connected sub-
space A ¼ fðθa; θb; xÞg ⊂ R3 to a connected subspace
B ¼ fðu1; u2Þg ⊂ R2, which is impossible, as can be seen
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from the following argument: Consider a closed curve
C ⊂ B. Then BnC is disconnected. By continuity of f, the
preimage AnS ¼ f−1ðBnCÞ, where S ¼ f−1ðCÞ, should
also be disconnected, which implies that S is a surface
in A. The surface S is connected since C is connected by
construction. Let x1; x2 ∈S be two distinct points. The set
S0 ¼ Snfx1; x2g remains connected.5 However, the image
of S0 is now C0 ¼ Cnffðx1Þ; fðx2Þg and the points fðx1Þ
and fðx2Þ divide C into two disconnected curve segments.
Thus, we arrive at a contradiction, since S0 is connected, but
its image C0 through a continuous function is not.
We can also prove a less general but possibly more

illuminating statement: there is no way to construct the
function f such that it does not mix the subspaces of θa and
θb. That is, if ðu; vÞ ¼ fðθa; θb; xÞ and f is bijective, there
is no bijective g such that

u ¼ gðθa; xÞ
v ¼ gðθb; xÞ: ð65Þ

To see this, take x1 ≠ x2 such that ðu1; v1Þ ¼ fðθa; θb; x1Þ
and ðu2; v2Þ ¼ fðθa; θb; x2Þ. Then u1 ¼ gðθa; x1Þ, v2 ¼
gðθb; x2Þ. Since ðu1;v1Þ;ðu2;v2Þ∈Hphys

1 ⊗Hphys
2 then also

ðu1; v2Þ∈Hphys
1 ⊗ Hphys

2 . This implies that ∃ ðθ0a; θ0b; x0Þ
such that ðu1; v2Þ ¼ fðθ0a; θ0b; x0Þ. That implies that
gðθa; x1Þ ¼ gðθ0a; x0Þ, which, by the bijective condition of
g implies that θa ¼ θ0a; x1 ¼ x0. Similarly, we obtain that
θb ¼ θ0b;x2¼ x0 and thus x1 ¼ x2, which is a contradiction.
While the existence of the condition in Eq. (55) exists

for higher SUðNÞ, the one-to-one mapping between the
character in the fundamental representation and the con-
jugacy class does not necessarily hold. For example, in
SUð4Þ, diagð1;−1; 1;−1Þ and diagði;−i; i;−iÞ have the
same trace, but are not in the same conjugacy class. The
resulting complexity is beyond the scope of this paper.

IV. THE ROLE OF MATTER FIELDS

We now turn to theories where both matter and gauge
fields are present. In contrast with pure gauge theories, the
addition of matter fields results in the ability to factor the
Hilbert space locally. For a somewhat related discussion,
please see [18].
We use a similar strategy as with pure gauge lattices: fix

the gauge in order to understand how the physical space
looks like, then construct, from the unphysical algebra,
gauge invariant operators that generate gauge invariant
states which span a space isomorphic to the gauge fixed
space. The arguments presented here hold in a general
sense, being applicable to general groups and sets they act

on. However, for simplicity, we restrict the discussion to
matter fields that take the form of vectors.
We assume a matter field that transforms in the familiar

way [Eq. (31)] under gauge transformations, which we
repeat here:

jϕðxÞi → jϕ0ðxÞi ¼ jgðxÞϕðxÞi: ð66Þ

We fix the gauge as before, by setting links to the group
identity on a maximal tree. As before, we are left with a
global gauge transformation, which leaves the identity links
unchanged. However, matter fields at vertices attached to
those links are not invariant under the global gauge trans-
formation, and we cannot simply discard all but the unfixed
links from the gauge-fixed space. We are left with d.o.f.
corresponding to the unfixed links as well as those
corresponding to matter fields at the vertices. The global
gauge transformation now amounts to an overall phase of
the matter fields. We can fix the global gauge by rotating
everything such that the field on one chosen vertex x0
points in a gauge direction of our choice. Specifically, field
basis vectors for the matter fields can be written as

jϕðxÞi ¼ jvðxÞ1ϕϕ̃ðxÞi; ð67Þ

with vðxÞ being gauge group G valued, 1ϕ being a
representative vector that elements in G act on faithfully,
and ϕ̃ðxÞ being a scalar. We assume, for simplicity, that the
space of the kets in the rhs of Eq. (67) can be factored as
jvðxÞ1ϕϕ̃ðxÞi ¼ jvðxÞi ⊗ jϕ̃ðxÞi. We fix the gauge fully by
picking a x0 and using a global gauge transformation,

jvðxÞi ⊗ jϕ̃ðxÞi → jvðx0Þ−1vðxÞi ⊗ jϕ̃ðxÞi; ð68Þ

which implies

jvðx0Þi ⊗ jϕ̃ðx0Þi → jIGi ⊗ jϕ̃ðx0Þi; ð69Þ

where IG is the gauge group identity. We now have NV − 1
group-valued d.o.f., where NV is the number of vertices in
the lattice, corresponding to the gauge portion of the matter
fields at all vertices except for x0. From graph theory, we
know that a maximal tree always has NV − 1 edges, which
implies that we are also left with NL − ðNV − 1Þ unfixed
link d.o.f. The total number of gauge-valued d.o.f. is then

NG ¼ NV − 1þ NL − ðNV − 1Þ ¼ NL: ð70Þ

That is, after full gauge fixing, we have precisely as many
gauge-valued d.o.f. as we have links in the lattice and as
many scalar valued d.o.f. as we have vertices. We can,
therefore, construct a physical Hilbert space from the
unphysical one by a redefinition of variables:

5It is possible for S to be a surface with singular points and
then the statement would not always be true; however, one can
always choose x1 and x2 such that they do not coincide with
singular points on the surface.
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ϕ0ðxÞ ¼ ϕ̃ðxÞ
u0iðxÞ ¼ vðxÞ−1uiðxÞvðxþ îÞ; ð71Þ

where xþ î denotes a neighboring vertex in the i direction
from x. Both the redefined variables are now gauge
invariant quantities. The primed matter field is invariant
by construction. For u0, we note that the unphysical field v
transforms as vðxÞ → gðxÞvðxÞ. Then, using Eq. (32),

ju0iðxÞi→ jvðxÞ−1gðxÞ−1gðxÞuiðxÞg−1ðxþ îÞgðxþ îÞvðxþ îÞi
¼jvðxÞ−1uiðxÞvðxþ îÞi
¼ju0iðxÞi: ð72Þ

The physical interpretation of the fields u0 is that, in the
corresponding electric basis, electric fluxes are now auto-
matically associated with the local charges that create them.
These charges are not coupled to local energy eigenstates of
the primed matter sector, except possibly through dynam-
ics. The physical Hilbert space of the theory is then

Hphys ¼ ⨂
x
Hϕ0 ⊗ ⨂

x;i
Hu0 : ð73Þ

That is, the local fields ϕ0ðxÞ and u0iðxÞ form a complete
set of gauge invariant d.o.f. for the theory. It is important
here that the matter field transform in the fundamental
representation of the gauge group or a super-representation
of it. If the matter field carries only a subrepresentation of
the gauge group, we can at most reduce the theory to a
theory gauged with a subgroup G0 of G. This may still
prove useful if G0 is Abelian.
In terms of the physical Hilbert space, it is important to

note here that the space of a gauge-matter theory on a lattice is
locally factorizable and exhibits none of the issues seen in
pure gauge theories, Abelian or otherwise. In fact, for the
purpose of factorizing the Hilbert space of a theory into
bipartite geometrical factors, a single matter field on the
boundary between regions suffices [17]. To illustrate this, we
note that the local factorization in Eq. (73) relies on the
existence of entities that transform like standardmatter fields,
as in Eq. (66). Such entities can be constructed from a matter
field at a single point in space, x0, and a Wilson line that
connects x0 with some other point, where Wilson lines are
like Wilson loops [see Eq. (35)] except on an open curve:

VCðxÞ ¼ Vðx0ÞUCðx0; xÞ
¼ Vðx0ÞUi0ðx0ÞUi1ðx1Þ � � �UinðxnÞ; ð74Þ

where xk þ îk ¼ xkþ1 are points along the open curve C
starting at x0 and ending at x. One can then check that VCðxÞ
transforms the same as VðxÞ under a gauge transformation.
This allows one to construct a physical space in a manner
similar to that used to obtain the space in Eq. (73). This, like
any solution that adds d.o.f. on a fictive boundary, is likely
flawed. Specifically, such a solution would make it difficult
to formulate a well defined area law for entanglement
entropy. An area law is a dependence between the entangle-
ment entropy of a specific state on the Hilbert space of a
theory (typically the vacuum state) and the area of the
boundary separating the two regions for which the entangle-
ment entropy is calculated. To make such a law universal
would imply that boundaries entering the calculation are
entirely arbitrary. If d.o.f. were defined only on boundaries,
of which there were many, we would also have multiple
distinct Hilbert spaces, the choice of which would depend on
precisely what regions we use in calculating the entangle-
ment entropy. This would lead to an ill defined theory and an
equally ill defined vacuum state.

V. CONCLUSIONS

We have shown that in some cases that could be
reasonably analyzed, the physical Hilbert space of pure
non-Abelian lattice gauge theories does not admit a geo-
metric factorization. We did so using simple counting
arguments, since many other approaches can be complex
and can drift towards fundamental issues in quantum
mechanics and field theory that are not entirely settled.
We have also shown that the addition of matter fields

changes the problem in a fundamental way: it makes a
factorization both straightforward and universal across
gauge groups. It leads to a well defined and complete
set of physical d.o.f. on Hamiltonian lattice gauge theories.
It is perhaps fitting that reality appears to favor theories
with matter.
The discussion here is somewhat narrow. We assume that

the Hilbert space of matter fields is some space of square
integrable functions. While this has to be true, for the
simple reason that it induces a norm, which is needed for a
sensible quantum theory, the precise Hilbert space will also
depend on the potential in the Hamiltonian. Furthermore,
when also involving interactions with a gauge field, the
problem becomes more complex due to the interaction
terms. The amount of information that can be gained from
an analysis that does not involve dynamics for such cases is
necessarily limited.
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